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Complex networks have emerged as a powerful framework for understanding

and analyzing musical compositions, revealing underlying structures and

dynamics that may not be immediately apparent. This article explores the

application of complex network representations to the study of symbolic drum

sequences, a topic that has received limited attention in the literature. The

proposed methodology involves encoding drum rhythms as directed, weighted

complex networks, where nodes represent drum events, and edges capture

the temporal succession of these events. This network-based representation

allows for the analysis of similarities between di�erent drumming styles, as well

as the generation of novel drum patterns. Through a series of experiments,

we demonstrate the e�ectiveness of this approach. First, we show that the

complex network representation can accurately classify drum patterns into

their respective musical styles, even with a limited number of training samples.

Second, we present a generative model based on Markov chains operating

on the network structure, which is able to produce new drum patterns that

retain the essential features of the training data. Finally, we validate the

perceptual relevance of the generated patterns through listening tests, where

participants are unable to distinguish the generated patterns from the original

ones, suggesting that the network-based representation e�ectively captures

the underlying characteristics of di�erent drumming styles. The findings of this

study have significant implications for music research, genre classification, and

generative music applications, highlighting the potential of complex networks

to provide a transparent and elegant approach to the analysis and synthesis of

rhythmic structures in music.

KEYWORDS

complex networks, music, symbolic drum patterns, network similarity, genre

classification, music generation, music information representation

1 Introduction

Complex networks have emerged as a powerful framework for understanding and
analyzing a wide array of phenomena across diverse fields, including biology (Wild et al.,
2021), social sciences (Matta et al., 2018; Óskarsdóttir et al., 2022), and technology (Kim
and Sayama, 2017). Their ability to represent complex relationships and interactions
through nodes and edges allows researchers to uncover underlying structures and
dynamics that may not be immediately apparent. By modeling systems as networks, we can
leverage advanced analytical techniques to address intricate problems, identify patterns,
and facilitate the generation of new insights. This versatility makes complex networks an
invaluable tool for exploring not only the intricacies of musical compositions but also the
broader implications of rhythm and style across different musical genres.
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There are several recent examples of how music scores can be
modeled as complex networks, representing notes as nodes, and
the temporal sequence as connections between these nodes. In a
recent paper (Kulkarni et al., 2024), it has been shown how the
study of the topology of networks created from Johann Sebastian
Bach’s pieces reveals the underlying organization of his music. On
the one hand, the authors demonstrate that Bach’s compositions
exhibit a balance between complexity and simplicity that allows
for efficient communication of musical information. On the other
hand, by using metrics such as entropy and connectivity degree,
these networks can be grouped according to their form (e.g.,
separating choral pieces from preludes and fugues).

This is crucial because it suggests a powerful methodology to
approach the study of musical pieces. Moreover, it suggests that
networks can be useful not only for comparing musical styles but
also for storing information about a musical style and generating
new pieces. There are examples (Liu et al., 2010; Ferretti, 2017,
2018a,b) that present the use of complex networks as mechanisms
for musical analysis, encoding pieces, and generating new pieces.
Our purpose is to apply these ideas and techniques, using a novel
complex network representation, to the study of symbolic drum
sequences, a topic that, to the best of our knowledge, has not
been extensively addressed before. Our motivation is to present a
simple and transparent representation of musical drum sequences
and demonstrate their ability to solve problems such as musical
information classification and generation.

Despite the recent use of musical representations with complex
networks, the study of drum sequences through complex networks
is scarce. This context interests us especially because we recognize
that rhythm in general, and drum patterns in particular, have
unprecedented importance in contemporary popular music, and
they are present in almost all genres. We hope that the learning
achieved through this research can nourish the growing knowledge
of this musical phenomenon and inform future researchers and
creators of musical rhythms.

This paper focuses on how to achieve style classification
and rhythm generation using a complex network representation
of drum sequences. With this purpose in mind, we will use
two databases: one created by invited music producers for
this project and another open database published by Google
Magenta, known as the Groove MIDI Dataset (GMD) (Gillick
et al., 2019). This paper covers four main topics: First, the
proposal of a methodology for encoding drum rhythms as complex
networks. Second, the study of similarities between different
drumming styles through their complex networks. Third, the
generation of new drum rhythms based on this representation.
And finally the evaluation of our generation method with
listening tests.

Our scientific research aims to advance knowledge about
drum patterns through the study of network representations.
We compare the advantages and disadvantages of our
representation with those discussed in the literature, highlighting
its computational benefits that may be relevant from various
research perspectives. Additionally, we emphasize the educational
value of network representations, which can be beneficial across
multiple disciplines, such as cognitive science, computer science,
and musicology. We appreciate the importance of both cutting-
edge solutions and foundational discussions on representations

and algorithms, recognizing the unique insights that network
approaches can provide.

The following sections of this paper are divided as follows: In
Section 2, we introduce drum sequences represented symbolically
as scores (in contrast to their instantiation as sounds) and the
terminology used to describe them. Then, in Section 3, we
explain our methodology for processing drum sequence files and
converting them into complex networks. In Section 4, we present
an experiment where we convert all drum sequences in different
musical styles present in the GMD dataset into complex networks,
use similarity metrics to compare them (Jaccard similarity and
degree), and then compare the different styles. In Section 5, we
generate new patterns based on the representation of their styles
as complex networks and compare the generated patterns with
the studied ones, in order to validate the imitational power of
this approach. We conclude the experiments in Section 6, where
we present generated patterns to subjects in a listening test and
ask them how similar the generated patterns are to the originals,
thus validating the effectiveness of our modeling in a perceptual
way. Finally, Section 7 offers a general discussion of the observed
results and what our methodology and findings can offer beyond
our experiments with drum sequences.

2 Symbolic drum sequences

Percussion arrangements, alongside vocal elements, have
become pivotal in shaping the soundscape of global popular
culture. However, their acceptance, particularly in Western
contexts, has historically lagged behind that of melody and
harmony (Nettl, 2005, p. 151). The evolution of global culture,
driven by technological advancements and diverse musical
influences, has formalized percussion sets that blend instruments
from various cultural backgrounds (Dean, 2012, p. 3). This
evolution culminated in the standardization of drum kits, typically
comprising the essential kick drum, snare drum and hi-hat set with
musicians often augmenting these kit with elements from broader
percussion ensembles (Brennan, 2020).

The late 20th century saw the advent of rhythm boxes and drum
machines, which leverage digital technology and theMIDI protocol
to record, edit and reproduce digital scores, synthesize sounds,
play pre-recorded samples, and craft intricate rhythmic patterns.
The standardization of the MIDI protocol, particularly the General
MIDI percussion key map (GMPKM),1 revolutionized music
composition by allowing musicians to create complex sequences
and explore diverse genres with unprecedented flexibility (Loy,
1985). These advancements have not only defined musical genres
through distinctive drum patterns–such as hip-hop, breakbeat or
drum and bass–but have also exponentially expanded the realm of
musical sub-genres. While MIDI provides a digital representation
of musical scores, specifying instruments and notes without
acoustic representation, it serves as a powerful tool for capturing
musical ideas and facilitating the exploration of diverse musical
expressions, ultimately shaping the landscape of contemporary
music production and composition.

1 https://www.midi.org/specifications-old/item/gm-level-1-sound-set
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To analyze percussion arrangements, we use four distinct
instrument sets based on their size and complexity:

Comprehensive 46-instrument set: this set includes all
instruments in the GMPKM, summarized as 40 distinct
instruments by avoiding duplicates (e.g., two kick drums,
two snares, and six tom categories). Most software-based drum
machines use this set.

16-instrument set: a streamlined collection of electronic and
digital instruments, commonly found in classic drum machines
and samplers, featuring up to 16 drum sounds (e.g., Roland TR-
808, Roland TR-909, Akai MPC Live II, Elektron Machinedrum).
Instruments include kick drum, snare, rimshot, clap, cowbell,
closed hi-hat, open hi-hat, crash cymbal, low tom, mid tom, hi tom,
low conga, mid conga, high conga, maracas and claves.

8-instrument set: this highly condensed set matches the
compact size of some portable electronic drum kits and smaller
drum machines (e.g., Roland TR-606, Roland TR-505, Elektron
Digitakt, Arturia DrumBrute Impact, Nord Drum 3, or Teenage
Engineering PO-32 Tonic). It includes kick drum, snare, rimshot,
clap, open hi-hat, closed hi-hat, low tom and hi tom.

Minimal 3-Instrument Set: This represents the smallest
configuration, encompassing only the kick drum, snare drum and
hi-hat.

Symbolic drum sequences in the digital domain are thus
expected to utilize one of these four instrumental drum sets.
Given the nested relationship among these sets, we have devised
an instrument mapping to convert a larger set into a smaller
one, allowing for the expression of drum sequences created with
a larger set using a simpler set. This mapping ensures that
drum sequences created with different instrument sets can be
expressed uniformly.

In MIDI, each note is accompanied by a velocity value and a
time frame, known as a “tick.” The velocity, coded as an integer
from 0 to 127, indicates the intensity of the note, while ticks denote
the position of the note with a standard resolution of at least 24
ticks per beat (TPB). Note durations in the MIDI standard are
indicated by the time between a “note on” message (which includes
a note-and-velocity pair associated with a tick) and a “note off”
message (which indicates a note with zero velocity and a greater
tick value).

For this research, drum sequences are pre-processed in terms
of time and velocity to facilitate network creation. Velocity
information is disregarded, focusing solely on notes with a
velocity greater than 0, thus eliminating accent information.
Temporal information is quantized, adjusting every note onset
to a precise 16th note and disregarding note duration. Only
the quantized starting times of the notes are considered,
aligning with previous research in network-based music
analysis (Kulkarni et al., 2024).

3 Related work

This paper focuses on the classification and generation
of symbolic drum sequences using complex networks. In this
section, we present related investigations that contextualize
our research and establish reference values for discussing our
own results.

3.1 Classification

The latest research on classification using the Groove MIDI
dataset (GMD) is by Géré et al. (2024). The authors explore how
to classify a subset of the GMD that includes funk, jazz, Latin, and
rock music styles using two models: one based on long-short-term
memory (LSTM) networks and the other based on transformers.
Their main contribution is the introduction and evaluation of a
symbolic music representation called the linearized rhythmic tree
(LRT) and a variation known as tree-based positional encoding
(TBPE), alongside common representations such as piano rolls,
note tuples, and tokenization. LRTs are created by dividing MIDI
data into measures, converting each measure into a rhythmic
tree with notes as leaves, and then linearizing the tree. The LRT
representation is a 3D matrix that is smaller than the typical piano
roll representation (which is a 3D matrix of 16 steps x number of
instruments x velocity) and contains more rhythmic information
than the note-velocity tuples in the raw MIDI sequence. TBPEs are
built on LRTs to recover the hierarchical structure of the sequence
that is lost during linearization.

Both LRT and TBPE representations are valid alternatives for
the models used by Géré et al. (2024). The LSTM architecture
processes time-ordered sequences, while the transformer
architecture requires explicit time representation. In contrast,
our network representation for drum sequences maintains
the temporal structure of the sequence but ignores velocity
information, allowing for a more time-structured and compressed
representation than LRT and TBPE.

The process described by Géré et al. (2024) involved the
division of the data into three sets: 80% for training, 10% for
validation, and 10% for testing. Their best F1 scores were 0.663 for
the LSTM model with the piano roll representation and 0.660 for
the transformer model with the TBPE representation. The authors
noted that the classification accuracy, measured by the F1 scores,
decreased for both models when trained with less than 80% of the
data. In contrast, our classification results, detailed in Section 6,
show F1 scores of 1 using 17 styles from the GMD as classes.

3.2 Generation

Research on generating symbolic drum sequences has mostly
treated drums as secondary to other musical elements (e.g.
Hutchings, 2017; Dahale et al., 2021; Haki et al., 2022). However,
some studies focus solely on drum generation. For instance, Choi
et al. (2016) used a long short-term memory (LSTM) neural
network to create rock drum patterns from 60 training tracks.
They reported reasonable outputs but did not provide formal
evaluations. In their approach, they encoded drum sequences as
token sequences, with each token representing the simultaneous
drum sounds played at each 16th note, limited to 9 instruments.
This representation is similar to the one we will present later, as it
quantizes notes and describes simultaneous drum hits as a single
event. However, our representation allows for greater flexibility in
the number of instruments that can be included.

In another study, Wei et al. (2019) used a variational
autoencoder (VAE) and achieved 92% cosine similarity with the
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training set, along with a subjective evaluation where their best
model was preferred 58% of the time. They represented a one-bar
drum sequence as a 46×16 binary matrix. Similarly, Makris et al.
(2019) also employed LSTM for pattern generation, reportingmean
similarity scores ranging from 57% to 68% in six models. Their
representation is similar to that of Choi et al. (2016).

In general, the tokenization of simultaneous drum events
proposed by Choi et al. (2016) and Makris et al. (2019)
simplifies polyphony into a single event, normalizing the timing
of simultaneous instruments to one time point and the intensity
of each instrument hit to a single value. We also apply these
procedures in our data preparation to create our network
representation (see Section 4). Although both timing and intensity
carry expressive musical information, as shown in Experiment
1, suppressing these dimensions does not hinder the accurate
classification of drum sequence styles. Additionally, new drum
sequences generated under these constraints can achieve high
accuracy, as demonstrated in Experiment 2. In general, these
generative studies establish a baseline range for the highest reported
scores, between 68% and 92%. This range will help contextualize
our results, which are presented below in Section 7.

4 Complex network representation of
drum sequences

Here we describe our methodology to represent a drum
sequence as a network. Three essential variables are taken into
account: the percussion instrument set of the symbolic drum
sequence (i.e. the kick, snare and hihat set in Figure 1 top left), the
steps defining the minimum temporal resolution of the sequence,
and the maximum number of steps within the network. The
first two variables are pre-established in the symbolic sequence to
streamline its representation as a network (see step indexes 0 to
15 in patterns A, B and the network representation in Figure 1).
Notably, the number of steps can be customized as needed. For this
research, we define the length to correspond to one bar, comprising
a grouping of 16 steps.

Formally, a drum sequence can be represented as a complex
directed weighted network comprising nodes and edges. In this
context, a weighted network G is defined as an ordered pair G =

(V, W), where V represents the set of nodes (or vertices), and W is
a weighting function that assigns a real nonnegative value w(vi, vj)
to each connected node pair (vi vj). These connected node pairs,
typically referred to as edges, satisfy the conditions vi ∈ V, vj ∈ V,
and vi 6= vj (Umeyama, 1988).

Within the network, nodes symbolize drum events, ranging
from silence (no instruments) to the occurrence of one or multiple
instruments (e.g., a single low tom or a combination of a low tom
and a closed hihat) to the simultaneous playing of all instruments.
The total number of nodes in the network exhibits an exponential
relationship with the instrument set designated for reproducing a
drum sequence, calculated as nodes = 2instruments.

Network edges represent the step-wise temporal succession
of events. The weight of each edge in the network is calculated
as the normalized frequency of the connection between the
corresponding pair of nodes. Specifically, the weight of an edge is
proportional to the number of times that connection was observed,

with the weights for all edges connected to a given node summing
up to 1. This normalization ensures that the edge weights represent
the relative importance or likelihood of each connection, rather
than just the raw counts. By scaling the weights so that they sum
to 1 for each node, we can better compare the connection patterns
across different nodes and networks.

Given the quantization of drum sequences in time (as discussed
in the previous section), each drum event and its corresponding
node in the network are associated with a specific time step, where
steps indicate the events occurring every 16th note. Every step
encompasses the complete set of potential nodes at a particular
point in time. The array of potential nodes at a given step is referred
to as a layer.

In Figure 1, a two-bar drum sequence is illustrated, featuring
two distinct patterns labeled as A and B at the top, and involving
three instruments: kick, snare and hihat. The depiction emphasizes
the steps where instrumental onsets occur. Notably, both patterns
exhibit equal instrument occurrences at steps 1, 2, 3, 5, 7, 8, 11,
12, 14, and 15, while differing at steps 0, 4, 6, 9, 10, and 13. A
network representing the drum sequence, incorporating patterns
A and B, is constructed by sequentially connecting drum events, as
depicted in the lower part of Figure 1. Our drum network models
are designed to encompass 16 steps, corresponding to one bar
divided into 16 steps. Consequently, longer sequences, such as the
one formed by patterns A and B, are segmented every 16 steps,
with nodes connected sequentially. Nodes with a higher in-degree
(representing nodes common to both patterns) are distinguished by
a larger radius in Figure 1. Furthermore, nodes at steps 3, 5, 8, 12,
and 15 exhibit edges with 0.5 out-degree weights, indicating that
they are followed by two equally probable yet distinct nodes.

Thus, any drum sequence can be effectively represented as
a directed, weighted network, with the resulting topology -
comprising nodes, edges, and associated weights - reflecting the
characteristics of the original sequence. Once we have set this type
of representation, it is possible to study the similarity, relatedness
and reproducibility of symbolic drum sequences. Subsequent
sections will delve into three distinct experiments aimed at
evaluating theses concepts.

5 Network similarity metrics

As we aim to introduce a novel method for representing
drum sequences as complex networks, it is paramount to
establish appropriate techniques for analyzing the resulting
networks. Network similarity can be examined either by structural
comparison or by the extraction of network descriptors followed
by a comparison of these descriptors. Structural comparison
generally involves assessing differences between two networks
weighting these differences by their significance (Coscia, 2021).
This approach is viable for our purposes, given that the networks
are weighted directed networks with known node correspondence
(drum sequences using the same drum set are represented by
networks that potentially share identical nodes).

One powerful structural similarity metric is the Jaccard
similarity index. The Jaccard index is computed for two networks
created with the same instrument set: the number of coincident
edges in the two networks is divided by the total number of
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FIGURE 1

A two-bar drum sequence composed of patterns A and B, written using kick, snare and hihat instrument set (top) and its complex network

representation (bottom).

existing edges. The larger the number of common edges the larger
the similarity between two networks. Maximum Jaccard similarity
happens when one network is a subset of the other (A ⊂ B or
B ⊂ A, meaning all connections in one network are observable
in the other). Or on a middle ground, observing at least one
non-common node meaning both networks do not fully overlap,
forbidding inclusion in both directions A 6⊂ B or B 6⊂ A.

Another useful structural similarity metric is the indegree
similarity. The degree of a node in a complex directed network
describes the number of incoming and outgoing connections
from and to other nodes. In a weighted network, indegree and
outdegree can also be measured involving connection weights.
Therefore, indegrees and outdegrees are measured as the both
the number of connections and the sum of the weights. These
metrics characterize a node’s centrality and its capacity to transmit
information respectively. As similar networks with overlapping
nodes are expected to have similar node degrees (i.e. two different
networks that have common nodes with similar degrees will be
similar) a degree distance metric can be defined. The inverse of the
difference between node degrees informs of the similarity between
networks. In our network representation the indegree captures
better the centrality given the information flow is in step wise order.
Specifically, the weighted indegree of a node sums up probabilities
from preceding nodes which can be larger than one (for example
in Figure 1 nodes at steps 1, 5, 7, 11 and 14 all have indegree of
2 as both of the preceding nodes have an outdegree of 1) while
the weighted outdegree for all nodes is always one (as outdegrees
of nodes are normalized). We thus propose indegree as a very
expressive indicator of centrality in our network representation.

On the other hand, descriptor-based comparison involves
extracting network properties and subsequently comparing them
(Berlingerio et al., 2012; Omar and Plapper, 2020). However, due to
the architecture of our networks, there are specific properties that

cannot be calculated. For instance, the formation of triadic closures
(the creation of interconnected nodes forming a triangle) is never
observed given the absence of connections between nodes within
the same layer. Consequently, common descriptors such as the
clustering coefficient and closeness centrality cannot be applied to
our networks. Therefore, we decide to work with between-network
structural comparison using the Jaccard simmilarity index and the
indegree similarity (Omar and Plapper, 2020).

6 Experiment 1: network-based style
classification

In this first experiment, we aim to explore the advantages of
representing musical drum patterns as networks by conducting
a classification experiment. We utilize the Groove Midi Dataset
(GMD), which features drumming performances in various styles
recorded by expert musicians in both audio and symbolic formats.
The objective is to assess whether a network representations of
a small batch of symbolic patterns can effectively determine the
musical style they belong to. The classification method works as
follows: First, we create a network representation for each musical
style using 50% of the available samples for that style. Then, we
compare these style networks against a network created using a
small batch of test patterns, employing a simple nearest-neighbor
classification procedure (Cover and Hart, 1967).

6.1 Materials

The GMD comprises drum performances in 17 musical
styles, including latin, hiphop, funk, rock, jazz, reggae, gospel,
pop, afrocuban, breakbeat, middleeastern, country, highlife, punk,
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FIGURE 2

Joint similarity heatmap. All style’s networks are compared among

them using joint similarity.

soul, disco and afrobeat. Each style includes real-time drumming
performances by professional musicians, with multiple recorded
tracks showcasing different nuances of the drumming style. The
dataset, however, is skewed toward popular music, with rock having
the highest number of bars (4837) and gospel the least (68). We
intentionally maintain this imbalance in the number of patterns
to observe the performance of the network-based classification
method and study the relationship between the number of
patterns and classification accuracy. These drum patterns have
been originally created using a virtual drum kit using 22 different
sounds, and for the purpose of the experiment the 22 sounds have
been remapped to three instrument kit composed of kick, snare
and hihat.

6.2 Data preprocessing

To measure the relationships among style’s networks, a joint
similarity metric (see Section 5) using Jaccard similarity index,
indegree and weighted indegree similarities is computed among
all pairs producing a similarity matrix (see Figure 2). The joint
similarity metric is defined as the equally-weighted sum of these
three factors. To enhance qualitative comprehension of the styles,
the similarity matrix is inverted to a dissimilarity matrix and
then processed with a multi dimensional scaling (MDS) algorithm
(Torgerson, 1952). MDS projects all the distances into a low-
dimensional representation minimizing the stress between the
distances of the elements in the final representation in the
dissimilarity matrix. In order to enhance readability the MDS is set
to project to a 2D space (see Figure 3).

Figure 2 (top left) and Figure 3 (top left quadrant) show how
hiphop, funk and rock styles bear high similarity and small
distances (respectively). In musical terms this means these styles

FIGURE 3

Joint distance embedding. Bidimensional representation of the

styles based on network similarity.

have similar types of onset sequences located in similar temporal
positions and with similar recurrence. This similarity can also be
observed in Figure 4 as the top branch of the dendrogram contains
these three same patterns. Based on the similarity metrics we use,
we know that networks derived from these three drumming styles
have similar nodes and edges controlling the information across
different layers. Conversely, highlife, gospel and breakbeat are the
style’s networks with the least resemblance to the rest (0.535, 0.548
and 0.556 mean similarity respectively) located in the outer regions
of the right upper and lower quadrants of Figure 3. This suggests
their musical traits, embedded in their networks as nodes and
connections, are the least shared with the rest of the styles. This
can also be observed in Figure 2 as the darkest rows and columns
belong to these styles.

6.3 Genre classification task

To evaluate the network’s ability to represent collections of
drum patterns, a classification task was conducted using a nearest-
neighbor approach. The task involved computing similarities
between large-sample style networks, and classifying small-sample
networks based on their similarity to the large-sample ones. The
efficacy of this approach was assessed by repeating multiple times
the classification task and by varying batch sizes. The classification
methodology involved splitting all the patterns of a style into train
and test batches. Large-sample style networks are created with
the train batch. A progressively larger portion of the test batch
(starting from a size of 2 patterns) is used to create a small-sample
network which is compared against all large-sample networks
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FIGURE 4

Joint-distance dendrogram (created using using the average linkage algorithm) of all style’s networks.

FIGURE 5

Flow diagram of the classification process.

created with the test batch. To classify the test batch to a style,
the maximum value in the similarity vector was utilized to identify
the corresponding style. Essentially, the large-sample style network
most closely resembling the small-sample network (the nearest
neighbor) was designated as the class to be inferred. Although it
is common practice to reserve around 2/3 of a dataset for training,
here only 50% was used to increase the difficulty of the task and
highlight the performance of this approach. To assess the efficacy
of this classification approach, an experiment was conducted in the
following stages and batch sizes, utilizing the GMD dataset (see
Figure 5):

1. Selection of a style.
2. Segmentation of all patterns in the style into 50% train and 50%

test.
3. Random selection of a batch of n number of patterns from the

test set.
4. Creation of a small-sample test network using all patterns in the

n-sized batch.
5. Calculation of the distance between the test network with the

large-sample train networks of each style. This is carried out
employing the joint similarity distance outlined in Section 5.

6. Identification of the small network’s class based on the highest
similarity value in the test distance vector.

7. Repetition of steps 3 to 6, 20 times for each batch size, with a
progressive increase in batch size.

8. Repetition of steps 1 to 7, for each style in the dataset.

6.4 Results

An initial analysis was conducted to determine the optimal
batch size for achieving a perfect F1 classification score. The
F1 score is used as a measure of predictive performance of
classification systems. It is computed using the precision and
recall metrics calculated after a classification procedure. Precision
is calculated as the number of correctly classified items (true
positives) divided by the sum of all items classified as belonging
to a label whether they are correct or not (true positives + false
positives). Recall is calculated as the true positives divided by the
sum of all items in the ground truth with the classification label
whether they were correctly classified or not (true positives + false
negatives). It was hypothesized that with an increase in batch size
the F1 classification score would increase.

Figure 6 presents the progressive increment of batch size and
the classification F1 score achieved. Figure 7 presents the minimum
batch size to achieve a perfect F1 score. Figure 7 suggests that
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FIGURE 6

Batch size and F1 score for every style in the dataset.

FIGURE 7

Minimum number and percentage of patterns needed to achieve perfect F1 score for every style in the dataset. The bars present the absolute value

and the numbers the relative values (from the total number of patterns in the style).

rock, funk and hiphop styles need networks created with larger
batch sizes in order to be correctly classified. The small-sample
networks for these styles need to be constructed of at least 24,
24 and 14 random patterns respectively. However, these batch
sizes represent 1.24%, 0.5%, and 1.75% of the total number of
patterns respectively (see percentage in front of the bar plots in
Figure 7). The larger batch sizes needed for these styles to be
perfectly classified is a consequence of the similarity among their
networks as described in the previous subsection (Figures 2, 3). The
fact that these three styles contain patterns with similar features,
and thus their networks are similar, makes the classification task
require larger batch sizes in order for their distinctive features to
become part of the network. When the batch sizes are large enough
(equal or above the minimum number of patterns needed to 100%
F1 score), the distinctive traits of each style are finally embroidered
within network topology and an effective classification is obtained.

Styles not including funk, rock and hiphop (14 out of 17 styles,
82.3%) can be perfectly classified constructing networks with 10

patterns or less. In relative terms all styles need batch sizes of
less than 5.88% the total number of patterns in order to construct
small-sample networks that are able to classify them correctly.

On the other hand, gospel, breakbeat and middleeastern are
the styles with fewer instances played in the GMD (68, 116,
118 respectively) so those are the styles that need relatively
more patterns to be classified correctly (5.88%, 6.03% and 5.08%
respectively).

6.5 Disambiguating funk, rock and hiphop
styles studying network topology

The topology of funk, rock and hiphop style networks based on
all patterns is studied to understand the relative difficulty to achieve
correct classifications of their patterns. We present the three style
networks created (see Figure 8 top) and the network resulting after
subtracting the indegree weights of one network one from the other
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(rock–funk, rock–hiphop and funk–hiphop, in Figure 8 middle).
Finally, in order to establish a comparison, the latin style network
is subtracted from funk, rock and pop styles (Figure 8). Notice
how the differences among these three styles are lower than the
differences between each of them and the latin genre.

Network differences among rock, pop and hiphop are small,
suggested by the small indegree differences coded as radius of the
nodes (Figure 8 middle). There are specific nodes and edges of each
network that make them distinctive from the other. For example in
rock–funk (Figure 8 middle left) nodes representing the snare hits
(MIDI instrument 38) at steps 4, 6, 10, 12 and 14 are present in rock
and not in funk. A similar effect can be observed in rock–hiphop
(Figure 8 middle center) at steps 6 and 9 as nodes denoting snare
hits are part of rock style and not of hiphop’s. The same can be said
of the node representing a snare and hihat hit (MIDI instruments
38 and 42) at step 8.

On the other hand, nodes that have larger indegree in funk and
hiphop and not in rock are observed (the light gray nodes symbolize
negative indegrees, suggesting the subtrahend style contains a
higher indegree in that node than the minuend style). These light
color nodes suggest things that are not particular of rock (the
minuend) but are of funk and hiphop. Again, the snare nodes
(MIDI instruments 38) and in less degree the kick and snare nodes
(MIDI instruments 36 and 38) can be distinctive of something that
is not rock. Explicitly, snare nodes at steps 1, 5, 11 and 13 are less
common in the rock network than in the counterpart networks. As
well as kick and snare nodes at steps 2 and 6.

Observing the middle and bottom sections of the subtracted
networks, there is not much difference among rock, funk and
hiphop networks. This explains how most of the nodes containing
silences and kick events (kick, kick and hihat and kick snare hihat)
have the same relevance in terms of indegree among the three styles.
In musical terms this is a powerful observation as the two most
contrasting rhythmic features of the styles, the strongest hits of the
patterns (produced by the kick and combinations) and the silences,
are shared by the patterns in the three styles.

6.6 Discussion

This study demonstrates the efficacy of a multi-layered network
representation (see Section 4) method for classifying drum
patterns, emphasizing the importance of incorporating rhythmic
information, which has often been overlooked in previous musical
representations. By addressing the limitations of prior research,
particularly in the context of pitch and style, we highlight the
necessity of selecting network representations that prioritize the
most salient musical dimensions, such as timbre and rhythm in
drum sequences.

The findings reveal that the size of the drum set used
significantly influences the classification task, with the minimal
three-instrument set presenting the highest difficulty level. Future
research should explore the potential benefits of larger instrumental
sets to enhance classification accuracy and reduce the number of
patterns required for effective style identification.

Our classification task, which utilized randomly selected unseen
patterns, underscores the robustness of network representations

in accurately categorizing drum patterns into their respective
musical styles. Notably, the ability to classify certain styles with
as few as four to seven patterns highlights the distinctiveness
of the musical characteristics encoded within small networks.
These results can be contrasted with the multiple musical genre
classification approaches where perfect classification in symbolic
datasets using classic machine learning methods is hardly achieved
(Corrêa and Rodrigues, 2016, p. 199).

The successful encoding of musical information through basic
network topology–specifically, edges and node centrality–suggests
that stylistic elements are effectively captured through these
connections. This insight enriches our understanding of musical
networks and contributes to the broader discourse on music theory
by elucidating the mechanisms that differentiate genres.

Basic network topology as edges (in Jaccard similarity
metric) and node centrality (in indegrees, both weighted
and non-weighted) has proven to effectively encode musical
information. To the extent that by quantifying and comparing
them the classification is successful. This strongly suggests that
stylistic musical information is effectively captured through node
connections (edges) and also by node indegree centrality (specific
instruments playing at specific time positions). These findings not
only enrich our comprehension of musically-inspired networks
and musical styles but also contribute to the broader discourse
on music theory by elucidating the underlying mechanisms that
define and differentiate various genres.

In our classification task, we observe several key advantages
over the findings of Géré et al. (2024). While they classify only
four style classes, we successfully classify 17. This increase in
the number of classes is significant, especially given the dataset’s
inherent imbalance, which complicates the classification ofmultiple
styles. Géré et al. (2024) work with complete drum performance
MIDI files, whereas our results demonstrate accurate classification
of 17 styles using segments of no more than 25 bars. This indicates
that we can achieve correct classifications for more styles with less
information. Additionally, Géré et al. (2024) train their model using
80% of the data for optimal performance, while we train with only
50%, presenting a greater challenge for our models. Finally, Géré
et al. (2024) report a best F1 score of approximately 63%, while our
method achieves an F1 score of 100%.

In conclusion, our results indicate superior performance, as
we classify four times more labels while training with less data
and requiring fewer resources. Furthermore, Géré et al. (2024)
emphasize the importance of representations by exploring five
different methods for representing drum patterns. This highlights
the relevance of our discussion on drum pattern representations.
Our findings suggest that the representation we propose offers
distinct advantages over those commonly used in the music
information research community, contributing valuable insights to
this ongoing discourse.

Furthermore, the transparent infrastructure provided by
musical network representations facilitates problem-solving and
enhances explainability in style disambiguation. Our analysis
reveals that while certain drum events exhibit similarities
across genres, the unique identities of styles such as rock,
funk, and hip-hop are defined by the strategic use of specific
percussive elements.
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FIGURE 8

Rock, funk and hiphop networks (top), rock indegree–funk indegree, funk indegree–hiphop indegree, rock indegree–hiphop indegree (middle), rock

indegree–latin indegree, funk indegree–latin indegree, hiphop indegree–latin indegree (bottom).

Ultimately, the classification results obtained in this study
have significant implications for music research and genre
classification. By successfully categorizing drum patterns using
network representations, we not only deepen our understanding
of musical structures but also pave the way for practical
applications in music analysis, recommendation systems, and
music generation, all while maintaining a transparent and elegant
approach to classification.

7 Experiment 2: evaluation of a
network-based model for drum
sequence generation

Having successfully demonstrated the efficacy of our approach
in categorizing limited collections of one-bar drum sequences
according to their stylistic class, we now seek to extend this
methodology to the realm of generative modeling. Specifically, we
propose to harness the structural properties of our style networks
to produce novel one-bar drum sequences that emulate the patterns
and characteristics of their archetypal counterparts. To achieve this,
we will employ random walks across the network as a means of
exploring the network of drumming patterns, thereby generating
new sequences that are likely to conform to the stylistic features that
define the original datasets (Jones, 1981; Rosvall and Bergstrom,
2008). Through a rigorous feature-based analysis (Gomez-Marin
et al., 2020; Yang and Lerch, 2020), we will systematically compare
the generated sequences with their original counterparts, with the

hypothesis that our network-based approach will yield patterns that
faithfully capture the essence of the underlying style.

7.1 Methods

7.1.1 Materials
In this experiment, we leveraged two distinct datasets, each

serving a specific purpose, to create a comprehensive experimental
dataset that captures the essence of studio production practices,
drum performance techniques, and the concept of musical style.
The first dataset utilized was the GMD (Gillick et al., 2019)
used in the previous experiment. The second dataset, our custom
Sano2 and Boska3 (S&B) dataset, was specifically devised for
this task and comprises a limited selection of original patterns
generated by two professional music producers using digital audio
workstations (DAWs). For the S&B dataset Each producer was
instructed to create a set of 10 one-bar sequences “in their style”
using the instruments in the 8-instrument drum set, maintaining
a constant velocity in all sequenced notes. This experimental
dataset-comprising GMD and S&B- provides a wide selection of
patterns designed for grasping diffeent methods to create symbolic
drum seqences.

2 https://www.discogs.com/artist/663348-Sano, https://contento.

bandcamp.com/

3 https://www.discogs.com/artist/1955792-Boska, https://xlr8r.com/

news/download-one-hour-of-boska
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FIGURE 9

Generative performance for all styles, instrument drum sets (all, 16, 8, and 3) and Markov orders (0, 1, and 2).

7.1.2 Procedure
In order to rigorously evaluate our hypotheses, we employ

zero, one, and two-order Markov processes to generate drum event
nodes at each step within the network. Furthermore, we utilize
diverse drum sets to progressively represent the drum patterns
in the dataset, thereby diminishing the available instruments and
consequently reducing the size of potential nodes in the network
(refer to Section 4).

For each style in the experimental dataset, a new set of one-
bar drum patterns is created. The number of generated patterns
for each style matches the number of original one-bar patterns
in that style, resulting in two sets of drum patterns that are the
same size but distinct: one set of original patterns and one set of
generated patterns.

The polyphonic descriptors for drum patterns (Gomez-Marin
et al., 2020) serve as the foundation for extracting a descriptor
vector from each one-bar drum sequence. These descriptors
are derived from essential rhythm cognition features such as
instrumental diversity, onset density, syncopation and timbre. The
vectors resulting from extracting these descriptors facilitate the
computation of Euclidean distances among drum patterns, thereby
establishing quantifiable similarity relationships among them. This
methodology extends to the comparison of all training patterns
within a specific style, or any designated group of patterns.

To establish a robust evaluation metric between the patterns
used for training and the patterns output by the generative
process, we introduce a novel generative performance score.
This score leverages on the interplay between the overlapping
area (OA) and Kullback-Leibler divergence (KLD) values, as
delineated by Yang and Lerch (2020). Central to this scoring
mechanism is the analysis of two distributions: the Euclidean
distances within the entirety of training patterns, and the Euclidean
distances between the set comprising all training patterns and
their generative counterparts. Through a meticulous examination
of the overlapping area (OA) and the Kullback-Leibler divergence
(KLD) of these distributions, we attain a comprehensive evaluation
of generative fidelity. Notably, a higher OA value, constrained

TABLE 1 Generative performance summary for all drum sets and Markov

orders.

Drum set

Order All 16 8 3 Mean

0 0.663 0.647 0.673 0.635 0.654

1 0.71 0.731 0.711 0.703 0.714

2 0.82 0.841 0.848 0.862 0.843

to a maximum of 1, signifies a closer resemblance between the
generated samples and the training data, while a lower KLD value,
approaching 0, underscores a superior alignment between the two
sets. The proposed generative performance score, calculated asOA–
KLD, encapsulates the essence of generative prowess, providing a
nuanced perspective on the fidelity of the generated samples in
relation to the training corpus.

7.2 Results

The generative performance score for each style, order and
drum set is presented in Figure 9. It is observed that order 2
has higher generative performance score than orders 0 and 1 for
the vast majority of the styles. A summary is found in Table 1.
Results for orders 1 and 2 are within the baseline range (68%–92%)
established by previous works reported in Section 3.2.

An analysis of variance (ANOVA) revealed a significant effect
of the order on the performance score, F(2,227) = 47.1, p< 0.05. Post
hoc comparisons using the Tukey HSD test indicated that there was
a significant difference between order 0 (M = 0.654, 95% CI [0.619,
0.689]) and order 1 (M = 0.714, 95% CI [0.683, 0.744]), p < 0.05.
Additionally, order 0 was significantly different from order 2 (M =
0.843, 95% CI [0.829, 0.857]), p < 0.05. And order 1 and 2 are also
significantly different p < 0.05. This suggests that the order has a
direct effect in the quality of the generated one-bar drum sequences.
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In order to evaluate the effect of the drum set used to code
the network (that limits the amount of nodes in the network) an
ANOVA and post-hoc Tukey HSD tests are used to evaluate if there
is a statistical significance. The ANOVA presents no significant
differences between the treatment groups [F(3, 227) = 0.1, p = 0.96].
The lack of statistical significance suggests that the drum sets used
did not have a significant effect on the generative performance
score. These findings indicate that encoding the drum patterns with
a different drum set did not lead to statistically distinguishable
outcomes in terms of the generative performance score. This
highlights the similarity in the effects of the four different ways to
encode the drum sequences as networks.

To evaluate the effect of the number of one-bar patterns in
each style with the generative performance score, the correlations
between style size and the performance score of each drum set and
order is computed. Pearson’s correlation is not significant (p-value
> 0.05) for any drum set and Markov order. This suggests that
the performance score is independent from the number of one-bar
patterns used to create the networks, despite having a contrasting
number of patterns within the different styles. This observation
resonates with the results obtained in the previous experiment.

7.3 Discussion

The use of network representations for collections of one-bar
drum sequences has enabled the generation of novel rhythmic
patterns that retain the essential features of the training data.
When Markov models of order 2 were employed to create the
networks based on the styles of the GMDdataset, a mean generative
performance score of 0.847 was achieved. Given the stringent
nature of the scoring metric, which requires the generated and
target distributions to be identical to attain a score of 1, this result
indicates that the generated patterns successfully capture the salient
characteristics of the training set without simply replicating it.

In the context of generative music, systems that can imitate
the training data while introducing novel variations are highly
desirable. Such approaches allow for the production of new content
that aligns closely with the features of the original material, yet still
leaves room for divergence. This can be likened to an apprentice
learning to replicate the style of a master, but refraining from
complete mimicry.

Interestingly, the choice of drum set used to encode the
sequences had no discernible impact on the mean generative
performance when all orders were considered. The size of the drum
set directly influences the network complexity and the diversity
of nodes available to describe the drum patterns. As the drum
set becomes smaller, the drum patterns and their corresponding
networks are simplified. Yet this simplicity does not affect the
overall performance suggesting that the proposed generative model
based on complex networks can be equally effective for collections
of sequences expressed using a limited (i.e ten as in the S&B dataset)
or extensive set of drum events (as found in GMD).

Furthermore, there was no significant correlation between
the number of patterns in the training styles and the generative
scores obtained. This indicates that the generative performance
is independent of the size of the pattern set used to create the

networks. This finding aligns with the results from the previous
experiment, where the number of patterns required for perfect
classification was also unaffected by the size of the pattern set used
to construct the network. This speaks to the robustness of the
network representation, as the objective variables (F1 score in the
first experiment and generative performance score in this one) are
not influenced by the scale of the pattern set employed to generate
the networks. Even more, this contrasts with the prevailing notion
that large datasets are needed to model the elements of a domain
(Goodfellow et al., 2014; Kaplan et al., 2020).

8 Experiment 3: subjective evaluation
of network-based generated drum
sequences

After positively testing network representations of drum
patterns in classification and generation tasks, a final experiment
is devised to assess, from a human perspective, the quality of
generated drum patterns. In this experiment we decide to use
only the S&B dataset created by two professional music producers
(see the section 7.1.1). Their styles are idiosyncratic and reflect a
personal take on drum sequencing that does not fall directly into
any of GMD styles, limiting possible associations of the auditory
stimuli with previously known music styles. As in the two previous
experiments, the small-size of the dataset (ten one-bar sequences
per style) is also interesting from a generative perspective, allowing
to observe if networks constructed with a small amount of one-bar
drum sequences can be used to effectively imitate the style coded in
them (see networks in Figure 10). The goal in this experiment is to
investigate three key aspects:

• If a general difference between human-produced or generated
drum patterns can be noticed by the subjects.

• If patterns produced by a human and by our system imitating
her style can be differentiated by subjects.

• If subjects can differentiate patterns produced by two different
humans in their own different styles.

8.1 Methods

8.1.1 Materials
Asmentioned above Sano and Boska (S and B for the remaining

of the paper) were instructed to craft ten one-bar MIDI drum
patterns within the scope of their own artistic styles. We leveraged
them to create S and B drum networks following the procedure
presented above (see Section 4) and with these networks generated
10 new patterns in each style using order 2 and 8 instrument
mapping (as presented in the previous experiment). This process
resulted in a total of 40 MIDI drum patterns, including 10 original
patterns and 10 patterns generated by our network system for each
of the two producers.

All drum patterns (original and generated) were played at a
tempo of 120 BPM. The audio samples used for these patterns were
sourced from Roland’s TR 808, 909, and 707 drummachines, which
are frequently employed in electronic music production.
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FIGURE 10

Network representations of Sano and Boska styles.

The experiment was delivered as a PureData (Puckette
et al., 1996) patch and communicated to participants via email.
Participants were kindly instructed to reserve a quiet environment
and utilize headphones, while also being guided on how to follow
the provided instructions.

8.1.2 Procedure
The experiment is divided in four sequential phases: first

exposure, first assessment, second exposure, final assessment. In the
first exposure, participants are invited to listen to a drum sequence
context which is randomly selected from the two S and B styles. The
drum context set is composed of five original randomly-selected
one-bar sequences from the selected style. Simultaneously, a test
set is also created containing 17 sequences:

• The remaining five original sequences of the selected style
• five randomly-selected generated sequences from the selected

style
• five randomly-selected original sequences from the not-

selected style
• two randomly selected sequences from the context set.

Subjects were required to listen to each drum pattern in the
context set a minimum of three times before a "next" button became
available, allowing them to advance to the rating phase. This
requirement ensured that participants had adequately familiarized
themselves with the selected drumming style.

In the first assessment phase, participants were presented with
8 test sequences randomly selected from the test set. Each drum
sequence was associated with a play button and a slider ranging
from 0 (“Differs Completely”) to 100 (“Resembles Perfectly”).
Participants were tasked with listening to each drum sequence
and rating how closely it resembled the drumming style presented
during the first exposure.

The second exposure phase was identical to the first one, where
subjects were asked to listen to each pattern in the context set at
least three times. This additional exposure was intended to further
enhance the participants’ memory of the context set.

In the final assessment phase, participants were invited to rate
the remaining 9 patterns composing the test set (again they had
to decide how similar the pattern seemed to those of the learned

human producer). Once participants had completed this final stage,
they were instructed to send an email containing a results file
that was generated upon the completion of the experiment. The
results file included a participant’s ID and the ratings for each
test sequence.

8.1.3 Participants
In total, 47 subjects participated in the experiment, all

belonging to European, Latin American and Asian backgrounds.
Ten subjects were discarded because they failed to recognize
control patterns as resembling the context (rated either of the two
control patterns with a resemblance score below 95%). This way
we ensure that the analyzed data came only from subjects that had
abstracted or inferred stylistic traits of the context. The remaining
37 subjects identified themselves as female (8) and male (29), the
age mean was 30.4 years with a standard deviation of 7.4.

8.2 Results

A t-test was conducted to compare the mean resemblance
scores of the original pattern group and the generated pattern
group. The results did not show a statistically significant difference,
t(184) = -1.012, p = 0.313, 95% CI [0.495, 0.59]. The original pattern
group (M = 0.542, SD = 0.329) scored very close to the generated
pattern group (M = 0.573, SD = 0.319). This suggests the original
sequences and the generated sequences, disregarding if the author
was S or B, were not rated differently regarding their resemblance
to the context. In general, subjects did not feel that the original
sequences presented in the test were more (or less) resembling
to the context than the generated sequences also presented in the
test set.

In order to observe if subjects detected the drum sequences
from the other producer as having less resemblance to the context
set an ANOVA is carried out. A one-way ANOVA was conducted
to examine the effect of the author of the drum sequences on
the resemblance score given by the participants. The participants
had three groups to rate: original same as style, generated same
as style, and original from a different style. The results showed a
statistically significant effect, F(2,184) = 82.174, p < 0.05 η

2 = 0.309
meaning that at least one of the groups is different from the others.
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TABLE 2 Tukey’s HSD test for the three types of patterns tested in the

experiment.

Group Mean
di�erence

p

Original same as
contex

Generated same
as context

0.0307 >0.05

Original same as
context

Original not from
context

−0.3373 <0.05

Generated same
as context

Original not from
context

−0.368 <0.05

A post-hoc Tukey’s HSD test was carried out to evaluate significant
differences among the three authorship types (see Table 2). There
is not a significant difference in resemblance scores between the
original patterns in the same style as the context (M = 0.542,
SD = 0.329) and the generated patterns in the same style as the
context (M = 0.573, SD = 0.319). Suggesting subjects assess both
original and generated patterns as resembling the patterns in the
context set. Human-authored and network-based generated do not
have significant differences in score. There are, however, significant
differences between the resemblance scores of the original and
generated sequences in the same style as the context with the scores
of original sequences in a style different from the context (M =
0.205, SD = 0.265). This suggests subjects noticed patterns from
a style different from the one presented in the context phase and
rated them with low resemblance scores. In general, participants
scored original patterns from another style as poorly resembling the
context (M = 0.205) while original and generated from the same
style have very similar means above 0.5 resemblance (0.542 and
0.573 respectively) suggesting subjects feel both groups of patterns
positively resemble the context in a similar way in relation to
the context.

8.2.1 Resemblance scores for S and B as context
To observe the results independently for each producer, and

understand if any of the styles was easier to capture by the subjects
one ANOVA was used to test each case.

The resemblance to S as context had three types of groups
rated by the participants: original patterns from S style, generated
patterns in S style and original patterns in B style. The results
showed a statistically significant effect, F(2,134) = 69.876, p < 0.05
η
2 = 0.343. A post-hoc Tukey’s HSD test was carried out to evaluate

significant differences among the three groups of patterns (see
Table 3). There is not a significant difference in the resemblance
scores between the original patterns in S style (M = 0.569, SD
= 0.312) and the generated patterns in S style (M = 0.572, SD
= 0.31). Participants assess both original and generated patterns
as resembling the patterns in the S context set. Original patterns
by S and network-based generated in S style have no significant
differences in score. On the other hand, there are significant
differences between the resemblance scores of the original and
generated sequences in style S with the scores of original sequences
in style B (M = 0.205, SD = 0.25). Subjects rated original patterns in
B style with lower resemblance scores than original and generated

TABLE 3 Tukey’s HSD test for the three types of patterns tested in the

experiment. Sano used as context.

Group Mean di�erence p

Original style S Generated style S 0.0032 >0.05

Original style S Original style B −0.364 <0.05

Generated style S Original style B −0.367 <0.05

TABLE 4 Tukey’s HSD test for the three types of patterns tested in the

experiment. Boska used as context.

Group Mean di�erence p

Original style B Generated style B 0.104 >0.05

Original style B Original style S −0.265 <0.05

Generated style B Original style S −0.37 <0.05

in S style, suggesting patterns in B style were identified as being
different from S style context.

Using B as context, three groups of patterns were also defined:
original patterns from B style, generated patterns in B style
and original patterns in S style. The ANOVA results showed a
statistically significant effect, F(2,49) = 15.874, p < 0.05 η

2 = 0.245.
A post-hoc Tukey’s HSD test was carried out to evaluate significant
differences among the three groups of patterns (see Table 4). There
is not a significant difference in the resemblance scores between the
original patterns in B style (M = 0.47, SD = 0.36) and the generated
patterns in B style (M = 0.575, SD = 0.34). Participants assess both
original and generated patterns as equally resembling the patterns
in the B context set. Original patterns by B and network-based
generated in B style have no significant differences in score. There
are significant differences between the resemblance scores of the
original and generated sequences in style B with the scores of
original sequences in style S (M = 0.205, SD = 0.299). Subjects
rated original patterns in S style with lower resemblance scores than
original and generated in B style, suggesting patterns in S style were
identified as being different from B style context.

Finally, while the difference in means between the original
and generated sequences in the context of style B did not reach
statistical significance, it nonetheless deserves attention. This
pronounced behavior was not observed when style S served as the
context, suggesting that style B may have been more challenging
for our subjects to fully comprehend. This is indicated by the
subjects’ slight difficulty in relating the unheard, yet original
sequences to the ones presented as the context. Previous research
has explored the discrepancy between the network produced by
the musical sequence information and the human perception of
those sequences. They have observed that the complexity of a
network encoding sequential information - as measured by degree
distribution, connection strength, or entropy (Newman, 2003) -
does not necessarily equate to the difficulty of humans to process
those sequences. Instead, they posit that high-entropy networks
with high-degree hubs and a clustered structure, as found when
processing literature and music sequences, are the very structures
that aid human processing (Lynn et al., 2020). Table 5 reveals
that network B has more nodes with larger connection weights,
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TABLE 5 Weighted degree, node density, and entropy for Sano (S) and

Boska (B) networks.

Metric Network S Network B

Number of nodes 70 75

Weighted degree 140 150

Degree distribution mean (SD) 3.629 (1.725) 3.387 (1.632)

Weighted degree distribution mean (SD) 0.551 (0.3) 0.59 (0.3)

Entropy 34.56 33.88

a smaller mean number of connections, and less entropy than
network S. This suggests that the ten sequences in the B set are
indeed more diverse than those in the S set. The fact that network S
exhibits fewer, better-connected nodes and higher entropy aligns
with Lynn’s proposition, implying that it may be more readily
grasped by our subjects. Therefore, the exposure to half of the
original samples in style S as context captured slightlymore features
of the whole style than when B was presented as context, making
style S slightly easier for our subjects to grasp during the initial
exposure phase.

8.3 Discussion

In the introductory phase of the experiment, participants were
exposed to drum patterns created by a specific producer. This
exposure appeared to enable subjects to construct a temporary
conceptualization of a drumming style based on a relatively small
set of patterns (five in our experiment). They formed a mental
framework that encompassed the stimuli from the introduction,
effectively serving as a provisional category. This mental construct
was coherent enough to assess the extent to which a new stimulus
aligned with or deviated from this framework. In both experiments
(contexts S and B), patterns created by different authors were
significantly rated as not belonging to the induced style. This
suggests that style operates as a cognitive concept that allows
subjects to evaluate a new pattern by the degree to which it
conforms to this concept.

Out network-based generation system appears to capture
essential features, structural invariances, or commonalities within
the drum pattern collection. We propose that this network
representation resembles the concept of style temporarily
constructed in the minds of listeners, which enables them to
compare patterns. This is evident when patterns generated in a
given style are not perceived differently from patterns created by
the human originator of the style. In other words, if a mechanism
can produce stimuli validated as resembling a specific style,
there might be similarities between how a style is temporarily
constructed in the listener’s mind and the way it is coded in the
generative system (which is a network in our case). It’s essential to
clarify that we do not assert that our generative approach mimics
the intricacies of human cognition. Still, there may be parallels
between how a style is temporarily formed in a listener’s mind and
the network-based generative process we have introduced. In more
precise and practical terms, the absence of statistical significance

between groups of original patterns in style x and generated
patterns in style x implies that our network-based style generation
mechanism appears to be a suitable way to encode and generate
polyphonic rhythm material in a specific style.

It’s noteworthy that original patterns in style B, which were
not part of the context exposure, were rated as less related to the
context than patterns generated in the B style (means 0.47 and 0.675
respectively). However, for the experiment with S as the context,
this was not the case: original patterns in the same style as the
context were rated as similar to the context in a nearly identical
manner as patterns generated in the S style (means 0.569 and
0.572 respectively). We propose that the phenomenon observed
in the results related to B, where unheard original patterns were
rated as less related to the style than patterns generated by our
system, is linked to the diversity within a collection (i.e., how
distinct the elements within a collection are from each other or
how effectively they cover the conceptual space of a style). The
lower resemblance rating of the original patterns in B style can be
a consequence of the higher diversity of the sequences in style B
and the resulting higher complexity of its network. We believe style
B is more diverse and was not fully grasped by the subjects when
listening to the 5 randomly-selected original samples presented in
the exposure phases. On the other hand, the larger resemblance of
generated patterns toward the context might be a consequence of
the Markov process used to generate the sequences based on the
information coded in the networks. Since random walks through
style networks are biased toward edges with higher weights, the
generated sequences retain the most common features found in
the style. Therefore, such generated patterns better retain global
features of the style so they are more likely to resemble it.

9 General discussion

The research presented in this paper has demonstrated the
potential of using complex network representations to model
and analyze music and particularly drum rhythms. By encoding
drum patterns as networks, with notes as nodes and their
temporal connections as edges, we were able to uncover insights
into the underlying structure and organization of different
drumming styles.

Through the experiments conducted in this study, several key
findings emerged:

• Comparison of drumming styles: By comparing the topology
of the complex networks representing drum pattern
collections, using distances such as Jaccard similarity and
degree similarity, we were able to effectively differentiate
and group various drumming styles. This suggests that the
network-based approach can serve as a powerful tool for style
classification and analysis.

• Generation of new drum rhythms: Building on the insights
gained from the style comparisons, we developed a method
to generate new drum patterns based on the complex
network representations of the original styles. The generated
patterns were found to exhibit characteristics similar to the
source styles, as validated through listening tests with human
participants.
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• Insights into musical rhythm: The network-based modeling
of drum rhythms has provided a novel perspective on the
underlying structure of musical rhythm. By representing the
temporal sequences as network connections, we were able
to uncover organizational principles that may inform our
understanding of how rhythm is constructed and perceived.

These findings contribute to the growing body of research
on the application of complex networks to the study of music.
The successful representation and analysis of drum rhythms
using this approach opens up new avenues for exploring the
computational and cognitive aspects of musical rhythm, as well
as potential applications in areas such as music information
retrieval, composition, and performance. The transparency,
simplicity and efficiency of the proposed methods suggest network
representations of music are viable tools for commmon problems
in music processing.

Future research directions may include expanding the dataset,
exploring more advanced network-based analysis techniques, and
investigating the potential of this approach for other musical
elements beyond drum rhythms. Additionally, the integration
of this network-based modeling with other music analysis and
generation methods could lead to further advancements in the
field of computational musicology. Indeed, the observation that
musical sequences optimized for human perception exhibit certain
network topologies (Kulkarni et al., 2024; Lynn et al., 2020)
suggests that studying these network properties can lead to a better
understanding of how humans relate to music and how music has
evolved over time.

Overall, this study has demonstrated the value of complex
network representations in the study of drum rhythms, offering a
promising framework for understanding and generating musical
patterns in a systematic and insightful manner.
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