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Introduction: Pansharpening is an important remote sensing task that aims to

produce high-resolutionmultispectral (MS) images by combining low-resolution

MS images with high-resolution panchromatic (PAN) images. Although deep

learning-based pansharpening has shown impressive results, the majority of

these models frequently struggle to balance spatial and spectral information,

resulting in artifacts and a loss of detail in pansharpened images. Furthermore,

these models may fail to properly integrate spatial and spectral information,

leading to poor performance in complex scenarios. Additionally, these models

face challenges such as gradient vanishing and overfitting.

Methods: This paper proposes a dual-path and multi-scale pansharpening

network (DMPNet). It consists of three modules: the feature extraction module

(FEM), the multi-scale adaptive attention fusion module (MSAAF), and the image

reconstruction module (IRM). The FEM is designed with two paths, namely

the primary and secondary paths. The primary path captures global spatial

and spectral information using dilated convolutions, while the secondary path

focuses on fine-grained details using shallow convolutions and attention-

guided feature extraction. The MSAAF module adaptively combines spatial and

spectral data across di�erent scales, employing a self-calibrated attention (SCA)

mechanism for dynamic weighting of local and global contexts and a spectral

alignment network (SAN) to ensure spectral consistency. Finally, to achieve

optimal spatial and spectral reconstruction, the IRM decomposes the fused

features into low- and high-frequency components using discrete wavelet

transform (DWT).

Results: The proposed DMPNet outperforms competitive models in terms of

ERGAS, SCC (WR), SCC (NR), PSNR, Q, QNR, and JQM by approximately 1.24%,

1.18%, 1.37%, 1.42%, 1.26%, 1.31%, and 1.23%, respectively.

Discussion: Extensive experimental results and evaluations reveal that the

DMPNet is more e�cient and robust than competing pansharpening models.

KEYWORDS

pansharpening, remote sensing, deep learning, image reconstruction, spatial and

spectral fidelity

1 Introduction

In pansharpening, the task involves fusing a low-resolution multispectral (MS) image
with a high-resolution, texture-rich panchromatic (PAN) image. This process aims to
produce a high-resolution multispectral image that combines the spectral fidelity of the
original MS data with the spatial clarity of the PAN image (Zhang et al., 2023; Zhou et al.,
2024; Shen et al., 2024). This technique is vital in applications such as land-use mapping,
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environmental monitoring, and urban planning (Chang et al., 2016;
Hong et al., 2023). Despite its significance, achieving an optimal
balance between spatial and spectral fidelity remains a challenging
problem (Zhou et al., 2024; Li C. et al., 2024).

Traditional pansharpening techniques include methods like
Brovey transform (Khan et al., 2019), principal component analysis
(PCA) (Ghadjati et al., 2019), intensity-hue-saturation (IHS)
fusion (Leung et al., 2013), and wavelet transform (Saxena and
Balasubramanian, 2021). These methods rely on mathematical
and statistical transformations to fuse PAN and MS images.
Although these methods are computationally efficient and easy
to implement, but these methods mostly struggle with a trade-off
between spatial and spectral quality. These methods can introduce
spectral distortions and artifacts, thus, compromise the fidelity of
the original multispectral data. Additionally, these approaches lack
adaptability to varying image contexts and typically require manual
tuning of parameters. Therefore, these methods are less robust for
diverse datasets (Yilmaz et al., 2022).

Compressive sensing approaches exploit the sparsity of
the multispectral data to achieve better pansharpening results
(Ghahremani and Ghassemian, 2015). While promising for sparse
data, these methods mostly face challenges in handling the
high dimensionality and computational complexity of real-world
datasets (Amro et al., 2011). However, these methods are limited
by their reliance on fixed models and assumptions. Thus, these
methods are less adaptable to the complex relationships between
PAN and MS images across diverse sensors and conditions.

Recently, machine learning and deep learning have significantly
advanced pansharpening techniques by using data-driven models
to learn complex spatial and spectral relationships from large
datasets (Yang et al., 2022; Zhou et al., 2022b, 2023a; Jia et al.,
2024). Convolutional neural networks (CNNs) (He et al., 2019),
generative adversarial networks (GANs) (Gastineau et al., 2021),
and transformer-based models (Su et al., 2022; Li et al., 2023)
have been widely employed to achieve superior fusion quality.
These methods excel in preserving both spatial and spectral
fidelity. Thus, these models outperform traditional techniques
in various benchmarks. However, their limitations include the
need for extensive training datasets, high computational resources,
gradient vanishing, and potential susceptibility to overfitting.
Therefore, this paper proposes an efficient dual-path and multi-
scale pansharpening network (DMPNet) for pansharpening to
address these limitations.

Themain contributions of the paper are summarized as follows:

(1) This paper introduces an efficient DMPNet for pansharpening.
DMPNet is designed to address the challenges of balancing
spatial and spectral fidelity while ensuring robust performance
in complex scenarios. The proposed DMPNet comprises three
major modules such as the feature extraction module (FEM),
the multi-scale adaptive attention fusion module (MSAAF),
and the image reconstruction module (IRM).

(2) The FEM in DMPNet adopts a dual-path architecture. The
primary path captures global spatial and spectral features
using dilated convolutions. While the secondary path focuses
on extracting fine-grained details such as textures and edges
through shallow convolutions and attention-guided feature
refinement.

(3) The MSAAF is designed to integrate spatial and spectral
features effectively across multiple scales. It employs a self-
calibrated attention (SCA) mechanism for dynamic weighting
of local and global contexts and a spectral alignment network
(SAN) to maintain spectral consistency and fidelity.

(4) The IRM utilizes the discrete wavelet transform (DWT)
to separate fused features into low- and high-frequency
components. These components are refined individually,
which enable optimal spatial and spectral reconstruction.

The remaining paper is organized as follows: Section 2 presents
the related work. Section 3 introduces the workings of DMPNet.
Section 4 provides the performance analysis. Finally, Section 5
concludes the paper.

2 Related work

In the field of pansharpening, recent studies have proposed
efficient models to address the challenges and limitations in
achieving high-quality pansharpened images. Yang et al. (2022)
proposed a cross-scale collaboration network that used a
pyramid framework and cross-scale attention modules for gradual
pansharpening. The network included progressive subnetworks
that handled specific pyramid levels and cross-scale attention
modules to capture global and local spatial interactions. A
fusion module further enhanced the spectral representations
and enabled the network to fully utilize spatial and spectral
information from cross-scale perspectives. Zhou et al. (2022b)
introduced the spatial-frequency information integration network
(SFIIN) that used both spatial and frequency domain features.
SFIIN employed a dual-branch architecture, where one branch
captured local spatial information using standard convolution,
and the other extracted global contextual information via Fourier
transformation. A dual-domain interaction module facilitated
the flow of complementary information to achieve significant
pansharpened images.

Liu et al. (2022) presented a multilevel and multiscale fusion
network (MLMSFN) to achieve super-resolution pansharpening.
It integrated spatial and spectral information from PAN and
MS images while pushing beyond existing resolution limits. This
architecture captured hierarchical and multiscale features that
enabled the generation of pansharpened images. Zhou et al.
(2022a) proposed a normalization-based feature selection and
restitution mechanism to address the issue of inconsistent feature
propagation between PAN and MS modalities. It used an adaptive
instance normalization operation to modulate PAN features to
match the MS style while restoring effective information from
discarded features through contrastive learning. Hou et al. (2022)
implemented a multi-level feature fusion network (MLFNet)
using cross-layer guided attention mechanisms for hyperspectral
pansharpening. Jin et al. (2022) proposed a Laplacian pyramid
network (LPNet) for multispectral pansharpening, leveraging the
hierarchical features extracted from the PAN and MS. Li et al.
(2022) proposed HyperNet to enhance the spatial resolution
of hyperspectral images by fusing them with multispectral and
panchromatic images. Spectral information was preserved while
spatial details were injected using specially designed blocks.
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FIGURE 1

Diagrammatic flow of DMPNet.

TABLE 1 Performance metrics used for evaluating proposed and competitive pansharpening models.

Metric Significance Formula Objective

ERGAS Quantifies global relative error, balancing spatial and spectral distortions. ERGAS = 100 ·

√

1
N

∑

(

RMSEb
Meanb

)2
Minimize

SCC (WR) Measures spatial consistency compared to a reference image. SCC = Cov(F,R)
σF ·σR

Maximize

SCC (NR) Evaluates inherent spatial patterns when no reference image is available. Uses spatial patterns for correlation. Maximize

PSNR Indicates reconstruction fidelity, emphasizing peak signal over noise. PSNR = 10 · log10

(

MAX2

MSE

)

Maximize

Q Balances luminance, contrast, and structure for structural similarity. Q =
(

2·Cov(F,R)
VarF+VarR

)

·
(

2·µF ·µR

µ2
F+µ2

R

)

Maximize

QNR Assesses spatial and spectral balance without requiring reference images. QNR = 1− (SD+ SpD) Maximize

JQM Integrates spatial and spectral quality for holistic fusion evaluation. JQM = wS · SQ+ wP · PQ Maximize

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1455963
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Kaur et al. 10.3389/fcomp.2024.1455963

FIGURE 2

Sensitivity analysis for DMPNet during lower-scale validations: (A) ERGAS, (B) SCC (WR), (C) PSNR, and (D) Q.

Zhang F. et al. (2022) developed the multiscale spatial-
spectral interaction transformer (MSIT) to concurrently model
local and global dependencies in PAN andMS images. The network

employed convolution-transformer encoders for multiscale feature
extraction and a spatial-spectral interaction attention module
to efficiently merge spatial and spectral features. Shi et al.
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FIGURE 3

Sensitivity analysis for DMPNet during full-scale validations: (A) SCC (NR), (B) QNR, and (C) JQM.

(2023) proposed a domain-specific knowledge-driven framework
that used frequency-domain information and a detail-mapping
GAN to enhance spatial and spectral performance. The method
effectively combined domain-specific knowledge with data-driven
learning to provide superior feature reconstruction and detail
injection. Zhou et al. (2023b) introduced a modality-aware
feature integration network to explore mutual dependencies
between PAN and MS images. It employed cross-central difference
convolution for PAN texture extraction and a hierarchical
transformer for integrating spatial-temporal relationships. This

method effectively captured cross-modality information across
multiple datasets.

Zhou et al. (2023a) proposed a closed-loop regularization
framework for pansharpening by utilizing an invertible
neural network (INN) for bidirectional learning. This
method simultaneously learned the forward operation for
pansharpening and the backward degradation process to
regularize the solution space. To enhance high-frequency textures
critical for pansharpened images, a multiscale high-frequency
enhancement module was incorporated. Liu et al. (2024)
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TABLE 2 Hyperparameters of DMPNet with default values.

Hyperparameter Value

Spectral bands (b) 4

Upsampling method Bicubic

Primary path filters 64

Secondary path filters 32

Kernel size 3× 3

Dilation rate 2

Fusion weight (α) 0.5 (initial)

Attention Kernel size 1× 1

GAP pooling size Full image

Self-calibrated attention activation Sigmoid

Spectral alignment filter size 1× 1

Spectral alignment filters 32

DWT levels 1

Low-frequency refinement filters 64

High-frequency refinement filters 128

Reconstruction Kernel size 3× 3

Activation function Sigmoid

Batch size 16

Learning rate 0.001

Optimizer Adam

Loss function weights 0.4, 0.2, 0.2, and 0.2

Epochs 100

Dropout rate 0.1

Weight initialization Xavier

Number of parameters ∼2.5M

RAM 64 GB

Training hardware NVIDIA GeForce RTX 4070

introduced a spatially-adaptive spectral modulation network
(SSMNet) that emphasized band-private characteristics for
accurate restoration of individual spectral bands. SSMNet featured
three modules such as source-aware spectral modulator, cross-band
information aggregation, and cross-stage feature integration to
integrate features across stages. Additionally, a histogram loss was
introduced to constrain the band-wise distribution of the final
pansharpened image. Jia et al. (2024) developed a progressive
attention-based pan-sharpening (PAPS) network. In PAPS, the
detail enhancement module produced a high-quality base by
enhancing low-resolution MS images. The progressive fusion
module in PAPS extracted complementary information from the
enhanced MS and PAN images.

Wang et al. (2024b) proposed a novel framework called
intrinsic decomposition knowledge distillation that decomposed
the MS image into reflectance and illumination components.
The teacher network extracted these components from HR-MS

images. The student network combined the reflectance component
with the enhanced illumination from LR-MS images to obtain
the pansharpened images. Li Z. et al. (2024) introduced the
pyramid hierarchical network (PH-Net) for multispectral
pansharpening. This U-Net-based architecture constructed
an input pyramid to achieve multi-level receptive fields and
extracted hierarchical features through the encoder and
decoder. PH-Net required minimal training data and boasted
high generalizability. Wang et al. (2024a) utilized a deep
error removal network (DERN) to address errors caused by
non-overlapping spectral responses. This model combined a
prior-based approach to extract initial error maps and iteratively
optimized the PAN and MS features to reduce errors and restore
lost textures.

However, the aforementioned models often struggle to balance
spatial and spectral fidelity, resulting in artifacts and a loss of
detail in pansharpened images. Additionally, they may fail to
effectively integrate spatial and spectral information, leading to
suboptimal performance in complex scenarios. These models
also face challenges such as gradient vanishing, susceptibility to
overfitting, and limited generalizability across diverse datasets,
further hindering their robustness and adaptability.

3 Dual-path and multi-scale
pansharpening network

The DMPNet is designed to address the key challenges
in pansharpening such as retaining spectral fidelity, enhancing
spatial resolution, preserving texture and edges, and ensuring
robustness to noise and sensor variability. Figure 1 shows the
overall architecture of DMPNet. It comprises three main modules
such as FEM, MSAAF, and IIRM. First, FEM extracts spatial and
spectral features from input PAN and MS images through a dual-
path design. Then, MSAAF merges spatial and spectral features
adaptively across scales using self-calibrated attention and spectral
alignment mechanisms. Finally, IRM refines and reconstructs
the pansharpened image by handling low- and high-frequency
components separately for optimal enhancement. These modules
are further discussed in the subsequent sections.

3.1 Feature extraction module (FEM)

FEM is designed to extract spatial and spectral features
separately while ensuring both global context and fine-
grained details are captured effectively. It employs a dual-path
learning architecture, consisting of a primary path for
global feature extraction and a secondary path for localized
detail enhancement.

3.1.1 Primary path
It focuses on extracting global spatial and spectral features

using deeper convolutional layers. It uses dilated convolutions
(Wang et al., 2019) to expand the receptive field without increasing
computational overhead.
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FIGURE 4

Visual analysis of WorldView-3 data: (A) PAN, (B) MS, (C) Ground truth, (D) MSIT, (E) INN, (F) PAPS, (G) MLFNet, (H) LPNet, (I) HybridNet, (J) SSMNet,

(K) PH-Net, and (L) DMPNet.

Given the PAN image P ∈ R
H×W and the upsampledMS image

M̃ ∈ R
H×W×b, the feature extraction process in the primary path is

defined as:

Fp = CV3×3
(

DCV ([P, M̃])
)

(1)

where [P, M̃] represents the concatenation of the PAN and
MS images along the channel dimension. Fp represents
the primary feature map. DCV and CV3×3 represent dilated
convolution and 2D convolution operations with a kernel size of
3× 3, respectively.

3.1.2 Secondary path
It captures fine-grained spatial and spectral details using

shallow convolutional layers (Lei et al., 2020) and attention-guided
feature extraction (Zhang G. et al., 2022). This path ensures

localized features, such as texture and edge information, are
preserved. It is defined as:

Fs = At

(

SCV ([P, M̃])
)

(2)

where Fs represents the seconadry feature map. SCV is the shallow
convolutional network that processes [P, M̃]. At is the attention
mechanism applied to the output of SCV .

3.1.3 Dual-path fusion
The outputs of the two paths, i.e., Fp and Fs are dynamically

fused using a learnable weighting mechanism as:

FFEM = α · Fp + (1− α) · Fs (3)

where α ∈ [0, 1] is a trainable parameter that balances the
contribution of global and local features.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1455963
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Kaur et al. 10.3389/fcomp.2024.1455963

FIGURE 5

Visual analysis of Quickbird data: (A) PAN, (B) MS, (C) Ground truth, (D) MSIT, (E) INN, (F) PAPS, (G) MLFNet, (H) LPNet, (I) HybridNet, (J) SSMNet, (K)

PH-Net, and (L) DMPNet.

3.2 Multi-scale adaptive attention fusion
(MSAAF)

This module combines spatial and spectral features adaptively
across multiple scales using attention mechanisms. For this, it
employs two techniques such as self-calibrated attention (SCA)
and spectral alignment network (SAN). Inspired from Hu et al.
(2018) and Liu et al. (2023), SCA is used to enhance feature fusion
by dynamically weighting local and global contexts. Inspired from
Xiao et al. (2023), and Nassar et al. (2018), SAN is used to ensure
spectral consistency by explicitly aligning the spectral properties of
the fused features.

3.2.1 Self-calibrated attention (SCA)
The SCA mechanism generates attention weights using both

local and global context to ensure features are appropriately

weighted (Hu et al., 2018; Liu et al., 2023). Local features (Alocal)
are extracted from FFEM using 3× 3 convolution operation as:

Alocal = CV3×3(FFEM) (4)

Global features (Aglobal) are extracted from FFEM using a global
average pooling (GAP) as:

Aglobal = GAP(FFEM) (5)

Next, Alocal and Aglobal features are concatenated and passed
through a 1 × 1 convolution followed by a sigmoid activation (σ )
as:

ASCA = σ (CV1×1([Alocal,Aglobal])) (6)

where ASCA represents attention weights that modulate the relative
importance of Alocal and Aglobal.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1455963
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Kaur et al. 10.3389/fcomp.2024.1455963

FIGURE 6

Error analysis of WorldView-3 data: (A) MSIT, (B) INN, (C) PAPS, (D) MLFNet, (E) LPNet, (F) HybridNet, (G) SSMNet, (H) PH-Net, and (I) DMPNet.

Finally, ASCA are applied element-wise to FFEM as:

FSCA = FFEM ⊙ ASCA (7)

where FSCA emphasizes significant details while suppressing
irrelevant and redundant information.

3.2.2 Spectral alignment network (SAN)
It ensures spectral consistency by aligning the spectral

characteristics of the fused features with the original MS image
(Xiao et al., 2023; Nassar et al., 2018).

Initially, a 1× 1 convolution is applied to FSCA (Equation 7) to
predict the spectral residual (Fr) as:

Fr = CV1×1(FSCA) (8)

where Fr represents the difference between the current spectral
properties of FSCA and the desired spectral alignment.

Thereafter, Fr is subtracted from FSCA to align the spectral
properties of fused features with the input MS image as:

Fa = FSCA − Fr (9)

where Fa represents the spectrally aligned feature map.

3.3 Image reconstruction module (IRM)

IRM is the final module of DMPNet. It processes fused features
by decomposing them into frequency components, refining each
component individually, and then recombining them to obtain the
final pansharpened image.
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FIGURE 7

Error analysis of Quickbird data: (A) MSIT, (B) INN, (C) PAPS, (D) MLFNet, (E) LPNet, (F) HybridNet, (G) SSMNet, (H) PH-Net, and (I) DMPNet.

3.3.1 Frequency decomposition
Fa is decomposed into low- and high-frequency components

using discrete wavelet transform (DWT) as Alessio and Alessio
(2016):

[Flow, Fhigh] = DWT(Fa) (10)

where Flow and Fhigh represent low- and high-frequency
components, respectively.

3.3.2 Refinement networks
The low- and high-frequency components preserve spectral

fidelity through smooth low-frequency processing and amplifying
spatial details via targeted high-frequency refinement. Therefore,
Flow and Fhigh are refined individually using shallow CNN and
multi-scale convolutional networks.

Flow is refined using a shallow CNN (Gao et al., 2018) to smooth
low-frequency components as:

Flr = CV3×3(Flow) (11)

Fhigh is refined using a multi-scale convolutional network
(MSCV ) (Huang et al., 2022) to enhance textures and edges. It can
be defined as:

Fhr = MSCV (Fhigh) (12)

3.3.3 Reconstruction
The refined components Flr and Fhr are recombined using

inverse DWT (IDWT). It is defined as:

Freconstructed = IDWT(Flr , Fhr) (13)
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FIGURE 8

Lower-scale performance analysis of di�erent pansharpening methods: (A) ERGAS, (B) SCC (WR), (C) PSNR, and (D) Q.

Freconstructed is further refined using a convolutional layer with
residual connections as:

M̂ = σ (CV(Freconstructed)) (14)

where M̂ represents the final pansharpened image. σ is the
sigmoid activation function.

3.4 Performance metrics

Table 1 summarizes the performance metrics used for
evaluating the proposed and competitive pansharpening models.
These metrics include the spatial correlation coefficient (SCC)
(Zhou et al., 1998), erreur relative globale adimensionnelle de
synthèse (ERGAS) (Wald, 2002), Q-index (Wang and Bovik,
2002), and peak signal-to-noise ratio (PSNR). These metrics are
employed during lower-scale validations to compare pansharpened
outputs with reference images. For full-scale validations, SCC is
again utilized, alongside the quality-with-no-reference (QNR)
metric (Alparone et al., 2008) and the joint quality measure (JQM)
(Palubinskas, 2015). These metrics provide insights into spatial
correlation, spectral accuracy, and overall image quality. Note that
SCC is referred to as SCC (WR) and SCC (NR), representing “With
Reference” and “No Reference”, respectively.

In the Table 1, N represents the number of bands, RMSEb
denotes the Root Mean Square Error of band b, and Meanb refers

to the band mean. F indicates the fused image, R corresponds
to the reference image, and σ stands for the standard deviation.
Similarly, MAX represents the maximum pixel intensity and
MSE indicates the Mean Squared Error. For spatial and spectral
distortions, SD and SpD measure spatial distortion and spectral
distortion, respectively. The weights for spatial and spectral quality
are denoted by wS and wP, with SQ and PQ representing spatial
quality and perceived quality. Additionally, µ represents the mean,
Var indicates the variance, and Cov is used for covariance.

3.5 Weighted loss function

In this paper, various loss functions are utilized to perform
sensitivity analysis and determine the optimal combination for the
final weighted loss function. These loss functions are as follows:

3.5.1 Loss functions
• Reconstruction loss (Lr): this loss measures the difference

between original MS and pansharpened image. It ensures that
the pansharpened image accurately retains the features of the
original data (Jian et al., 2023). It can be computed as:

Lr = ‖M − M̂‖1

where M is the original MS image. M̂ is the obtained
pansharpened image.
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FIGURE 9

Full-scale performance analysis of di�erent pan-sharpening methods: (A) SCC (NR), (B) QNR, and (C) JQM.

• Spectral consistency loss (Ls): this loss evaluates the
consistency of the spectral properties between low-resolution
MS image and the downsampled obtained pansharpened
image (Doi and Iwasaki, 2019; Ciotola et al., 2023). It ensures
spectral fidelity during reconstruction as:

Ls = ‖Mlow-res − DS(M̂)‖2

where Mlow-res is the low-resolution MS image. DS(M̂) is the
downsampled obtained pansharpened image.

• Gradient loss (Lg ): this loss focuses on preserving spatial
details by comparing the gradients of PAN image and the
gradients of obtained pansharpened image Gao et al. (2024).
It is defined as:

Lg = ‖∇HM −∇HM̂‖22 + ‖∇VM −∇VM̂‖22

where ∇H and ∇V represent horizontal and vertical gradients,
respectively.

• Perceptual loss (Lp): this loss measures the similarity between
obtained pansharpened image and reference image. This
ensures perceptual consistency (see Zhou et al. (2020) formore
details).

3.5.2 Sensitivity analysis
Sensitivity analysis was performed to evaluate the impact of

each loss function and their combinations on the performance

metrics. Figures 2, 3 provide detailed analysis of the behavior of
DMPNet across different loss functions and their combinations
during lower-scale and full-scale validations, respectively. For
lower-scale sensitivity analysis, the focus is on metrics such as
ERGAS, SCC (WR), PSNR, and Q (see Figure 2). Each loss
function’s contribution to spatial and spectral accuracy is analyzed
to identify significant synergies among combinations. In full-scale
sensitivity analysis, metrics such as SCC (NR), QNR, and JQM are
used to understand the behavior of loss functions in preserving
spatial details and overall image quality without reference images
(see Figure 3).

Based on these sensitivity analysis, the final weighted loss
function was selected to balance spatial and spectral fidelity
while maintaining perceptual quality. The weighted loss function
combines all loss functions as:

Lfinal = αLr + βLs + γ Lg + δLp

where α, β , γ , and δ are the weights assigned to each loss
component. These weights are as 0.4, 0.2, 0.2, and 0.2, respectively.

4 Performance analysis

The proposed and competitive models are implemented using
MATLAB 2024a software. Table 2 presents the hyperparameter
settings for DMPNet. The pansharpening datasets utilized in
this study comprise images captured by various satellite sensors,
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including WorldView-2, WorldView-3, QuickBird, and Gaofen-
2. These datasets contain paired MS and PAN images along
with high resolution reference images (see Deng et al., 2022
for dataset details). For comparative analysis, several competitive
pansharpening models are considered, such as MSIT, INN, PAPS,
MLFNet, LPNet, HybridNet, SSMNet, and PH-Net. Each model
was trained using the parameter configurations detailed in their
respective publications.

4.1 Visual analysis

Figures 4, 5 provide a comprehensive visual analysis of
pansharpening performance on WorldView-3 and Quickbird
datasets, respectively. Both figures show input PAN and MSI
images (Figures 4A, B, 5A, B), alongside the corresponding ground
truth images (Figures 4C, 5C). Pan-sharpened images generated
by competitive models and the proposed DMPNet are presented
in Figures 4D–K, 5D–K, respectively. The proposed DMPNet
(see Figures 4L, 5L) achieved superior performance compared to
other models. It achieved a balanced enhancement of spatial and
spectral information while effectively preserving fine details. Thus,
DMPNet producing the most visually appealing results across both
datasets.

Since it is difficult to assess the outperforming performance
through visual analysis of the competitive models and the proposed
DMPNet (see Figures 4, 5), we have also evaluated the squared
error between the ground truth and the obtained pansharpened
images (see Figures 6, 7). This evaluation clearly shows that the
proposed DMPNet achieves a lower squared error compared
to competitive pansharpening models. This underscores the
superiority of DMPNet in producing high-quality pansharpened
outputs with enhanced fidelity and precision.

4.2 Quantitative analysis

Figure 8 illustrates the lower-scale performance analysis of
competitive pansharpening methods and the proposed DMPNet.
Figure 8A demonstrates the improvement in spectral fidelity
through ERGAS, where DMPNet outperforms competitive models
by approximately 1.24%. Figure 8B focuses on SCC (WR), showing
an enhancement of 1.18%, indicating better spatial consistency.
Figures 8C, D further evaluate the PSNR and Q metrics. DMPNet
achieves an improvement of 1.42% in PSNR and 1.26% in Q.
These results emphasize the DMPNet’s ability to enhance structural
similarity effectively.

The full-scale performance analysis, depicted in Figure 9,
reinforces the superiority of DMPNet. Figure 9A highlights a
1.37% improvement in SCC (NR), reflecting better spatial pattern
preservation without reference data. Figure 9B shows a 1.31%
enhancement in QNR, indicating balanced spatial and spectral
fidelity. Finally, Figure 9C demonstrates a 1.23% improvement in
JQM, emphasizing the overall joint quality of pansharpened images.

Figures 8, 9 collectively validate the robustness and efficiency of
DMPNet, showcasing consistent improvements across both lower-
and full-scale metrics compared to competitive models.

4.3 Limitations and future directions

4.3.1 Limitations of DMPNet
The limitations of the proposed DMPNet are as follows:

(1) Computational complexity: the inclusion of multiple
advanced components, such as dilated convolutions, attention
mechanisms, and DWT operations, has increased the
computational complexity of DMPNet. Thus, the proposed
DMPNet is difficult to deploy in resource-constrained
environments.

(2) Reference data: like many competitive deep learning-
based pansharpening models, DMPNet’s performance heavily
relies on the quality and quantity of the training data.
Limited or biased training datasets could lead to suboptimal
generalization in real-world scenarios.

(3) Scalability: in DMPNet, processing high-resolution satellite
images across multiple scales can be resource-intensive. This
might pose challenges for scalability to extremely large datasets
or real-time applications.

(4) Sensitivity to hyperparameters: the performance of DMPNet
is sensitive to the choice of hyperparameters. We selected the
parameters using sensitivity analysis and guidance from the
literature. Therefore, extensive tuning is required to achieve
optimal results for different datasets or imaging conditions.

(5) Overfitting: despite the robust design, the model might still be
susceptible to overfitting in cases where training data does not
adequately represent the diversity of real-world conditions.

(6) Generalization: while DMPNet demonstrates robust
performance in standard pansharpening tasks, its ability
to handle extreme or unconventional imaging conditions
remains uncertain. Scenarios such as heavily degraded input
images still need to be thoroughly tested.

4.3.2 Future directions
Although the proposed DMPNet effectively address key

pansharpening challenges, a number of areas for further
research remain there. Since the proposed model is based on
reference datasets, future work will concentrate on building
self-supervised DMPNet to reduce reliance on large-scale labeled
data. Furthermore, combining DMPNet with technologies like
vision transformers (ViTs) and quantum computing has the
potential to improve feature extraction and fusion methods.
Furthermore, optimization methods such as reinforcement
learning and metaheuristics could help to optimize the tuning of
DMPNet settings across various contexts.

5 Conclusion

The proposed DMPNet addressed key pansharpening
challenges by striking an efficient balance between spatial
resolution and spectral fidelity. DMPNet contained three essential
modules such as FEM, MSAAF, and IRM. These modules ensured
the robust integration of spatial and spectral data. The dual-path
architecture in FEM captures global context as well as fine-
grained information. However, MSAAF uses SCA and SAN to
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dynamically fuse features while maintaining spectral consistency.
Finally, the IRM refines and reconstructs features utilizing
frequency decomposition and reconstruction to achieve optimal
performance. The experimental results supported DMPNet’s ability
to produce high-quality pansharpened images when compared
to previous models. It is observed that the proposed DMPNet
outperforms competitive models in terms of ERGAS, SCC (WR),
SCC (NR), PSNR, Q, QNR, and JQM by approximately 1.24%,
1.18%, 1.37%, 1.42%, 1.26%, 1.31%, and 1.23%, respectively.

Data availability statement

Publicly available datasets were analyzed in this study.
This data can be found here: https://github.com/liangjiandeng/
PanCollection.

Author contributions

GK: Conceptualization, Formal analysis, Investigation,
Methodology, Validation, Visualization, Writing – original
draft, Writing – review & editing. MM: Investigation, Project
administration, Resources, Writing – review & editing. DS:
Investigation, Project administration, Resources, Writing – review
& editing. SS: Investigation, Project administration, Supervision,
Writing – review & editing.

Funding

The author(s) declare that no financial support was
received for the research, authorship, and/or publication of
this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial
board member of Frontiers, at the time of submission.
This had no impact on the peer review process and the
final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alessio, S. M., and Alessio, S. M. (2016). “Discrete wavelet transform (DWT),” in
Digital Signal Processing and Spectral Analysis for Scientists: Concepts and Applications,
645–714.

Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F., and Selva, M.
(2008). Multispectral and panchromatic data fusion assessment without reference.
Photogramm. Eng. Remote Sens. 74, 193–200. doi: 10.14358/PERS.74.2.193

Amro, I., Mateos, J., Vega, M., Molina, R., and Katsaggelos, A. K. (2011). A survey of
classical methods and new trends in pansharpening of multispectral images. EURASIP
J Adv Signal Proc. 2011, 1–22. doi: 10.1186/1687-6180-2011-79

Chang, N.-B., Bai, K., Imen, S., Chen, C.-F., and Gao, W. (2016). Multisensor
satellite image fusion and networking for all-weather environmental monitoring. IEEE
Syst. J. 12, 1341–1357. doi: 10.1109/JSYST.2016.2565900

Ciotola, M., Poggi, G., and Scarpa, G. (2023). Unsupervised deep learning-based
pansharpening with jointly-enhanced spectral and spatial fidelity. IEEE Trans. Geosci.
Remote Sens. doi: 10.1109/TGRS.2023.3299356

Deng, L. J., Vivone, G., Paoletti, M. E., Scarpa, G., He, J., Zhang, Y., et al. (2022).
Machine learning in pansharpening: a benchmark, from shallow to deep networks.
IEEE Geosci. Remote Sens. Magaz. 10, 279–315. doi: 10.1109/MGRS.2022.3187652

Doi, K., and Iwasaki, A. (2019). “SSCNET: spectral-spatial consistency optimization
of CNN for pansharpening,” in IGARSS 2019-2019 IEEE International Geoscience and
Remote Sensing Symposium (Yokohama: IEEE), 3141–3144.

Gao, F., Wu, T., Li, J., Zheng, B., Ruan, L., Shang, D., et al. (2018). SD-CNN: a
shallow-deep cnn for improved breast cancer diagnosis. Comp. Med. Imag. Graph. 70,
53–62. doi: 10.1016/j.compmedimag.2018.09.004

Gao, Y., Qin, M., Wu, S., Zhang, F., and Du, Z. (2024). GSA-SIAMNET: a siamese
network with gradient-based spatial attention for pan-sharpening of multi-spectral
images. Remote Sens. 16:616. doi: 10.3390/rs16040616

Gastineau, A., Aujol, J.-F., Berthoumieu, Y., and Germain, C. (2021). Generative
adversarial network for pansharpening with spectral and spatial discriminators. IEEE
Trans. Geosci. Remote Sens. 60, 1–11. doi: 10.1109/TGRS.2021.3060958

Ghadjati, M., Moussaoui, A., and Boukharouba, A. (2019). A novel
iterative pca-based pansharpening method. Remote Sens. Lett. 10, 264–273.
doi: 10.1080/2150704X.2018.1547443

Ghahremani, M., and Ghassemian, H. (2015). A compressed-sensing-based pan-
sharpening method for spectral distortion reduction. IEEE Trans. Geosci. Remote Sens.
54, 2194–2206. doi: 10.1109/TGRS.2015.2497309

He, L., Rao, Y., Li, J., Chanussot, J., Plaza, A., Zhu, J., et al. (2019). Pansharpening via
detail injection based convolutional neural networks. IEEE J. Select. Topics Appl. Earth
Observat. Remote Sens. 12, 1188–1204. doi: 10.1109/JSTARS.2019.2898574

Hong, D., Zhang, B., Li, H., Li, Y., Yao, J., Li, C., et al. (2023). Cross-city
matters: A multimodal remote sensing benchmark dataset for cross-city semantic
segmentation using high-resolution domain adaptation networks. Remote Sens.
Environm. 299:113856. doi: 10.1016/j.rse.2023.113856

Hou, S., Xiao, S., Dong, W., and Qu, J. (2022). Multi-level features fusion via
cross-layer guided attention for hyperspectral pansharpening. Neurocomputing 506,
380–392. doi: 10.1016/j.neucom.2022.07.071

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Salt
Lake City, UT: IEEE), 7132–7141.

Huang, Y.-J., Liao, A.-H., Hu, D.-Y., Shi, W., and Zheng, S.-B. (2022). Multi-scale
convolutional network with channel attention mechanism for rolling bearing fault
diagnosis.Measurement 203:111935. doi: 10.1016/j.measurement.2022.111935

Jia, Y., Hu, Q., Dian, R., Ma, J., and Guo, X. (2024). Paps: Progressive
attention-based pan-sharpening. IEEE-CAA J. Automat. Sinica 11, 391–404.
doi: 10.1109/JAS.2023.123987

Jian, L., Wu, S., Chen, L., Vivone, G., Rayhana, R., and Zhang, D. (2023). Multi-
scale and multi-stream fusion network for pansharpening. Remote Sens. 15:1666.
doi: 10.3390/rs15061666

Jin, C., Deng, L.-J., Huang, T.-Z., and Vivone, G. (2022). Laplacian pyramid
networks: a new approach for multispectral pansharpening. Inform. Fusion 78,
158–170. doi: 10.1016/j.inffus.2021.09.002

Khan, S. S., Ran, Q., Khan, M., and Ji, Z. (2019). “Pan-sharpening framework based
on laplacian sharpening with brovey,” in 2019 IEEE International Conference on Signal,
Information and Data Processing (ICSIDP) (Chongqing: IEEE), 1–5.

Lei, F., Liu, X., Dai, Q., and Ling, B. W.-K. (2020). Shallow convolutional neural
network for image classification. SN Appl. Sci. 2:97. doi: 10.1007/s42452-019-1903-4

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1455963
https://github.com/liangjiandeng/PanCollection
https://github.com/liangjiandeng/PanCollection
https://doi.org/10.14358/PERS.74.2.193
https://doi.org/10.1186/1687-6180-2011-79
https://doi.org/10.1109/JSYST.2016.2565900
https://doi.org/10.1109/TGRS.2023.3299356
https://doi.org/10.1109/MGRS.2022.3187652
https://doi.org/10.1016/j.compmedimag.2018.09.004
https://doi.org/10.3390/rs16040616
https://doi.org/10.1109/TGRS.2021.3060958
https://doi.org/10.1080/2150704X.2018.1547443
https://doi.org/10.1109/TGRS.2015.2497309
https://doi.org/10.1109/JSTARS.2019.2898574
https://doi.org/10.1016/j.rse.2023.113856
https://doi.org/10.1016/j.neucom.2022.07.071
https://doi.org/10.1016/j.measurement.2022.111935
https://doi.org/10.1109/JAS.2023.123987
https://doi.org/10.3390/rs15061666
https://doi.org/10.1016/j.inffus.2021.09.002
https://doi.org/10.1007/s42452-019-1903-4
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Kaur et al. 10.3389/fcomp.2024.1455963

Leung, Y., Liu, J., and Zhang, J. (2013). An improved adaptive intensity-hue-
saturation method for the fusion of remote sensing images. IEEE Geosci. Remote Sens.
Lett. 11, 985–989. doi: 10.1109/LGRS.2013.2284282

Li, C., Zhang, B., Hong, D., Zhou, J., Vivone, G., Li, S., et al. (2024). CasFormer:
Cascaded transformers for fusion-aware computational hyperspectral imaging. Inform.
Fusion 108:102408. doi: 10.1016/j.inffus.2024.102408

Li, K., Zhang, W., Yu, D., and Tian, X. (2022). Hypernet: a deep network
for hyperspectral, multispectral, and panchromatic image fusion. ISPRS
J. Photogrammet. Remote Sens. 188:30–44. doi: 10.1016/j.isprsjprs.2022.
04.001

Li, Z., Guo, X., Xiang, S., and Wu, X. (2024). Pyramid hierarchical
network for multispectral pan-sharpening. Int. J. Comp. Sci. Eng. 27, 142–158.
doi: 10.1504/IJCSE.2024.137282

Li, Z., Li, J., Ren, L., and Chen, Z. (2023). Transformer-based dual-branchmultiscale
fusion network for pan-sharpening remote sensing images. IEEE J. Select. Topics
in Appl. Earth Observat. Remote Sens. 17, 614–632. doi: 10.1109/JSTARS.2023.33
32459

Liu, D., Sheng, N., Han, Y., Hou, Y., Liu, B., Zhang, J., et al. (2023). SCAU-Net: 3D
self-calibrated attention U-Net for brain tumor segmentation. Neural Comp. Appl. 35,
23973–23985. doi: 10.1007/s00521-023-08872-8

Liu, X., Hou, J., Cong, X., Shen, H., Lou, Z., Deng, L.-J., et al. (2024). Rethinking pan-
sharpening via spectral-band modulation. IEEE trans. Geosci. Remote sens. 62:3340193.
doi: 10.1109/TGRS.2023.3340193

Liu, Y., Teng, Q., He, X., Ren, C., and Chen, H. (2022). Multimodal sensors
image fusion for higher resolution remote sensing pan sharpening. IEEE Sensors J. 22,
18021–18034. doi: 10.1109/JSEN.2022.3195243

Nassar, H., Veldt, N., Mohammadi, S., Grama, A., and Gleich, D. F. (2018).
“Low rank spectral network alignment,” in Proceedings of the 2018 World Wide Web
Conference, 619–628.

Palubinskas, G. (2015). Joint quality measure for evaluation of pansharpening
accuracy. Remote Sens. 7, 9292–9310. doi: 10.3390/rs70709292

Saxena, N., and Balasubramanian, R. (2021). A pansharpening scheme using
spectral graph wavelet transforms and convolutional neural networks. Int. J. Remote
Sens. 42, 2898–2919. doi: 10.1080/01431161.2020.1864056

Shen, H., Zhang, B., Jiang, M., and Li, J. (2024). Unsupervised pan-sharpening
network incorporating imaging spectral prior and spatial-spectral compensation. IEEE
Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3422896

Shi, N., Wang, P., and Li, F. (2023). Domain-specific knowledge-
driven pan-sharpening algorithm. Neurocomputing 520, 129–140.
doi: 10.1016/j.neucom.2022.11.068

Su, X., Li, J., and Hua, Z. (2022). Transformer-based regression network for
pansharpening remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–23.
doi: 10.1109/TGRS.2022.3152425

Wald, L. (2002). Data Fusion: Definitions and Architectures—Fusion of Images of
Different Spatial Resolutions. Paris: Les Presses de l’École des Mines.

Wang, J., Lu, T., Huang, X., Zhang, R., and Luo, D. (2024a). A deep
error removal network for pan-sharpening. IEEE Geosci. Remote Sens. Lett. 21.
doi: 10.1109/LGRS.2024.3454124

Wang, J., Zhou, Q., Huang, X., Zhang, R., Chen, X., and Lu, T. (2024b). Pan-
sharpening via intrinsic decomposition knowledge distillation. Pattern Recognit.
149:110247. doi: 10.1016/j.patcog.2023.110247

Wang, Y., Wang, G., Chen, C., and Pan, Z. (2019). Multi-scale dilated convolution
of convolutional neural network for image denoising. Multimedia Tools Appl. 78,
19945–19960. doi: 10.1007/s11042-019-7377-y

Wang, Z., and Bovik, A. C. (2002). A universal image quality index. IEEE Signal
Process. Lett., 9, 81–84. doi: 10.1109/97.995823

Xiao, J., Ji, Y., and Wei, X. (2023). “Hyperspectral image denoising with spectrum
alignment,” in Proceedings of the 31st ACM International Conference on Multimedia,
5495–5503.

Yang, Z., Fu, X., Liu, A., and Zha, Z.-J. (2022). Progressive pan-sharpening
via cross-scale collaboration networks. IEEE Geosci. Remote Sens. Lett. 19:3170376.
doi: 10.1109/LGRS.2022.3170376

Yilmaz, C. S., Yilmaz, V., and Gungor, O. (2022). A theoretical and practical survey
of image fusion methods for multispectral pansharpening. Inform. Fusion 79, 1–43.
doi: 10.1016/j.inffus.2021.10.001

Zhang, F., Zhang, K., and Sun, J. (2022). Multiscale spatial-spectral interaction
transformer for pan-sharpening. Remote Sens. 14:1736. doi: 10.3390/rs14071736

Zhang, G., Zhang, H., Yao, Y., and Shen, Q. (2022). Attention-guided feature
extraction and multiscale feature fusion 3D resnet for automated pulmonary nodule
detection. IEEE Access 10, 61530–61543. doi: 10.1109/ACCESS.2022.3182104

Zhang, K., Zhang, F.,Wan,W., Yu, H., Sun, J., Del Ser, J., et al. (2023). Panchromatic
and multispectral image fusion for remote sensing and earth observation: concepts,
taxonomy, literature review, evaluation methodologies and challenges ahead. Inform.
Fusion 93, 227–242. doi: 10.1016/j.inffus.2022.12.026

Zhou, C., Zhang, J., Liu, J., Zhang, C., Fei, R., and Xu, S. (2020). Perceppan:
towards unsupervised pan-sharpening based on perceptual loss. Remote Sens. 12:2318.
doi: 10.3390/rs12142318

Zhou, J., Civco, D. L., and Silander, J. A. (1998). A wavelet transform method
to merge landsat tm and spot panchromatic data. Int. J. Remote Sens. 19, 743–757.
doi: 10.1080/014311698215973

Zhou, M., Huang, J., Hong, D., Zhao, F., Li, C., and Chanussot, J. (2023a).
Rethinking pan-sharpening in closed-loop regularization. IEEE Trans. Neural Netw.
Learn. Syst. doi: 10.1109/TNNLS.2023.3279931

Zhou, M., Huang, J., Yan, K., Yang, G., Liu, A., Li, C., et al. (2022a). “Normalization-
based feature selection and restitution for pan-sharpening,” in 30th ACM International
Conference on Multimedia (MM) (Lisboa: ACM).

Zhou,M., Huang, J., Yan, K., Yu, H., Fu, X., Liu, A., et al. (2022b). “Spatial-frequency
domain information integration for pan-sharpening,” in 17th European Conference on
Computer Vision (ECCV), eds. S. Avidan, G. Brostow, M. Cisse, G. Farinella, and T.
Hassner (Tel Aviv: ECCV).

Zhou, M., Huang, J., Zhao, F., and Hong, D. (2023b). Modality-aware feature
integration for pan-sharpening. IEEE Trans. Geosci. Remote Sens. 61:3232384.
doi: 10.1109/TGRS.2022.3232384

Zhou,M., Zheng, N., He, X., Hong, D., and Chanussot, J. (2024). Probing synergistic
high-order interaction formulti-modal image fusion. IEEE Trans. Pattern Analy. Mach.
Intellig. doi: 10.1109/TPAMI.2024.3475485

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1455963
https://doi.org/10.1109/LGRS.2013.2284282
https://doi.org/10.1016/j.inffus.2024.102408
https://doi.org/10.1016/j.isprsjprs.2022.04.001
https://doi.org/10.1504/IJCSE.2024.137282
https://doi.org/10.1109/JSTARS.2023.3332459
https://doi.org/10.1007/s00521-023-08872-8
https://doi.org/10.1109/TGRS.2023.3340193
https://doi.org/10.1109/JSEN.2022.3195243
https://doi.org/10.3390/rs70709292
https://doi.org/10.1080/01431161.2020.1864056
https://doi.org/10.1109/TGRS.2024.3422896
https://doi.org/10.1016/j.neucom.2022.11.068
https://doi.org/10.1109/TGRS.2022.3152425
https://doi.org/10.1109/LGRS.2024.3454124
https://doi.org/10.1016/j.patcog.2023.110247
https://doi.org/10.1007/s11042-019-7377-y
https://doi.org/10.1109/97.995823
https://doi.org/10.1109/LGRS.2022.3170376
https://doi.org/10.1016/j.inffus.2021.10.001
https://doi.org/10.3390/rs14071736
https://doi.org/10.1109/ACCESS.2022.3182104
https://doi.org/10.1016/j.inffus.2022.12.026
https://doi.org/10.3390/rs12142318
https://doi.org/10.1080/014311698215973
https://doi.org/10.1109/TNNLS.2023.3279931
https://doi.org/10.1109/TGRS.2022.3232384
https://doi.org/10.1109/TPAMI.2024.3475485
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	DMPNet: dual-path and multi-scale pansharpening network
	1 Introduction
	2 Related work
	3 Dual-path and multi-scale pansharpening network
	3.1 Feature extraction module (FEM)
	3.1.1 Primary path
	3.1.2 Secondary path
	3.1.3 Dual-path fusion

	3.2 Multi-scale adaptive attention fusion (MSAAF)
	3.2.1 Self-calibrated attention (SCA)
	3.2.2 Spectral alignment network (SAN)

	3.3 Image reconstruction module (IRM)
	3.3.1 Frequency decomposition
	3.3.2 Refinement networks
	3.3.3 Reconstruction

	3.4 Performance metrics
	3.5 Weighted loss function
	3.5.1 Loss functions
	3.5.2 Sensitivity analysis


	4 Performance analysis
	4.1 Visual analysis
	4.2 Quantitative analysis
	4.3 Limitations and future directions
	4.3.1 Limitations of DMPNet
	4.3.2 Future directions


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


