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In this paper, we combine the deep image prior (DIP) framework with a style

transfer (ST) technique to propose a novel approach (called DIP-ST) for image

inpainting of artworks. We specifically tackle cases where the regions to fill in are

large. Hence, part of the original painting is irremediably lost, and new content

must be generated. In DIP-ST, a convolutional neural network processes the

damaged image while a pretrained VGG network forces a style constraint to

ensure that the inpainted regions maintain stylistic coherence with the original

artwork. We evaluate our method performance to inpaint di�erent artworks, and

we compare DIP-ST to some state-of-the-art techniques. Our method provides

more reliable solutions characterized by a higher fidelity to the original images,

as confirmed by better values of quality assessment metrics. We also investigate

the e�ectiveness of the style loss function in distinguishing between di�erent

artistic styles, and the results show that the style loss metric accurately measures

artistic similarities and di�erences. Finally, despite the use of neural networks,

DIP-ST does not require a dataset for training, making it particularly suited for art

restoration where relevant datasets may be scarce.

KEYWORDS

deep learning, deep image prior, style transfer, art restoration, image inpainting,

unsupervised learning

1 Introduction

Art restoration aims at repairing damaged artworks, which often suffer from various

forms of deterioration over time. These damages can result from environmental factors

such as humidity or temperature fluctuations, as well as from physical impacts due to

accidents, mishandling, or vandalism, as described in Scott (2017) and Spiridon et al.

(2017). Image inpainting, a well-known technique in computational imaging, involves

filling in missing or damaged areas of an image. This task has been effectively tackled for

the restoration of artworks, helping reconstruct and preserve their original appearance. For

insightful examples, refer to the works by Fornasier and March (2007), Baatz et al. (2008),

Calatroni et al. (2018), and Merizzi et al. (2024). Restoring the original state of a degraded

image becomes highly challenging, or even impossible, when large areas are missing, as

traditional digital image processing techniques struggle to recover the lost content due

to the significant loss of information. Moreover, from a mathematical standpoint, image

inpainting is an ill-posed problem, meaning that the computational process does not yield

a unique solution. For further details on this topic, refer Bertalmio et al. (2000) and Bertero

et al. (2021).
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Deep learning (DL) paradigms enable the analysis and

processing of vast amounts of data, unveiling intricate patterns and

details that cannot be immediately perceived by humans, leveraging

powerful and highly expressive models like neural networks. This

topic can be deepened by Hohman et al. (2018) and Najafabadi

et al. (2015). In the field of digital humanities, DL has provided

novel tools for art restoration and analysis, as described in Gaber

et al. (2023) and Santos et al. (2021). Specifically, DL techniques

have already significantly impacted image inpainting, enabling

precise reconstruction of damaged artworks. By analyzing large

image datasets, DL tools can predict and reconstruct missing

elements with remarkable accuracy, particularly in medium- to

small-sized damaged areas. Results in Gaber et al. (2023), Gupta

et al. (2021), and Adhikary et al. (2021) demonstrate that DL

can restore artworks as closely as possible to their original state,

and thus, it ensures the preservation of cultural heritage for

future generations. One of the challenges with approaches relying

on datasets is the requirement for a large number of images,

representing a wide range of artistic styles, periods, and techniques.

In fact, creating and accessing such datasets can be difficult, costly,

and often subject to copyright restrictions. In this context, deep

image prior (DIP), first proposed by Ulyanov et al. (2020) in

the literature, emerges as a promising DL-based alternative, as

it does not require a training dataset. Instead, it exploits the

regularizing properties of convolutional neural network (CNN)

architectures. Very recently, DIP has been successfully applied to

art restoration inMerizzi et al. (2024), where the authors developed

a technique designed to produce visually coherent restorations

which enhance the understanding and interpretation of damaged

images in historical research.

However, even for DL techniques, the task of image inpainting

in large damaged regions is still significantly challenging, as

incoherent elementsmight be generated to fill the damaged regions.

Interestingly, so far, none of the restoration techniques proposed

in the state-of-the-art does particularly account for the specific

style of the original artwork, when computing new content for

wide regions to be inpainted. Nelson Goodman, one of the most

influential twentieth-century philosophers of art, argued that style

“consists of those features of the symbolic functioning of a work

that are characteristic of an author, period, place, or school,” in

Goodman (1978). We believe that style could play a crucial role

for inpainting approaches of large regions, because preserving

the stylistic elements of an artwork enforces its identity and

coherence. Thus, our goal was to enhance inpainting techniques by

incorporating style information about techniques and choices that

define an artist’s work, including aspects such as the selection of

colors, brushstrokes, themes, and overall composition.

So far, computer scientists have investigated the concept of

artistic style mostly by developing methods able to identify artists

and classify paintings for their styles, provided a large set of

examples. Examples can be found in Milani and Fraternali (2021),

Shamir (2012), Folego et al. (2016), and Lecoutre et al. (2017).

However, these methods are currently limited to identifying style

patterns only if the artists are well-represented in the training

dataset, in terms of the number of samples. Furthermore, they are

not yet capable of generating content in the same style.

Few years ago, the innovative technique of style transfer (ST)

has been introduced by Gatys et al. (2016) and Jing et al. (2019). ST

allows for the transformation of one image’s style into another while

preserving the original content. This is accomplished using neural

networks that have learned to extract from one reference artwork

some stylistic features (which are independent of the content)

and to impose those features onto a given image. Such complex

interplay and recombination between the content and style of an

image leads to the creation of a completely new image. In the

realm of art restoration, style transfer can be used to hypothesize

the restoration of artworks by incorporating the artist’s style into

the reconstruction of damaged areas. This approach can result in

restorations that are more aesthetically coherent to the original

artist’s style.

This paper focuses on the task of image inpainting, particularly

in the context of artwork restoration. One of the key contributions

is the introduction of the deep image prior with style transfer (DIP-

ST) method. This innovative approach enhances the traditional

DIP technique by incorporating a style loss term, which helps to

maintain stylistic coherence with the original artwork. The style

term is derived from the Gram matrices of a pre-trained CNN,

allowing the method to capture stylistic elements to effectively fill

the missing regions.

Moreover, the paper represents the first exploration into how

artificial intelligence perceives style, highlighting the challenges

associated with automatic style recognition, especially when

interpreting digital representations of artworks. This is achieved

through a style loss metric, capable of distinguishing different

painters’ styles by computing similarities between style elements

of various artworks. The results show the metric’s effectiveness in

identifying both similarities and differences in style, aligning with

human expertise in recognizing artistic styles.

The paper is organized as follows. Section 2 reviews existing

inpainting techniques, including both traditional mathematical

approaches and recent deep learning methods, as well as the

application of style transfer in digital humanities. Section 3

describes the proposed DIP-ST approach, detailing the integration

of the style term into the DIP framework and the technical

implementation aspects. Section 4 presents experimental results

demonstrating the effectiveness of the DIP-ST method in restoring

artworks with large occlusions. This section includes a quantitative

and qualitative analysis of the inpainted images, comparing

them with the standard DIP approach and some state-of-the-art

algorithms based on different paradigms. Moreover, we discuss

the implications of the findings, the challenges faced, and the

potential future research directions, particularly the exploration

of how neural networks perceive “style” differently from human

observers. Section 5 draws the conclusions.

2 A brief survey on image inpainting
techniques

Image inpainting aims at filling regions of a damaged image,

generating new content that is coherent from a visual perspective to

the original image. Let x̄ ∈ R
m×n represent an image of size m× n

pixels, defined on the domain � = (i, j) : i = 1, . . . ,m, j = 1, . . . , n.

We assume that x̄ contains occlusions in the pixels located in the

region D ⊂ �. The goal of the image inpainting task is to assign

new values to the pixels in D. We define the masking operatorm ∈
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{0, 1}m×n identifying the unoccluded pixels in the observed image,

as the characteristic function of the set � \ D. More specifically, m

is defined as:

mi,j =

{

1 if x̄i,j ∈ � \ D

0 if x̄i,j ∈ D.
(1)

In the following, before discussing the DIP approach for

image inpainting in Section 2.3, we first outline the main state-

of-the-art techniques for image inpainting. These methods range

from traditional mathematical handcrafted approaches, which

focus on transferring existing image content using diffusion or

transport processes and copy–paste methods with suitable patches

(Section 2.1), to more contemporary data-driven techniques that

involve generating image content using neural networks trained on

extensive image datasets (Section 2.2).

2.1 Handcrafted approaches for image
inpainting

Since the early 2000s, several handcrafted techniques for digital

image inpainting have been developed. In works by Schönlieb

(2015) and Bugeau et al. (2010), the algorithms usually use local

diffusion techniques, which spread information from intact parts

of the image into neighboring damaged areas. In particular, the

inpainted image x̂ is obtained as the solution of the following

optimization problem:

x̂ ∈ argmin
x

||m⊙ (x− x̄)||2 + λR(x). (2)

The first term and the second term are usually referred to

as fidelity term and regularization term, respectively. The former

ensures that the solution x̂ closely matches the original data x̄ in

the undamaged region � \ D. The latter favors the propagation of

contents within D. The positive scalar λ balances the contribution

of the two terms. Finally, we remark that the operator⊙ stands for

the Hadamard (element-wise) product.

In Chan and Shen (2001), the authors propose to define R(·)

in Equation (2) as the total variation (TV) functional popularized

by Rudin et al. (1992). The TV prior favors piece-wise constant

reconstructions via non-linear diffusion because it is defined on an

image x as:

TV(x) =
∑

c∈{R,G,B}

m−1
∑

i=1

n−1
∑

j=1

√

(xci+1,j − xci,j)
2 + (xci,j+1 − xci,j)

2, (3)

where xci,j denotes (i,j)-pixel value of the RGB channel c. TV is

widely used in image processing because it effectively restores

edges and important structural details, leading to clearer and more

accurate images, as demonstrated in works by Chambolle (2004),

Chan et al. (2006), Loli Piccolomini and Morotti (2016), and

Cascarano et al. (2022b).

Partial differential equation (PDE) paradigms for image

inpainting naturally arise from the variational formulation given

by the optimization problem in Equation (2). In order to find

the minimizers of this function, one can derive the associated

Euler—Lagrange equations. These equations provide the necessary

conditions that the optimal solution x̂ must satisfy, and they

can often be interpreted as PDEs. See Schönlieb (2015) for more

technical information on this topic. The solution process typically

involves simulating an artificial evolution, where the image is

iteratively updated to reduce the value of the functional until

convergence. For instance, advanced approaches making use of

Navier—Stokes models propagating color information by means

of complex diffusive fluid dynamics laws have been considered

in Caselles et al. (1998), Bertalmio et al. (2000, 2001), and Telea

(2004). Finally, other paradigms involving the use of transport and

curvature-driven diffusion approaches can be found in Ballester

et al. (2001), Chan and Shen (2001), andMasnou andMorel (1998).

The approaches described above favor local regularization. As

a consequence, they are particularly suited to reconstruct only

small occluded regions such as scratches, text, or similar. In

the context of heritage science, they have been employed for

restoring ancient frescoes in works by Bertalmio et al. (2000),

Fornasier and March (2007), and Baatz et al. (2008), and they

show effective performance. However, such techniques fail in

reconstructing large occluded regions and in the retrieval of

more complex image content such as texture. To overcome such

limitations, non-local inpainting approaches have been proposed in

the current literature by Criminisi et al. (2004), Aujol et al. (2010),

and Arias et al. (2011), to propagate image information using

patches. The main idea involves comparing image patches using a

similarity metric that accounts for rigid transformations and patch

rescaling. The PatchMatch approach proposed by Barnes et al.

(2009) exemplifies this method, enhancing it by computing patch

correspondence probabilities to weigh contributions from different

locations. Improved versions, such as those in Newson et al.

(2014, 2017), perform non-local averaging for better results. Patch-

based inpainting methods, known for their strong performance in

reconstructing geometric and textured content, are often sensitive

to initialization and hyperparameter choices like patch size. In art

restoration, Calatroni et al. (2018) combined local and non-local

methods for restoring damaged manuscripts.

Selecting the best hand-crafted model, especially the most

suitable term R(·) that promotes effective inpainting within

the damaged region D, often demands significant technical

expertise. This complexity limits the practical application of

these approaches because choosing the optimal regularization

term usually requires a deep understanding of advanced topics

in linear and non-linear diffusion and smooth and non-smooth

optimization techniques, which are not commonly familiar to

most practitioners.

2.2 Data-driven approaches for image
inpainting

Neural networks trained on extensive image datasets have

demonstrated outstanding performances in the task of image

inpainting. Given the important role played by data, in the

following we will refer to these methods as data-driven approaches.

Data-driven approaches provide a valuable alternative to

handcrafted methods by utilizing a vast amount of training data

and neural techniques to predict mappings from occluded images
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to completed ones. Differently from handcrafted approaches, these

methods benefit from the advanced encoding capabilities of deep

neural networks. These learning-based paradigms are capable of

recognizing both local and non-local patterns, as well as the

semantic content of images, without the necessity of defining

specific mathematical models or complex priors. Upon prior

knowledge of the inpainting region, i.e., of the mask operator

in Equation (2), data-driven inpainting approaches based on

convolutional networks have been designed in Köhler et al. (2014)

and Pathak et al. (2016) and improved in some recent works by Liu

et al. (2018) and Wang et al. (2018), with the intent to adapt the

convolutional operations only to those points providing relevant

information.

In recent years, generative models have emerged as a powerful

data-driven approach for image inpainting, achieving remarkable

success. An exhaustive review is presented by Ballester et al. (2022).

Generative models are capable of generating realistic patterns

by learning from a given dataset using unsupervised learning.

When applied to image inpainting, they can condition their

output on a masked input to predict and fill in the missing

regions. Among the most successful generative models for this

task are generative adversarial networks (GANs) (Goodfellow

et al., 2014) and denoising diffusion probabilistic models (DDPMs)

(Ho et al., 2020). The advent of GAN architectures significantly

boosted the effectiveness of data-driven inpainting techniques.

Unlike traditional methods that minimize pixel-wise differences,

GANs focus on aligning the distribution of reconstructed images

with that of ground truth images. This is achieved by using

two different networks: one that distinguishes between real and

generated images (discriminator) and another that generates

samples (generator). Provided a large dataset, GANs showed great

performances for inpainting tasks in works by Pathak et al.

(2016), Iizuka et al. (2017), Liu et al. (2019a), Liu et al. (2021),

Lahiri et al. (2020), and Hedjazi and Genc (2021). Recently,

DDPM approaches have shown potentially superior performance

in image inpainting than GANs. These models excel in generative

tasks without encountering common GAN-related drawbacks,

such as adversarial training instabilities and high computational

demands. This has been studied in Goodfellow et al. (2015). The

advances in using diffusion models for inpainting include the work

by Lugmayr et al. (2022), which demonstrated excellent results

by incorporating mask information into the reverse diffusion

process. Other notable neural data-driven inpainting approaches

leveraging diffusion models can be found in works by Chen et al.

(2023), Wang et al. (2023), Li et al. (2022), and Suvorov et al.

(2022).

Despite their strong performance, data-driven methods have

been relatively overlooked in digital inpainting applications (see

Wang et al., 2021, Lv et al. (2022), and Deng and Yu (2023)

and references therein). These methods depend on large datasets

of high-quality and relevant data, as well as information about

the types of occlusions, to produce appropriate image content.

This dependency poses a significant challenge, especially when

dealing with the restoration of heavily damaged frescoes by minor

artists, where little training data are available. Additionally, these

approaches can be unstable and are prone to introducing biases

from irrelevant data during the inpainting process, which poses

another limitation.

2.3 Inpainting with deep image prior

In 2020, Ulyanov et al. (2020) proposed a groundbreaking

method for deep learning-based image processing known as the

deep image prior (DIP). The main innovation of DIP is the usage of

the architecture of the neural network itself as a prior for generating

images, enabling effective image restoration without the need for

pretrained models or external datasets. This concept has been

further investigated in a number of subsequent works, such as Liu

et al. (2019b), Cascarano et al. (2021a), Cascarano et al. (2021b),

Cascarano et al. (2022a), Cascarano et al. (2023), Mataev et al.

(2019), and Gong et al. (2018).

Let f2 denote the neural network with parameters 2

parameters, taking as input an image z sampled randomly from a

uniform distribution with a variable number of channels. Given the

damaged image x̄ and its corresponding mask m, the traditional

DIP algorithm looks for the optimal vector of parameters 2̂ by

solving the following minimization problem:

2̂ ∈ argmin
2

||m⊙ (f2(z)− x̄)||2. (4)

Once this optimization problem is solved, the resulting

parameters 2̂ are used to generate the DIP output image x̂ = f
2̂
(z),

matching at best x̄ outside D and filling contents in � \ D via the

effect of the architecture of f
2̂
.

This optimization is typically approached using iterative

methods such as gradient descent with back-propagation. As

Equation (4) represents a non-convex optimization problem,

different initializations for 2 can lead to diverse outcomes. Unlike

traditional handcrafted and data-drivenmethods, DIP incorporates

implicit regularization through its network structure. However, to

prevent overfitting, it is essential to apply early stopping during

the iterative process. The training for each specific observation x̄

is conducted independently, leading to computational costs more

comparable to model-based techniques rather than data-driven

approaches.

In this study, we employ a classical DIP network architecture,

as represented in the first part of Figure 1, being a simple U-Net

architecture, first proposed by Ronneberger et al. (2015). We use

LeakyReLU activation functions, Lanczos kernel for downsampling

and bilinear upsampling layers, as done in Merizzi et al. (2024).

We keep the filter size at 3 × 3 for all the convolutional layers,

and we consider reflective boundary conditions for local coherence

in the corner areas. As in typical U-Net architectures, we employ

skip connections, which are direct links between different parts

of the convoluted network. They make information flow not only

within the architectural structure but also outside of it, allowing an

alternative gradient back-propagation path. This technique proved

to be one of the most effective tools in improving the performance

of convoluted networks, see, e.g., Drozdzal et al. (2016), Orhan and

Pitkow (2017), Morotti et al. (2021), and Evangelista et al. (2023).

However, skip connections are typically viewed as disadvantageous

in DIP because they tend to allow structures to bypass the

architecture of the network, and it may lead to inconsistencies

and smoothing effects, as outlined in Ulyanov et al. (2020). In

our specific scenario, on the other hand, such a smoothing effect

contributes positively to the overall consistency of the inpainted

image.
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In Section 4, we will use the TV-based DIP approach, obtained

by adding a TV regularization term to Equation (4) with the intent

of stabilizing the training procedure, as in Liu et al. (2019a),

Cascarano et al. (2021b), and Liu et al. (2019b). Recalling the

TV definition in Equation (3), the resulting DIP algorithm is thus

determined by the following optimization problem:

2̂ ∈ argmin
2

||m⊙ (f2(z)− x̄)||2 + λ · TV(f2(z)). (5)

We remark that in comparison with Equation (4), using the

model (5) for solving the inpainting task reduces the sensitivity

to the stopping time, as the TV term prevents noise overfitting (if

suitably balanced with the content term by λ in the overall loss).

In the experiments, Equation 5 is solved by running the Adam

optimizer for 3000 iterations with a learning rate of size 0.01.

3 Coding style for inpainting

In this section, we discuss the basics of style transfer and embed

it in the DIP scheme for inpainting, providing the proposed DIP-ST

scheme.

3.1 Style transfer technique

Style transfer is a neural technique introduced in computer

vision by Gatys et al. (2015). It involves creating a new image by

combining the content of one image x with the style of another

image y, used as a reference. The separation of content and style

is achieved via the application of a pre-trained convoluted network

and with the use of Gram matrices, as described in Drineas and

Mahoney (2005). In particular, a VGG-16 network [whose precise

description can be found in Simonyan and Zisserman (2014)] is

used to extract high-level information from the input image. It

is then compared with the same information acquired from the

reference image through filter activations which derive from the last

convoluted layer at each level of resolution in the VGG-16 network

(i.e., highlighted in blue in Figure 1). These activations, known as

feature responses, represent the image at different deep levels, and

they can then be used to quantify the style match, through Gram

matrices.

A Gram matrix is a mathematical tool used to collect the

correlation indices between multiple feature responses. It is

obtained by making the dot product of the feature response of a

given layer by its transpose. A loss element can then be defined as a

match between the Grammatrices of our style source and our newly

created image, for different network layers. More precisely, let Fkx
and Fky be the matrices representing the k-th feature response of the

two images x and y. The Gram matrix, Gl ∈ R
Nl×Nl , is defined as:

Gk = vec(Fk) · vec(Fk)T , (6)

where vec(·) is the operator that vectorizes a matrix by

concatenating its rows. The style loss between an image x and

a considered style image y can thus be defined as the average

quadratic distance between corresponding couples of Gk Gram

matrices, denoted respectively as Gk
x and Gk

y :

Lstyle(x, y) : =
∑

k

||Gk
x − Gk

y||
2. (7)

As Lstyle(x, y) does not take into consideration local

consistency, it is common to associate it with a form of

regularization that promotes local smoothness. For instance,

one could consider the total variation loss. This subject is

particularly relevant in the context of style transfer applied to

videos, and some improvements were reached in the past years (see

Wang et al., 2020).

In the past years, additional research was conducted and

brought significant improvements to style transfer. A useful review

is given in Jing et al. (2019). The major contributions include the

use of a generative transformation network for the creation of

the image suggested by Johnson et al. (2016), the computation of

Gram loss over horizontally and vertically translated features as

proposed by Berger and Memisevic (2016), and the improvements

in eliminating discrepancy in scale by subtracting the mean of

feature representations before computing Gram loss, provided by

Li et al. (2017a). Furthermore, Li et al. (2017b) made considerable

contributions on the subject, proposing the demystification of style

transfer, showing that minimizing Gram matrices between features

is equivalent to minimizing maximum mean discrepancy with

second-order polynomial kernels. More recently, painting style

matching exploiting more advanced neural network architectures

has been explored, such as patched CNN in Imran et al. (2023) and

vision transformers in Iliadis et al. (2021).

3.2 Deep image prior inpainting with style
transfer

Currently, we present our proposed approach for inpainting,

combining the deep image prior scheme with style transfer

elements. Our intent is to create an inpainting model with a

methodology in-between the semantic approach of neural data-

driven networks and the crafted prior algorithms. In addition, the

feasibility of finding a relevant dataset for a specific fresco is poor

while the chance of finding a well-preserved coherent image from

the same author is usually quite high. Therefore, we approach the

problem in such a way that we enable the leveraging of a single

reference image for the inpainting process. Our solution consists of

a combined model, having the first part synthesized the inpainted

image and the latter serving as a loss term enforcing compatibility

with a style-coherent image.

The general architecture of our model is reported in Figure 1.

We apply a three-term loss, composed by themasked DIP (content)

loss, the total variation regularization term, and style reference loss

as defined in Equation (7). The complete loss is thus as follows:

2̂ ∈ argmin
2

||m⊙(f2(z)−x̄)||2+λ·TV(f2(z))+β·
∑

k

||Gk
f2(z)−Gk

y||
2,

(8)

where two positive parameters λ and β are used to balance the

contribution of the three terms. We remark that by x̄ and y we
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FIGURE 1

Deep image prior with style transfer. The DIP architecture is illustrated in yellow. The VGG-16 architecture, used to calculate the style loss, is shown

in pink with the relevant filters highlighted in blue. The input to the implemented scheme includes z an image randomly sampled from a Gaussian

distribution; x̄, the degraded image; m, the mask; y, the style image; and x̂, the resulting inpainted image.

refer to the degraded image and the style image, respectively. As

Equation (8) basically represents Equation (5) with an additional

style reference loss as a regularization term, we name this approach

deep image prior with style transfer (DIP-ST). We remark that,

despite the complexity of the network structure, it is still a fully

convolutional model, meaning it can be computed efficiently by

working on GPUs.

The theoretical background of this novel architecture is to

create a partially crafted prior, achieving the capability of semantic

inpainting without the need for a large dataset of relevant images.

In addition, the possibility of gathering information from a single

relevant image is more correct for many applied tasks, such as

restoration, where the restored piece should not be altered by

information coming from undesired sources. With a data-driven

method, this is particularly hard to enforce.

4 Experiements and discussion

We currently perform experiments on digital images to test the

DIP-ST method for the inpainting of artworks.

In Figure 2, we report some of images we have considered

in our tests: they all are square-cropped images from famous

art masterpieces and reshaped to 512 × 512 pixels. We choose

as the principal element of comparison the Starry Night (oil-on-

canvas painting, 1889) by the Post-Impressionist painter Vincent

Van Gogh. This masterpiece is widely considered an optimal

reference for style transfer development (Huang et al., 2017; Li

et al., 2017b) because of its vivid colors, dynamic brushwork,

and emotional intensity. We also consider Van Gogh’s Self-

Portrait with Gray Felt Hat (1887) as a further Post-Impressionist

style reference, characterized by short and rhythmic brushstrokes,

striking color contrasts emphasizing emotional expression, and

intricate texture. Claude Monet’s Wheatstacks (End of Summer)

(1890–91) and The artist’s garden at Giverny (1900) paintings

perfectly represent the sense of calm, harmony and beauty,

reflecting the Impressionist aim to capture the essence of a

moment. While Monet and Van Gogh have distinct styles, they

share an emphasis on color, light, and expressive brushwork.

In the following, these similarities will be highlighted by the

style loss. Additionally, we consider a picture created by a

generative neural network. Specifically, it has been obtained by

feeding ChatGPT with a photo of one of the authors of this

paper, and the prompt: “Given the attached image you should

generate a second image with the same content but with the

style of Van Gogh”. We refer to this image as Self-Portrait by

ChatGPT in the following. Even if not reported in Figure 2, in

this work we also take into account art movements significantly

different from Impressionism and Post-Impressionism, such as

Neo- and Abstract Expressionism.We select Jean-Michel Basquiat’s

Versus Medici (1982), which is an exemplary of Basquiat’s neo-

expressionist style, characterized by intense, expressive subjectivity,

highly textured paint applications, and vividly contrasting colors. In

addition, we select the Convergence oil-on-canvas painting (1952)

by Jackson Pollock, whose chaotic energy and innovative use of the

drip painting technique are hallmarks of Abstract Expressionism.

The images of these last two paintings are not featured in this article

due to copyright restrictions.

4.1 Measuring and comparing style on
artworks

Before using style transfer for inpainting, we investigate the

capability of the style loss in Equation (7) to identify painters’
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FIGURE 2

Images considered in the tests, characterized by evident style patterns. (A) Starry night by Van Gogh. (B) Starry night by Van Gogh, shifted crop. (C)

Wheatstacks (End of Summer) by Monet. (D) The artist’s garden at Giverny by Monet. (E) Self-portrait by Van Gogh. (F) Self-portrait by ChatGPT.

styles. In Table 1, we report the values of Lstyle computed as in

Equation (7) for each possible pair of images considered in the

experiments. To enhance readability, the reported values have been

scaled by a factor of 1000.

Reasonably, the values are all equal to zero on the diagonal

as the two involved images coincide and do not differ in style.

All the other entries confirm the capability of the loss to measure

similarities and dissimilarities between images in terms of small

or high values, respectively. In fact, focusing on the Starry Night

column, we observed that it is recognized to be almost equal

(Lstyle = 0.72) to the image extracted from the same painting

with a shifted crop. Additionally, it is at only a 4.71 point

distance from the Self-Portrait painting by the same author. When

compared to Monet’s works, the distance doubles up, but the

metric increases remarkably when Starry Night is associated with

the Expressionist paintings, touching the value of 145.75 with

convergence. Coherent observations can be drawn for most of the

painting pairs, suggesting the ability of the loss to grasp the presence

and the absence of shared style patterns.

Interestingly, the ChatGPT-generated self-portrait exhibits a

high loss with Van Gogh’s works, withLstyle values ranging between

61.73 and 72.79 units. However, the lowest (though still high)

value is hit with Versus Medici, suggesting that the best “style-

association” for the ChatGPT-generated image is not with its

intended Van Gogh’s target but rather with Basquiat’s style. This

indicates that the style metric is effective at distinguishing between

artistic styles and is not easily misled.

4.2 Inpainting with style

We have currently come to the inpainting results. We simulate

painting damages with digital masks m we have overlaid on the

original images. We have set λ = 1 and β = 0.01 in the loss

function (Equation 8) for the DIP-ST executions, to achieve the best

results heuristically. We compare the results by our method to the

images inpainted by the TV-regularized DIP scheme, where λ = 1

in the loss in Equation (5).

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1478233
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Morotti et al. 10.3389/fcomp.2024.1478233

TABLE 1 Values of the style lossLstyle in Equation (7), computed for all possible pairs of the considered images.

Starry
night

Starry night
shifted crop

Wheatstacks
(End of
Summer)

The
artist’s
garden

Versus
Medici

Convergence Self-portrait
by Van Gogh

Starry Night 0.00

Starry Night shifted crop 0.72 0.00

Wheatstacks (End of Summer) 9.50 8.82 0.00

The artist’s garden 8.46 8.38 5.13 0.00

Versus Medici 80.92 87.35 111.72 92.13 0.00

Convergence 145.75 150.33 194.36 161.60 121.46 0.00

Self-portrait by Van Gogh 4.71 5.05 4.32 3.38 90.74 160.08 0.00

Self-portraitby ChatGPT 61.73 66.58 97.07 81.07 59.85 129.12 72.79

FIGURE 3

Inpainting tests on the Starry Night cropped image depicted in Figure 2A. (A) Image with the inpainting mask. (B) Image by DIP. (C) Image by DIP-ST

with Figure 2B as style image. (D) Image by DIP-ST with Versus Medici as style image.

In Figure 3, we aim at inpainting two rectangular big areas

depicted in Figure 3A, and we compare the TV-DIP technique

(Figure 3B) to the DIP-ST one. Specifically, we have exploited as

style image y the Starry Night shifted crop and obtained the image

in Figure 3C, whereas the Versus Medici image has been used as

(incoherent) y and it has provided the inpainted result in Figure 3D.
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FIGURE 4

Inpainting tests on the Wheatstacks cropped image depicted in Figure 2C. (A) Image with the inpainting mask. (B) Image by DIP. (C) Image by DIP-ST

with a non-overlapping crop from the same painting as style image. (D) Image by DIP-ST with Figure 2D as style image.

If no style constraints are used, although generating elements

with context appropriateness and colors similar to the original

ones, the DIP algorithm can fill the wide regions with a limited

consistency. It does not ensure that the inpainted areas seamlessly

blend with the surrounding regions. Similarly, if y image suggests

a style different than the one in x̄, semantic incorrectness

arises, and out-of-place artifacts appear, disregarding the context

appropriateness. Conversely, when a very coherent style prior is

passed to the DIP-ST, the result presents good edge continuity and

smooth transitions along the edges of the inpainted regions (as

particularly evident in the top-left corner of Figure 3C).

With the tests on the Wheatstacks image detailed in Figure 4,

we want to assess the reliability of the proposed DIP-ST inpainting

on smaller regions, where inpainting is traditionally applied. To do

that, we have superimposed onto the Wheatstacks image a mask

composed of three capital letters written in a thin font and three

circles of increasing size (see Figure 4A). Here, Figure 4B confirms

that the DIP approach perfectly integrates the inpainted pixels with

the original image contents on the letters. However, we can perceive

on theDIP outputmany inconsistencies, even on the smallest circle.

Exploiting the DIP-STmodel using a crop without occlusions taken

on the same painting, we still achieve solutions with very high visual

coherence, inside all the thin and circular regions, as appreciable in

Figure 4C. In Figure 4D, we use as style image y the artist’s garden

painting, i.e., a painting by the same author. The strong similarity

between the detected styles (5.13 in Table 1) makes the inpainting

appreciable. Only the pixels inside the biggest circle slightly break

the harmony of the Impressionist artwork.

Finally, we examine how the final DIP-ST results depend

on the β parameter, which weights the style loss in the deep

image prior minimization (Equation 8). For the Basquiat image,

we apply the DIP-ST algorithm to the simulated damaged image

of Versus Medici. We then created the inpainted image obtained

with β = 0.01. This value of β best restores the original graffiti,

avoiding excessive blurring while producing very sharp lines and

chromatically coherent results. We then set β = 0.001: in this case,

the style component does not enforce sufficient style consistency,

resulting in smooth regions that disrupt Basquiat’s characteristic
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style. Conversely, when the parameter is set too high (β = 0.1 and

β = 1), the algorithm introduces overly sharp objects that reflect

the contents of the unoccluded areas of x̄.

To compare the results quantitatively, we compute the

structural similarity index measure (SSIM), the peak signal-to-

noise ratio (PSNR), and the learned perceptual image patch

similarity (LPIPS) metrics between each solution image x̂ = f
2̂
(z)

and the corresponding ground-truth ones. The SSIM assesses the

perceived similarity of digital images by comparing structural

information, such as luminance, contrast, and texture. An SSIM

value close to 1 indicates greater similarity between the inpainted

image and the ground truth, suggesting that the algorithm

successfully maintains visual coherence and image detail within

the inpainted region. The PSNR metric quantifies the accuracy of

image reconstruction looking at the pixel-level differences between

the inpainted image and the ground truth. A higher PSNR implies

fewer differences from the ground truth in terms of pixel values.

The LPIPS is a perceptual metric that evaluates the difference

between two images based on the internal activations of a neural

network, giving a better representation of how humans perceive

differences in image quality. A lower LPIPS score indicates higher

perceptual similarity to the original image.

Specifically, we take into account only the pixels within the

inpainted domain D [as stated in Equation (1)], not to skew

the results with non-inpainted regions that would likely provide

excellent metrics contributions. The resulting values are presented

in Table 2. We also provide the metrics for the images generated

using the DIP approach, which correspond to the table rows

where y is not specified. Overall, the values in the table support

the conclusions previously made through visual inspection. The

improvements of DIP-ST over DIP are firmly confirmed, as the

quality metrics are worse when no style images y are used. In the

case of inpainting for the Starry Night artwork, the advantage of

using a strictly coherent style is particularly evident, whereas for the

Wheatstacks (with small regions to fill-in) also the DIP inpainting

has a very high SSIM and the enhancement by DIP-ST is better

caught by the LPIPS metric. In case of Versus Medici (last rows),

the metrics endorse the variability of the results at different values

of the hyperparameter β ∈ {0.001, 0.01, 0.1, 1}, above all in terms of

PSNR and LPIPS.

4.3 Inpainting with state-of-the-art
approaches

We conclude our experimental analysis by comparing the

results achieved with the proposed DIP-ST approach to those

computed by state-of-the-art methods for inpainting, for the three

considered masked images (depicted in Figures 3A, 4A). The DIP-

ST solutions we consider in this comparative phase are those

reported in Figures 3C, 4C. Figure 5, instead, shows the inpainted

images by two competitors. In particular, we consider as the first

competitor a handcrafted variational approach. It solves an imaging

problem stated as in Equation (2), with prior R(x) given by the

total variation function defined in Equation (3). The minimization

problem is solved by running 100 iterations of the popular iterative

Chambolle—Pock algorithm, presented in Chambolle and Pock

TABLE 2 SSIM, PSNR, and LPIPS between the ground-truth images and

the inpainted reconstructions by the DIP (in cases where y is not present)

and the DIP-ST frameworks.

x̄ y SSIM PSNR LPIPS

Starry night

- 0.8788 18.2949 0.0912

Starry night

shifted crop

0.8798 19.7944 0.0736

Versus Medici 0.8766 18.5610 0.1127

Wheat-stacks

- 0.9669 28.0705 0.0379

Wheatstacks

shifted crop

0.9695 29.9056 0.0160

The artist’s garden 0.9698 29.2674 0.0176

Versus Medici

Versus Medici

shifted crop

(β = 0.001)

0.8966 17.7165 0.0979

Versus Medici

shifted crop

(β = 0.01)

0.8996 18.5994 0.0970

Versus Medici

shifted crop (β = 0.1)

0.9066 18.8595 0.1040

Versus Medici

shifted crop (β = 1)

0.8952 16.8145 0.1292

In the last block, we report in parenthesis the value of the style parameter β . The best values

obtained in each block are bolded.

(2011). The results are shown in the first row of Figure 5. The

second row of Figure 5 depicts the results by a black-box generative

algorithm, freely available online at https://pincel.app.

As visible, the handcrafted regularized method is not effective

in creating new content for large regions: the inpainted areas are

very smooth, blurry, and not consistent at all with the styles of

the artworks. Only the inpainted areas corresponding to the capital

letters on Monet’s painting are almost indistinguishable from the

surrounding original pixels. Indeed, within the class of regularized

approaches, the regularizers are generally designed to propagate

or replicate information from the existing pixels, making them

effective for inpainting only small areas.

Diversely, the results achieved by a generative network are

closer to the real images: the painters’ brushstrokes have been

accurately reproduced and the inpainted regions are well integrated

within the images. On this point, these images are quite similar

to ours. However, some discontinuities corrupt the swirling

movement of the clouds in the Starry Night sky and break the

human shapes in Versus Medici somewhere. Interestingly, these

distortions were attenuated in the images computed by DIP-

ST (Figures 3A). In this regard, it is worth noting that the loss

function of a generative network forces data consistency to a set of

training images that are very different from each other, whereas our

framework forces consistency to the sole x̄ image, through the norm

in Equation (2). This feature can help the DIP-based approach to

inpaint large regions with higher congruence to the unmasked

pixels. Additionally, including the TV prior in the DIP-ST loss

[as we do in Equation (8)] specifically imposes local consistency

among adjacent pixels, and it turns out to be particularly effective

for inpainting across the mask edges.

Finally, we remark that the comparison cannot overlook the

difference in computational cost, as the training of the generative
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FIGURE 5

Inpainting results on the test images depicted in Figures 3A, 4A. (A, B) Images by the Chambolle–Pock iterative algorithm used as an exemplar solver

for the class of regularized handcrafted approaches. (C, D) Images by a trained generative neural network, implemented by an online tool.

network is particularly expensive and time-consuming, especially

when working with a large dataset of images. Training a generative

model on such a scale requires significant computational resources,

often involving powerful GPUs and extensive processing time,

making it a much more resource-intensive process compared

to iterative approaches, such as the ones behind the TV-based

handcrafted solver and the DIP-ST algorithm.

5 Conclusion

This paper tackles the image inpainting task, which is

particularly challenging when the regions to fill in are sensibly

large and the corresponding image contents are lost. In this case,

traditional handcrafted techniques tend to fail because they often

rely on surrounding pixel information and simple interpolation

methods, which are insufficient for reconstructing extensive

missing areas with complex textures or patterns. These methods

typically result in blurred and visually inconsistent outcomes,

unable to restore or even just mimic the original aesthetic or

detailed structures. Conversely, data-driven approaches, which

have recently become appealing to experts in art restoration for

cases with small occlusions, may produce rich but incoherent

content for larger regions. This is because neural networks

typically learn image patterns from a vast corpus of very

dissimilar images.

To address these limitations, in this paper, we enrich the

deep image prior inpainting technique by incorporating a style

component in its loss function, playing the role of a style constraint

for the inpainting process. This requires passing to the algorithm

one external image, from which our deep network can extract

the style information and characterization. Afterward, assuming

that the external and the damaged images share a similar style,

the proposed DIP-ST approach generates high-quality inpainted

images that preserve both the local textures and global style

consistency of the original artwork.

We remark that, although based on a neural network, DIP does

not require pre-training on a vast dataset and generates inpainting

values by solving an optimization problem directly on the image to

be inpainted. Only one style image (possibly characterized by high

style consistency to the damaged one) is further required, and it

can simply be a crop or a zoom-in on a well-preserved area of the
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original painting. This ensures high applicability to the proposed

DIP-ST framework.

Through extensive experiments (reported in Section 4.2) of

inpainting in large regions, we demonstrate the effectiveness of our

method in producing visually pleasing and stylistically consistent

results. This makes DIP-ST particularly useful for its application

in digital humanities, where precise and contextually appropriate

restorations are essential.

A limitation of the proposed DIP-ST method lies in its

potential difficulty in handling artworks with highly complex or

less consistent styles. The performance of the style loss component

in capturing and applying the stylistic features depends on the

clarity and uniformity of the reference style image. For highly

intricate artworks, especially those with non-uniform styles, such

as pieces where different sections exhibit contrasting techniques

or textures, DIP-ST may struggle to maintain stylistic coherence

across the inpainted regions. This limitation could lead to visible

discrepancies in areas where the style transfer may not accurately

capture the complex nuances of the original artwork.

Another challenge is the computational cost involved when

applying the DIP-ST method, particularly for large images. The

incorporation of a style loss term, which relies on computing

Gram matrices over several layers of a pretrained CNN, increases

the computational load compared to a standard DIP framework.

Additionally, the iterative nature of DIP optimization combined

with style regularization results in longer execution times and

higher resource demands, when compared to classical iterative

solvers. In practice, this could limit the scalability of the approach

when applied to more extensive restoration projects. However,

DIP-ST requires way lower computational resources than

a generative deep learning approach, whose performance

we have demonstrated to be comparable or even worse

than ours.

Additionally, this paper includes an initial study (reported in

Section 4.1) aimed at exploring how artificial intelligence conceives

‘style’, which is intrinsically different from human perception. In art,

‘style’, can be defined as the distinctive and recognizable manner

or technique that characterizes the works of an individual artist,

a specific period, or a particular movement. Furthermore, an

artist’s style is often identified through a combination of elements

involving the artist’s technique, materials, and visual and thematic

contents, which viewers can observe and recognize when looking

at the artwork in person. However, not all of these elements are

easily accessible through digital representations; for instance, it can

be difficult to perceive the dimensions of a painting or distinguish

between canvas paintings and graffiti. This makes the automatic

recognition of an artist’s style challenging and understanding what

is interpreted as ’digital style’ by neural techniques even more

intriguing for digital humanities. This fascinating dualism of ’style’

will drive our future research endeavors.
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