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CodeGuard: enhancing accuracy
in detecting clones within java
source code

Yasir Glani* and Luo Ping*

Software School, Tsinghua University, Beijing, China

Detecting code clones remains challenging, particularly for Type-II clones,

with modified identifiers, and Type-III ST and MT clones, where up to 30%

and 50% of code, respectively, are added or removed from the original clone

code. To address this, we introduce CodeGuard, an innovative technique

that employs comprehensive level-by-level abstraction for Type-II clones and

a flexible signature matching algorithm for Type-III clone categories. This

method requires at least 50% similarity within two corresponding chunks

within the same file, ensuring accurate clone identification. Unlike recently

proposed methods limited to clone detection, CodeGuard precisely pinpoints

changes within clone files, facilitating e�ective debugging and thorough code

analysis. It is validated through comprehensive evaluations using reputable

datasets, CodeGuard demonstrates superior precision, high recall, robust F1

scores, and outstanding accuracy. This innovative methodology not only sets

new performance standards in clone detection but also emphasizes the role

CodeGuard’s can play in modern software development, paving the way for

advancements in code quality and maintenance.

KEYWORDS

code clone detection, clone identification, software reliability, code quality assurance,
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1 Introduction

In the dynamic world of software engineering, code cloning has emerged as a focus

area of interest, highlighting the complex balance between the advantages and challenges

of code reuse (Juergens et al., 2009). This practice, which typically involves copying

and reusing code blocks with minimal or no modifications across different parts of

a software project, serves as a double-edged sword. On one hand, it can significantly

expedites the development process by allowing developers to utilize the existing code

snippets . On the other, it poses substantial maintenance challenges and the potential

for widespread errors. The discovery of a single error in a fragment of cloned code can

necessitate laborious corrections in each occurrence of its reuse, leading to maintenance

difficulties, inconsistencies, and an increased higher risk of bugs within the software system

(Zakeri-Nasrabadi et al., 2023).

Further highlighting the significance of this issue, research indicates that cloned code

comprises approximately 10%–15% of the total codebase in extensive software systems,

illustrating its widespread prevalence (Kapser and Godfrey, 2006). Particularly in Common

Business Oriented Language (COBOL) systems, the proportion of reuse code is even

more significant, reaching around 50% (Ducasse et al., 1999). These findings confirm

the prevalent use of code cloning in software development and underline the urgent

need for advanced clone detection method. The method should effectively leverage the
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advantages of code cloning while minimizing its associated

inefficiencies. Consequently, managing code cloning has

emerged as a crucial issue in enhancing software quality and

maintainability, especially given the complexities of modern

software development.

Detecting code clones represents a significant challenge in

software development, particularly for methods that are efficient at

identifying direct clones but struggle with more complex general

clones. Type-I clones mirror the original code with only minor

modifications to comments and whitespace, whereas Type-II clones

extend these modifications to identifiers and literals. Typically,

these direct clone types are detected with some success. However,

the complexity significantly escalates with Type-III clones, Which

futher divided into Strong Type(ST) and Moderate Type(MT)

sub-type, which involve adding or removing upto 30% and

%50 respectively of the original code. These advanced clones

introduce substantial complexities, incorporating everything from

minor modifications to major structural overhauls, thereby evading

existed clone detection methods. Type-III (ST and MT) clones,

categorized under general clones.

As exemplified in Figure 1, TempConverter conducts a

basic Celsius to Fahrenheit conversion and evaluates comfort

levels. In contrast, a direct clone named HeatIndexCalculator

makes slight modifications—including adjustments to class names,

methods, strings, numeric literals, whitespace, and comments—

and notably integrates humidity assessment as mentioned in

Type-I-II Clone. This functionality alerts users to low and

high humidity levels, thereby evolving HeatIndexCalculator

into a general clone with significantly broadened functionality

by adding up to 41.6% of the new code as mentioned in

Type-III Clone.

1.1 Background and motivation

For decades, numerous methods have been proposed to aim

at detecting Type-I and Type-II code clones, utilizing text and

token-based methods, and have proven effective. However, they

struggle with Type-III (ST and MT) clone detection. Despite

recent advances in AST, PDG-based, and hybrid detectionmethods,

accurately identifying complex Type-III clone types remains

challenging, including inefficiency, inability to detect complex

clones, lower true and high false positive rates, and lack of precision

in identifying Type-III (ST and MT) modifications within clones.

This emphasizes the ongoing research need for a more innovative

and effective approach to code clone detection. To fill this research

gap, we propose CodeGuard which introduces a novel approach

designed to detect and identify changes across direct (Type-I and

II), general clone (Type-III ST and MT), addressing the significant

gaps left by existing techniques and advancing the field of code

clone detection.

1.2 Contributions of the paper

This research introducesCodeGuard, making several significant

contributions:

1. Obfuscation handling: CodeGuard introduces a multi-level

abstraction strategy that effectively detects obfuscated clones

and significantly improves Type-II clone detection.

2. Intelligent matching: CodeGuard leverages an intelligent

matching algorithm that boosts detection accuracy and

efficiency by focusing on relevant signature chunks rather

than the entire database. Through flexible signature matching,

it requires at least 50% chunk similarity and two aligned

chunks within the same file to classify code as cloned, yielding

substantial accuracy improvements, especially in detecting

complex Type-III ST and Type-III MT clones.

3. Post-cloning modifications: Beyond basic detection,

CodeGuard identifies changes made to cloned code, highlighting

additions, deletions, or modifications with the use of Diff

algorithm. This capability enables a nuanced understanding of

how cloned code evolves, offering insights valuable for both

software maintenance and security.

4. Comprehensive validation: Comprehensive evaluations

validate that CodeGuard consistently surpasses other techniques

across precision, recall, F1-score, and accuracy, highlighting its

effectiveness and reliability in various clone detection scenarios.

In Section 2, we review the related work. Section 3 introduces

the preliminary definitions used in this paper. Section 4 describes

our proposed code cloning approach, CodeGuard. In Section 5, we

detail the clone detection process. Section 6 discusses the evaluation

metrics—precision, recall, F1-score, and accuracy—and compares

CodeGuard with other code cloning methods. Section 7 explores

the pros, cons, and limitations of our technique. Finally, Section 8

concludes the paper.

2 Related work

Detecting complex clones across extensive codebases has

led to recent advances in clone detection aimed at improving

software maintenance. This endeavor seeks to enhance software

maintenance by improving the clone technique to precisely identify

and locate clones in an extensive database. In recent years,

various innovative methods have been proposed to address the

nuanced challenges of clone detection. Which include lexical/text-

based comparison, which is a foundational technique in clone

detection; it analyzes source code as a text for line-by-line

comparison. This method identifies exact clone matches through

text similarity assessments. Studies (Ragkhitwetsagul and Krinke,

2017; Nakamura et al., 2016) have used these analyses to

identify identical code fragments precisely. Yu et al. (2017) multi-

granularity technique leverages Java bytecode for detecting Type-I,

Type-II, and Type-III clones by converting source code into text.

Chen et al. (2015) also employ NICAD for Android clone detection

across types. Lyu et al. (2016)’s SuiDroid uses XML layout and the

CTPH Hash algorithm for identifying Type-I, II, and III clones.

Despite advancements, text-based methods face limitations from

strict text matching.

Whereas token-based techniques, proposed by researchers

(Glani et al., 2022, 2023; Giani et al., 2022), analyze source code by

converting it into tokens for sequence processing to detect clones.

Wang et al. (Wang et al., 2018) introduced CCAligner, utilizing
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FIGURE 1

Clone categories.

C and Java files to identify Type-I, II, and III clones, leveraging

the inherent structure of code. Sajnani et al. (2016) developed

SourcererCC, leveraging the IJaDataset and an inverted index for

efficient clone query, identifying Type-I, II, and III clones. Chau

and Jung (2020) Chau and Jung [13] enhance notation-based code

cloning by incorporating an external-based identifier model, which

improves the detection of Type-I, Type-II, and Type-III clones.

Yuki et al. (2017) proposed a method to detect multi-grained

clones using Java files and sequence alignment, demonstrating

the adaptability and precision of token-based approaches in

clone detection. Akram et al. (2020); Akram and Luo (2021)

proposed IBFET and SQVDT, which utilize the ConQat method

in the preprocessing stage. The authors later employed a 15-token

overlapping chunk size. However, due to the larger chunk size

and rigid signature matching, these techniques face limitations in

detecting Type-III clones.

Tree-based techniques transform source code into Abstract

Syntax Trees (ASTs) to analyze code similarity via tree node

matching. Yang et al. (2018) proposed a function-level approach

that leverages ASTs with defined node types to generate abstract

representations of code, using the Smith-Waterman algorithm

for local similarity scoring. This method achieves high precision

in detecting cross-project code clones. Chodarev et al. (2015)

proposed an AST algorithm for pattern recognition to detect type-

I and II clones, and Pati et al. (2017) proposed a method for

detecting type-I and II clones and leveraging AST alongside a

Multi-Objective Genetic Algorithm (MOGA). Whereas Program

Dependency Graph (PDG) techniques excel at detecting code

clones by encapsulating both control and data flows within code.

These methods generate PDGs and utilize isomorphic subgraph

matching to pinpoint similar subgraphs effectively. Wang et al.

(2017) introduced CCSharp, which utilizes PDGs alongside Frama-

C2 to enhance graph generation. Similarly, Crussell et al.’s

AnDarwin leverages large-scale PDGs by employing WALA for

effective vector comparison.

Lastly hybrid-based clone detection method integrates two

or more textual, token, PDG, and AST approaches to enhance

detection capabilities. Singh et al. (2017) developed a technique for

converting Java code into AST and PDG formats for identifying

Types I, II, and III clones. Misu and Sakib (2017) introduced

IDCCD, a combination of token and PDG methods for detecting

clones within the IJa-Dataset. Uemura et al. (2017) merged token

and metric methods in the Verilog HDL method for clone

detection.

3 Preliminary definition

This section explores the fundamental concept of code cloning

as proposed by Saini et al. (2018). We then outline our approach,

organizing clones into direct and general clone categories. These

categories are essential to asses our proposed code cloning

technique.

Code fragment: is a sequence of statements, ranging from an

entire function to a discrete block of the code, outlined by its source

file Fi, with a start line Sinit and an end line Eterm.
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Code similarity ratio (SR): Compares statement similarity

between two fragments Cx and Cy, denoted by SRx,y. The variation

between SRx,y and SRy,x .

Direct clone pair: Involves slight modifications such as

whitespace, comments, or identifiers renaming within Cx, with

equal length, defined as a direct pair [Cx,Cy, SRx,y].

• Type-I clone: A code fragment is considered a Type-I clone

when the source code is copied without any modification,

except for modifications to comments or empty lines.

• Type-II clone: A code fragment is classified as a Type-

II clone when the source code is copied with systematic

changes to identifiers, such as renaming methods, classes, data

types, variable names, string literals, or numeric literals, while

maintaining the overall structure and functionality.

Type-I and Type-II clones are types of direct clone pairs.

General clone pair: In this category, Cx originates from

Cy but allows for transformations, including line insertions and

deletions. Type-III (ST) clones fall into the general clone pair, and

modifications in Cx can reach up to 30% of the original code,

illustrating the flexibility and complexity of clone classification.

Whereas Clone Type-III (MT), also known as large-gap clones,

extends beyond Type-III (ST) clones by incorporating significant

modifications—statement changes affecting as much as 50% of

the original code, as outlined by Higo et al. (2002). Despite their

resemblance to Type-III (ST) clones, Type-IIIMT are distinguished

by their scale of modification. Thus, they are evaluated separately

within our analysis.

4 Approach

This section outlines our CodeGuard technique and our

proposed solution for code clone detection. The process begins

with downloading and preprocessing reliable datasets, followed

by code abstraction at various levels. We then create overlapping

code chunks, converting them into unique signatures stored

in an indexed pattern in a CloneVault for efficient retrieval.

Following that, a diff algorithm is utilized to identify clone

patterns and modifications, resulting in a comprehensive clone

report. CodeGuard functions as a sequential pipeline, with each

step building on the previous one. The overview is illustrated in

Figure 2, our approach is designed for Java datasets, offering a

systematic workflow from data acquisition to clone detection. The

detailed preprocessing and processing phases are here as follows:

4.1 Data preparation

This subsection elaborates on the preprocessing phases applied

to raw source code, aimed at optimizing it for precise clone

detection. These phases systematically enhance the code’s quality,

forming the groundwork for in-depth analysis. Preprocessing is

a fundamental phase in CodeGuard for enhancing source code

analysis for clone detection, a method emphasized by Li et al.

(2014). This phase elevates code quality by:

• Data cleaning: Removing outliers to reduce dataset noise.

• Data reduction: Streamlining the dataset, preserving its

analytical value.

• Data transformation: Achieving uniformity through

normalization and discretization.

• Data integration: Unifying data sources into one database.

An essential aspect of preprocessing involves filtering out

non-functional code components that don’t contribute to the

operational behavior but could affect detection accuracy. These

include metadata-centric package declarations, non-executable

comments, and white spaces—which might compromise detection

efficiency. By removing these unnecessary lines of code, we refine

the source code, enhancing its clarity and reducing noise. This

process strengthens the robustness and precision of our clone

detection technique.

4.1.1 Level-by-level abstraction
In our CodeGuard technique, we refine the direct tokenization

method of cleaned source code to enhance clone detection,

addressing Type-II clone identification challenges. Traditional

tokenization methods may overlook actual Type-II clones due to

typical modifications like variable or function etc renaming, as

they implement direct tokenization. To address this, we employ

a comprehensive level-by-level abstraction process, exemplified in

Figure 3, with the weather report. Level-by-abstraction enhances

CodeGuard’s ability to detect clones with common modifications,

outlined as follows:

• Level 0: No Abstraction: At the initial level, the source code

remains in its original cleaned form without any abstraction

being implemented.

• Level 1: Method and Class-Level Abstraction: At the second

level of abstraction, we refine the process by applying

abstraction techniques to both method and class levels. After

extracting the names of all classes and functions from their

respective definition headers, each appearance of a method

and class instance in the specific Java file is labeled as

“CLASS_NAME” and “METHOD_NAME.”

• Level 2: String, Numerical-Literal and Variable-Level

Abstraction: At this level, we systematically extract the

string literals, numeric literals, and variable names from

each code file into distinct lists. Every instance of string,

numeric literals, and variables within the cleaned code

is then labeled with a unique identifier. Variable names

are specifically labeled with the particular identifier

“VAR_NAME”. In contrast, string literals and numeric

literals are assigned the identifiers “STRING_LITERAL” and

“NUM_LITERAL”, respectively.

• Level 3: Data Type and Parameter-Level Abstraction:

Data types and method parameters are extracted from

each code file and stored in a list. Each instance of a

data type or method parameter within the code is tagged

as “DATA_TYPE” and “PARAM_NAME” respectively. This

enhancement strengthens the “CodeGuard” technique, make

it resilient against commonmodifications at both the data type

and method parameter levels.
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FIGURE 2

Overall architecture of CodeGuard.

FIGURE 3

Level-by-level abstraction implementation.

Java keywords are remained same over all abstractions.

Variables, strings, numeric literals, methods, and function

names are frequently modified by developers to meet

their specific code task requirements. Our level-by-level

abstraction methodology is designed to detect common

modified code and especially enhance the ability to detect

Type-II clones.

4.2 Token generation

The abstraction of cleaned code is tokenised using semicolons,

instead of new line (\n), to form tokens, addressing the issue

of high false positive ratios when splitting by new lines, which

often misidentifies non-clones as clones. Tokens are transformed

into overlapping chunks with six-token window size, e.g., the first
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chunk spans tokens 1–6 tokens, and the second chunk contain

2–7 token etc, a crucial step in CodeGuard. The chunk size

directly affects database generation time, detection speed, and clone

identification accuracy. Larger chunks increase preprocessing and

database generation time, potentially decreasing accuracy, while

too small chunks may raise the false positive rate.

4.3 Signature generation

Overlapping chunks are converted into xxHash64 signatures

instead of transforming into MD5, FNV, and Murmur traditionally

used hash signature for code cloning, known for their slower

performance due to multiple rounds of compression as outlined in

hash algorithm benchmarks.1 The xxHash64 algorithm, proposed

by Startin (2019), is chosen for its exceptional efficiency, generating

signatures at RAM speed limits. This selection is paramount,

not just for the algorithm’s efficiency, but also for its quality

and its low collision rate of 1018, making identical signatures

in a vast database nearly impossible. The xxHash64 algorithm

begins with any 64-bit seed value, processing ASCII byte sequences

in 32-byte chunks. Through several data mixing rounds and

bitwise operations, it updates internal accumulators to capture

the data’s pattern, culminating in a single, highly reliable 64-

bit hash value, which can be either in decimal form or

hexadecimal form.

4.4 CloneVault

Signatures of overlapping chunks are stored in the CloneVault

a specialized database table. It features four columns designed for

efficient storage and retrieval:

• Entry ID: A unique identifier.

• Initial Signature: First signature value of each chunk, key to

efficient indexing.

• Chunk Signature: Overlapping chunk’s signature.

• File Path: The corresponding file path.

Efficient indexing, particularly of the Initial Signature, significantly

accelerates clone retrieval. This database architecture facilitates

streamlined detection, identification, and retrieval of code clones,

boosting the overall effectiveness and efficiency of CodeGuard.

5 Clone detection process

For clone detection, we first subject the code to comprehensive

preprocessing, involving data cleaning, normalization, and

refinement, to strip away unnecessary lines of code and normalize

it for deeper analysis. Subsequent to this step, we apply a systematic

level-by-level abstraction to the code. Subsequently, we generate

overlapping code chunks based on a six-line threshold and

create xxHash64 signatures for these chunks. These signatures

1 Benchmarking the performance of hash functions. Available at: https://

github.com/Cyan4973/xxHash/tree/dev.

are subsequently stored and ready for comparison against our

CloneVault to identify similarities effectively.

5.1 Clone identification

Our clone detection methodology efficiently compares subject

code signatures with a pre-indexed CloneVault, eliminating the

need to search through the entire database. By matching the

first signature of each subject’s overlapping chunk with the

corresponding pre-indexed signature in the CloneVault, we then

compare both sets of overlapping chunks for similarity. A

successful match requires at least a 50% alignment in chunk

signatures between the subject code and CloneVault entries.We use

the following formula to determine match criteria:

SRx,y =

{

1, if ∃ 2HCx = HCy ∈ DBwith match ≥ 50%

0, otherwise
(1)

where SRx,y denotes the similarity ratio between code fragments Cx

and Cy, and HCx is the subject hash chunk and HCy is the database

hash chunk. For a successful clone match, at least two chunks

within the same file must surpass this 50% similarity threshold,

regardless of their sequential order. This flexible matching allows

us to identify clones with a high degree of similarity, even amidst

significant code modification, including all sub-types of Type-III

clones.

5.2 Precise detection using di� algorithm

After detecting potential clones, we utilize the Diff algorithm

(Myers, 1986) to pinpoint changes made within copied code

segments, advancing beyond existing clone detection techniques.

This method excels at pinpointing modifications in Type-III sub-

type clones by identifying the longest common subsequence (LCS)

within the code, employing a dynamic programming approach

for comparison. It begins the comparison of two sequences

X = [x1, x2, x3, . . . , xm] and Y = [y1, y2, y3, . . . , yn], where X

is the subject file, and Y is the java code file code stored in

the database. Diff algorithm comprises four key steps, outlined

as follows:

• Step 1: Initialize the table

– Create a table L of size (m+ 1)× (n+ 1).

– L[i][j] stores the length of the LCS of X[1..i] and Y[1..j].

– Set all L[i][j] to 0, indicating no common subsequence

found yet.

A table L is set up with dimensions (m + 1) × (n + 1) for

sequences X and Y , initializing all cells to zero, indicating no

LCS found initially.

• Step 2: Filling the table

– For each character comparison between X and Y , update

L[i][j] accordingly.

– If xi = yj, then L[i][j] = L[i− 1][j− 1]+ 1.
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FIGURE 4

Implementation of di� algorithm.

– Else, L[i][j] = max(L[i − 1][j], L[i][j − 1]), capturing the

longest subsequence found so far.

Each character of X and Y is compared, incrementing L[i][j]

for matches, else take the max value from adjacent cells for

mismatches.

• Step 3: Traceback for LCS

– Starting from L[m][n], trace back the path that led to the

LCS.

– Move diagonally back when a match (xi = yj) contributed

to the current LCS length, indicating a part of the LCS.

Else, move up or left, depending on which direction has the

larger value.

Starting from L[m][n], a traceback process determines the

LCS, indicating matches and mismatches and guiding the LCS

extraction.

• Step 4: Extracting the LCS

– During traceback, when a diagonal move is made, record

the matching character as part of the LCS.

– Continue tracing back until reaching the start of the table

(L[0][0]), compiling the LCS from the recorded characters.

The LCS is extracted by following the traceback path,

where diagonal moves indicate matches included in

the LCS.

The Diff algorithm efficiently compares Java code lines represented

by sequences X = “ABCDEF” and Y = “ABCDIF,” as shown

in Figure 4. The algorithm initiates by setting up an empty

matrix, progressing to populate it based on character matches

and mismatches, following the LCS rules. Consecutive matches

increase the value in the matrix, leading to an LCS value of 5,

signifying five aligned characters. The analysis identifies “ABCDF”

as the longest common subsequence and highlights “IE” as a

variation, potentially marking a modified segment in cloned

code. The green cells signify matched characters, and the red

cells denote differences used to trace back the LCS, revealing

the sequence “ABCDF” as the common subsequence and “IE”

indicating cloned code modifications. Diff algorithm enhances the

CodeGuard technique’s ability to accurately pinpoint modifications

within complex clone types.

6 Evaluation

In our comparative evaluation, CodeGuard was assessed

alongside prominent token-based and hybrid token-based

methods, including DroidMD (Akram et al., 2021), Vuddy (Kim

et al., 2017), and AYAT (Giani et al., 2022), VCIPR (Akram et al.,

2019) which align closely with our hybrid token-based method.

To highlight CodeGuard’s versatility and provide a comprehensive

assessment, we broadened our analysis to encompass various

methodologies, such as the hybrid-PDG method proposed by

Song et al. (2020), the hybrid-AST based method by Yang et al.
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TABLE 1 Datasets.

Dataset Files Methods Lines

D4J-Dataset 85,173 278,110 10,631,318

IJA-Dataset 100,000 252,022 51,763,980

GTH-Dataset 100,000 172,307 7,768,509

(2018), and text-based technique ICDT.2 This comprehensive

comparative analysis emphasizes CodeGuard’s robustness across

different cloning detection methods.

6.1 Dataset

To assess the effectiveness of our CodeGuard technique, we

conducted an evaluation using the IJADataset (Svajlenko and

Roy, 2015), GTH-Dataset (Allamanis and Sutton, 2013), and D4J-

Dataset (see footnote 2) datasets highly regarded in the field of

code clone detection. As mentioned in Table 1, IJA-Dataset ranges

from the smallest file containing 50 lines of Java code to the largest

comprising 1,600 lines, summing up to a total of 51,763,980 lines

across 1,593,159 methods.

The D4J-Dataset includes 85,173 Java files, 278,110 methods,

and 10,631,318 lines of code. The GTH-Dataset contain 100,000

Java files, 172,307 methods and 7,768,509 lines of code. The IJA-

Dataset is approximately 4.87 times larger than the D4J-Dataset and

6.66 times more than GTH-Dataset in terms of the number of lines

of code, ensuring a robust evaluation of CodeGuard against diverse

and extensive codebases.

6.2 Experimental setup

To assess our code clone detection technique, we established a

testing environment with 200 Java files, initially categorized as non-

clones. We then selected 100 diverse functions, ranging from 10

to 150 lines of code, from our diverse dataset and organized them

into five distinct groups to represent a range of clone types. This

setup facilitated the simulation of both direct and general clone

modifications across all Type-I, Type-II, Type-III ST, Type-III VST,

and Type-III MT (LG) types.

For Type-I modifications, comments and empty lines are

systematically modified at specific intervals to simulate uniform

changes without bias. For Type-II, identifiers like class names,

method names, parameters, constructors, string literals, and

variables are systematically renamed, whereas numerical literals are

incremented to ensure modifications are evenly spread across files.

For Type-III ST (0%–10%), Type-III VST (11%–30%), and

Type-III MT (31%–50%), modifications involve inserting blocks

of code within the original code based on predefined systematic

intervals. These modifications correspond to modifying a specified

percentage of the original code’s length, ensuring systematic

2 D4j code dataset. Available at: https://www.kaggle.com/datasets/

zavadskyy/lots-of-code?select=java.txt.

variations across the dataset. Each modification type adheres

to a patterned approach, using calculated intervals or patterns

for modifications, thus minimizing randomness and providing a

consistent, unbiased modification across all the files.

Following that, we injected 100 diverse functions representing

each five clone types—Type-I, Type-II, Type-III ST, Type-III VST,

and Type-III MT (LG)—into subsets of Java files, initially non-

clones. Across five groups, each with 200 files, functions are injected

into 100 files (each initially containing 200 non-clone Java files) per

group, thus transforming them into known clones. This selection

process ensured a comprehensive assessment across clone types.

The injection was carefully executed to ensure that the functions

were injected at syntactically appropriate positions within the code

to maintain the integrity of the original file’s structure while adding

new functions.

The selection and injection of clone functions into non-clone

files were methodically executed by shuffling and pairing each

non-clone file with a unique clone function from the respective

group, ensuring an equitable distribution and minimizing bias.

This deliberate methodology ensures that each modified file,

now prefixed with “Clone-,” accurately reflects its cloned status

(e.g., “Clone-Example.java”), while the rest remain as non-clones.

This systematic approach simulates realistic software development

scenarios.

6.2.1 Evaluation metrics analysis
In this section, we conduct a comprehensive evaluation of clone

detection evaluation metrics, placing our CodeGuard technique

in direct comparison with leading clone detection techniques. By

leveraging essential evaluation metrics such as precision, recall, F1-

score, accuracy, and detection time, it prepares the groundwork

for an extensive analysis of these performance indicators in the

context of code cloning. The comprehensive findings, summarized

in Tables 2, 3 and average results graphical representation presented

in Figure 5, set the stage for an in-depth discussion on thesemetrics.

This analysis not only emphasizes the competitive performance of

CodeGuard but also sheds light on its efficiency and effectiveness in

identifying code clones, distinguishing it from other techniques.

Precision

Precision is a critical metric in clone detection that measures

the proportion of true identifications (TP, correctly identified

clones) against the sum of true positives and false positives (FP,

incorrect clone identifications). It is calculated as:

Precision =
True Positives (TP)

True Positives (TP)+ False Positives (FP)
(2)

High precision indicates a technique’s ability to correctly classify

clones, highlighting its specificity in distinguishing true clones (TP)

from false positives (FP). Our CodeGuard technique consistently

demonstrated exceptional precision across various clone types,

averaging results from the IJA-Dataset, D4J-Dataset, and GTH-

Dataset. For Type-I clones,CodeGuard achieved a precision of 0.98,

which is 1.18 times better than AYAT (0.833) and more than double
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TABLE 2 Evaluation metrics for direct clones, where D.Time denotes detection time.

Techniques Code clone Type-I Code clone Type-II

Technique Dataset Precision Recall F1-Score Accuracy D.Time Precision Recall F1-Score Accuracy D.Time

0.90 Our

technique

D4J-Dataset 0.99 1.0 0.99 0.99 1.08 0.99 1.0 0.99 0.99 1.07

0.95 IJA-Dataset 1.00 0.95 0.97 0.97 4.83 1.00 0.95 0.97 0.97 4.82

0.90 GTH-Dataset 0.95 1.00 0.97 0.97 0.79 0.95 1.0 0.97 0.97 0.85

Vuddy D4J-Dataset 1.00 0.91 0.95 0.91 0.28 1.00 0.89 0.94 0.89 0.21

IJA-Dataset 0.51 0.54 0.52 0.51 0.90 0.51 0.54 0.52 0.51 0.55

GTH-Dataset 0.52 0.59 0.55 0.53 0.44 0.52 0.59 0.55 0.52 0.27

Song et al. D4J-Dataset 0.65 0.93 0.77 0.71 0.79 0.65 0.94 0.77 0.72 0.78

IJA-Dataset 0.61 0.84 0.71 0.66 2.10 0.51 0.55 0.53 0.51 2.18

GTH-Dataset 0.55 0.67 0.61 0.56 0.63 0.52 0.60 0.56 0.53 0.59

Yang et al. D4J-Dataset 0.46 0.63 0.53 0.44 1.46 0.44 0.58 0.50 0.41 1.13

IJA-Dataset 0.48 0.60 0.53 0.47 5.22 0.49 0.63 0.55 0.48 4.71

GTH-Dataset 0.47 0.65 0.55 0.47 0.86 0.49 0.69 0.57 0.47 0.83

VCIPR D4J-Dataset 0.57 0.04 0.07 0.51 0.92 0.57 0.04 0.51 0.97 0.62

IJA-Dataset 0.38 0.05 0.09 0.48 2.11 0.43 0.06 0.11 0.49 0.34

GTH-Dataset 0.97 0.36 0.53 0.68 0.47 0.83 0.05 0.09 0.52 0.47

ICDT D4J-Dataset 0.53 0.57 0.55 0.54 0.54 0.51 0.52 0.51 0.51 0.23

IJA-Dataset 0.56 0.56 0.56 0.14 0.53 0.49 0.43 0.46 0.49 0.24

GTH-Dataset 0.60 0.64 0.62 0.61 0.48 0.59 0.58 0.58 0.58 0.19

AYAT D4J-Dataset 0.83 0.86 0.84 0.84 3.40 0.83 0.90 0.87 0.86 2.79

IJA-Dataset 0.86 1.00 0.93 0.92 44.91 0.70 0.30 0.49 0.61 61.16

GTH-Dataset 0.81 1.00 0.90 0.89 1.82 0.81 1.00 0.90 0.89 1.49

DroidMD D4J-Dataset 0.62 0.08 0.14 0.52 0.93 0.64 0.09 0.16 0.52 0.40

IJA-Dataset 0.78 0.14 0.24 0.55 3.24 0.43 0.03 0.06 0.49 1.15

GTH-Dataset 0.92 0.44 0.59 0.70 0.29 0.88 0.28 0.42 0.62 0.28

the precision of Yang et al., showing an improvement of 2.09 times

(0.98 vs. 0.47). In Type-II clones, it was 1.26 times more precise

than AYAT (0.98 vs. 0.78) and exhibited a 1.85 times enhancement

over ICDT (0.98 vs. 0.53). For Type-III S clones, it surpassed Song

et al. by 1.77 times (0.98 vs. 0.553) and outperformed Vuddy by

1.45 times (0.98 vs. 0.676). Additionally, CodeGuard improved

its precision over Song et al. by 1.75 times (0.98 vs. 0.56) and

maintained a 1.18 times lead over AYAT (0.98 vs. 0.833). In

the complex Type-III MT clones, CodeGuard demonstrated an

improvement of 2.14 times over Yang et al. (0.976 vs. 0.456) and

exceeded Vuddy by 1.45 times (0.976 vs. 0.673).

Recall

Recall is an important metric for evaluating clone detection

performance, focusing on a technique’s ability to identify all true

clones within a dataset. It measures the proportion of actual clones

detected, with higher recall indicating a technique’s enhanced

ability to detect all true clones. Whereas a false negative (FN)

represents a true clone that is incorrectly identified as a non-clone.

Recall is calculated using the following formula:

Recall =
True Positives (TP)

True Positives (TP)+ False Negatives (FN)
(3)

In evaluating recall, CodeGuard consistently outperformed across

all clone types. Averaging results from the IJA-Dataset, D4J-

Dataset, and GTH-Dataset, CodeGuard achieved a recall of 0.983

for Type-I clones, surpassing the highest recall of AYAT by 1.03

times (0.983 vs. 0.953) and exceeding the lowest recall of VCIPR

and DroidMD by 6.5 times and 4.5 times, respectively (0.98 vs.

0.15 and 0.22). For Type-II clones, it maintained dominance with a

recall of 0.983, outperforming AYAT by 1.34 times (0.983 vs. 0.733)

and exceeding the recall of VCIPR and DroidMD by approximately

20 times and 7.5 times, respectively (0.98 vs. 0.05 and 0.13). In

Type-III ST clones, CodeGuard achieved a recall of 0.95, exceeding

AYAT by 1.02 times (0.95 vs. 0.933) and outperforming VCIPR and

DroidMD by approximately 24 times and 7.9 times, respectively

(0.95 vs. 0.04 and 0.12). For Type-III MT clones, CodeGuard

showed a recall of 0.927, slightly surpassing AYAT by 0.98 times
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TABLE 3 Evaluation metrics for general clones, where D.Time denotes detection time.

Techniques Code clone type-III-ST Code clone type-III-MT

Technique Dataset Precision Recall F1-Score Accuracy D.Time Precision Recall F1-Score Accuracy D.Time

0.90 Our

technique

D4J-Dataset 0.99 1.0 0.99 0.99 1.13 0.99 1.0 0.99 0.99 1.44

0.95 IJA-Dataset 1.00 0.90 0.94 0.95 4.92 1.00 0.89 0.94 0.94 4.90

0.90 GTH-Dataset 0.95 0.95 0.95 0.95 0.80 0.94 0.89 0.91 0.92 0.82

Vuddy D4J-Dataset 1.00 0.86 0.92 0.86 0.28 1.00 0.83 0.91 0.83 0.29

IJA-Dataset 0.51 0.55 0.53 0.52 0.20 0.51 0.55 0.53 0.52 0.21

GTH-Dataset 0.51 0.58 0.54 0.52 0.28 0.51 0.57 0.54 0.51 0.27

Song et al. D4J-Dataset 0.65 0.92 0.76 0.71 0.70 0.64 0.89 0.74 0.69 0.74

IJA-Dataset 0.51 0.56 0.54 0.52 2.25 0.51 0.56 0.54 0.52 2.35

GTH-Dataset 0.52 0.59 0.55 0.52 0.61 0.51 0.57 0.54 0.51 0.58

Yang et al. D4J-Dataset 0.43 0.57 0.49 0.41 1.14 0.44 0.58 0.50 0.41 1.12

IJA-Dataset 0.48 0.61 0.54 0.47 13.73 0.46 0.57 0.51 0.46 5.22

GTH-Dataset 0.48 0.66 0.55 0.47 0.83 0.47 0.63 0.54 0.46 0.80

VCIPR D4J-Dataset 0.57 0.04 0.07 0.51 0.64 0.57 0.04 0.07 0.51 0.61

IJA-Dataset 0.33 0.04 0.07 0.48 0.37 0.43 0.06 0.11 0.49 0.45

GTH-Dataset 0.80 0.04 0.08 0.52 0.50 0.75 0.03 0.06 0.51 0.49

ICDT D4J-Dataset 0.53 0.56 0.54 0.53 0.27 0.54 0.59 0.56 0.55 0.21

IJA-Dataset 0.52 0.48 0.50 0.52 0.24 0.52 0.48 0.50 0.52 0.20

GTH-Dataset 0.53 0.47 0.50 0.53 0.19 0.53 0.46 0.49 0.53 0.18

AYAT D4J-Dataset 0.83 0.86 0.84 0.82 3.82 0.83 0.89 0.86 0.82 8.94

IJA-Dataset 0.86 0.99 0.92 0.92 61.03 0.86 0.99 0.92 0.92 62.02

GTH-Dataset 0.81 0.95 0.87 0.86 1.47 0.81 0.95 0.87 0.86 1.52

DroidMD D4J-Dataset 0.62 0.08 0.14 0.52 0.43 0.64 0.09 0.16 0.52 0.37

IJA-Dataset 0.60 0.06 0.11 0.51 1.58 0.69 0.09 0.16 0.53 1.62

GTH-Dataset 0.85 0.23 0.36 0.59 0.29 0.85 0.22 0.35 0.59 0.29

(0.927 vs. 0.943) and significantly outperforming VCIPR and

DroidMD by approximately 23 times and 7.2 times, respectively

(0.93 vs. 0.04 and 0.13). These results emphasize CodeGuard’s

unmatched proficiency in precise clone identification.

F1-score

The F1-score is an essential metric for assessing the

performance of code clone detection techniques, harmonizing

precision and recall to evaluate overall efficacy. It adeptly balances

accurately identifying true clones with ensuring the complete

detection of clones within a dataset. Defined by the harmonic mean

of precision and recall, the F1-score is calculated using following

equation:

F1 = 2×
Precision× Recall

Precision+ Recall
(4)

The F1 Score combines precision and recall into a singular

metric, offering an all-encompassing evaluation of a technique’s

performance. Thus, the F1 Score stands as a pivotal indicator of the

overall effectiveness and reliability of a clone detection technique.

In assessing F1-scores, CodeGuard outperforms across all clone

types, demonstrating its exceptional capability in balanced clone

detection. Averaging results from the IJA-Dataset, D4J-Dataset,

and GTH-Dataset, for Type-I clones, CodeGuard achieved an F1-

score of 0.976, surpassing AYAT by 1.10 times (0.976 vs. 0.89)

and vastly outperforming the lowest F1-scores of VCIPR and

DroidMD by approximately 4.3 times and 3.1 times, respectively

(0.98 vs. 0.23 and 0.32). In Type-II clones, CodeGuard achieved

an F1-score of 0.98, significantly exceeding the lowest F1-scores of

VCIPR and DroidMD by approximately 4.1 times and 4.7 times,

respectively (0.98 vs. 0.24 and 0.21), and surpassing AYAT by

1.3 times (0.98 vs. 0.75). Within Type-III ST clones, CodeGuard

achieved a 0.96 F1-score, outperforming the highest F1-score of

AYAT by 1.10 times (0.96 vs. 0.877), and exceeding the lowest

F1-scores of VCIPR and DroidMD by approximately 13.7 times

and 4.8 times, respectively (0.96 vs. 0.07 and 0.20). For Type-

III MT clones, CodeGuard consistently achieved an F1-score

of 0.947, surpassing AYAT by 1.07 times (0.947 vs. 0.883) and
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FIGURE 5

Evaluation metrics comparison.

outperforming the lowest F1-scores of VCIPR and DroidMD by

approximately 11.9 times and 4.3 times, respectively (0.95 vs. 0.08

and 0.22), showcasing its superior performance in complex clone

detection scenarios.

Accuracy

Accuracy plays a key role in clone detection, illustrating a

technique’s ability to correctly classify both cloned and non-cloned

code segments. It encompasses true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN), offering a

comprehensive measure of detection performance. Accuracy is

computed using the following equation:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(5)

A high accuracy level demonstrates a technique’s reliability in

clone detection, which is essential for minimizingmisclassifications

and ensuring the integrity of the technique. In our accuracy

assessment, CodeGuard leads in clone detection accuracy across

all clone types. Averaging results from the IJA-Dataset, D4J-

Dataset, and GTH-Dataset, for Type-I clones, CodeGuard achieved

a notable accuracy of 0.977, surpassing AYAT by 1.11 times

(0.977 vs. 0.883) and far exceeding the lowest accuracy of ICDT

by 2.27 times (0.977 vs. 0.43). For Type-II clones, it achieved

a high accuracy of 0.977, outperforming AYAT by 1.24 times

(0.977 vs. 0.787) and the lowest accuracy of ICDT by 1.86 times

(0.977 vs. 0.527). In Type-III ST clones, CodeGuard achieved

an accuracy of 0.963, vastly outperforming Vuddy’s 0.633 by

1.52 times (0.963 vs. 0.633) and exceeding AYAT by 1.11 times

(0.963 vs. 0.867). This demonstrates its precision in complex

clone detection. For Type-III MT clones, CodeGuard achieved

an accuracy of 0.95, surpassing AYAT by 1.10 times (0.95 vs.

0.867) and the lowest accuracy of Yang et al. by 2.14 times

(0.95 vs. 0.443). These results highlight CodeGuard’s superior

capability in detecting clones, showcasing its effectiveness in

clone detection.

E�ciency

An effective clone detection technique is characterized by

near-perfect precision, recall, F1 score, accuracy, and efficiency.

Averaging results from the IJA-Dataset, D4J-Dataset, and GTH-

Dataset, CodeGuard demonstrated notable efficiency across all

clone types, with detection times averaging 2.23 seconds for Type-

I, 2.25 seconds for Type-II, 2.28 seconds for Type-III ST, and

2.39 seconds for Type-III MT clones. In contrast, AYAT’s times

ranged from 16.71 to 24.16 seconds, indicating significantly less

efficiency in clone detection. Yang et al.’s average times varied

from 2.22 to 5.23 seconds, slightly exceeding CodeGuard’s, yet
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demonstrating commendable efficiency. Other methods like Vuddy

(0.26 to 0.54 seconds), Song et al. (1.17 to 1.22 seconds), and

DroidMD (0.61 to 1.49 seconds) were more efficient, benefiting

from a function-based approach that significantly reduced the

volume of code for comparison and exact chunks and function

signatures matching. In our analysis, the AYAT technique had the

longest detection times among all techniques, ranging from 16.71

seconds to 24.16 seconds. However, despite their rapid efficiency of

techniques, they sacrificed evaluation metrics regarding precision,

recall, F1-score, and accuracy due to variations in the clone type.

Although CodeGuard exhibits slightly longer detection times than

the fastest methods, it effectively balances accuracy and detection

efficiency. Its exceptional precision, recall, F1-score, and accuracy

ensure reliable clone detection, essential for complex software

development and maintenance.

CodeGuard efficiently processed a comprehensive database in

just 1,540.56 seconds on average, emphasizing its effectiveness.

CodeGuard completed the database generation slightly slower than

Vuddy (786.98 seconds) and Song et al. (297.58.4 seconds). This

is due to the comprehensive preprocessing, including abstraction,

which enables our technique to detect clones, especially Type-

II clones, effectively. Although AYAT and Yang et al. reported

more rapid generation times of 166.52 and 189.39 seconds,

CodeGuard’s performance remains competitive. Even though

our technique takes slightly longer to generate the database, it

performs well in evaluation metrics such as precision, recall,

F1-score, and accuracy and is more efficient than DroidMD

(6,292.66 seconds) and VCIPR (5,455.4). Since database generation

is a one-time process, the slightly longer generation time can

be overlooked.

7 Discussion and limitations

Code cloning techniques should be implemented in software

development only when they demonstrably enhance key

performance indicators such as precision, recall, F1-score,

and accuracy. These criteria are essential for reducing false

identifications while accurately detecting both clone and non-clone

segments.

CodeGuard distinguishes itself with an advanced preprocessing

phase, meticulously removing whitespaces and comments to

enhance Type-I clone detection, and applies a comprehensive

level-by-level abstraction, covering variables, data types, literals,

methods, and classes for precise Type-II clone identification.

To reduce false positives through comprehensive level-by-level

abstraction, semi-colons are utilized for tokenizing preprocessed

code, replacing the existed methods of splitting code by newline.

CodeGuard excels in its processing phase by employing an

advanced matching algorithm targeting a 50% to 100% similarity

range for Type-III clones (ST and MT). It uses an efficient

index-based chunk-matching algorithm that begins by comparing

the first signature of each subject chunk against the database’s

first signatures. When a match is found, it then ensures that

corresponding chunks share a minimum of 50% similarity across at

least two chunks from the same file, irrespective of their sequence.

Beyond mere detection, CodeGuard utilizes the Diff Algorithm

to pinpoint the changes made in clone code, offering invaluable

insights for maintenance and debugging in software maintenance.

CodeGuardeffectively detects code clones by achieving high

precision, recall, F1-score, and accuracy. However, this comes

at the cost of efficiency. Compared to other tools like VUDDY,

ICDT, DroidMD, and VCIPR, CodeGuard takes longer time to

detect clones. While these tools are efficient at clone detection,

they fall short of delivering the same level of accuracy and

overall performance in evaluation metrics. Another limitation is

CodeGuard’s language dependency. It is specifically designed for

Java, which may restrict its adaptability to other programming

languages. Different languages, with varying syntax and structure,

may require significant changes to the preprocessing and chunk-

matching algorithms to maintain the same level of clone detection

accuracy.

Whereas Vuddy’s technique (Kim et al., 2017) for clone

detection initially involves extracting code functions and applying

limited abstraction to the preprocessed code. This selective

abstraction may lead to false positives, mistakenly identifying

small non-clone functions as clones. Vuddy uses MD5 hashes for

function signature generation, which pose challenges in handling

code modifications like insertions or deletions, prevalent in Type-

III (ST and MT) clones, due to resulting hash value changes.

The ICDT technique (see foot note 2) demonstrated strong

performance in clone detection due to its use of smaller chunk

sizes, which significantly influence precision, recall, F1-score, and

accuracy. Appropriate chunk size is essential; if it is too small,

it may incorrectly flag non-clones as clones; if it is too large,

true clones might be missed. For instance, the recently proposed

VCIPR technique underperformed across all datasets. This poor

performance was primarily due to its reliance on exact chunk

signature matches and its use of larger chunk sizes, such as a

window size of 15.

AYAT (Giani et al., 2022) shows robust performance in

detecting Type-I and Type-III (ST and MT) clones. It attributes

its success to adopting smaller chunk sizes, significantly achieving

good precision, recall, F1 score, and accuracy. Appropriate chunk

size is essential; overly small chunks can lead to false positives

by flagging non-clones as clones, whereas excessively large ones

may miss true clones. Despite its commendable metrics due to

small chunk adoption, AYAT’s absence of abstraction affected

its ability to detect Type-II clones effectively. Whereas (Song

et al., 2020) process source code structural patterns by extracting

functions, segmenting them into slices, and transforming these

slices to the FNV-1a hash signature. It utilizes a binary bit-vector

for function comparison, identifying clones by matching these

vectors. However, lacking flexibility leads to potential false positives

and negatives in large databases. This inflexibility may result in

mismatches due to code variations in Type-III (ST and MT),

adversely affecting the technique’s precision, recall, f1-score, and

accuracy.

The DroidMD (Akram et al., 2021) employs a unique

preprocessing approach, labeling code identifiers with generic

“id” tags and incrementally numbering each identifier, excluding

Java keywords. Streamlining identifiers risks losing contextual

information crucial for precise clone detection. Strict signature

chunk matching and large chunk size limits its ability to
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recognize clones with minor changes, consequently impacting its

effectiveness. Although DroidMD demonstrates its effectiveness

in identifying simpler Type-I clones, its performance markedly

declines for more complex Type-III (ST and MT). This decline

is attributed to its strict chunk size requirements and inadequacy

to accommodate code variations, reducing its overall detection

efficacy. Simultaneously, Yang et al. (2018) transform functions

into abstract syntax trees with several node types, including

class elements, code blocks, statements, expressions, operators,

keywords, and literals. These nodes are converted into a sequence

of characters, providing a compact code representation stored in

a database for unique function patterns. However, due to the

large number of functions in extensive codebases and the limited

characters, the local sequence alignment algorithm can cause

a high ratio of false positives and negatives, affecting accurate

clone identification in large databases. This challenge leads to the

average performance of Yang et al. in the clone detection testing

environment.

CodeGuard stands out in comparative studies with unmatched

precision, recall, F1-score, accuracy, and efficiency across clone

types. Beyond mere detection, it also pinpoints changes made in

clone code, providing deep insights for analysis. This emphasizes

CodeGuard’s critical role in enhancing software quality and

maintenance efficiency. Offering in-depth analytical insights

empowers developers with a profound understanding of code

quality, enabling the development of more robust andmaintainable

software systems.

System specification

The CloneVault and clone detection were performed on a

Windows 11 (64-bit) system with an Intel i5 13500H v5 CPU

@2.6GHz, 16GB LPDDR5 RAM. CodeGuard and comparative

techniques were evaluated using batch processing within

this setup.

8 Conclusion

This research presents CodeGuard, an advanced code cloning

technique for identifying the entire range of code clones, including

Type-I, Type-II, and Type-III (ST and MT). It’s comprehensive

preprocessing significantly enhances the detection of direct

clones, especially for Type-II clones, while innovative indexing

and matching techniques enhance the general clones, including

all Type-III sub-types clones . It surpasses existing methods;

CodeGuard achieves unparalleled average precision (0.98), recall

(0.96), F1-score (0.96), and accuracy (0.96) across all clone

types, achieving a significant advancement in clone detection.

Its exceptional ability to accurately identify complex Type-III

MT clones, achieving both F1-scores and accuracy of 0.95, sets

a new performance standard. In evaluating average efficiency

through ten iterative computations, CodeGuard outperforms

comparative techniques. Beyond simple detection, CodeGuard

precisely pinpoints modifications made within clone pairs,

significantly improving software maintenance by enhancing code

quality and facilitating maintenance processes. Comprehensive

evaluation results using a diverse dataset confirm CodeGuard as an

essential technique for detecting the complex challenges of clone

detection in modern software engineering. This research study

highlights CodeGuard’s role as a benchmark in clone detection,

emphasizing its significance and importance to software quality and

maintainability.
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