
TYPE Original Research

PUBLISHED 30 October 2024

DOI 10.3389/fcomp.2024.1477501

OPEN ACCESS

EDITED BY

Eduard Babulak,

National Science Foundation (NSF),

United States

REVIEWED BY

Shahzad Ashraf,

DHA Su�a University, Pakistan

Shitharth Selvarajan,

Leeds Beckett University, United Kingdom

*CORRESPONDENCE

Anis Yazidi

anisy@oslomet.no

RECEIVED 07 August 2024

ACCEPTED 07 October 2024

PUBLISHED 30 October 2024

CITATION

Karmous N, Ben Dhiab Y, Ould-Elhassen

Aoueileyine M, Youssef N, Bouallegue R and

Yazidi A (2024) Deep learning approaches for

protecting IoT devices in smart homes from

MitM attacks. Front. Comput. Sci. 6:1477501.

doi: 10.3389/fcomp.2024.1477501

COPYRIGHT

© 2024 Karmous, Ben Dhiab, Ould-Elhassen

Aoueileyine, Youssef, Bouallegue and Yazidi.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Deep learning approaches for
protecting IoT devices in smart
homes from MitM attacks

Nader Karmous1, Yassmine Ben Dhiab1,

Mohamed Ould-Elhassen Aoueileyine1, Neji Youssef1,

Ridha Bouallegue1 and Anis Yazidi2,3*

1Innov’COM Laboratory, Higher School of Communication of Tunis, University of Carthage, Tunis,

Tunisia, 2Department of Computer Science, OsloMet–Oslo Metropolitan University, Oslo, Norway,
3Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway

The primary objective of this paper is to enhance the security of IoT devices in

Software-Defined Networking (SDN) environments against Man-in-the-Middle

(MitM) attacks in smart homes using Artificial Intelligence (AI) methods as

part of an Intrusion Detection and Prevention System (IDPS) framework. This

framework aims to authenticate communication parties, ensure overall system

and network security within SDN environments, and foster trust among users and

stakeholders. The experimental analysis focuses on machine learning (ML) and

deep learning (DL) algorithms, particularly those employed in Intrusion Detection

Systems (IDS), such as Naive Bayes (NB), k-Nearest Neighbors (kNN), Random

Forest (RF), and Convolutional Neural Networks (CNN). The CNN algorithm

demonstrates exceptional performance on the training dataset, achieving 99.96%

accuracy with minimal training time. It also shows favorable results in terms of

detection speed, requiring only 1 s, and maintains a low False Alarm Rate (FAR)

of 0.02%. Subsequently, the proposed framework was deployed in a testbed

SDN environment to evaluate its detection capabilities across diverse network

topologies, showcasing its e�ciency compared to existing approaches.

KEYWORDS

Man-in-the-Middle, ARP spoofing, Software-Defined Networking, machine learning,

Internet of Things, smart home, cybersecurity, intrusion detection system

1 Introduction

In the research papers by Rostami and Goli-Bidgoli (2024) and Karmous et al. (2023),

within an SDN configuration featuring an IoT Message Queue Telemetry Transport

(MQTT) broker system for smart homes, the MQTT broker typically connects to IoT

devices and communicates with them. As illustrated in Figure 1, the SDN controller

and switches manage the network infrastructure and direct traffic flows. The MQTT

broker is a central component in an IoT network that facilitates communication between

IoT devices. IoT devices, including sensors, connect to the MQTT broker to publish a

messages to hosts subscriber. The MQTT broker doesn’t typically connect directly to

SDN switches or the SDN controller. The MQTT broker typically connects to IoT devices

and communicates with them. The MQTT protocol utilizes packets with minimized

payload overhead and offers different Quality of Service (QoS) levels while reducing energy

consumption, as demonstrated by Toldinas et al. (2019). This effectively addresses the

challenges associated with the HTTP protocol, as highlighted by Wukkadada et al. (2018).

This makes MQTT the optimal choice for future use in IoT devices exchanging data.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1477501
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1477501&domain=pdf&date_stamp=2024-10-30
mailto:anisy@oslomet.no
https://doi.org/10.3389/fcomp.2024.1477501
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1477501/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

However, as these interconnections are vulnerable to attacks,

there is a risk of experiencing denial-of-service (DoS) attacks, as

indicated by the research of Karmous et al. (2024) and Bårli et

al. (2021). Moreover, they can be exploited to gain full control

through MitM attacks when targeting the endpoints, as noted

by Conti et al. (2016). MitM attacks pose a significant threat,

particularly to IoT devices within an SDN. In an SDN-based IoT

ecosystem, a potential attacker could exploit vulnerabilities in the

SDN infrastructure, such as compromised switches, to intercept

communication between the host subscriber and the IoT publisher.

The attacker positions themselves between the host subscriber and

the IoT publisher, thereby gaining the ability to eavesdrop on or

manipulate the data flowing between them. The main contribution

of this paper is the development of an IDPS framework, as

proposed by Abraham and Bindu (2021), aimed at detecting and

mitigating these risks. This requires the implementation of robust

security measures through an SDN framework that leverages ML

algorithms to detect specific MitM subtypes, including the most

common and dangerous ones like Address Resolution Protocol

(ARP) spoofing, as highlighted by Meghana et al. (2017), and

ARP flood, as noted by Du et al. (2021). The selection of

the SDN framework is guided by the optimal results obtained

using commonly employed metrics for evaluating the ML model,

including accuracy, fit time, prediction time, and false alarm rate

(FAR). To further assess the performance of the optimal classifier

in real-world traffic scenarios, we deploy it within the SDN Ryu

controller for the detection and real-time mitigation of MitM

attacks, as demonstrated by Asadollahi et al. (2018). We then

evaluate its performance across various network topology sizes,

including small, medium, and large, as well as different types such

as single, tree, and mesh topologies.

The structure of this paper is organized as follows: Section

1 introduces the paper. Section 2 reviews previous research on

countering MitM attack methods. Section 3 provides relevant

background knowledge. Section 4 outlines the methodology

employed in this study. Section 5 presents the analysis and

discussion of experimental results, comparing our method’s

outcomes with those of other relevant works. Finally, Section 6

concludes the paper.

2 Related works

In this section, we discuss previous works and methods that

address MitM attacks.

Ashraf (2021) explored the proactive role of IoT devices in the

development of smart cities by examining how IoT technologies,

such as wireless sensors and big data management systems,

are revolutionizing urban infrastructures. The study highlights

the importance of smart traffic management, smart healthcare,

energy utilization, and agricultural systems as key aspects of

future smart cities. Through an Analytic Hierarchy Process (AHP),

it demonstrates that around 98% of residents in smart cities

report satisfaction with their environment, in contrast to those in

traditional cities. However, the study acknowledges the challenges

of handling IoT big data, such as congestion monitoring, and

stresses the need for further innovations in deep learning and

FIGURE 1

SDN-based IoT MQTT broker.

data classification frameworks. Limitations include the lack of real-

world implementations for some proposed frameworks, indicating

that much of the research remains theoretical.

Sebbar et al. (2020) explored MitM attacks on SDN networks,

demonstrating their feasibility, and proposed a detection model

called CBNA-RF, which uses machine learning, specifically RF,

as highlighted by Haddouchi and Berrado (2019), to detect

and mitigate these attacks in real-time. The CBNA-RF model,

tested in a controlled environment, shows high accuracy (97.4%)

and performance (96.7%) in identifying malicious nodes and

stopping MitM attacks without heavy authentication mechanisms.

However, the model has limitations, such as its restricted testing

environment. It aims to test the model in in different network

scenarios and under varying network sizes, and explore additional

machine learning techniques for better results.

Farhin et al. (2020) introduced a fuzzy neural network (FNN)

model, as detailed by Chang et al. (2024), integrated with SDN

for detecting attacks in IoT environments. The model includes

four adaptive neuro-fuzzy inference systems (ANFIS), where the

outputs of three ANFIS are used as inputs to the fourth, which

makes the final decision. The system was tested using the NSL-

KDD dataset, as referenced by Zhao (2022), and demonstrated

high accuracy in detecting various types of attacks, such as DDoS,

MitM, SC (Gnad et al., 2017), and MC (Mwange and Cankaya,

2024; Beaman et al., 2021), by combining the features of multiple

ANFIS. The proposed approach successfully mapped and ranked

attacks based on input feature similarity, highlighting its potential

for robust IoT security. However, the paper suggests that further

improvements are needed in accuracy, particularly for MitM

attacks. Additionally, the model should be tested with real traffic

in IoT networks and under various scenarios.

Saritakumar et al. (2021) proposed a method to mitigate MitM

attacks in SDN by detecting and dropping ARP spoofing packets.

The authors implemented the proposed algorithm on both RYU

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

and POX, as discussed by Kaur et al. (2014), and evaluated its

performance. The results show that the algorithm can effectively

detect and mitigate MITM attacks by analyzing IP-MAC address

bindings, reducing CPU utilization by up to 20% compared to

before mitigation. The execution time of the mitigation algorithm

is also lower on the RYU controller compared to POX. Overall, the

proposed solution provides an efficient and lightweight approach to

secure SDN networks against MITM attacks. However, this paper

used a simple method to detect and mitigate MitM attacks. This

method has multiple false alarms in real SDN network and needs

to integrate machine learning to reduce false alarms and achieve

higher accuracy.

Cherian and Varma (2022) discussd the mitigation of DDoS

and MitM attacks in SDN-based IoT networks using a Belief-Based

Secure Correlation (BBSC) approach. The proposed BBSC security

algorithm uses a novel encryption algorithm and decryption

algorithm as described by Ezeofor and Ulasi (2014) to ensure

secure communication. The algorithm achieves detection time of

1.53ms and detection accuracy of 99.53% for 10 packets, and

detection time of 7.26ms and detection accuracy of 99.53% for 100

packets. The results show significant improvements in detection

accuracy and time compared to existing frameworks. The paper

also discusses various techniques used to detect and mitigate DDoS

and MitM attacks, including IPS-IDS System Framework, KRACK

Mitigation Framework, and statistical methods including SPRT

and SVM, as referenced by Deore et al. (2024) and Abdullah and

Abdulazeez (2021). The proposed architecture integrates multi-

point access and authentication cryptography, ensuring secure

communication and authorization access policy. The performance

evaluation of the BBSC algorithm shows better detection time and

accuracy compared to existing methods, making it a promising

solution for mitigating DDoS and MitM attacks in SDN-based IoT

networks. However, this paper needs to test the model on a real

testbed that considers periodic data transmission from IoT devices.

Additionally, the algorithm should be improved further to ensure

that attacks are efficiently detected andmitigated even with random

data generation from IoT devices.

Ahuja et al. (2022) presented an approach to detect ARP attacks

including ARP Poisoning and ARP Flooding, within SDNs using

machine learning techniques. The authors developed a Python

application at the SDN controller to collect and log relevant

features into a traffic dataset, which was then used to train various

machine learning models. Among these, the hybrid Convolutional

Neural Network-Long Short Term Memory (CNN-LSTM) model,

as referenced by Ramaswamy and Chinnappan (2023), achieved the

best performance with an accuracy of 99.73%. The study highlights

the high CPU utilization (over 97%) and significant memory usage

during an attack, and the model’s quick attack detection time

of 63,000 microseconds further demonstrates its efficiency. The

limitation of this paper is the need to test the performance of the

hybrid CNN-LSTM model compared to other ML algorithms and

validate the model on a real testbed to demonstrate its efficacy in

detecting ARP poisoning and spoofing attacks.

Adhikari et al. (2022) proposed an encryption-based solution

to prevent MitM attacks in the Southbound Interface (SBI) of

SDN architecture. The solution combines Elliptic-Curve Diffie-

Hellman (ECDH) key exchange, as described by Haakegaard and

Lang (2015), and Advanced Encryption Standard (AES) 256-

bit encryption, referenced by Saha et al. (2024), to secure the

communication between the SDN controller and the underlying

switches. The authors demonstrate how the MiTM attack can

be carried out using tools like Bettercap and SSLStrip, and then

present their proposed algorithm to generate ECDH keys and use

them for AES encryption of the traffic between the controller and

switches. The experimental setup involves an ODL controller, a

Mininet emulator for the infrastructure layer, and a Kali Linux

machine for launching the MiTM attack. The authors claim that

their approach effectively prevents the MiTM attack and can also

be used to secure other types of malicious activities in the SDN

environment. However, encryption is not an effective method to

protect against MITM attacks. It is weak in protecting against ARP

flooding attacks: ARP flooding occurs at the data link layer (Layer

2) of theOSImodel, while ECDH andAES protect communications

at higher layers (typically Layer 4 or above). While ARP flooding

can disrupt the network by overwhelming devices with excessive

ARP requests or replies, it does not compromise the encryption

provided by ECDH and AES. These cryptographic algorithms are

specifically designed to ensure the confidentiality and integrity

of data during communication. However, they do not mitigate

ARP flooding directly or address its potential impact on network

operations, such as traffic redirection or IoT device overload.

Saritakumar et al. (2023) proposed a method to detect ARP

spoofing attacks in SDN environments by monitoring ARP traffic

for inconsistencies. The technique involves injecting ARP request

packets into the network and comparing IP-MAC address bindings

with incoming packets. The implementation using Mininet, RYU

controller, and open vswitches demonstrates that as the percentage

of attack increases, the latency and packet loss of legitimate

traffic also increase. The detection time improves with higher

attack percentages, while memory usage remains relatively stable.

However, CPU utilization peaks at 0.77% during 100% attack

scenarios, indicating efficient resource use even under full attack

conditions. The limitation of this work is the presence of false

alarms when the CPU utilization of the SDN network’s operating

system is recorded between 80% and 100%, which may not be due

to ARP attacks. This problem can be addressed by using machine

learning methods or by analyzing the CPU execution programs.

Gowda and Dayananda (2023) presented a solution for

detecting and preventing ARP spoofing attacks within an SDN

framework, utilizing the Ryu controller and OpenFlow protocol.

The test environment included an Ubuntu virtual system with

2 GB RAM and a Mininet emulator. The performance metrics

focused on ARP attack detection time and CPU utilization of the

Ryu controller. The proposed solution demonstrated a detection

time for ARP attacks and maintained a low CPU utilization

of 2.0% during attacks, which dropped to 0.7% post-mitigation.

The solution effectively identified and blocked malicious ARP

packets by analyzing and comparing ARP packet information

against stored mappings, proving its efficacy in enhancing network

security against ARP spoofing attacks. However, this work needs

additional metrics to evaluate performance and should also be

tested on larger and more complex network topologies to provide

a scalable approach to network security and incorporating machine

learning algorithms.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

Alani et al. (2023) presented ARP-PROBE, an ARP spoofing

detection system designed for IoT systems, leveraging a deep

neural network (DNN) architecture. The system’s neural network

model was optimized using Talos to select the best architecture

and hyperparameters, which included 24 neurons in the first

hidden layer, 16 neurons in the second and third layers, and 8

neurons in the last hidden layer. The model was trained using a

balanced dataset with 428,918 samples, achieving a high accuracy

of 99.99% during 10-fold cross-validation. Testing on a second

dataset confirmed the model’s robustness with consistent accuracy,

precision, recall, and F1 score of 0.999. The model’s predictions

were explained using SHAP values to enhance transparency and

trust in the decision-making process. The study demonstrates

that ARP-PROBE is an efficient and reliable tool for detecting

ARP spoofing in resource-constrained IoT environments. The

shortcoming of this paper is that when the DNNmodel is deployed

on a real SDN, it has high CPU and resource consumption. This

could affect the functionality of resource-constrained IoT devices

and prevent the detection of attacks in real-time.

Khedr et al. (2023) introduced the P4-HLDMC framework

for detecting and mitigating DDoS and ARP attacks in SD-

IoT networks. The framework integrates machine learning,

stateful P4, and a multi-controller SDN architecture to enhance

attack detection. Experimental results show that the SDP4-MEV

model achieved the highest accuracy rate of 99.15% for ARP

Spoof and 99.78% for ARP Flood, outperforming other models.

The framework also demonstrated high detection rates, low

false-alarm rates, low latency, and high throughput, surpassing

existing methods. The Improved ODL controller emerged as

the optimal choice for implementing the framework, offering

improved resource allocation, scalability, and stability, achieving

a throughput of 28,640 packets per second and the lowest CPU

and memory usage among tested controllers. The limitation of this

work is that it does not address other ARP attacks, which are threats

to IoT devices, such as ARP flooding. Additionally, it has not been

tested on real SDN networks with different topologies and sizes to

evaluate performance.

Aoueileyine et al. (2024) used a simple Python algorithm in

Ryu Controller to detect a MitM attack on IoT devices using SDN.

The implemented algorithm could detect both ARP floods and

ARP spoofing and mitigate it. If the ARP packet count for a port

exceeds 20, it triggers the flood handling mechanism and checks for

IP-MAC address mismatches to detect ARP spoofing. The author

mitigated the impact of ARP spoofing or ARP floods by blocking

the in_port, which refers to the port of the switch where the packet

was received. The disadvantage of this paper is that the algorithms

have a False Alarms that could detect a wrong signal for MitM

attacks, especially for ARP floods.

Hnamte and Hussain (2024) presented a novel approach for

detecting and mitigating ARP spoofing attacks within SDNs using

a Deep Neural Network (DNN) model as described by Mittal

(2020). By employing a self-generated dataset tailored to SDN

environments, the proposed system achieved an unprecedented

detection accuracy of 100%, with negligible loss rates and rapid

detection times. The results highlight the system’s robustness and

adaptability, as it significantly reduces false positives and negatives,

ensuring precise and timely detection of ARP spoofing incidents.

Experimental evaluations demonstrated that the system efficiently

manages increased CPU loads during attacks, maintaining stability

across varying network scales. The study underscores the

effectiveness of integrating deep learning techniques for real-

time anomaly detection in enhancing network security without

compromising performance. The limitation of this paper is that the

proposed DNN model learns the training data too well, including

the noise and outliers, indicating clear overfitting. Additionally, the

model is tested only on a small SDN topology network.

Table 1 provides a brief summary of the above related

works, identifying the methods 249 used, their advantages, and

their disadvantages.

3 Background

This section delineates the fundamental types of MitM attacks,

which pose a genuine threat, It subsequently details the SDN

architecture layers in IoT devices.

3.1 MitM attacks types

Both ARP flood and ARP spoofing are forms of MitM attacks

that exploit vulnerabilities in ARP, which is used to map IP

addresses to MAC addresses in a local network. While they share

similarities, they have distinct characteristics and objectives.

3.1.1 ARP flood
In an ARP flood attack, as shown in Figure 2, the attacker sends

a significant volume of ARP requests, frequently employing forged

source IP addresses, directed at the target network. This barrage

of requests has the potential to inundate the target’s ARP cache,

leading to an overflow of incorrect or redundant entries. When the

switch becomes overwhelmed, it may transition into hub mode.

In hub mode, the switch indiscriminately forwards traffic to all

computers connected to the network. Consequently, the attacker

could exploit this situation to capture all network traffic using

sniffing software.

3.1.2 ARP spoofing
As shown in Figure 3, ARP spoofing, also known as ARP

poisoning, takes advantage of a flaw in the ARP protocol. The

ARP protocol operates under the assumption that ARP responses

correlate with the IP address in the ARP requestmessage, yet it lacks

a mechanism for authenticating the legitimacy of ARP responses.

This inherent design limitation in the ARP protocol provides an

avenue for exploitation by hackers. The consequences of successful

ARP spoofing can include unauthorized access, interception of

network traffic, and potential for MitM attacks. The attacker can

redirect traffic meant for the legitimate device to their own system,

enabling eavesdropping or other malicious activities.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

TABLE 1 Comparison of recent studies on MitM attacks.

Paper Method used Advantage Disadvantage

Ashraf (2021) Analytic Hierarchy Process

(AHP)

AHP is a valuable tool for analyzing the role of IoT and

smart systems

Lack of real-world implementations for

some proposed frameworks

Sebbar et al. (2020) RF method Can detect and mitigate MitM attacks in real-time Needs to improve accuracy

Farhin et al. (2020) Fuzzy neural network Can detect MitM attacks - Missing the mitigation step

- Needs to improve accuracy

Saritakumar et al. (2021) SDN controller method - Adaptable to RYU and POX controllers

- Reduces CPU utilization

- Can detect and mitigate MitM attacks in real-time

False alarms

Cherian and Varma (2022) Belief-Based Secure

Correlation (BBSC) approach

- High accuracy and low detection time

- Can detect and mitigate MitM attacks

Needs to be tested on a real testbed for

IoT devices

Ahuja et al. (2022) Hybrid CNN-LSTMmodel - High accuracy

- Can detect and mitigate MitM attacks

Needs to be tested on a real testbed

Adhikari et al. (2022) Combines ECDH key

exchange and AES 256-bit

encryption

- Secures communication between the SDN controller

and the underlying switches

- Effectively prevents MitM ARP spoof attacks

Needs an effective method to protect

against MitM ARP flood attacks

Saritakumar et al. (2023) Injecting ARP request packets - Real-time detection

- High latency

False alarms

Gowda and Dayananda

(2023)

Method integrated on RYU

controller

- Decreases CPU utilization

- Can detect and mitigate MitM attacks

Needs additional metrics to evaluate

performance

Alani et al. (2023) Deep learning method - Feature extraction and selection

- Low false negative rate

- High accuracy

High CPU and resource consumption

Khedr et al. (2023) Modified ensemble voting

(MEV) algorithm

- Incorporation of 17 new features

- Low false-alarm

- High detection rates

- Overfitting

- Tested only on small SDN network

Aoueileyine et al. (2024) ARP packet count and

IP-MAC address mismatches

- Real-time detection and mitigation

- Reduces CPU utilization

False alarms

Hnamte and Hussain (2024) DNNmodel - Real-time detection and mitigation

- High accuracy and low FAR

- Reduces CPU utilization

- Needs to be tested on a real testbed for

IoT devices

- Need to address ARP flooding attacks

3.2 Theoretical study

In the theoretical studies, we examine the selection of the SDN

framework in comparison to other potential frameworks for IoT

devices. We then compare the frameworks used in recent works

with our chosen framework in terms of security and effectiveness.

3.2.1 Motivation
Compared to other related works, our approach stands out

by utilizing a synthetic MitM dataset collected through the Ryu

controller in an SDN environment. Our method effectively detects

and mitigates, in real time, two types of MitM attacks : ARP

flooding and ARP spoofing using a CNN-based IDPS model with

high accuracy, a low false alarm rate, and a short detection time.

Additionally, our approach is adaptable, scalable, and works across

multiple SDN network topologies and varying network sizes.

3.2.2 The criteria used for the comparison
various frameworks

The criteria for comparing various frameworks are based on the

following key aspects:

1. Security performance: this includes detection accuracy, false

alarm rate, and the ability to prevent specific types of attacks

(such as MitM attacks) in real time. This is critical as IoT

environments are highly susceptible to such attacks.

2. Response time: the time taken to detect and mitigate attacks

is essential, particularly in IoT networks where latency can

impact overall system functionality. Lower detection times

ensure proactive threat response.

3. Scalability: the ability of the system to operate effectively

across different SDN topologies and varying network sizes

(small, medium, and large). Scalability is important for

ensuring that the solution can be applied to a wide range of

IoT environments.

4. Resource efficiency: the consumption of CPU and other

resources during operation is considered to assess the

feasibility of deploying the framework in resource-constrained

IoT devices and networks.

5. Adaptability: the ability to work with multiple network

configurations (single, tree, mesh), which is vital in dynamic

IoT environments.

These criteria are crucial for securing IoT devices, as

they directly influence the robustness, real-time protection,

and operational efficiency of the system. Our study

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 2

ARP flooding attacks in SDN.

FIGURE 3

ARP spoofing attacks in SDN.

compares these criteria across different frameworks, as

outlined below.

3.2.3 Framework selected
Compared to other potential frameworks, such as the Zero

Trust Security Framework (Stafford, 2020) and the Blockchain-

based Security Framework (Krishnan et al., 2018), we opted

for the SDN framework to secure IoT devices due to its

centralized control, which enables granular segmentation and

dynamic policy enforcement–essential for efficiently managing

diverse IoT ecosystems. Unlike the Zero Trust Security Framework,

SDN offers both scalability and flexibility while integrating

seamlessly with legacy systems, ensuring smooth deployment in

complex environments. Furthermore, compared to the Blockchain-

based Security Framework, SDN provides superior performance

and traffic visibility without adding significant complexity,

making it a pragmatic choice for securing IoT networks. While

SDN offers numerous advantages, including centralized control,

dynamic policy enforcement, and enhanced visibility, its broader

applicability and potential drawbacks require careful consideration.

One key challenge is its reliance on a central controller,

which may become a single point of failure, raising concerns

about resilience and robustness in large-scale, mission-critical

IoT environments. Additionally, SDN’s centralized architecture

can introduce scalability and latency issues, particularly when

managing distributed IoT networks with geographically dispersed

devices. Security is another potential drawback, as attacks on the

controller or data plane could disrupt the entire network. Finally,

integrating SDN into legacy infrastructures may prove complex,

requiring substantial reconfiguration and expertise. Thus, while

SDN is a powerful tool for securing IoT devices, its limitations must

be addressed to ensure its broader and more effective application.

The Table 2 summarizes the outcome of our comparison,

illustrating that our proposed CNN-based IPDS stands out in terms

of detection accuracy, response time, scalability, and adaptability,

making it a highly suitable solution for securing IoT devices in

SDN environments.

3.2.4 Theoretical comparative study
Syed et al. (2024) proposed a secure group authentication

method using Dickson polynomials and blockchain technology.

By leveraging physically unclonable functions (PUFs) for hardware

security and decentralized blockchain smart contracts, it improves

communication security, protecting against tampering, replay,

and impersonation attacks. The scheme enhances performance

in both security and efficiency compared to traditional methods.

The authors Padmaja et al. (2022) explored the use of AI

(forming AIoT) in securing IoT applications. AI models such

as Decision Trees, SVM, and Naïve Bayes are applied to IoT

data for real-time anomaly detection and decision-making, with

a focus on healthcare, smart cities, and edge computing. The

paper finds Decision Trees to be more accurate and efficient

than other models, especially in IoT health-related applications.

Selvarajan et al. (2023) introduced a hybrid AI and blockchain

framework, AILBSM, for securing Industrial IoT (IIoT) systems.

It integrates Lightweight Consensus Proof-of-Work (LCPoW) for

secure data authentication and uses a neural network (COSNN) for

detecting anomalies with high accuracy. The framework protects

against attacks like data poisoning and ensures privacy and data

integrity through blockchain technology. Manoharan et al. (2023)

discussed securing IoT networks using blockchain combined

with machine learning algorithms. The decentralized nature of

blockchain ensures tamper-proof data transmission, while AI and

deep learning models improve security and data transmission

efficiency. This approach is presented as essential for safeguarding

smart cities, homes, and industries. Shitharth et al. (2023) focused

on improving security for edge computing in IoT environments.

It proposes a multi-attack intrusion detection system using a

combination of Backpropagation and Radial Basis Function neural

networks. The model achieves high accuracy in detecting various

attacks, making it a robust solution for anomaly detection in

edge-assisted IoT networks.

Our work achieves an impressive detection accuracy of 99.96%

with a minimal false alarm rate of just 0.02% in identifying and

mitigating MitM attacks within SDN-based IoT environments.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

TABLE 2 Comparison of security frameworks for IoT environments.

Framework Security
performance

Response time Scalability Resource
e�ciency

Adaptability

Zero trust security

framework

Strong access control but

lacks real-time MitM attack

prevention

Varies (Authentication

focus)

Moderate: Complexity in

managing distributed

IoT

Varies with device load Moderate

Blockchain-based

framework

Enhanced tamper-proof

communication, less real-time

focus on MitM attacks

Higher due to block

validation

Limited: Blockchain’s

overhead affects large

networks

High resource

consumption

Low due to blockchain’s

latency issues

AIoT using decision

trees

High detection accuracy for

anomaly detection but lower

focus on real-time mitigation

Moderate:

Detection-based

response

Moderate: Depends on

AI model used

Moderate: AI processing

demands resources

Moderate

AILBSM (AI and

blockchain)

High accuracy for anomaly

detection, lacks real-time

MitM prevention

Higher response time

due to blockchain

Low: Blockchain

overhead impacts

large-scale networks

High resource

consumption

Low

Our CNN-based

IPDS (SDN)

Detection Accuracy: 99.96%

False Alarm Rate: 0.02%

1 - 3.5 seconds High: Tested with 64

hosts in various

topologies

CPU usage: 12% - 22% High: Works with single,

tree, mesh networks

This high level of precision is critical for maintaining operational

security, as it allows for rapid and accurate threat identification.

Additionally, our system provides real-time response times ranging

from 1 to 3.5 s, effectively preventing data breaches during

active attacks and taking a proactive approach rather than

merely reacting after an attack occurs. In comparison, existing

methods, such as AIoT and blockchain models, tend to focus

primarily on authentication and long-term anomaly detection,

lacking the immediate intrusion prevention capabilities necessary

for addressing MitM attacks effectively. Our CNN-based Intrusion

Prevention Detection System (IPDS) not only excels in accuracy

but also maintains CPU usage between 12% and 22% during the

mitigation process, ensuring resource efficiency and scalability,

even in larger networks with up to 64 hosts. Furthermore, we

have tested our IPDS across various network topologies, including

single, tree, and mesh configurations, proving its versatility and

applicability in diverse SDN environments. This adaptability stands

in contrast to AI and blockchain hybrid models, which often have

limitations based on specific applications and may face scalability

challenges due to higher resource demands. Ultimately, our IPDS

directly mitigates active MitM attacks as soon as they are detected,

offering integrated, real-time prevention capabilities that other

intelligent intrusion detection systems typically lack, thus ensuring

robust protection for network security.

3.3 SDN architecture

In an SDN-based IoT architecture, the network is divided

into three distinct layers: the data plane, the control plane,

and the application layer. Each layer has specific functions and

responsibilities, making the network more flexible andmanageable.

3.3.1 Data plane
The data plane, also known as the forwarding plane or user

plane, is responsible for the actual forwarding of network traffic. It

deals with the transmission and reception of data packets, making

forwarding decisions based on the information contained in the

packets. The data plane is implemented in the network devices,

such as switches and routers. The primary functions of the data

plane include packet forwarding, encapsulation/decapsulation, and

basic packet processing. It operates on the rules and instructions set

by the control plane. In our work, we utilized anOpenFlow-enabled

switch where the data plane forwards packets according to the flow

table entries determined by the control plane.

3.3.2 Control plane
The control plane is responsible for making decisions about

how data should be forwarded through the network. It manages the

network’s state, maintains routing tables, and determines the best

path for data traffic. The control plane communicates with the data

plane to update forwarding instructions. The control plane handles

tasks such as routing, signaling, network topology discovery, and

maintaining a global view of the network. It is responsible for

programming the data plane to ensure that network devices behave

as desired. In our project, we employed the Ryu controller as our

SDN controller due to its inherent flexibility and programmability,

particularly leveraging the Python programming language. The

choice of Ryu was driven by its rapid communication capabilities

with OpenFlow-enabled switches, enabling efficient programming

of their flow tables. The combination of Python scripting and

Ryu’s capabilities allowed us to dynamically and seamlessly control

the network, defining and managing flow entries with agility and

precision. This approach significantly enhanced the efficiency and

adaptability of our network architecture.

3.3.3 Application layer
In the context of SDN, the application layer represents the

software applications or services that leverage the programmability

of the network. These applications utilize the capabilities

provided by the SDN controller to implement specific network

policies, optimizations, or functionalities. Applications running

on top of the SDN controller can provide network services,

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 4

Methodology for building a MitM SDN IDPS framework for protecting IoT devices.

orchestrate resources, and respond to dynamic changes in the

network. They use the programmability of the SDN architecture

to create custom solutions for network management and

optimization. In our project, the application focuses on Security

Applications that employ machine learning methods to detect

and mitigate MitM threats while implementing robust security

policies. Supplementary Figure 1 summarizes the SDN architecture

employed in our project.

4 Methodology

In this section, we will explain the methodology steps used

to implement our IDPS framework. However, before that, we will

provide an overview of the hardware and software tools used in

our work.

4.1 Software and hardware equipment
used

For the software, we utilized VMs and Ubuntu 22.04 LTS

to establish the environment that facilitated the creation of

the network topology on the virtual machine running Linux.

The network topology itself was constructed using Mininet, and

we employed the Ryu controller to manage and orchestrate

network functions. This comprehensive setup allowed us to

efficiently manage and control the network within the virtualized

environment. Python 3 is widely employed for application

development, encompassing OpenFlow-based SDN networks, the

Ryu controller, and the creation of custom SDN topologies.

Moreover, Python 3 is utilized to implement our machine

learning method, which is integrated into the Ryu controller for

ensuring a secure SDN network. Mosquitto MQTT, as discussed

by Mishra (2018) is a lightweight, open-source message broker

that implements the MQTT protocol, designed for low-bandwidth,

high-latency environments. It facilitates communication between

IoT devices, supporting a range of QoS levels for reliable message

delivery. Mosquitto is known for its efficiency and ease of

integration in SDN-IoT applications. We employed Macof tools

to flood the switch’s MAC address table, as used by Sankar (2022)

in his work, and we specifically utilized Ettercap tools for ARP

flooding attacks, which are also used for network sniffing and

possess the capability to collect data exchanged between two

devices by acting as a MitM attack, as employed by Fathima

and Santhiyakumari (2021) in his paper. Positioned between

communicating devices on a network, Ettercap can intercept and

capture the traffic flowing between them. This functionality enables

the analysis of exchanged data, encompassing plaintext usernames,

passwords, or other sensitive information. In our work, Ettercap is

applied for ARP spoofing attack. Macof is a network security tool,

an acronym for MAC Over Flow, designed specifically to generate

a significant volume of ARP requests within a network. The tool

floods the network with ARP packets in an attempt to overwhelm

and disrupt normal network communication. In our project, we

employed the Macof tool to generate an extensive number of ARP

requests. The excess ARP requests from Macof are intended to

saturate the MAC address table of a switch.

As depicted in Figure 4, the methodology illustrates the steps

to implement our framework for detecting and mitigating MitM

attacks on IoT devices in a smart home within an SDN network.

These steps will be explained clearly.

4.2 Create synthetic dataset

The Ryu application consistently monitors connected

OpenFlow switches, actively solicits and receives flow statistics,

and then records and stores this information in a CSV file. The

collected dataset includes three categories: normal traffic labeled as

0, ARP flooding labeled as 1, and ARP spoofing labeled as 2. The

dataset has a memory size of 128 MB and consists of 16 features,

as shown in Table 3, including labeled columns, with a total of

1,122,520 records, as illustrated in Supplementary Figure 2.

4.3 Data preprocessing

Data preprocessing is a crucial step in the data analysis and

machine learning workflow. It involves transforming raw data into

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

TABLE 3 Feature descriptions.

Feature name Description

Timestamp Captures timing for packet traffic within an SDN

network.

Datapath_ID Uniquely identifies a switch network device.

In_port The port on a switch where a packet was received.

Out_port The port on a switch where a packet should be

forwarded.

Src_mac The MAC address of the source device that originated

the packet.

Dst_mac The MAC address of the destination device to which

the packet is being sent.

Src_ip The IP (Internet Protocol) address of the source device.

Dst_ip The IP address of the destination device.

Time_to_live Prevents packets from circulating indefinitely in the

network.

Protocol Indicates the protocol used by the packet, such as TCP,

UDP, or ICMP.

Tp_src The source port number, typically used in TCP or UDP

packets.

Tp_dst The destination port number, also typically used in

TCP or UDP packets.

Icmpv4_code Denotes the code associated with ICMP messages for

error reporting or diagnostic purposes.

Icmpv4_type Specifies the type of ICMP message being sent, such as

echo request or echo reply.

Packet_size_bytes Indicates the size of the packet in bytes.

Label Tag for normal, ARP flood, and ARP spoof records,

where 0 indicates normal, 1 indicates ARP flood

attacks, and 2 indicates ARP spoof.

a clean and usable format. This process can significantly impact the

quality of the analysis and the performance of machine learning

models. Here are the typical steps involved in data preprocessing:

4.3.1 Data cleaning
This essential step includes:

1. Drop Duplicates: Dropping duplicates in Our ML model is a

common preprocessing step aimed at ensuring the dataset is

clean and free from redundant information.

2. Handling Missing Values: Replaces all missing values columns

with a specified constant value.

After applying data cleaning techniques, we have reduced the

dataset from 1,122,520 rows × 16 columns to 627,543 rows ×

16 columns.

4.3.2 Data transformation
Encoding Categorical Data: Converting categorical data into

numerical format using the label encoding technique. The columns

that are categorical are: timestamp, src_mac, dst_mac, src_ip,

and dst_ip. The label encoder is applied to these columns.

Normalization/Scaling: We standardizes features by removing the

mean and scaling to unit variance. It’s used to preprocess CSV data

for machine learning by transforming it to have a mean of 0 and a

standard deviation of 1.

4.3.3 Data reduction
We used Principal component analysis (PCA) for

dimensionality reduction, as described by Zhang et al. (2024). This

step is crucial for simplifying complex datasets by transforming

them into a lower-dimensional space while retaining essential

patterns and structures. It helps in improving computational

efficiency and reducing noise, thereby enhancing the performance

of machine learning algorithms and mitigating the risk of

overfitting to the training data. Additionally, PCA aids in

visualizing high-dimensional data and identifying significant

features that contribute most to variance within the dataset.

Based on the cumulative explained variance plot in Figure 5,

selecting eight principal components effectively balances

dimensionality reduction and variance retention. PCA is applied

with 8 components, transforming the original data into this new

feature space.

4.3.4 Data splitting
Dividing the dataset into training, validation, and testing sets to

evaluate the performance of machine learning models. In our work

we divides the dataset into training, validation, and testing sets in

the proportions of approximately 60%, 20%, and 20%, respectively.

4.3.5 Data balancing
We handle imbalanced datasets using the Synthetic Minority

Over-sampling Technique (SMOTE), as discussed by Widodo and

Bambang Setiawan (2024) to ensure the model performs well across

all three classes. Before applying SMOTE (as shown in Figure 6), the

three classes are imbalanced, potentially leading to biased models

favoring the majority class and prioritizing accuracy, which can

be misleading.

4.3.6 Overfitting mitigation strategies
To address overfitting, several methods are implemented in our

paper. First, PCA reduces the dataset’s dimensionality by retaining

the most important features, simplifying the model and removing

noise. Dropout is applied to the fully connected layer, randomly

dropping neurons during training to prevent the model from over-

relying on specific neurons. L2 regularization is used in the dense

layers, penalizing large weights to discourage themodel from fitting

noise in the data. Early stopping is employed to halt training once

the validation loss stops improving, preventing further overfitting.

Additionally, learning rate reduction decreases the learning rate

when our CNN model’s performance plateaus, enabling finer

adjustments in later training epochs. Together, these techniques

help improve our CNN model’s generalization to unseen data by

reducing overfitting.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 5

Cumulative explained variance by principal components.

FIGURE 6

Imbalanced dataset.

4.3.7 Algorithms selection
We selected machine learning algorithms suitable for IDS

that are effective for multiclass classification tasks. The chosen

algorithms include NB as used by Reddy et al. (2022), kNN as

employed by Zhang (2021), RF, and CNN as applied by Alzubaidi

et al. (2021) due to their effectiveness in detecting attacks,

as demonstrated by Mohammadpour et al. (2022), Shakir and

Mohsin (2024), Mohammed and Talib (2024), and Rakine et

al. (2024). We used the GridSearch approach, as implemented

TABLE 4 Parameters employed in ML and CNNmethod for our

Framework SDN model.

ML model Gridsearch parameters

NB Default parameters.

KNN n_neighbors = 10.

RF n_estimators = 100, criterion =

"entropy", random_state = 42.

CNN • First convolutional layer: 32 filters with a kernel size

of 3.

• MaxPooling1D layer: Pool size of 2.

• Dense layer: 128 units with L2 regularization (0.001).

• Dropout layer: Dropout rate of 0.5 applied to the

dense layer.

• Activation functions: ReLU for hidden layers,

Softmax for the output layer.

• Optimizer: Adam with a learning rate set to 0.001.

• Epochs: Performed for 50 epochs.

• Batch size: Batch size for training is set to 64.

• Early stopping: Early stopping with patience of 5.

• Learning rate scheduler: Learning rate reduction on

plateau with factor 0.5 and patience of 3.

• Input reshape: Input data reshaped to fit the

Conv1D layer.

by Jiménez et al. (2008), to optimize hyperparameters by

exhaustively searching a predefined grid of values for each

algorithm, including NB, kNN, RF, and CNN. The goal was to

find the best combination of hyperparameters that maximizes

model performance. The best parameters found by GridSearch are

indicated in Table 4.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 7

Confusion matrix for three classes.

4.4 Evaluation metrics

To test the model performance results, we used the following

evaluation metrics:

4.4.1 Accuracy
Accuracy measures the proportion of correctly

predicted instances out of the total instances. It is given by

the equation:

Accuracy =
True Positives+ True Negatives

Total Instances
(1)

4.4.2 Precision
Precision measures the proportion of true positive predictions

out of all positive predictions. It is given by the equation:

Precision =
True Positives

True Positives+ False Positives
(2)

4.4.3 Recall
Recall measures the proportion of true positive predictions out

of all actual positives. It is given by the equation:

Recall =
True Positives

True Positives+ False Negatives
(3)

4.4.4 F1 Score
The F1 Score is the harmonic mean of precision and recall,

balancing the two metrics. It is given by the equation:

F1 Score = 2×
Precision× Recall

Precision+ Recall
(4)

4.4.5 False alarm rate
FAR measures the proportion of false alarms out of the total

actual negatives. It is given by the equation:

FAR =
False Alarms

Total Actual Negatives
(5)

4.4.6 Training time
Training time is the duration taken to train the model on the

training dataset. It is typically measured in seconds or minutes.

4.4.7 Testing time
Testing time is the duration taken to evaluate the model on the

testing dataset. It is typically measured in seconds or minutes.

4.5 Confusion matrix for three classes

A confusion matrix for three classes (Normal, ARP Flood,

and ARP Spoof) is a table used to describe the performance of a

classification model. It is structured as shown in Figure 7:

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

TABLE 5 Performance metric results of the ML and CNNmodels.

Algorithm Accuracy Confusion matrix FAR Train Time (sec) Test time (s)

NB 0.9450 11256 0 3714

2555 90165 0

3044 0 14775

0.0342 1.27 0.10

kNN 0.9724 13255 0 1715

125 92595 0

1745 0 16074

0.0155 4.95 12.81

RF 0.9881 14191 0 779

12 92708 0

714 0 17105

0.0070 344.84 0.94

CNN 0.9996 14942 0 28

0 92720 0

26 0 17793

0.0002 2393.48 10.33

Where: - TPNormal, TPARP Flood, and TPARP Spoof are the true

positives for Normal, ARP Flood, and ARP Spoof respectively. -

FPNormal, ARP Flood, FPNormal, ARP Spoof are the false positives where

instances of Normal were incorrectly predicted as ARP Flood or

ARP Spoof. - FPARP Flood, Normal, FPARP Flood, ARP Spoof are the false

positives where instances of ARP Flood were incorrectly predicted

as Normal or ARP Spoof. - FPARP Spoof, Normal, FPARP Spoof, ARP Flood

are the false positives where instances of ARP Spoof were

incorrectly predicted as Normal or ARP Flood.

True Positives (TP) are the correctly predicted positive

instances. False Positives (FP) are the incorrectly predicted positive

instances. True Positives (TP) are the correctly predicted positive

instances. False Negatives (FN) are the actual positive instances that

were incorrectly predicted as negative.

False Alarms (FA) are the actual negative instances that were

incorrectly predicted as positive. Total Actual Negatives are the

actual negative instances in the dataset.

True Positives (TP) are the correctly predicted positive

instances. True Negatives (TN) are the correctly predicted negative

instances. Total Instances are the total number of instances in

the dataset.

5 Results

This section provides details on the experimental setup, the

presentation of the results, and a comparative analysis of the

algorithms. It also includes a performance comparison across

different SDN topologies (single, tree, and mesh), along with the

implementation in a real SDN environment.

5.1 Performance of each classification
model

The Table 5 presents performance metrics of various machine

learning algorithms, which are: NB, kNN, RF, and CNN. The

metrics evaluated include Accuracy, ConfusionMatrix, False Alarm

Rate (FAR), training time in seconds, and test time in seconds.

Among the algorithms, CNN achieves the highest accuracy of

99.96%, closely followed by RF with 98.81%, kNN with 97.24%,

and NB with 94.50%. CNN also demonstrates the lowest FAR

of 0.0002, indicating superior performance in minimizing false

alarms. However, it requires significantly longer training and

test times compared to the other models, whereas RF has the

lowest training time. Overall, CNN emerges as the best-performing

algorithm in terms of accuracy and false alarm rate, despite its

longer computational requirements.

In Figure 8, the training and validation loss of a CNN model

are plotted over 50 epochs. The training loss (blue line) decreases

rapidly in the initial epochs and continues to decline at a

slower pace, eventually stabilizing toward the end. The validation

loss (orange line) follows a similar pattern, starting higher but

decreasing gradually and stabilizing after around 10 epochs. The

close proximity of the training and validation loss curves suggests

that the model is not overfitting and maintains good generalization

performance, as both losses stabilize at low values.

In Figure 9, the training and validation accuracy of the CNN

model are shown over 50 epochs. The training accuracy (blue

line) increases sharply during the first few epochs and then

continues to rise more gradually, stabilizing at around 99.8%.

The validation accuracy (orange line) remains consistently high

throughout the training process, slightly exceeding the training

accuracy and fluctuating minimally above 99.8%. This close

alignment between the training and validation accuracy curves

indicates that the model achieves high performance on both the

training and unseen data, demonstrating effective learning and

generalization capabilities.

5.2 Performance results on a real SDN

We tested the performance of the models on a real SDN using

small, medium, and large networks, as well as single, tree, and mesh

topologies, as shown in Table 6.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 8

Training and validation loss over epochs.

FIGURE 9

Training and validation accuracy over epoch.

The Table 7 illustrates the detection times for various ML and

CNN methods in different SDN network topologies and sizes.

The CNN method consistently exhibits the longest detection times

across all scenarios, highlighting its slower performance compared

to traditional ML algorithms such as NB, KNN, and RF. Among the

ML algorithms, RF shows the best performance in terms of speed,

particularly in larger network sizes, followed closely by KNN and

then NB. While CNN’s detection times are longer, it may provide

superior accuracy in detecting complex attack patterns, suggesting

that the choice of algorithm should balance detection speed with

the need for accuracy and robustness in SDN environments.

Tables 8, 9 present CPU usage percentages for various ML

methods and a CNN under MitM ARP spoofing and ARP

flooding attacks across diverse SDN network topologies and sizes.

CNN consistently exhibits the highest CPU usage across all

scenarios, indicating its greater computational demand compared

to traditional ML algorithms. Among the ML methods, KNN

generally consumes more CPU resources than NB and RF, with

RF showing moderate usage and NB being the least resource-

intensive. As network size increases from small to large, CPU

usage for all methods escalates, with CNN’s usage increasing

most significantly. These findings suggest that while CNN may

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

TABLE 6 Configuration details for SDN encompassing multiple topology

types and sizes.

Network
topology
type

Network
size

Host Switch Controller

Single network size Small 4 1 1

Medium 16 1 1

Large 64 1 1

Tree network size Small 4 3 1

Medium 16 15 1

Large 64 63 1

Mesh network size Small 4 4 1

Medium 16 16 1

Large 64 64 1

TABLE 7 MitM detection time in seconds for ML and CNNmethods in

SDN encompassing multiple topology types and sizes.

Network
topology
type

Network
size

RF (s) GBM
(s)

XGB
(s)

CNN
(s)

Single network Small 1.0012 1.0043 1.0205 1.0801

Medium 1.0023 1.0087 1.0412 1.1604

Large 2.0046 2.0175 2.0824 2.3208

Tree network Small 1.0013 1.0054 1.0256 1.1003

Medium 1.0031 1.0102 1.0510 1.2005

Large 2.0052 2.0204 2.1020 2.4007

Mesh network Small 1.0022 1.0063 1.0304 1.1205

Medium 1.0043 1.0125 1.0610 1.2410

Large 3.0065 3.0250 3.1220 3.4820

TABLE 8 CPU usage under MitM ARP spoofing for ML and CNNmethods

in SDN across multiple topology types and sizes.

Network
topology
type

Network
size

NB
(%)

KNN
(%)

RF
(%)

CNN
(%)

Single network Small 7.11 13.78 11.38 22.92

Medium 8.32 15.52 12.66 25.29

Large 9.57 17.35 14.01 27.37

Tree network Small 8.73 15.77 12.02 25.25

Medium 10.02 17.05 13.94 27.42

Large 11.54 19.10 16.29 30.01

Mesh network Small 9.78 17.30 13.94 27.12

Medium 13.49 19.06 16.66 29.24

Large 17.71 21.12 19.92 32.48

offer enhanced detection capabilities, it requires substantially more

computational resources, making it less efficient for environments

with limited CPU capacity compared to traditional ML methods,

particularly NB and RF.

TABLE 9 CPU usage under MitM ARP flooding for ML and CNNmethods

in SDN across multiple topology types and sizes.

Network
topology
type

Network
size

NB
(%)

KNN
(%)

RF
(%)

CNN
(%)

Single network Small 41.27 71.27 57.27 75.27

Medium 49.71 79.71 55.71 83.71

Large 53.75 83.75 59.75 87.75

Tree network Small 49.17 79.17 65.17 83.17

Medium 51.29 81.29 67.29 85.29

Large 55.88 85.88 71.88 89.88

Mesh network Small 52.72 82.72 68.72 86.72

Medium 56.84 86.84 72.84 90.84

Large 59.17 89.17 75.17 93.17

TABLE 10 CPU usage after mitigating MitM attacks for ML and CNN

methods in SDN across multiple topology types and sizes.

Network
topology
type

Network
Size

NB
(%)

KNN
(%)

RF
(%)

CNN
(%)

Single network Small 3.22 4.13 4.55 12.74

Medium 3.71 4.93 5.18 13.88

Large 4.01 5.11 5.75 15.12

Tree network Small 4.09 4.72 6.26 14.12

Medium 5.37 5.55 7.78 15.25

Large 5.92 6.29 9.03 17.04

Mesh network Small 5.72 6.89 8.06 17.12

Medium 7.24 8.18 9.72 19.29

Large 8.93 9.52 11.24 22.02

The Table 10 shows the CPU usage percentages after mitigating

MitM attacks for different ML methods and a CNN method

across various SDN network topologies and sizes. As seen,

the CNN method consistently incurs the highest CPU usage

post-mitigation across all scenarios, indicating its substantial

computational overhead. Among the ML algorithms, KNN tends

to use more CPU resources than NB and RF, with RF generally

consuming more than NB. The CPU usage for all methods

increases with network size, with CNN exhibiting the steepest

rise. These results suggest that while CNN might offer robust

mitigation capabilities, it comes at the cost of significantly

higher CPU usage, making it less suitable for environments

with constrained computational resources compared to ML

methods like NB and RF, which are more efficient in terms of

CPU usage.

5.3 ML algorithm selection

The ML algorithm chosen for our framework IPDS leans

toward CNN due to its superior performance in accuracy and

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 10

Non-attack scenario.

FAR compared to other algorithms. It also shows comparable

performance to other algorithms across various metrics.

5.4 Interpretability of recommendations

The security recommendations in our proposed framework are

derived by interpreting how key features such as IP addresses,

MAC addresses, port numbers, packet size, and protocol types

influence the model’s decision-making process. By analyzing the

patterns in these features, the CNN model can detect abnormal

behaviors indicative of ARP spoofing or ARP flooding attacks. For

instance, variations in source or destination MAC/IP addresses

may trigger alerts, and abnormal traffic volumes detected through

Packet size bytes or Tp_src/Tp_dst fields suggest possible attacks.

Moreover, the model’s high detection accuracy (99.96%) and

low false alarm rate (0.02%) are reflective of its ability to

effectively classify and isolate attack traffic, as demonstrated

through multiple network environments (single, tree, mesh) and

sizes (4, 16, and 64 hosts). This interpretability ensures that security

recommendations align with observable network behaviors,

providing actionable insights for mitigating potential threats in

real-time.

5.5 Detection

Supplementary Figure 3 describes the MitM detection

algorithm identifies whether a MitM attack is present based on

the flow predictions. If the majority (more than 90%) of the traffic

is legitimate, it assumes no attack. If less than 90% is legitimate,

it uses the classification of the non-legitimate traffic to make a

decision. The actual labels for non-legitimate traffic are divided

into two classes based on their parity (odd or even) when excluding

legitimate traffic labeled as 0. This method aims to minimize false

alarms by setting a high threshold for detecting attacks.

5.6 Mitigation

Supplementary Figure 4 describes the MitM mitigation

algorithm, which mitigates MitM attacks by blocking

malicious traffic based on a prediction value. It takes the

malicious_flow_traffic and predict as inputs, extracts the

source_port, and performs actions based on the prediction. If

predict is 1, it updates the switch’s flow table and blocks packets

from the source port. If predict is 2, it additionally clears ARP

entries for the destination port. These steps aim to isolate and

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 11

ARP Flood attacks detection.

block malicious traffic swiftly to prevent further exploitation of

the network.

5.7 Deployment in an SDN environment

To deploying our CNN-based model within an SDN

environment for smart home utilization, we implemented a

topology featuring 8 hosts, 7 switches, and 1 controller, illustrated

in Supplementary Figure 5. Host h1 operates as a temperature and

humidity IoT device, consistently transmitting real-time data to

authorized subscribers. Host h2 serves as a subscriber device, while

h3 functions as a MitM attacker. During ARP flood incidents, h3

targets h1. In ARP attacks, h3 intercepts data exchanges between

h1 and h2.

5.7.1 Integrity of training data
After deploying our CNN-based IDPS framework, we focused

on ensuring both the integrity of the training data and the model’s

resilience against potential attacks. To address these challenges,

we implemented data validation and monitoring processes to

ensure data integrity, detect anomalies in the training data, and

maintain overall reliability. Additionally, we regularly update the

model with new data to adapt to evolving threats and changing

data patterns. These combined efforts ensure data quality and

enhance the model’s performance in live SDN networks and

real-world scenarios.

5.7.2 Detection of MitM attacks
To detect MitM attacks, we utilized the algorithm

mentioned previously.

5.7.2.1 Normale state

In the normal state or non-attack scenario, as illustrated in

Figure 10, host h1 publishes real-time temperature and humidity

data every second via the MQTT protocol on port 1883 to the

topic named “device1/iot”. Host 2 subscribes to the same topic,

“device1/iot”, to collect the data as a legitimate device. The Ryu

controller, based on a CNN model, continuously detects in real-

time that this traffic is legitimate.

5.7.2.2 ARP flood attack detection

We used macof tools to launch ARP flood attacks targeting host

h1, which is the IoT device. The goal was to overwhelm the switch’s

resources, causing network congestion, and to exhaust the switch’s

processing capacity, memory, and forwarding tables. As Figure 11

shows, The Ryu controller based on a CNNmodel could detect ARP

flood attacks targeting IoT device h1 in real time.

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 12

ARP Spoof attacks detection.

5.7.2.3 ARP spoof attacks detection

We used Ettercap tools to launch an ARP spoofing attack

to intercept communication between the IoT device h1 and

the subscriber host device h2. As shown in Figure 12, the

attacker h3 could collect temperature and humidity data sent

by the publishing IoT device h1 to the subscriber h2 via the

MQTT protocol on port 1883, on the topic iot/device1. The Ryu

controller, based on a CNN model, could detect ARP spoofing

in real time.

5.7.3 Mitigation of MitM attacks
To mitigate the impact of MitM attacks in SDN, we block the

in_port, the switch port on which a packet enters in the case of ARP

spoofing and ARP flooding, as shown in Figure 13. Additionally,

we clear ARP entries on the specific port (in_port) to further

prevent malicious activity in the case of ARP flooding, as shown

in Figure 14.

6 Discussion

In this section, we analyze and interpret our results, comparing

them with closely related works. The selection criteria for

these works include their novelty, use of the SDN framework,

and their effectiveness in mitigating Man-in-the-Middle (MitM)

attacks on IoT devices. We identified three works that meet

these criteria:

Alani et al. (2023), proposed an ARP spoofing detection system

for IoT systems. Their model was trained on the IoT Network

Intrusion Dataset using a balanced dataset comprising 428,918

samples, achieving an accuracy of 99.98% with a False Alarm Rate

(FAR) of 0.026%. Their approach outperformed existing related

work by 0.38% in accuracy and significantly reduced the FAR.

However, their model exhibited longer testing times compared to

other related works.

Khedr et al. (2023), focused on detecting and mitigating DDoS

and ARP attacks in SDN for IoT networks using a MEV algorithm

with six classifiers trained on the Edge-IIoTset dataset for enhanced

anomaly detection. The MEV model achieved an accuracy of

99.89% and a FAR of 0.016%, outperforming other related works

by 0.5% in accuracy and 0.024% in FAR.

Hnamte and Hussain (2024), built an IDPS harnessing SDN

technology. They integrated a deep learning-based Deep Neural

Network (DNN) model to detect and mitigate ARP spoofing

attacks across a small SDN network. The model achieved a perfect

detection rate with an accuracy of 100% and a FAR of 0%,

outperforming previous works by 0.02% in accuracy and reducing

the FAR by 0.0009%.

Our proposed method utilizes a CNN with PCA for feature

reduction, trained on a synthetic CSV dataset generated by a

Ryu controller. It classifies ARP flood, ARP spoofing, and normal

traffic into three distinct classes. Compared to existing methods,

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

FIGURE 13

Mitigate ARP spoof attacks detection.

FIGURE 14

Mitigate ARP flood attacks detection.

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

TABLE 11 Performance comparison.

References Dataset used Method used Accuracy FAR Mitigation Environment

Alani et al. (2023) IoT Network Intrusion

Dataset

Deep learning 99.98% 0.026% X SDN-IoT

Khedr et al. (2023) Edge-IIoTset dataset MEV algorithm 99.89% 0.016% X SDN-IoT with ODL

controller

Hnamte and Hussain

(2024)

The IoT Network Intrusion

MITM-ARP-Spoofing dataset

DNNmethod 100% 0% X SDN-IoT with Ryu

controller

Our CNN method Synthetic CNN based PCA method 99.96% 0.02% -Block source_port

-Clear ARP cache

SDN-IoT with Ryu

controller

our approach achieves a detection and mitigation accuracy of

99.96%, outperforming other approaches by 0.09% in accuracy.

Additionally, it achieves a FAR of 0.02%, which is 0.006% better

than the aforementioned approaches.

Table 11 summarizes the comparison between related works

and our work.

7 Conclusion

This paper presents a CNN method to detect and mitigate

MitM attacks in a SDN environment. The proposed method

functions as an IDPS and is specifically designed for IoT devices

in smart home settings. Our framework, which employs CNNs,

achieves a 99.96% accuracy rate in detecting MitM attacks and

maintains a low False Alarm Rate (FAR) of 0.02%. Additionally,

To address the scalability concern in this article, the proposed

CNN-based IDPS was tested on varying network sizes (4, 16,

and 64 hosts) and topologies (mesh, single, and tree) within

SDN environments, showing strong detection performance with

minimal degradation. This framework not only detects MitM

attacks but also focuses on quickly isolating and blocking malicious

traffic to prevent further exploitation by an attacker. By updating

the switch’s flow table and managing ARP entries, it ensures that

the network can effectively handle identified threats. We tested

the performance of the IDPS model on SDN using Mininet to

create a network with hosts and IoT devices, with Ryu as the

controller. Future work will focus on testing the system in larger

and more varied real-world SDN environments to further validate

its scalability and performance. Our work addresses the challenge of

managing increased computational demands on the Ryu controller

and real-time processing requirements posed by CNN-based IDPS

techniques, which could affect system performance. To mitigate

these issues, strategies such as offloading the IDPS tomore powerful

servers, employing distributed controllers, optimizing models

through compression or hardware acceleration, and exploring

faster algorithms like ensemble methods are essential for ensuring

scalability in larger networks. However, the implementation of

CNN-based IDPS introduces computational overhead, impacting

real-time detection capabilities as device numbers grow. Despite

enhancing security, these methods may strain processing resources,

particularly in resource-constrained IoT environments. Future

optimizations will focus on simplifying models and adopting

efficient architectures to minimize overhead while maintaining

effective performance.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://www.kaggle.com/

datasets/nedernido/mitm-multiclass-dataset.

Author contributions

NK: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review & editing.

YB: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing. MO-

E: Conceptualization, Formal analysis, Funding acquisition,

Investigation, Methodology, Project administration, Resources,

Supervision, Validation, Visualization, Writing – original draft,

Writing – review & editing. NY: Conceptualization, Formal

analysis, Funding acquisition, Investigation, Methodology,

Project administration, Resources, Supervision, Validation,

Visualization, Writing – original draft, Writing – review &

editing. RB: Conceptualization, Formal analysis, Investigation,

Methodology, Project administration, Resources, Supervision,

Validation, Visualization,Writing – original draft, Writing – review

& editing. AY: Conceptualization, Formal analysis, Investigation,

Methodology, Project administration, Resources, Supervision,

Validation, Visualization, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare that no financial support was

received for the research, authorship, and/or publication of

this article.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.kaggle.com/datasets/nedernido/mitm-multiclass-dataset
https://www.kaggle.com/datasets/nedernido/mitm-multiclass-dataset
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

that could be construed as a potential conflict

of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2024.1477501/full#supplementary-material

SUPPLEMENTARY FIGURE 1

SDN architecture in IoT.

SUPPLEMENTARY FIGURE 2

Histogram of row counts for dataset label classes.

SUPPLEMENTARY FIGURE 3

MitMattack detection algorithm.

SUPPLEMENTARY FIGURE 4

MitM attack mitigation algorithm.

SUPPLEMENTARY FIGURE 5

SDN network topology.

References

Abdullah, D. M., and Abdulazeez, A. M. (2021). Machine learning
applications based on SVM classification a review. Qubahan Acad. J. 1, 81–90.
doi: 10.48161/qaj.v1n2a50

Abraham, J. A., and Bindu, V. R. (2021). “Intrusion detection and prevention in
networks using machine learning and deep learning approaches: a review,” in 2021
International Conference on Advancements in Electrical, Electronics, Communication,
Computing and Automation (ICAECA) (Coimbatore: IEEE).

Adhikari, T., Kule, M., and Khan, A. K. (2022). “An ECDH and AES based
encryption approach for prevention of MiTM in SDN southbound communication
interface,” in 2022 13th International Conference on Computing Communication and
Networking Technologies (ICCCNT) (Kharagpur: IEEE), 1–5.

Ahuja, N., Singal, G., Mukhopadhyay, D., and Nehra, A. (2022). Ascertain the
efficient machine learning approach to detect different arp attacks. Comp. Elect. Eng.
99:107757. doi: 10.1016/j.compeleceng.2022.107757

Alani, M.M., Awad, A. I., and Barka, E. (2023). Arp-probe: An arp spoofing detector
for internet of things networks using explainable deep learning. Internet of Things
23:100861. doi: 10.1016/j.iot.2023.100861

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujali, A., Al-Shamma, O., Santamaria,
J., et al. (2021). Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions. J. Big Data 8, 1–74. doi: 10.1186/s40537-021-00444-8

Aoueileyine, M. O. E., Karmous, N., Bouallegue, R., Youssef, N., and Yazidi,
A. (2024). “Detecting and mitigating MiTM attack on IOT devices using SDN,”
in International Conference on Advanced Information Networking and Applications
(Cham: Springer Nature Switzerland).

Asadollahi, S., Goswami, B., and Sameer, M. (2018). “RYU controller’s scalability
experiment on software defined networks,” in 2018 IEEE international conference on
current trends in advanced computing (ICCTAC) (Bangalore: IEEE).

Ashraf, S. (2021). A proactive role of iot devices in building smart cities. Intern.
Things Cyber-Phys. Syst. 1, 8–13. doi: 10.1016/j.iotcps.2021.08.001

Bårli, E. M., Yazidi, A., Viedma, E. H., and Hougerud, H. (2021). DoS
and DDoS mitigation using variational autoencoders. Comp. Networ. 199:108399.
doi: 10.1016/j.comnet.2021.108399

Beaman, C., Barkworth, A., Akande, T. D., Hakak, S., and Khan, M. K. (2021).
Ransomware: recent advances, analysis, challenges and future research directions.
Comp. Security 111:102490. doi: 10.1016/j.cose.2021.102490

Chang, Q., Zhang, Z., Wei, F., Wong, J., Pedrycz, W., and Pal, N. R.
(2024). Adaptive nonstationary fuzzy neural network. Knowl.-Based Syst. 288:111398.
doi: 10.1016/j.knosys.2024.111398

Cherian, M. M., and Varma, S. L. (2022). Mitigation of DDoS and MiTM attacks
using belief based secure correlation approach in sdn-based IoT networks. Int. J. Comp.
Networ. Inform. Security 14:52. doi: 10.5815/ijcnis.2022.01.05

Conti, M., Dragoni, N., and Lesyk, V. (2016). A survey of man in the middle attacks.
IEEE Commun. Surv. Tutor. 18, 2027–2051. doi: 10.1109/COMST.2016.2548426

Deore, R. E., Shashibhushan, B., Mahadik, D., and Godase, G. (2024). The two-sided
SPRT sign charts. Qual. Reliab. Eng. Int. 40, 1014–1025. doi: 10.1002/qre.3451

Du, J., Gao, X., Wang, J., Liu, S., Cao, W., and Song, Y. (2021). “Research on
an approach of arp flooding suppression in multi-controller sdn networks,” in 2021

IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom) (New York City, NY: IEEE).

Ezeofor, C. J., and Ulasi, A. G. (2014). Analysis of network data encryption &
decryption techniques in communication systems. Int. J. Innovat. Res. Sci. Eng. Technol.
3, 17797–17807. doi: 10.15680/IJIRSET.2014.0312008

Farhin, F., Sultana, I., Islam, N., Kaiser, M. S., Rahman,M., andMahmud,M. (2020).
“Attack detection in internet of things using software defined network and fuzzy neural
network,” in 2020 Joint 9th International Conference on Informatics, Electronics &
Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern
Recognition (icIVPR) (Kitakyushu: IEEE).

Fathima, K. M. M., and Santhiyakumari, N. (2021). “A survey on network packet
inspection and arp poisoning using wireshark and ettercap,” in 2021 International
Conference on Artificial Intelligence and Smart Systems (ICAIS) (Coimbatore: IEEE).

Gnad, D. R. E., Oboril, F., and Tahoori, M. (2017). “Voltage drop-based fault
attacks on fpgas using valid bitstreams,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL) (Ghent: IEEE).

Gowda, S. S., and Dayananda, R. B. (2023). “Detection and prevention of arp attack
in software defined networks,” in 2023 14th International Conference on Computing
Communication and Networking Technologies (ICCCNT) (Delhi: IEEE), 1–5.

Haakegaard, R., and Lang, J. (2015). The Elliptic Curve Diffie-Hellman
(ECDH). Available at: https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/
Haakegaard+Lang.pd (accessed September 10, 2024).

Haddouchi, M., and Berrado, A. (2019). “A survey of methods and tools used for
interpreting random forest,” in 2019 1st International Conference on Smart Systems and
Data Science (ICSSD) (Rabat: IEEE).

Hnamte, V., and Hussain, J. (2024). Enhancing security in software-
defined networks: an approach to efficient arp spoofing attacks detection
and mitigation. Telemat. Inform. Reports 14:100129. doi: 10.1016/j.teler.2024.
100129

Jiménez, A. B., Lázaro, J. L., and Dorronsoro, J. R. (2008). “Finding optimal model
parameters by discrete grid search,” in Innovations in Hybrid Intelligent Systems (Cham:
Springer Berlin Heidelberg), 120–127.

Karmous, N., Abdelkader, M. O., Abdelkader, M., and Romdhani, L. (2024).
Software-defined-networking-based one-versus-rest strategy for detecting and
mitigating distributed denial-of-service attacks in smart home internet of things
devices. Sensors 24:5022. doi: 10.3390/s24155022

Karmous, N., Aoueileyine, M. O., Abdelkader, M., and Youssef, N. (2023).
“Enhanced machine learning-based sdn controller framework for securing iot
networks,” in Advanced Information Networking and Applications, 2023 (Cham:
Springer).

Kaur, S., Singh, J., and Ghumman, N. S. (2014). “Network programmability using
pox controller,” in ICCCS International Conference on Communication, Computing &
Systems (Chengdu: IEEE), 138.

Khedr, W. I., Gouda, E., and Mohammed, E. R. (2023). P4-hldmc: A novel
framework for ddos and arp attack detection and mitigation in SD-IoT networks
using machine learning, stateful p4, and distributed multi-controller architecture.
Mathematics 11:3552. doi: 10.3390/math11163552

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1477501/full#supplementary-material
https://doi.org/10.48161/qaj.v1n2a50
https://doi.org/10.1016/j.compeleceng.2022.107757
https://doi.org/10.1016/j.iot.2023.100861
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.iotcps.2021.08.001
https://doi.org/10.1016/j.comnet.2021.108399
https://doi.org/10.1016/j.cose.2021.102490
https://doi.org/10.1016/j.knosys.2024.111398
https://doi.org/10.5815/ijcnis.2022.01.05
https://doi.org/10.1109/COMST.2016.2548426
https://doi.org/10.1002/qre.3451
https://doi.org/10.15680/IJIRSET.2014.0312008
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang.pd
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang.pd
https://doi.org/10.1016/j.teler.2024.100129
https://doi.org/10.3390/s24155022
https://doi.org/10.3390/math11163552
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Karmous et al. 10.3389/fcomp.2024.1477501

Krishnan, K. N., Jenu, R., Joseph, T., and Slipa, M. (2018). “Blockchain based
security framework for iot implementations,” in 2018 International CET Conference on
Control, Communication, and Computing (IC4) (Thiruvananthapuram: IEEE).

Manoharan, H., Manoharan, A., Selvarajan, S., and Venkatachalam, K. (2023).
Implementation of Internet of Things with Blockchain Using Machine Learning
Algorithm: Enhancement of Security with Blockchain (Pennsylvania: IGI Global),
399–430.

Meghana, J. Subashri, T., and Vimal, K. R. (2017). “A survey on arp cache poisoning
and techniques for detection and mitigation,” in 2017 Fourth International Conference
on Signal Processing, Communication and Networking (ICSCN) (Chennai: IEEE).

Mishra, B. (2018). “Performance evaluation of MQTT broker servers,” in
International Conference on Computational Science and Its Applications (Cham:
Springer International Publishing).

Mittal, S. (2020). A survey on modeling and improving reliability of dnn algorithms
and accelerators. J. Syst. Architect. 104:101689. doi: 10.1016/j.sysarc.2019.101689

Mohammadpour, L., Ling, T. C., Liew, C. S., and Aranyanfar, A. (2022). A survey
of cnn-based network intrusion detection. Appl. Sci. 12:8162. doi: 10.3390/app12
168162

Mohammed, M. S., and Talib, H. A. (2024). Using machine learning
algorithms in intrusion detection systems: a review. Tikrit J. Pure Sci. 29, 63–74.
doi: 10.25130/tjps.v29i3.1553

Mwange, C. M., and Cankaya, E. C. (2024). “Android trojan horse spyware attack: a
practical implementation,” in 2024 12th International Symposium on Digital Forensics
and Security (ISDFS) (San Antonio, TX: IEEE).

Padmaja, M., Shitharth, S., K., Prasuna, K., Chaturvedi, A., Kshirsagar, P. R., Vani,
A., et al. (2022). Grow of artificial intelligence to challenge security in iot application.
Wireless Pers. Commun. 127, 1829–1845. doi: 10.1007/s11277-021-08725-4

Rakine, I., El Guemmat, K., Ouahabi, S., and Issam, A. (2024). “IoT intrusion
detection: a review of ml and dl-based approaches,” in 2024 4th International
Conference on Innovative Research in Applied Science, Engineering and Technology
(IRASET) (Fez, Morocco: IEEE).

Ramaswamy, S. L., and Chinnappan, J. (2023). Review on positional
significance of lstm and cnn in the multilayer deep neural architecture for efficient
sentiment classification. J. Intellig. Fuzzy Syst. 45, 6077–6105. doi: 10.3233/JIFS-
230917

Reddy, E. M. K., Gurrala, A., Hasitha, V. B., and Kumar, K. V. R. (2022).
“Introduction to naive bayes and a review on its subtypes with applications,” in
Bayesian Reasoning and Gaussian Processes for Machine Learning Applications, 1–14.
doi: 10.1201/9781003164265-1

Rostami, M., and Goli-Bidgoli, S. (2024). An overview of qos-aware
load balancing techniques in sdn-based iot networks. J. Cloud Comp. 13:89.
doi: 10.1186/s13677-024-00651-7

Saha, A., De Sarkar, G., Dutta, D., and Karmakar, K. (2024). A survey on the
advanced encryption standard (AES): a pillar of modern cryptography. Int. J. Comp.
Sci. Mobile Comp. 13, 68–87. doi: 10.47760/ijcsmc.2024.v13i04.008

Sankar, R. (2022).MAC flooding with MACOF & some major countermeasures. Kali
Linux Tutorials. Available at: https://kalilinuxtutorials.com/macof/ (accessed July 19,
2024).

Saritakumar, N., Anusuya, K. V., and Balasaraswathi, B. (2021). “Detection and
mitigation of MiTM attack in software defined networks,” in Proceedings of the First
International Conference on Combinatorial and Optimization, ICCAP 2021 (Chennai:
IEEE).

Saritakumar, N., Anusuya, K. V., and Krishnakumar, S. (2023). “Detection of arp
spoofing attacks in software defined networks,” in 2023 International Conference on
Intelligent Systems for Communication, IoT and Security (ICISCoIS) (Coimbatore:
IEEE), 422–426.

Sebbar, A., Zkik, K., Baddi, Y., Boulmalf, M., and El Kettani, M. D. (2020).
MiTM detection and defense mechanism cbna-rf based on machine learning
for large-scale sdn context. J. Ambient Intell. Humaniz. Comput. 11, 5875–5894.
doi: 10.1007/s12652-020-02099-4

Selvarajan, S., Srivastava, G., Khadidos, A. O., Khadidos, A. O., Baza, M.,
Alshehri, A., et al. (2023). An artificial intelligence lightweight blockchain
security model for security and privacy in iiot systems. J. Cloud Comp. 12:38.
doi: 10.1186/s13677-023-00412-y

Shakir, V., and Mohsin, A. (2024). A comparative analysis of intrusion detection
systems: Leveraging algorithm classifications and feature selection techniques. J. Appl.
Sci. Technol. Trends 5, 34–45. doi: 10.38094/jastt501186

Shitharth, S., Mohammed, G. B., Ramasamy, J., and Srivel, R. (2023). “Intelligent
intrusion detection algorithm based on multi-attack for edge-assisted internet of
things,” in Security and Risk Analysis for Intelligent Edge Computing (Cham: Springer
International Publishing), 119–135.

Stafford, V. (2020). “Zero trust architecture,” in NIST Special Publication 800, 207.

Syed, S. A., Manickam, S., Uddin, M., Alsufyani, H., Shorfuzzaman, M.,
Selvarajan, S., et al. (2024). Dickson polynomial-based secure group authentication
scheme for internet of things. Sci. Rep. 14:4947. doi: 10.1038/s41598-024-5
5044-2

Toldinas, J., Lozinskis, B., Baranauskas, E., and Dobrovolskis, A. (2019). “MQTT
quality of service versus energy consumption,” in 2019 23rd International Conference
Electronics (Palanga: IEEE).

Widodo, A. O., and Bambang Setiawan, R. I. (2024). Machine learning-based
intrusion detection on multi-class imbalanced dataset using smote. Procedia Comput.
Sci. 234:578–583. doi: 10.1016/j.procs.2024.03.042

Wukkadada, B., Wankhede, K., Nambiar, R., and Nair, A. (2018). “Comparison with
HTTP and MQTT in internet of things (IoT),” in 2018 International Conference on
Inventive Research in Computing Applications (ICIRCA) (Coimbatore: IEEE).

Zhang, H., Yin, G., and Rubin, D. B. (2024). PCA rerandomization. Can. J. Statist.
52, 5–25. doi: 10.1002/cjs.11765

Zhang, S. (2021). Challenges in knn classification. IEEE Trans. Knowl. Data Eng. 34,
4663–4675. doi: 10.1109/TKDE.2021.3049250

Zhao, R. (2022). “NSL-KDD,” in IEEE Dataport. doi: 10.21227/8rpg-qt98

Frontiers inComputer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1477501
https://doi.org/10.1016/j.sysarc.2019.101689
https://doi.org/10.3390/app12168162
https://doi.org/10.25130/tjps.v29i3.1553
https://doi.org/10.1007/s11277-021-08725-4
https://doi.org/10.3233/JIFS-230917
https://doi.org/10.1201/9781003164265-1
https://doi.org/10.1186/s13677-024-00651-7
https://doi.org/10.47760/ijcsmc.2024.v13i04.008
https://kalilinuxtutorials.com/macof/
https://doi.org/10.1007/s12652-020-02099-4
https://doi.org/10.1186/s13677-023-00412-y
https://doi.org/10.38094/jastt501186
https://doi.org/10.1038/s41598-024-55044-2
https://doi.org/10.1016/j.procs.2024.03.042
https://doi.org/10.1002/cjs.11765
https://doi.org/10.1109/TKDE.2021.3049250
https://doi.org/10.21227/8rpg-qt98
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Deep learning approaches for protecting IoT devices in smart homes from MitM attacks
	1 Introduction
	2 Related works
	3 Background
	3.1 MitM attacks types
	3.1.1 ARP flood
	3.1.2 ARP spoofing

	3.2 Theoretical study
	3.2.1 Motivation
	3.2.2 The criteria used for the comparison various frameworks
	3.2.3 Framework selected
	3.2.4 Theoretical comparative study

	3.3 SDN architecture
	3.3.1 Data plane
	3.3.2 Control plane
	3.3.3 Application layer

	4 Methodology
	4.1 Software and hardware equipment used
	4.2 Create synthetic dataset
	4.3 Data preprocessing
	4.3.1 Data cleaning
	4.3.2 Data transformation
	4.3.3 Data reduction
	4.3.4 Data splitting
	4.3.5 Data balancing
	4.3.6 Overfitting mitigation strategies
	4.3.7 Algorithms selection

	4.4 Evaluation metrics
	4.4.1 Accuracy
	4.4.2 Precision
	4.4.3 Recall
	4.4.4 F1 Score
	4.4.5 False alarm rate
	4.4.6 Training time
	4.4.7 Testing time

	4.5 Confusion matrix for three classes

	5 Results
	5.1 Performance of each classification model
	5.2 Performance results on a real SDN
	5.3 ML algorithm selection
	5.4 Interpretability of recommendations
	5.5 Detection
	5.6 Mitigation
	5.7 Deployment in an SDN environment
	5.7.1 Integrity of training data
	5.7.2 Detection of MitM attacks
	5.7.2.1 Normale state
	5.7.2.2 ARP flood attack detection
	5.7.2.3 ARP spoof attacks detection

	5.7.3 Mitigation of MitM attacks

	6 Discussion
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

