
Frontiers in Computer Science 01 frontiersin.org

Java coding using artificial
intelligence
Mafura Uandykova 1, Laura Baitenova 2,
Gulnar Mukhamejanova 1*, Assel Yeleukulova 3 and
Tolkyn Mirkassimova 1

1 School of Digital Technologies, Narxoz University, Almaty, Kazakhstan, 2 Department of Information
Technology, Turan University, Almaty, Kazakhstan, 3 Kazmetengineering LLP, Almaty, Kazakhstan

This study explores the potential of chatbots, specifically ChatGPT, in Java
software development. The aim is to classify tasks for effective use of industrial
code and develop recommendations for applying chatbot assistance, identifying
boundaries where human intervention remains essential. The methodology included
analyzing scientific literature and empirically testing ChatGPT-3.5 on various Java
development tasks. The tasks were divided into simple (working with XML, JSON,
multithreading, and data input/output) and complex (writing MVC applications,
REST services, and GUI). The results showed that ChatGPT successfully handles
simple tasks but struggles with complex problems. The study identified scenarios
where the chatbot can effectively use existing codebases and design patterns
to accelerate development. The conclusions highlight ChatGPT’s potential in
improving developer productivity, optimizing certain development tasks, and more
efficiently allocating human resources in projects. However, the study also points
out the need for human intervention to verify, correct, and improve generated
code. The study contributes to understanding the practical usefulness of chatbots
in real development scenarios and offers recommendations for integrating AI
tools into the software development process.

KEYWORDS

Java, ChatGPT, automated code generation, production code, developer productivity

1 Introduction

In the modern information society, programming is one of the key competencies that
ensure development and innovative progress. Java programming, due to its popularity
and versatility, remains one of the most sought-after skills in software development
(IEEE Spectrum, 2023). With the advent of machine learning and artificial intelligence,
there is a reasonable need to automate the code generation process in order to increase
efficiency and reduce development labor costs. In recent years, the integration of chatbots
into software development has attracted considerable attention, with particular attention
being paid to their potential in Java development. This study is aimed at exploring and
defining areas of software development in Java, through chatbots, in particular
ChatGPT. We explore scenarios in which a chatbot can effectively use existing code bases,
libraries, and design patterns to accelerate development tasks in the Java ecosystem.
Understanding this dynamic is crucial to understanding the practical usefulness of
chatbots in real-world development scenarios.

The novelty of the study lies in the following: for the first time, a detailed classification of
tasks for which the use of chatbots in Java development can be effective, as well as those that
require qualified intervention by programmers, is proposed. The study examines specific

OPEN ACCESS

EDITED BY

Newton Howard,
Massachusetts Institute of Technology,
United States

REVIEWED BY

Heitor Costa,
Universidade Federal de Lavras, Brazil
Tomasz Górski,
Gdynia Maritime University, Poland

*CORRESPONDENCE

Gulnar Mukhamejanova
 gulnar.mukhamedzhanova@narxoz.kz

RECEIVED 11 August 2024
ACCEPTED 04 November 2024
PUBLISHED 30 December 2024

CITATION

Uandykova M, Baitenova L, Mukhameja
nova G, Yeleukulova A and
Mirkassimova T (2024) Java coding using
artificial intelligence.
Front. Comput. Sci. 6:1473870.
doi: 10.3389/fcomp.2024.1473870

COPYRIGHT

© 2024 Uandykova, Baitenova,
Mukhamejanova, Yeleukulova and
Mirkassimova. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Brief Research Report
PUBLISHED 30 December 2024
DOI 10.3389/fcomp.2024.1473870

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1473870&domain=pdf&date_stamp=2024-12-30
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1473870/full
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1473870/full
mailto:gulnar.mukhamedzhanova@narxoz.kz
https://doi.org/10.3389/fcomp.2024.1473870
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1473870

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 02 frontiersin.org

scenarios in which chatbots can use existing libraries and design
patterns to speed up development processes, which highlights their
practical usefulness.

The contribution of this article is as follows:

 1. Conducting a systematic analysis of the effectiveness of code
generation by the ChatGPT chatbot for typical Java
development tasks.

 2. Identifying specific areas and scenarios in the development of
Java applications where the use of chatbots is most effective.

 3. Identifying the limitations and potential risks of using chatbots
in the Java development process.

 4. Developing practical recommendations for integrating chatbots
into the workflow of Java developers to improve productivity.

 5. Assessing the impact of the use of chatbots on the allocation of
human resources in software development projects.

Thus, this study aimed at exploring and defining areas of software
development in Java, through chatbots, in particular
ChatGPT. We explore scenarios in which a chatbot can effectively use
existing code bases, libraries, and design patterns to accelerate
development tasks in the Java ecosystem. Understanding this dynamic
is crucial to understanding the practical usefulness of chatbots in real-
world development scenarios.

The results of this study have important implications for Java
development practice. Not only do they highlight the potential role of
chatbots in increasing developer productivity and optimizing certain
development tasks, but they also contribute to more efficient allocation
of human resources in software development projects. Providing a
detailed understanding of the practical utility of chatbots in Java
development, this article considers software development to integrate
chatbot technology more effectively.

This article explores this challenging area by combining two key
spheres of computer science: software engineering and machine
learning. In this study, we will analyze the efficiency of code generation
by the ChatGPT chatbot for tasks usually solved within the framework
of development in Java. In preparation for this study, a wide range of
scientific papers and analytical materials over the past 2 years
were analyzed.

Java is one of the most widely used and longest-running
programming languages in the world (PYPL, 2024). Many industrial
applications, enterprise systems, and banking programs use Java in
their infrastructure (Free Educational Platform for Programmers
FreeCodeCamp, 2024). Therefore, efficient and fast Java code
generation is of great importance to ensure the reliability, performance,
and security of such systems. Moreover, the use of the ChatGPT
chatbot will reduce both the labor costs on the part of developers for
a certain class of tasks, as well as the financial costs of companies for
the staff of developers or budgets and time costs for the implementation
of individual projects.

Previously, the scientific community had already considered the
idea of optimizing code writing using ChatGPT. However,
researchers have focused primarily on programming languages such
as Python and JavaScript (Kashefi and Mukerji, 2023; Tian et al.,
2023; Koubaa et al., 2023; Avila-Chauvet et al., 2023), (Feng et al.,
2023), (Jayagopal et al., 2022). Therefore, efficient and fast Java code
generation is of great importance to ensure the reliability,
performance, and security of such systems. Moreover, the use of

ChatGPT chatbot will allow for the reduction of both labor costs on
the part of the developers for a certain class of tasks, as well as the
financial costs of companies for the staff of developers or budgets and
time costs.

Previously, the scientific community had already considered the
idea of optimizing code writing using ChatGPT. However, researchers
have focused primarily on programming languages such as Python
and JavaScript (Zhao et al., 2024), especially after the release of
ChatGPT in late November 2022. Large language models (LLM) have
the ability to mimic human abilities in solving diverse and complex
natural language processing and understanding tasks in various
domains such as virtual assistants, chatbots, language translation, and
sentiment analysis. In particular, ChatGPT, trained on a large and
diverse dataset spanning multiple disciplines, demonstrates the ability
to generate answers to a wide range of queries. The training data
included many sources from fields such as science, literature, law,
programming, finance, etc., totaling about 570 GB of data (Layton,
2023). The complex nature of the model, with over 175 million
parameters, allows ChatGPT to generate answers to a wide range of
queries with high efficiency.

A survey study by Feng et al. (2023) highlighted efforts by
programmers to use ChatGPT for working with more than 10
languages. Python was the most frequently mentioned language in the
majority of programming-related queries to ChatGPT, with the overall
emotion of interaction with this LLM being overwhelmingly positive
(see Figure 1). Figure 1 demonstrates the distribution of emotions
expressed by users when interacting with ChatGPT for various
programming languages. It is interesting to note that for Python, the
most frequently mentioned language, the predominant emotion is
anxiety, not fear, as was incorrectly stated earlier. This may indicate
mixed feelings among users: on one hand, enthusiasm about AI
capabilities in programming, on the other hand—concern about the
potential impact on the programming profession.

Figure 1 shows the possibilities of generating code using
ChatGPT based on Twitter and Reddit data. It was found that
Python and JavaScript are the most frequently discussed
programming languages, and ChatGPT is actively used for tasks
such as debugging code, preparing for technical interviews, and
completing academic assignments. Interestingly, people tend to
feel more anxiety about the possibilities of code generation than
joy, anger, or surprise.

The research also includes creating a dataset for rapid code
generation that will be publicly available and evaluating the quality of
the code generated using ChatGPT using Flake8. We hope that these
results will contribute to improving software development and
programming learning processes.

Summarizing the reviewed studies, with the evolution of
development tools and technologies, researchers have repeatedly
addressed the topic of optimizing code writing with code
autocompletion tools (Biswas, 2023; Jayagopal et al., 2022;
Vaithilingam et al., 2022). Many modern integrated development
environments have built-in tools that allow you to use
autocompletion to name variables, functions, classes, and
comments. Such tools are able to analyze the context and substitute
variables into function calls that match the type of the function
based on the available variables in the current source code file.
Examples are Blue-Pencil, Copilot, Flash Fill, Regae, and SnipPy.
Research has shown that these tools do not always optimize code

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 03 frontiersin.org

efficiency and time spent writing code (Vaithilingam et al., 2022).
Further research found (Barke et al., 2022), that the type of
interaction with the code generator can be categorized into two
global types:

 1. Acceleration of code writing by auto-generation of code pieces,
in case the programmer already has an idea of the algorithm to
be used to solve the problem

 2. Exploring possibilities of solving the problem when the
developer does not have a clear solution plan

Within the framework of this article, the focus is on the first type
of interaction—generating code pieces to perform clearly defined
tasks. In this scenario, the programmer already has a predefined plan
for how the architecture of the whole application will be constructed
from these components. The primary goal of interacting with the code
generation tool is to speed up the creation of building blocks of
the program.

Since the majority of the research (Kashefi and Mukerji, 2023;
Tian et al., 2023; Koubaa et al., 2023; Chauvet et al., 2023; Feng
et al., 2023; Jayagopal et al., 2022) of code generation efficiency for
the Java language were conducted on tools preceding the ChatGPT
in November 2022, then it is reasonable to assume that such a
complex language model, which analyzed huge libraries of open
source, high-quality code, will be able to solve certain types of
problems efficiently.

The article (Coello et al., 2024) «Effectiveness of ChatGPT in
Coding: A Comparative Analysis of Popular Large Language
Models» provides valuable data on the performance of various AI
models in code generation tasks. The authors conducted a
comprehensive analysis comparing ChatGPT with other popular
language models. The study of this work allowed us to draw the
following conclusions:

 • ChatGPT has demonstrated high efficiency in solving a wide
range of coding tasks.

 • Certain areas have been identified where other models may
be superior to ChatGPT, which indicates the need to choose an
AI tool depending on the specific task.

 • The study highlights the importance of continuous improvement
and adaptation of AI models to the specific requirements of
software development.

The analysis (Arefin et al., 2024) «Unmasking the Giant: A
Comprehensive Evaluation of CHATGPT’s Proficiency in Coding
Algorithms and Data Structures», which provides a detailed analysis
of ChatGPT’s capabilities in key programming areas, allowed the
authors of the work to come to the following results:

 • A comparison of ChatGPT versions 3.5 and 4.0 showed
significant progress in understanding and implementing complex
algorithms and data structures.

 • ChatGPT 4.0 demonstrates an improved ability to generate
optimized code and offer effective solutions to
algorithmic problems.

 • Certain limitations have been identified in working with
particularly complex or specific algorithms, which indicates the
need for human supervision in critical tasks.

The study of the works of these authors allows us to:

 • More accurately assess the current capabilities and limitations of
ChatGPT in the context of Java development.

 • Formulate more specific recommendations for using ChatGPT
in various Java development scenarios.

 • Propose strategies for integrating ChatGPT into the workflow,
taking into account its strengths and potential limitations.

FIGURE 1

Expressed emotions from interaction with ChatGPT depending on the programming language (Feng et al., 2023).

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 04 frontiersin.org

 • Substantiate the need for a combined approach combining
automated code generation with the expertise of a
human developer.

Thus, the latest research from our predecessors significantly
expands our understanding of the capabilities and limitations of AI
in code generation. They confirm the potential of ChatGPT as a
powerful support tool for Java developers while pointing out areas
that require further improvement. These data allow us to more
accurately define the role of AI in modern software development and
propose effective strategies for its integration into Java
development processes.

It is worth mentioning that the use of the previously mentioned
code autocompletion tools may require the organization to share code
with a third party (the tool vendor), which is often prohibited by
organizations’ regulations to maintain confidentiality and protect
commercial intellectual property. The ChatGPT chatbot allows
generating code not based on the context of the program file but in
response to a user’s request, which allows bypassing this restriction
and complying with the organization’s trade secret regulations.

In the following sections of the article, we will examine in detail
the research methodology, present the results of experiments with
ChatGPT in the context of Java development, analyze the obtained
data, and discuss their significance for programming practice. We will
conclude the article with findings and recommendations for
integrating AI tools into the software development process.

2 Research methodology

In this study, we analyzed scientific and applied literature on the
topic of interest. The empirical part presents the results of an
experiment aimed at generating the code in response to a request and
testing the performance of the resulting code. The outcome of our
study is the synthesis of the results obtained and the generalization of
ChatGPT-3.5’s capabilities to generate code for solving industrial
problems in Java.

For each task class, queries will be written in English according to
ChatGPT’s best query writing practices (Habr, 2023), after which the
ChatGPT response will be analyzed for success or failure. If necessary,
an expert analysis of the code quality will be conducted. In exceptional
cases, the code will be adjusted to make it work.

In our study, we adhere to the following approaches for evaluating
the generated codes:

 1. Multi-level approach:

 • Compilability: The basic level of verification.
 • Functionality: Assessment of whether the code accomplishes the

given task.
 • Readability and maintainability: Analysis of the code’s structure

and style.

Adherence to Java best practices: Checking the code’s compliance
with generally accepted coding standards.

 2. Qualitative analysis: In addition to automated checks,
we conduct a qualitative analysis of the code based on expert
evaluation by experienced Java developers.

 3. Contextual relevance: We assess how well the generated code
aligns with the task context and the requirements of modern
Java development.

2.1 Statement of objectives

As part of this work, to analyze ChatGPT ability to generate code,
the chatbot was asked to write code in Java to solve certain problems.
Two types of problems were considered: simple and complex.
Problems of both types arise in industrial development. Simple
problems can be solved using one method in a class; complex ones
require the interaction of several classes and methods. Table 1 shows
both types of tasks.

Table 1 presents a classification of tasks used to test the code
generation capabilities of ChatGPT.

Table 1 categorizes the tasks into two main types: simple tasks and
complex tasks. These categories were used to evaluate how well
ChatGPT performs in generating Java code for different levels of
programming complexity. In this study, we define simple tasks as
those that can be solved within a single method or class, do not require
complex architecture, and do not involve interaction between multiple
components. Complex tasks, on the contrary, include the development
of multi-component systems, require an understanding of
architectural patterns, and involve interaction between different parts
of the application.

The simple tasks included operations like working with XML,
JSON, multithreading, and data input/output. The complex tasks
involved more intricate programming challenges such as writing
MVC applications, building applications using Maven or Gradle,
writing RESTful web services, and creating GUIs using
various libraries.

This classification helps in understanding the strengths and
limitations of ChatGPT in different areas of Java programming,
ranging from basic operations to more advanced software architecture
and design tasks.

In summary, Table 1 presents a classification of tasks used to test
ChatGPT’s code generation capabilities. The division into simple and
complex tasks allows us to evaluate AI efficiency in various
development scenarios, from basic operations to complex
architectural solutions.

The following describes the tasks given to ChatGPT to solve. They
are based on the practical requirements employers place on Java
developers (Simplilearn, 2023).

TABLE 1 Tasks used to test ChatGPT’s code generation ability.

Simple tasks Complex tasks

Working with XML Writing MVC (Model-View-Controller)

Applications

Working with JSON Building an application using Gradle

Using multithreading Writing RESTful web services

Working with data entry Writing JDBC (Java Database Connectivity)

Working with data output Writing a GUI using the Swing Library

Writing a GUI using the SWT Library

Writing a GUI using the AWT Library

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 05 frontiersin.org

Certain classes of problems were not included for analysis as their
solution required transferring the source commercial code to ChatGPT.

The following classes of problems were not included in this research:

 • Code commenting
 • Writing unit tests

The following snippets are meant to demonstrate efficient and
performant Java code to meet production coding needs and optimize
resource utilization.

2.2 Simple tasks

2.2.1 Working with XML

 1. Using Java, parse an XML document into a Student object. The
Student class has name, surname, age, and course. Write code
that is production-ready, efficiently using system resources, and
having maximum performance (XML to a Student object;
Figure 2):

 2. Using Java, serialize a Student object into an XML string. The
Student class has name, surname, age, and course. Write a code
that could be used in production, efficiently using system
resources, and having maximum performance (serialization
Student object in XML; Figure 3):

2.2.2 Working with JSON

 3. Using Java, parse a JSON string into an object Student. The
Student class has name, surname, age, and course. Write a code
that could be used in production, efficiently using system
resources, and having maximum performance (parse JSON
string in Student object; Figure 4):

 4. Using Java, serialize a Student object into a JSON string. The
Student class has name, surname, age, and course. Write a code
that could be used in production, efficiently using system
resources, and having maximum performance (serialization
Student object in JSON string; Figure 5):

2.3 Complex tasks

2.3.1 Writing MVC
Write a Java Spring MVC application to handle CRUD operations.

The data object will be a Student, which has a name, surname, age, and
course. Write a code that could be used in production, efficiently using
system resources and having maximum performance.

2.3.2 Building an application using Maven
Write a Maven configuration to handle Spring MVC application.

Write a code that could be used in production, efficiently using system
resources and having maximum performance.

2.3.3 Building an application using Gradle
Write a Gradle configuration to handle Spring MVC application.

Write a code that could be used in production, efficiently using system
resources and having maximum performance.

2.3.4 Writing RESTful web services
Write a Java Spring RESTful application to handle CRUD

operations. The data object will be a Student, which has a name,
surname, age, and course. Write a code that could be used in
production, efficiently using system resources and having
maximum performance.

2.3.5 Writing JDBC (Java Database Connectivity)
Write a Java JDBC API implementation to retrieve and update

records. The entity object will be a Student, which has a name,
surname, age, and course. Write a code that could be used in
production, efficiently using system resources and having
maximum performance.

2.3.6 Writing a GUI using the Swing Library
Write a Java SWING application that can show a JPEG picture.

Write a code that could be used in production, efficiently using system
resources and having maximum performance.

2.3.7 Writing a GUI using the SWT Library
Write a Java SWT application that can show a JPEG picture. Write

a code that could be used in production, efficiently using system resources
and having maximum performance.

2.3.8 Writing a GUI using the AWT Library
Write a Java AWT application that can show a JPEG picture. Write

a code that could be used in production, efficiently using system resources
and having maximum performance.

3 Results

This section presents the results obtained during interaction with
ChatGPT-3.5 with a description of the launch result obtained from the
ChatGPT code and brief comments on this code and interaction
with it.

3.1 Extension of results to simple problems

In each category of simple tasks (working with XML, JSON,
multithreading, and data input and output), several subtasks were tested.
The numbering in each category corresponds to these subtasks. For
example, in the ‘Working with XML’ category, points 1–5 refer to various
XML operations, such as deserialization, serialization, element search, etc.

3.1.1 Working with XML

 1. The code is working. The XML was deserialized into an object.
The chatbot did not indicate which dependencies needed to
be imported but provided an example to test the functionality
of the generated code.

 2. The code is working. The serializer provided by the chatbot was
missing one import.

 3. The code is working. The chatbot indicated where to insert the
search file and the search key.

 4. The code is working. The chatbot indicated where to insert the
name of the element for which we are searching the minimum
and maximum values.

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 06 frontiersin.org

 5. The code is working. The chatbot also provided an example on
which you can immediately check the functionality of the code.

3.1.2 Working with JSON

 1. The code is working. Parsing a string into a Java object—the
chatbot did not write getters and setters, but immediately wrote
an example of a JSON string on which it is possible to test the
parsing result.

 2. The code is working. Serialization of Java object to
JSON was successful. The chatbot did not write getters
and setters.

 3. The code is working. Searching for a value by key in a JSON
string was successful. The chatbot also provided an example
on which you can immediately check the functionality of
the code.

 4. The code is working. Searching for the minimum and
maximum numbers in the JSON array worked correctly. The
chatbot also provided an example on which you can
immediately check the functionality of the code.

 5. The code is not working. The code issued by the chatbot
compiled but did not work.

3.1.3 Using multithreading

 1. The code is working. However, the test case that accompanied
the code did not check the operation of multithreading.

 2. The code is working. Implementation of the code received
from the chatbot involves the creation of only one class

object and is protected from errors in a multi-
threaded environment.

 3. The code is working. The chatbot used API Java 8 for parallel
stream processing.

 4. The code is not working. The code compiled but ended up in
an infinite loop.

 5. The code is working. ChatGPT generated the code using
standard APIs Java for multi-threaded parallel processing of
multiple tasks. The code was provided with clear explanatory
comments and supplemented with a test script to check
its functionality.

3.1.4 Working with data entry

 1. The code is working.
 2. The code is not working. The program entered an infinite loop

and would never finish.
 3. The code is working. The chatbot provided an example to test

the generated code.
 4. The code is working. The chatbot provided an example to test

the generated code.
 5. The code is working. The chatbot suggested where to insert the

file for reading in the method.

3.1.5 Working with data output

 1. The code is working.
 2. The code is working. In addition to creating a function, the

chatbot also showed how standard output works in Java.

FIGURE 2

XML processing for the student object.

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 07 frontiersin.org

 3. The code is working. The chatbot provided an example of
checking the functionality of the generated code.

 4. The code is working. The chatbot provided an example of
checking the functionality of the generated code.

 5. The code is working. The chatbot provided an example of
checking the functionality of the generated code.

3.2 Extension of results to complex
problems

3.2.1 Writing MVC
The application written by the chatbot did not compile. The

Student class lacked getters and setters. The StudentRepository class

FIGURE 3

Serialization of the student object in XML.

FIGURE 4

Developing a JSON string into a student object.

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 08 frontiersin.org

FIGURE 5

Serialization the student object in JSON string.

was missing the @Repository annotation. The StudentController
controller was created as a REST controller, not an MVC controller to
return HTML pages. Even after a couple of iterations with errors
noted, the application did not build.

3.2.2 Building the application using Maven
After inserting the created configuration, the application did not

build due to a lack of libraries.

3.2.3 Building an application using Gradle
The created configuration contained an error.
Thus, the application could not be built using the configuration

written by the chatbot.

3.2.4 Writing RESTful web services
The code created by the chatbot again contained flaws. The

Student class lacked getters and setters. The StudentRepository class
was missing the @Repository annotation. The controller worked
directly with the StudentRepository class; no service was created to
work with the Repository. Thus, the single responsibility principle of
the SOLID paradigm was violated. Moreover, the controller did not
have enough prescribed path mappings, so despite the fact that the
application started, it was mostly unusable—it was impossible to get a
list of all entities or add an entity.

3.2.5 Writing JDBC (Java Database Connectivity)
The code is not working. The application did not compile as

possible errors were not handled when connecting to the database.

3.2.6 Writing a GUI using the Swing Library
After the code provided by the ChatGPT chatbot was copied and

the path to the required image was added, the application compiled
and was successfully launched. One of the shortcomings was that it
contained one extra library import. The entire application was one
class with the main function included in it.

3.2.7 Writing a GUI using the SWT Library
The ChatGPT chatbot wrote the code directly in the main

function, but after adding the path to the image file, the code ran
successfully and a window with the expected image was displayed. The
entire application was one class with the main function included in it.

3.2.8 Writing a GUI using the AWT Library
The generated code was missing a closing parenthesis. However,

after adding the missing bracket and specifying the path to the image
file, the code compiled and ran. The entire application was one class
with the main function included in it.

4 Discussion

An overall analysis of the results for simple and complex problems
is given in Tables 2, 3, respectively. Table 2 shows the number of
successful cases and the total number of proposed tasks, broken down
by topic. Table 3 shows the results of running ChatGPT-3.5 complex
tasks, noting whether the result of running the code was
successful or not.

4.1 Simple tasks

These studies examine in detail how effectively ChatGPT copes
with tasks of various levels of complexity—from the simplest to the
most complex. In studies such as (Brown et al., 2020), by the authors
of GPT-3, the ability of the model to solve both simple and complex
problems, including arithmetic, logic, programming, text
comprehension, and code generation, is discussed. Some studies, such
as (Chen and et al., 2021) (Codex), analyze the performance of the
model in solving programming problems of various levels of
complexity—from simple loops to complex algorithms. In particular,
the ability of models to debug and generate code is evaluated. Studies

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 09 frontiersin.org

such as (Bubeck et al., 2023) examine the ability of models to cope
with tasks comparable to those found in cognitive tests for logical
thinking, including both simple and complex problems. Works, for
example (OPEN AI, 2023), often include testing ChatGPT on simple
and complex natural language processing tasks—from understanding
context to creating complex texts, which allows you to identify how
the model copes with various levels of complexity.

In addition, for clarity, a diagram (Figure 6) is provided to show
the number of successfully completed simple tasks.

Based on the table above, we can conclude that when working
with relatively simple problems that can most often be solved within
one method, ChatGPT is quite helpful when working with XML,
JSON, multi-threaded processing, and data input/output.

Thus, in production development, programmers can write short
queries to obtain work functions. However, errors in the generated
code leave the programmers responsible for checking and validating
the quality of the code.

The distribution table shows that in the majority of cases,
ChatGPT cannot cope with complex tasks. Other researchers made
similar conclusions in their studies (Barke et al., 2022; Ferdowsifard
et al., 2020), pointing out that the more difficult a task we assign to
LLM, the more its response degrades.

Based on the table with the results of complex tasks, we can
conclude that ChatGPT can easily write user interfaces for desktop
applications. However, it is important to note that the tasks
involving writing user interfaces were relatively simple. The
chatbot was only required to display a picture in the window.
Thus, we believe that the general findings of this study are also
valid for the tasks related to writing a user interface—ChatGPT
can write simple methods and classes for user interfaces in
response to programmer requests. The programmer should build
a full-fledged application with transitions between windows and
blocks using, should they wish to do so, ready-made templates and
developments from ChatGPT.

Separately, it is worth mentioning the task of building applications
into executable archives using the Gradle and Maven build systems.
With other complex tasks, the answer issued by ChatGPT can
be iteratively brought to a workable state by adding and changing the
code (however, correcting and modifying the generated code looks
like a lengthy and irrational task—writing a solution from scratch is
faster). However, ChatGPT was completely unable to build and specify
the necessary libraries, so it is more practical for programmers to use
hints from integrated development environments, which may offer to
add the necessary libraries to the project by analyzing the semantics
of the classes and methods used.

Thus, we categorized Java development subject areas that
ChatGPT-3.5 solves successfully and unsuccessfully. The study found
that Java code for simple tasks that require interaction with JSON,
XML, and multi-threaded input and output data can be successfully
generated by ChatGPT-3.5.

However, the code generated by ChatGPT-3.5 for solving complex
problems often does not work as expected. For complex problems, a
reasonable approach would be to split complex problems into simple
ones and generate code for them. Based on the blocks of code that
solve simple problems, a complete program can be developed that
solves a non-trivial problem.

Furthermore, it is worth noting that one example of modern
design patterns that can be used to compare generated code is the
AdapT pattern, developed for implementing smart contracts that
process transactions of congruous types. This pattern, described in the
works “AdapT: A reusable package for implementation smart contract
that processing transaction of congruous types” (Górski, 2024a) and
“Smart Contract Design Pattern for Processing Logically Coherent
Transaction Types,” provides a reference implementation for
comparison (Górski, 2024b).

When comparing the generated code with the AdapT pattern and
other established design patterns, we propose the following
evaluation criteria:

TABLE 2 Summary analysis of the results based on the simple task execution.

Task name Number of solved tasks Total number of tasks

Working with XML 5 5

Working with JSON 4 5

Using multithreading 4 5

Working with data entry 4 5

Working with data output 5 5

TABLE 3 Summary analysis of the results based on completing complex tasks.

Task name Positive result Negative result

Writing MVC ✓

Building an application using Maven ✓

Building an application using Gradle ✓

Writing RESTful web services ✓

Writing JDBC (Java Database Connectivity) ✓

Writing a GUI using the Swing Library ✓

Writing a GUI using the SWT Library ✓

Writing a GUI using the AWT Library ✓

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 10 frontiersin.org

 1. Structural conformity: How well does the structure of the
generated code align with the principles of the design pattern?

 2. Functional equivalence: Does the generated code perform the
same functions as the reference implementation?

 3. Efficiency: How does the generated code compare to the reference
implementation in terms of performance and resource utilization?

 4. Extensibility and maintainability: How easy is it to modify and
extend the generated code compared to the reference
implementation?

 5. Adherence to SOLID principles and other best practices: Does
the generated code comply with the fundamental principles of
object-oriented design?

To conduct such an analysis, we propose the following
methodology:

 • Selection of representative tasks that can be solved using the
AdapT pattern and similar patterns.

 • Code generation using ChatGPT to solve these tasks.
 • Comparison of the generated code with reference

implementations based on the above criteria.
 • Quantitative and qualitative evaluation of results, involving

experts in Java development.

This approach allows for a more objective assessment of the
quality of generated code and helps identify areas where AI code
generation can be most effective, as well as reveal limitations and
potential problems.

In future research, we plan to conduct a detailed analysis based on
this methodology, which will allow us to provide more specific
recommendations on the use of AI code generation in real projects
and determine the optimal scenarios for integrating such tools into
the software development process.

This addition to the Discussion section addresses the issues raised
and offers a specific plan to improve the quality assessment of the
generated code. We are grateful for the recommendations and links to

articles regarding AdapT, which will undoubtedly enrich our research
and help in the further development of this topic.

5 Conclusion based on the results

The experimental results highlight both the potential and limitations
of using ChatGPT-3.5 for various programming tasks. While AI
produced functional code for some simple problems, it encountered
more complex problems, often resulting in non-functional or incomplete
solutions. The need for human intervention and review to correct and
improve the generated code is obvious, highlighting the importance of
human involvement in the software development process. We also
classified the tasks for the effective use of industrial code and developed
recommendations for the use of chatbot assistance. In the modern
information society, programming is a key competency that ensures
development and fosters innovative progress. It also helps outline the
boundaries in which human intervention remains indispensable, that is,
areas where manual programming by developers is still required.

In addition to suggesting a classification of the tasks for which
chatbots can be of help and the ones that are more effectively solved
by human programmers, we also considered scenarios where a
chatbot can effectively leverage existing codebases, libraries, and
design patterns to speed up development tasks in the Java ecosystem.
This is critical to understanding the practical utility of a chatbot in
real-world development scenarios. This article provides guidance on
tasks that cannot be entrusted to ChatGPT and require the
involvement of skilled programmers. By describing scenarios where
manual programming is preferable, the article offers pragmatic
advice to developers, thereby improving their decision-making
process when using chatbot support.

The findings of the article have important implications for Java
development practice because they shed light on the potential role of
chatbots in increasing developer productivity, optimizing certain
development tasks, and enabling more efficient allocation of human
resources in software projects.

0

1

2

3

4

5

6

Working with
XML

Working with
Data Output

Working with
JSON

Using
mul�threading

Working with
Data Entry

FIGURE 6

Chart of successfully completed simple tasks by category.

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 11 frontiersin.org

Future directions of research may include expanding the cluster of
successful simple tasks that ChatGPT can handle, as well as analyzing
and clustering hints that generate the most optimal and efficient code.

6 Threats to validity and study
limitations

While our study provides insights into AI-assisted Java
programming, it is important to acknowledge certain limitations:

Scope: Our research focuses on ChatGPT-3.5, which may not fully
represent the capabilities of other AI models or future versions.

Evaluation: Despite our efforts to use objective criteria, there is an
inherent element of subjectivity in assessing code quality.

Task Range: The selected tasks, while diverse, may not encompass
all possible scenarios in Java development.

Task Classification: Our definitions of ‘simple’ and ‘complex’ tasks
may not universally apply to all software development contexts.

Despite these limitations, this study contributes to the
understanding of AI’s current role in Java programming. It offers a
snapshot of AI capabilities, potentially guiding future research and
practical applications in software development. While acknowledging
these constraints, we believe our findings provide valuable insights for
both researchers and practitioners in the field.

7 Conclusion

The experimental results demonstrate both the potential and
limitations of using ChatGPT-3.5 to perform various programming
tasks. Although artificial intelligence can successfully generate
functional code for simple tasks, when working with more complex
tasks, it often encounters problems that lead to the creation of
non-functional or incomplete solutions. This highlights the need for
human intervention to check, correct, and improve the code, which
in turn points to the importance of human involvement in the
software development process.

We have classified tasks according to their effectiveness when using
automated development tools and created recommendations for the use
of chatbots. The boundaries were also outlined where human participation
remains critically important, that is, where manual programming by
professional developers is required. In addition, a number of scenarios
were considered in which chatbots can effectively use existing code
libraries and design patterns to speed up the development process in the
Java ecosystem. This is an important aspect that illustrates the practical
usefulness of chatbots in real conditions. The proposed recommendations
and conclusions are of practical importance for Java development, as they
help developers make more informed decisions about when to use
chatbots and when human intervention is necessary.

This study aimed to explore the potential and limitations of using
ChatGPT-3.5 in the context of Java software development. Based on our
experiments and analysis, we have reached the following conclusions:

 1. ChatGPT’s Potential and Limitations: The research
demonstrated that ChatGPT-3.5 is capable of generating
functional code for simple programming tasks. However,
when solving more complex problems, AI often creates

non-functional or incomplete solutions, highlighting the need
for human intervention.

 2. Task Classification: We successfully developed a classification
of tasks, identifying areas where chatbot assistance can be most
effective and those where human developer involvement
remains indispensable. This classification serves as a practical
guide for optimizing the development process.

 3. Integration with Existing Resources: The study revealed
scenarios in which a chatbot can effectively utilize
existing codebases, libraries, and design patterns,
potentially accelerating the development process in the
Java ecosystem.

 4. Role of Human Developers: The results confirm the critical
importance of human participation in the development
process. We provided recommendations for tasks requiring
programmer expertise and described scenarios where manual
programming is preferable.

 5. Practical Significance: Our findings have direct application in
Java development practices, offering ways to increase developer
productivity and optimize resource allocation in software projects.

 6. Methodological Improvements: During the study,
we identified the need to develop more formalized criteria for
evaluating the quality of generated code, including comparison
with existing design patterns such as AdapT.

 7. Prospects for Further Research: Future studies may focus on
expanding the cluster of tasks successfully solved by ChatGPT,
analyzing and optimizing prompts for generating the most
effective code, and developing standardized methods for
evaluating AI-generated code.

In conclusion, our research demonstrates that while ChatGPT
has significant potential in software development, its use should
be carefully integrated into existing development processes. The
optimal application of AI in programming requires a balance between
automation and human expertise, opening new opportunities for
improving the efficiency and quality of software development.

As part of the project IRN AP19678174 on the topic “Development
the theory and methodology for formation development
programs of the RK during the transformation the economy into
an innovative”.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

MU: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Resources, Software, Writing – original
draft, Writing – review & editing. LB: Conceptualization, Investigation,
Methodology, Project administration, Software, Supervision, Writing
– original draft. GM: Investigation, Methodology, Resources, Software,
Validation, Visualization, Writing – review & editing. AE:

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uandykova et al. 10.3389/fcomp.2024.1473870

Frontiers in Computer Science 12 frontiersin.org

Conceptualization, Data curation, Formal analysis, Methodology,
Resources, Visualization, Writing – original draft. TM: Formal
analysis, Investigation, Resources, Software, Validation, Writing –
review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

This article was produced as part of the project IRN AP19678174
on the topic “Development of Theory and Methodology for
Kazakhstan’s Development Programs during Economic
Transformation to Innovation. ChatGPT-3.5 was used on various Java

development tasks as well as for the methodology of the manuscript
and the analysis of scientific literature and empirical testing.

Conflict of interest

Author AY were employed by Kazmetengineering LLP, Almaty,
Kazakhstan.

The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References
Arefin, S. E., Heya, T. A., Al-Qudah, H., Ineza, Y., and Serwadda, A. (2024).

Proceedings of the 16th International Conference on Agents and Artificial Intelligence.
Unmasking the Giant: A comprehensive evaluation of ChatGPT’s proficiency in coding
algorithms and data structures. Texas Tech University, Lubbock. 412–419.

Avila-Chauvet, L., Mejía, D., and Acosta Quiroz, C. O. (2023). Chatgpt as a support
tool for online Behavioral task programming. Available at SSRN: https://ssrn.com/
abstract=4329020 (Accessed January 18, 2023).

Barke, S., James, M. B., and Polikarpova, N. Grounded Copilot: How programmers
interact with code-generating models. (2022). arXiv:2206.15000v3 [cs.HC]. doi:
10.48550/arXiv.2206.15000

Biswas, S. (2023). Role of ChatGPT in computer programming. Mesopot. J. Comp. Sci.,
9–15. doi: 10.58496/MJCSC/2023/002

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al.
(2020). “34th conference on neural information processing systems” in Language
models are few-shot learners. arXiv:2005.14165v4 [cs.CL]. doi: 10.48550/arXiv.2005.
14165

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., et al.
Sparks of artificial general intelligence: Early experiments with GPT-4. (2023).
arXiv:2303.12712v5 [cs.CL]. doi: 10.48550/arXiv.2303.12712

Chauvet, L., Cruz, D., and Quiroz, C. Chatgpt as a support tool for online Behavioral
task programming. SSRN. (2023). Available at: https://ssrn.com/abstract=4329020
(Accessed January 18, 2023).

Chen, M., Tworek, J., Jun, H., Yuan, Q., Oliveira Pinto, H. P., Kaplan, J., et al. (2021).
Evaluating large language models trained on code. arXiv:2107.03374. doi: 10.48550/
arXiv.2107.03374

Coello, C., Alimam, M., and Kouatly, R. Effectiveness of ChatGPT in coding: a
comparative analysis of popular large language models. Digital 1, (2024). 114–125. doi:
10.3390/digital4010005

Feng, Y., Vanam, S., Cherukupally, M., Zheng, W., Qiu, M., and Chen, H. (2023). “47th
IEEE annual computers, software, and applications conference, COMPSAC 2023” in
Investigating code generation performance of ChatGPT with crowdsourcing social data.
(Torino, Italy: IEEE). 26–30.

Ferdowsifard, K., Ordookhanians, A., Peleg, H., Lerner, S., Polikarpova, N. (2020).
UIST’20. small-step live programming by example. 614–626. doi: 10.1145/3379337.
3415869

Free Educational Platform for Programmers FreeCodeCamp. (2024). What is Java
used for? The Java programming language and Java platform. Available at: https://www.
freecodecamp.org/news/what-is-java-used-for/ (Accessed April 25, 2023).

Górski, T. (2024a). AdapT: a reusable package for implementing smart contracts that
process transactions of congruous types. Software Impacts. 21:100694. doi: 10.1016/j.
simpa.2024.100694

Górski, T. (2024b). Smart contract design pattern for processing logically coherent.
Appl. Sci. 14:2224. doi: 10.3390/app14062224

Guo, B., Zhang, X., Wang, Z., Jiang, M., Nie, J., Ding, Y., et al. How close is ChatGPT
to human experts? Comparison Corpus, evaluation, and detection. (2023).
arXiv:2301.07597v1 [cs.CL]. doi: 10.48550/arXiv.2301.07597

Habr. (2023). Experience working with ChatGPT using the example of writing Java
code to solve a typical problem and some conclusions and reasoning. Available at:
https://habr.com/ru/articles/744368/ (Accessed June 28, 2023).

Hu, Y., Ahmed, U. Z., Mechtaev, S., Leong, B., and Roychoudhury, A. (2019). ACM
international conference on automated software engineering.» Re-factoring based
program repair applied to programming assignments. Proceedings of the 34th IEEE. San
Diego, California: ASE ‘19. ASE '19. 388–398.

IEEE Spectrum. (2023). The top programming languages 2024 typescript and rust are
among the rising stars//IEEE Spectrum. Available at: https://spectrum.ieee.org/the-top-
programming-languages-2023 (Accessed March 19, 2023).

Jayagopal, D., Lubin, J., and Chasins, S. (2022). In proceedings of the 35th annual
ACM symposium on user Interface software and technology (UIST '22). New York:
Exploring the Learnability of Program Synthesizers by Novice Programmers.
Association for Computing Machinery.

Kashefi, A., and Mukerji, T. ChatGPT for programming numerical methods. (2023).
doi: 10.48550/arXiv.2303.12093

Khabisi, M., Roudini, G., Barahuie, F., and Sheybani, H. (2023). Evaluation of phase
change material-graphene nanocomposite for thermal regulation enhancement in
buildings. 9:e21699. doi: 10.1016/j.heliyon.2023.e21699

Koubaa, A., Qureshi, B., Ammar, A., Khan, Z., Boulila, W., and Ghouti, L. (2023).
Humans are still better than ChatGPT: case of the IEEEXtreme competition. Heliyon
9:e21624. doi: 10.1016/j.heliyon.2023.e21624

Layton, D. ChatGPT—Show me the data sources. (2023). Available at: https://medium.
com/@dlaytonj2/chatgpt-show-me-the-data-sources-11e9433d57e8 (Accessed May 15, 2024).

Liu, H., Ning, R., Teng, Z., Liu, J., Zhou, Q., and Zhang, Y. Evaluating the logical
reasoning ability of ChatGPT and GPT-4. (2023). doi: 10.48550/arXiv.2304.03439

OPEN AI. (2023). Available at: https://www.thinkhousehq.com/the-youth-lab/2023-
the-year-of-open-ai (Accessed May 15, 2024).

PYPL. (2024). Index (PopularitY of Programming Languages). Available at: https://
pypl.github.io/PYPL.html (Accessed January 14, 2024).

Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M., Ding, Y. (2023). ChatGPT a
general-purpose natural language processing task solver? In Proceedings of the 2023
conference on empirical methods in natural language processing. (Singapore:
Association for Computational Linguistics), 1339–1384.

Simplilearn. Java Developer Job Description: Role, Responsibilities, and More. (2023).
Available at: https://www.simplilearn.com/java-developer-job-description-article
(Accessed August 7, 2023).

Tian, H, Lu, W., Li, T. O., Tang, X., Cheung, S-C., Klein, J., et al. Is ChatGPT the ultimate
programming assistant - how far is it?. Vol. 1. (2023). doi: 10.48550/arXiv.2304.11938

Vaithilingam, P., Zhang, T., and Glassman, E. CHI EA '22: Extended abstracts of the 2022
CHI conference on human factors in computing systems.» expectation vs. experience:
Evaluating the usability of code generation tools powered by large language models. New
Orleans, LA, USA: Association for Computing Machinery, (2022). 1–7.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., et al. A survey of large
language models. (2024). doi: 10.48550/arXiv.2303.18223

https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://ssrn.com/abstract=4329020
https://ssrn.com/abstract=4329020
https://doi.org/10.48550/arXiv.2206.15000
https://doi.org/10.58496/MJCSC/2023/002
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2303.12712
https://ssrn.com/abstract=4329020
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.3390/digital4010005
https://doi.org/10.1145/3379337.3415869
https://doi.org/10.1145/3379337.3415869
https://www.freecodecamp.org/news/what-is-java-used-for/
https://www.freecodecamp.org/news/what-is-java-used-for/
https://doi.org/10.1016/j.simpa.2024.100694
https://doi.org/10.1016/j.simpa.2024.100694
https://doi.org/10.3390/app14062224
https://doi.org/10.48550/arXiv.2301.07597
https://habr.com/ru/articles/744368/
https://spectrum.ieee.org/the-top-programming-languages-2023
https://spectrum.ieee.org/the-top-programming-languages-2023
https://doi.org/10.48550/arXiv.2303.12093
https://doi.org/10.1016/j.heliyon.2023.e21699
https://doi.org/10.1016/j.heliyon.2023.e21624
https://medium.com/@dlaytonj2/chatgpt-show-me-the-data-sources-11e9433d57e8
https://medium.com/@dlaytonj2/chatgpt-show-me-the-data-sources-11e9433d57e8
https://doi.org/10.48550/arXiv.2304.03439
https://www.thinkhousehq.com/the-youth-lab/2023-the-year-of-open-ai
https://www.thinkhousehq.com/the-youth-lab/2023-the-year-of-open-ai
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://www.simplilearn.com/java-developer-job-description-article
https://doi.org/10.48550/arXiv.2304.11938
https://doi.org/10.48550/arXiv.2303.18223

	Java coding using artificial intelligence
	1 Introduction
	2 Research methodology
	2.1 Statement of objectives
	2.2 Simple tasks
	2.2.1 Working with XML
	2.2.2 Working with JSON
	2.3 Complex tasks
	2.3.1 Writing MVC
	2.3.2 Building an application using Maven
	2.3.3 Building an application using Gradle
	2.3.4 Writing RESTful web services
	2.3.5 Writing JDBC (Java Database Connectivity)
	2.3.6 Writing a GUI using the Swing Library
	2.3.7 Writing a GUI using the SWT Library
	2.3.8 Writing a GUI using the AWT Library

	3 Results
	3.1 Extension of results to simple problems
	3.1.1 Working with XML
	3.1.2 Working with JSON
	3.1.3 Using multithreading
	3.1.4 Working with data entry
	3.1.5 Working with data output
	3.2 Extension of results to complex problems
	3.2.1 Writing MVC
	3.2.2 Building the application using Maven
	3.2.3 Building an application using Gradle
	3.2.4 Writing RESTful web services
	3.2.5 Writing JDBC (Java Database Connectivity)
	3.2.6 Writing a GUI using the Swing Library
	3.2.7 Writing a GUI using the SWT Library
	3.2.8 Writing a GUI using the AWT Library

	4 Discussion
	4.1 Simple tasks

	5 Conclusion based on the results
	6 Threats to validity and study limitations
	7 Conclusion

	References

