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In the contemporary technological landscape, ensuring confidentiality is a paramount 
concern addressed through various skillsets. Cryptography stands out as a scientific 
methodology for safeguarding communication against unauthorized access. Within 
the realm of cryptography, numerous encryption algorithms have been developed 
to enhance data security. Recognizing the imperative for nonstandard encryption 
algorithms to counter traditional attacks, this paper puts forth novel encryption 
techniques. These methods leverage special corona graphs, star graphs, and 
complete bipartite graphs, incorporating certain algebraic properties to bolster the 
secure transmission of messages. The introduction of these proposed encryption 
schemes aims to elevate the level of security in confidential communication, some 
of the applications of these schemes are given in the later section.
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1 Introduction

Throughout history, military officers and diplomats have sought clandestine means of 
communication. In our contemporary era, characterized by widespread reliance on

the internet, mobile phones, and computer technology across various aspects of daily life, 
the imperative to safeguard crucial information has escalated steadily. Over time, as 
advancements in data security persist, novel methods of breaching private Correspondence are 
constantly emerging. Cryptography, aims to ensure secure transmission without the risk of 
unauthorized access. Initially employed for wartime strategies, classical cryptography boasts a 
history spanning over two millennia. The foundations of modern cryptography were laid by 
Shannon (1949). Cryptography has evolved into an indispensable element of contemporary 
society. Encryption is the process of transforming an original message into a coded format, and 
its reverse operation is referred to as decryption (Rosen, 2005). Encryption serves to prevent 
the interception of the original content, known as plaintext. The information is given in 
plaintext and then it is coded using encryption with specific keys to generate ciphertext. The 
ciphertext is then deciphered back into a readable message through the process of decryption. 
The key is a very important part of information employed to encode the original data and 
subsequently decrypt it to obtain the real text. With the provision of the correct key, the 
authorized recipient can effortlessly unveil the concealed message, while interception by an 
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unauthorized entity becomes infeasible. Contemporary cryptographic 
methods mainly rely on three distinct schemes named as symmetric 
key cryptography employs a single key for both encryption and 
decryption operations then there is public key cryptography in which 
we utilize separate keys for encryption and decryption purposes, and 
lastly is hash functions where employ transformations to securely 
encrypt data in an irreversible manner (Stinson, 2018). These 
cryptographic techniques are fundamental in ensuring the security of 
digital communication and information.

1.1 Simplified explanation of key concepts

Our focus is on advancing encryption methods through the 
utilization of graph theory and algebraic concepts. To begin, let us 
revisit some essential concepts from graph theory (West, 2001).

Basic concepts of graph theory:
Graph: In graph theory, a graph, represented as G V E= ( ), ,  

consists of two distinct sets: the vertex set V G( )  and the 
edge set E G( ) .

Bipartite graph: If the vertices in V G( )  can be separated into 
two non-overlapping subsets in such a way that every edge connects 
a vertex from one subset to a vertex in the other, the graph G  is 
classified as a bipartite graph.

Complete-bipartite graph: A bipartite graph becomes complete-
bipartite when each vertex in one subset is linked to every vertex in 
the other subset.

Star graph: Among complete-bipartite graphs, a particular 
instance is the star graph, characterized by having only one vertex in 
one subset and all other vertices in the other subset.

Pendent vertex and pendent edge: Furthermore, a vertex with a 
degree of one is known as a pendent vertex, and the edge incident to 
it is referred to as a pendent edge.

Corona product of graphs: The corona product of two graphs 
G and H  is denoted as G H , and defined as by taking one copy 
of graph G  and V G( )  - copies of graph H . In this construction, 
the vertex labeled ′ ′i in G is connected to every vertex in the 
′ ′−i th  copy of H. This corona operation, introduced by Frucht and 
Harary (1970), proves to be a significant operation between graphs. 
An interesting example is the star graph Sn +1, consisting of n+1  
vertices, which can be  viewed as a corona graph K Kn1 . 
Additionally, the corona graph of the cycle Cn  with Cn , i.e., 
C Cn n , forms a graph with n n+( )1  vertices achieved by 
attaching n  cycles to main cycle graph Cn .

Graph-based encryption techniques: Using these graph 
structures, we  can develop encryption methods that transform 
messages into secure, coded formats. Here’s a simplified overview of 
how these methods work:

Graph construction: We start by constructing specific graphs 
(like the star graph or corona graph) based on the message to 
be encrypted. Each part of the message corresponds to a vertex or an 
edge in the graph.

Encoding messages: The vertices and edges are labeled with parts 
of the message (letters, numbers, etc.). The structure of the graph (how 
vertices and edges are connected) helps encode the message in a way 
that is difficult to decipher without the correct key.

Key Generation: A key, which is an essential piece of information, 
is generated to help encode and decode the message. This key ensures 
that only authorized recipients can decrypt the message by 
understanding the graph structure used.

Encryption and decryption: During encryption, the plaintext 
message is transformed into a complex graph-based format 
(ciphertext) using the key. For decryption, the key is used to 
reconstruct the original graph and retrieve the plaintext message.

By understanding these fundamental graph theory concepts, 
readers can better appreciate the innovative encryption techniques 
presented in this paper.

Recent research has witnessed a surge in interest in leveraging 
graphs to propose innovative methodologies across various 
cryptographic domains (Selim, 2020). In (Ali et al., 2024a), Selvakumar 
and Gupta introduced a novel coding and decryption algorithm 
employing connected graphs. Authors in Kedia and Agrawal (2015), 
discussed an encryption approach incorporating numeric 
representation and letters, utilizing fundamental mathematical 
concepts such as Venn diagrams. Yamuna and Elakkiya (2015) 
proposed a graph-based encryption algorithm where fundamental 
circuits are chosen based on corresponding edge weights. Yamuna and 
Karthika (2015) presented a unique data transfer method using 
bipartite graphs and a numeric table for alphabet representation. 
Mahmoud and Etaiwi (2014) introduced a symmetric encryption 
algorithm (Arunkumar, 2015) explored extensive applications of 
bipartite graphs in computation. Sinha and Sethi (2016) introduced a 
data security scheme using line sigraph, a new graph concept with 
labeled edges belonging to − +1 1, . In (Hu et al., 2017), authors have 
proposed a bipartite graph-based encryption. Razaq et al. utilized 
coset diagrams in Ali et al. (2024b) to construct a substitution box 
(S-box) for cryptography, focusing on the action of PSL 2( )  on the 
projective line over the finite field 2

9 . Strong S -box construction 
was further explored in Ali N. et al. (2023). In this paper we aim to 
introduce some new encryption schemes based on Explicit categories 
of graphs, defined by C C K Kn n n , 1  (also known as a star graph), 
and complete bipartite graphs. The proposed algorithms facilitate the 
secure transmission of messages, regardless of word length, through 
the utilization of graph structures and specific Mathematical 
characteristics. Following the given algorithmic steps ensures 
comprehensive data protection, with the recipient ultimately 
recovering the original message from the labeled graph. Section 2 
Presents cryptographic techniques using C Cn n , accompanied by a 
formulated algorithm. An example illustrates the application of this 
algorithm. Section 3 introduces the use of complete bipartite graphs to 
construct a secure encryption scheme, accompanied by a detailed 
algorithm. The scheme’s applicability to important information is 
demonstrated through an example. Within the specified section 4, 
we introduce a robust encryption scheme based on a distinctive corona 
graph, denoted as K Kn1 . The algorithm is detailed, accompanied 
by practical illustrations showcasing its application.

2 Encryption scheme using corona 
graph C Cn n

The encryption of the scheme is given as follows:
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2.1 Plaintext Encoding

Begin with the plaintext message that needs to be  securely 
transmitted. Each symbol in the message (including alphabetic 
characters, numbers, punctuation, and other special symbols) is 
encoded using a numeric representation. This can be based on an 
ASCII, Unicode, or any appropriate character encoding table. Let the 
encoded message consist of a sequence of numeric values 
a a a an1 2 3, , ,.., , where n  is the length of the plaintext message.

2.2 Shift cipher

Apply a shift-type cipher to each numeric value of the encoded 
message. The shift is performed modulo m, where m is the size of the 
character encoding set (for example, m =128  for ASCII or m = 256  
for extended character sets). The shift cipher can be represented as:

 
e x x n mn ( ) = +( )mod

Here, x  is the numeric value of the character, and n  is a 
predefined shift value. This transformation ensures that each character 
in the message is shifted by n positions in the character set, providing 
an initial layer of encryption.

2.3 Selection of bi  values

For each shifted numeric value a_i, randomly select a positive 
integer bi  such that gcd b a b mi i i,( ) = >1and  (ensuring that bi  is 
relatively prime to the numeric representation ai  and greater than the 
size of the encoding set).

2.4 Corona graph C Cn n  construction

Consider the Corona graph C Cn n  which consists of n n+( )1  
vertices. Assign the values b b bn1 2, ,..,  to the main cycle vertices and 
distribute these values to the vertices adjacent to the new cycles in a 
random manner.

2.5 Modular inverses

For each ai , compute the inverse of a bi imod .  The inverse is 
denoted by ci , where:

 
c a bi i i= −1 mod

These inverse values c c cn1 2, ,..,  are assigned to the cycles in the 
Corona graph, forming the encrypted message.

2.6 Transmission

The labeled Corona graph C Cn n  with the inverse values ci  
assigned to the cycles and the values bi  assigned to the main cycle 
vertices, is transmitted to the receiver as the encrypted data.

3 Decryption algorithm

3.1 Receive the corona graph

The receiver obtains the transmitted Corona graph C Cn n ,  
which contains the labeled cycles with values c c cn1 2, ,..,  and the main 
cycle vertices labeled with b b bn1 2, ,.., .

3.2 Organize the values

Arrange the cycles in ascending order according to their 
associated bi  values.

3.3 Modular inverse calculation

For each ci , compute the inverse modulo the corresponding bi , 
resulting in the values ai . This inverse operation is calculated as:

 
a c bi i i= −1 mod

These values a a an1 2, ,..,  correspond to the encoded 
message symbols.

3.4 Undo the shift cipher

Reverse the shift operation applied during encryption 
by computing:

 
w a n mi i= −( )mod

for each i , where n is the original shift value used during 
encryption and m is the size of the character set.

3.5 Translate numeric values back to 
symbols

Convert the resulting numeric values w w wn1 2, ,..,  back to their 
corresponding characters using the same character encoding table 
(e.g., ASCII or Unicode) that was used during encryption.

3.6 Reconstruct the plaintext

The translated symbols now represent the original plaintext 
message, completing the decryption process.

Example 1: Suppose the task at hand involves transferring 
information, denoted as “MATHS,” by encrypting it before sending it 
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FIGURE 1

Corona graph.

to the intended recipient. The first step involves transforming the 
alphabetic letters into their respective numerical positions, utilizing 
the encoding table ASCII.

 

M A T H S
13 1 20 8 19

Here, with the word length n = 5 , applying the shift cipher 
e x nn = + ( )mod26 , we obtain:

 

13 5 18
1 5 6

20 5 25
8 5 13

19 5 24

1

2

3

4

5

+ = =
+ = =
+ = =
+ = =
+ = =

a
a
a
a
a

,
,
,

.

The given word is encrypted in the following form:

 
R F Y M X.

Choosing random increasing integers bi   such that the value of bi   
is greater than 26:

 

gcd gcd ,
gcd gcd ,
gcd

b a
b a
b a

1 1

2 2

3 3

18 35 1
6 41 1

, ,
, ,
,

( ) = ( ) =
( ) = ( ) =
( ) = ggcd ,

gcd gcd ,
gcd gcd

25 49 1
13 51 1
24 71

4 4

5 5

,
, ,
, ,

( ) =
( ) = ( ) =
( ) = (
b a
b a )) =1

Constructing the Corona graph C Cn n  and randomly assigning 
the values of bi  to the main vertices of the main cycle, as illustrated 
in Figures 1, 2.

Now, proceeding with the following step:

 
c a bi i i= ( ) ( )−1 mod

we get.

 

c a b

c a b
1 1

1
1

1

2 2
1

2
1

18 35 2

6

= ( ) ( ) = ( ) ( ) =
= ( ) ( ) = ( )

− −

− −
mod mod ,

mod mod 441 7

25 49 23 3
1

3
1

4 4
1

4

( ) =
= ( ) ( ) = ( ) ( ) =
= ( ) ( ) =

− −

−

,

mod mod ,

mod

c a b

c a b 113 51 4

24 71 3

1

5 5
1

5
1

( ) ( ) =
= ( ) ( ) = ( ) ( ) =

−

− −
mod ,

mod mod .c a b

The reciprocal values obtained are assigned to the neighboring 
cycles of main cycle in Figure 2, as illustrated in Figure 3.

Proceed with the transmission of this labeled graph (Figure 3) to 
the recipient.

Decryption process:

Upon receiving the labeled graph, the recipient organizes the main 
vertices in ascending order, ensuring the security and integrity of the 
encrypted information.

 35 41 49 51 71< < < <

and regards these numbers as the values of bi  in the process.

 b b b b b1 2 3 4 5< < < <

Taking inverses of corresponding new cycles of adjacent main 
cycle in reference to the value of each bi , illustrated in Figure 3, 
we obtain.

 

2 35 18
7 41 6
2 49 25
4 51

1
1

1
2

1
3

1

−

−

−

−

( ) = =

( ) = =

( ) = =

( ) =

mod
mod
mod
mod

a
a

a
113

3 71 24
4

1
5

=

( ) = =−
a
amod .

Now, for wi ,

 
w a

n n
ni i= −
+( )
+











1
1

26mod

Find values of a a a a1 2 3 4, , , , and a5 :

 

w a M

w a

1 1

2 2

5 1 5
5 1

26 13

5 1 5
5 1

= −
+ ( )
+













= =

= −
+ ( )
+













mod ,

mood ,

mod ,

26 1

5 1 5
5 1

26 20

5 1 5
5

3 3

4 4

= =

= −
+ ( )
+













= =

= −
+ ( )
+

A

w a T

w a
11

26 8

5 1 5
5 1

26 195 5













= =

= −
+ ( )
+













= =

mod ,

mod .

H

w a S

In conclusion, we obtain the original text “MATHS.”
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4 Encryption scheme using complete 
bipartite graphs

In this section, we introduce an encryption method tailored to 
ensure the confidentiality and security of communication between 
two parties involved in message interchange. The foundation of this 
encryption method lies in utilizing a bipartite graph in conjunction 
with the principles of a unique factorization domain (UFD).

The algorithm comprises the following steps:

Begin by choosing a UFD that encompasses infinite primes. As an 
illustrative example, consider the set of integers, denoted as  .

Create a set, denoted as Pn comprising the initial " "n  prime 
numbers, where n k k= ( ) +26 /  and 2 13< <k . The value of k  
serves as the key, which remains fixed based on the desired 
word length.

Take a message of length S characters that you aim to encrypt

Construct a table with dimensions n k k−( )× , where the first 
value represents the number of rows, and the second value 
denotes the number of columns.

Partition the alphabets into the table, filling each cell with a 
distinct alphabet from the message. Begin the allocation by 
populating the table row-wise and continue until the entire 
message is accommodated.

Subsequently, the alphabets are grouped into two categories: those 
at the 1st through kth prime positions (arranged horizontally),

and those at the k th+( )1 through nth prime positions 
(arranged vertically).

Now, associate each alphabet with the corresponding integers r ci i , 
Where as ri  stands for the row position and ci  stands for the 
column position.

Classify the entry ij  with r ci i , where k i n j k+ ≤ ≤ ≤ ≤1 1,  
constructing each number as a vertex within a path graph based 
on the sequence of letters.

We calculate the product of i  and j , denoted as i j. ,  and assign 
each vertex a label corresponding to that product, represented as 
ap  where p ranges from 1  to k . It should be noted that digits in 
the tens place are not considered for the column position. In 

FIGURE 2

Encrypted message.
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simpler terms, we ensure that the column position consists solely 
of two-digit prime numbers.

Create a path graph by associating consecutive pairs of numbers 
i j,  with each vertex.

Organize the graph labels based on their corresponding row and 
column numbers. V1  is set of vertices are in descending order and 
V2  is set of vertices are in ascending order with thier repetition.

V1 = { Initially, arrange numbers starting from i}

V2 = { The numbers securing the second position from j}

The edge set of G  is formed by the pairs r c r c r ci i n i1 2, , ,( ) ( ) … ( ), , , .

Proceed to create a complete bipartite graph using the specified 
set of edges. Edges move from r c r c r ci i n i1 2, , ,( ) ( ) … ( ), , , .

Apply weights to the adjacent edges by sum of two labeled vertices.

Send that labeled graph.

Decryption process:

The recipient obtains the fully labeled complete bipartite graph 
sent by the sender.

Arrange the weights of edges in the complete bipartite graph 
in descending order.

Organize the edges based on their weights, forming a set of 
ordered pairs. Each ordered pair should indicate the number of 
rows at the first position and the number of columns at the second 
position, respectively, V1  is set of vertices and V2  is set of vertices 
are consider as shown in graph with thier repetition.

Utilize the ordered pair information to construct a path 
graph. Connect vertices based on the specified rows and columns, 
creating a linear graph.

Perform prime factorization on each vertex label of the path 
graph. Decompose the labels into their prime factors.

Retrieve the required alphabets corresponding to the prime 
factorization by referencing the decoding table mentioned earlier 
in the algorithm.

Example 2: Let us take a word UNITED.

 

U N I T E D
21 14 9 20 5 4

Step 1: Select a unique factorization domain (UFD) containing an 
infinite number of prime elements. i.e.,  .

Step 2: In this example, n k= ( ) + < <26 6 6 2 13/ ; . Hence, n =11
. We  consider a set P11  of first 11 primes 
denoted as P11 2 3 5 7 11 13 17 19 23 29 31={ }, , , , , , , , , , .

Step  3: In Figure  4, a tabular representation is depicted. This 
illustration pertains to the creation of a table, showcasing, 

n k k−( )× = ×5 6 . First value, i.e., 5 shows the no. of rows and 6 the 
no. of columns.

Step 4: message becomes ci  to ri

 
U N I T E D i j= = = = = = ≤ ≤ ≤ ≤529 323 519 329 1117 717 5 11 1 6, , , , , ; , .

Step 5: Values that correlate with each other are determined.

 

a
a
a
a

a

1

2

3

4

5

5 29 145
3 23 69
5 19 95
3 29 87

11 17 187

= × =
= × =
= × =
= × =

= × =

,
,
,
,
,

aa6 7 17 119= × = ,

Step 5: Now, we construct a path graph of these corresponding 
values ai . See Figure 5.

Here,

 
V1 1 6 9 8 11={ }, , , , ,

 
V2 45 9 5 7 87 19={ }, , , , ,

Now, the vertices set of complete bipartite graph becomes,

 
G , , , , , , ,V V r c r c r ci i n i1 2 1 2( ) = ( ) ( ) … ( )( )

 
G ,, , , ,, ,, ,, ,= ( ) ( ) ( ) ( ) ( ) ( ) ( )1 6 1 9 8 1 12 2 2 2 2 2 2V V V V V V, , , , , , ,

Step 6: Assign weights to the edges connecting adjacent vertices 
in the complete bipartite graph, calculated as the sum of the incident 
weights on the respective 2-vertices (Figure 6).

FIGURE 3

Tabular representation.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 07 frontiersin.org

Step 7: Send labeled graph.

Decryption process:

Step 1: Our initial action involves organizing the edge weights in 
a descending order:

 

W = { , , , , , , , , , , ,
, , , , , , ,

96 94 93 88 88 88 54 53 51 46 46
46 28 27 25 20 20 20 188 17 16 15 15 14, , , , , .  

13 13 11 10 10 10 8 8 8 6 6 6, , , , , , , , , , , }

Step  2: Now, arrange the edges based on their weights in 
descending order.

FIGURE 4

Path graph for values of .ai

FIGURE 5

Complete bipartite graph.

FIGURE 6

Complete bipartite graph with weights.
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{ , , , , ,
, , ,

9 87 8 87 6 87 1 87 1 87
1 87 9 45 8 45 6

, , , , ,
, , ,
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ,, ,45 1 45( ) ( ), ,

1 45 1 45 9 19 8 19 6 19 119
119 119 9
, , , , , ,
, , ,

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

, , , , , ,
, , 99 8 9 6 9 8 7( ) ( ) ( ) ( ), , , ,, , ,

 

9 5 8 5 6 7 6 5 1 9 1 9
1 9 1 7 1 7 1 7

, , , , , ,
, , , ,

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) (

, , , , , ,
, , , )) ( ) ( ) ( ), , , }1 5 1 5 1 5, , ,

Step 3: Now, Construct the set of vertices V1  arrange the elements 
as shown in graph upper labbelled vertices, and V2  is consist of lower 
labbeled vertices.

 
V1 1 6 9 8 11={ }, , , , ,

 
V2 45 9 5 7 87 19={ }, , , , ,

Step 3: Construct the corresponding path graph (Figures 7, 8).
Step 4: Apply the prime factorization of each labeled vertices in 

the path graph.

 

a
a
a
a

a

1

2

3

4

5

145 5 29
69 3 23
95 5 19
87 3 29

187 11 17

= = ×
= = ×
= = ×
= = ×

= = ×

,
,
,
,
,

aa6 119 7 17= = × ,

So, Numerical values are 529, 323, 519, 329, 1,117, 717.
Step 5: We finally get the alphabets UNITED.

5 Secure data transfer using star 
graphs

Numerous strategies have been devised to safeguard data, and the 
highlighted approach centers around star graphs. This particular 
scheme ensures the complete confidentiality of the primary concept 
during the transmission of information. This encryption algorithm is 
built upon the utilization of a star graph and the principles of a unique 
factorization domain (UFD). The encryption and decryption 
processes involve a systematic set of steps.

The encryption process follows the algorithm outlined below:

Begin by choosing a UFD that encompasses infinite no. of primes. 
As an illustrative example, consider the set of integers, 
denoted as  .

Generate a set Pn  containing the first “ n  “primes, where 
n k k= ( ) +Γ 26 /  and 2 13< <k . The value of k  serves as the key, 
which remains fixed based on the desired word length.

Select a message of length S  characters that you  wish 
to encrypt.

Construct a table with dimensions n k k−( )× , where the first 
value represents the number of rows, and the second value 

denotes the number of columns. Partition the alphabets into the 
table, filling each cell with a distinct alphabet from the message. 
Begin the allocation by populating the table row-wise and 
continue until the entire message is accommodated.

(Note: In this step, the dimensions of the table are determined 
by the difference n k− , which gives the number of rows, and k , 
which provides the number of columns. These values are chosen to 
structure the message into a grid for encryption, and are not 
necessarily prime numbers).

Following this, the alphabets undergo partitioning into prime 
positions horizontally from the 1st to the  position, and vertically 
from the  to the  position. k th−  k th+( ) −1  nth

Now, classify the alphabets with the integers r c ri i i, ; =  row 
position, ci =  column position.

Label the entry ij  with r ci i , where k i n j k+ ≤ ≤ ≤ ≤1 1,  
Constructing a star graph by representing each number as a 
vertex, following the sequence of letters.

We calculate the product of i  and j , denoted as i j.  and 
assign each vertex a label corresponding to that product, 
represented as ap  where p ranges from 1  to k . It should be noted 
that digits in the tens place are not considered for the column 
position. In simpler terms, we ensure that the column position 
consists solely of two-digit prime numbers.

Next, a star graph, denoted as S K Kn n+ =1 1 , is constructed 
to correspond to the length of the message. The central vertex of 
the star graph is anchored at the numerical value zero. The no. of 
vertices in the star graph is set to be equal to one plus the number 
of alphabetic characters present in the text. In this representation, 
The information is depicted graphically, where each data point is 
illustrated as a vertex in a graph, and each vertex is denoted by a 
corresponding letter. It’s important to note that adjacent vertices 
in the graph are represented by adjacent letters.

Assign each vertex a label corresponding to its numeric 
representation denoted by ai .

Subsequently, assign weights, denoted as w w w wn1 2 3, , , ,⊃  to 
individual edges e e e en1 2 3, , , ,⊃  in a manner that ensures.

 
w e w e w e w en n1 1 2 2 3 3( ) < ( ) < ( ) < < ( ) .

Algorithm for determining edge weights.
Decrease the exponent of 10 from every vertex label in 

succession along the edges, ensuring adjacency, as follows:

 V V V Vn
n

1 2
2

3
310 10 10 10− − − … −, , , ,

where Vi ∈  vertex tex i n= …{ }1 2 3, , , , .
The resulting values obtained from the conversion process 

serve as the weights for the corresponding edges, denoted as ei .
Afterward, the resulting graph forms into a star configuration, 

where each edge possesses specific weights, effectively obscuring 
the labels of the vertices.

Send this diagram to the recipient.

The decryption procedure follows these steps:
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Arrange the edge weights in ascending order.
Then, sequentially sum up the increasing powers of 10 

corresponding to the ordered weights.
Perform prime factorization on each vertex label 

of the star graph. Decompose the labels into their 
prime factors.

Retrieve the required alphabets corresponding to the prime 
factorization by referencing.

Decode the characters utilizing the encoding table, leading to 
the retrieval of the desired text.

Example 3: To elucidate the outlined scheme, it’s imperative to 
illustrate its operation through a practical example. Let us consider the 
word “SECURITY” to fulfill the procedural steps.

 

S E C U R I T Y
19 5 3 21 18 9 20 25

.

Step 1: Begin with a unique factorization domain (UFD) featuring 
an infinite set of prime elements. i.e.,  .

Step 2: In this example, n k= ( ) + < <26 8 8 2 13/ ; . Hence, n =12  
so we  can take a set P12  of first 12 primes 
denoted as P12 2 3 5 7 11 13 17 19 23 29 31 37={ }, , , , , , , , , , , .

Step  3: In Figure  9, a tabular representation is depicted. To 
construct this table, the equation n k k−( )× = ×4 8  is utilized, where 

the first value, denoted as 4 , corresponds to the number of rows, 
while the second value, indicated as 8,  represents the number 
of columns.

Step  4: message becomes  
= = = = = =315 2311 235 3111 313, , , , ,E C U R I  
292 317 372 4 12 1 8, , ; ,T Y i j= = ≤ ≤ ≤ ≤ .

Step 5: corresponding values are.

 

a
a
a
a
a

1
2
3
4
5

31 5 155
23 11 253
23 5 115
31 11 341
31 3

= × =
= × =
= × =
= × =
= × =

,
,

,
,

993
29 2 58
31 7 217
37 2 74

6
7
8

,
,

,
,

a
a
a

= × =
= × =
= × =

Now, we construct a star graph, denoted as S K Kn n+ =1 1 , of 
these corresponding values ai . See Figure 10.

Step  6: Now give weights w ii ,∀ ∈{ }1 2 3 4 5 6 7 8, , , , , , ,  to the 
corresponding edges of the vertices:

 i  

w w w w
w w w w
1 2 3 4

5 6 7 8

155 253 115 341
93 58 217 74

( ) < ( ) < ( ) < ( )
< ( ) < ( ) < ( ) < (( )

Weights are given by subtracting the increasing power of 10 from 
each adjacent numeric value.

FIGURE 7

Corresponding path graph.

FIGURE 8

Corresponding tabular representation.
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weight of edge
weight of edge

e w
e w

1 1

2 2
2

155 10 145
253 10

= = − =

= = − =1153
115 10 885

34
3 3

3

4 4

weight of edge
weight of edge

e w
e w

= = − = −

= = 11 10 9659
93 10 99907

4

5 5
5

− = −

= = − = −weight of edge
weight of edg

e w
ee

weight of edge
e w

e w
6 6

6

7 7
7

58 10 999942
217 10 9999783

= = − = −

= = − = −

wweight of edge e w8 8
874 10 99999926= = − = −

Our resulting star graph is shown in Figure 10. Send labeled graph.
Decryption process:
The recipient receives the labeled star graph transmitted by 

the sender.
Step 1: Arrange the weights of edges in the star graph in ascending 

order of mod values, i.e.,

 

145 153 885 9659 99907
999942 9999783 99999926
< < − < − < −

< − < − < −

Step  2: Increase each adjacent value by the power of 10, 
progressively.

 

145 10 153 100 885 1000
9659 10000 99907 100000

999942

+ < + < − +
< − + < − +

< − ++ < − +
< − +

1000000 9999783 10000000
99999926 100000000

Step 3: Through this mod operation we get values ai

 

a
a
a
a

a
a

a
a

1

2

3

4

5

6

7

8

155
253
115
341
93
58

217
74

=
=
=
=
=
=
=
=

,
,
,
,
,
,
,
,

Step 4: Apply the prime multiplication of ai

 

a
a

a
a

a

1
2

3
4

5

155 31 5
253 23 11
115 23 5

341 31 11
93 31

= = ×
= = ×
= = ×
= = ×
= =

,
,
,
,

××
= = ×
= = ×
= = ×

3
58 29 2

217 31 7
74 37 2

6
7

8

,
,
,
,

a
a
a

Step 5: Finally we get values 315 2311 235 3111 313 292 317 372, , , , , , , . 
Through the encoding table, we  get their respective letters as 
SECURITY. Get the required hidden text.

This illustration elucidates the concealment and security of data 
until it reaches the intended recipient. The algorithm relies on star 
graphs, with labeled graphs being transmitted to the receiver. This 
method represents an optimal approach for ensuring data security.

FIGURE 9

Star graph.
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6 Discussion

In this study, we adopt a comprehensive methodology to develop 
and evaluate our proposed encryption algorithms. Initially, we conduct 
a rigorous analysis of existing cryptographic techniques, identifying 
their vulnerabilities to conventional cyber-attacks. This analysis serves 
as a foundation for our exploration into nonstandard encryption 
methods. We then delve into graph theory, selecting corona graphs, star 
graphs, and complete bipartite graphs for their unique algebraic 
properties and suitability for cryptographic applications. Our approach 
involves the mathematical formulation of these graphs, followed by the 
integration of algebraic structures to define encryption operations. To 
assess the efficacy and security of our proposed algorithms, we employ 
a combination of theoretical analysis and empirical testing. Theoretical 
analysis focuses on proving the cryptographic strength of our methods 
against known attack vectors, while empirical testing involves 
simulating real-world attack scenarios. This dual approach ensures a 
comprehensive evaluation of our encryption schemes, highlighting 
their potential to significantly enhance data security.

6.1 Performance analysis

The proposed encryption techniques, leveraging special corona 
graphs, star graphs, and complete bipartite graphs, introduce 
innovative approaches to enhance data security in confidential 
communication. Here, we analyze the performance of these schemes, 
considering their advantages and drawbacks:

Advantages:

Advantage Description

Enhanced 

security

By incorporating algebraic properties of specialized graphs, the 

encryption techniques offer heightened security, making it 

challenging for unauthorized parties to decipher transmitted 

messages.

Resistance to 

traditional 

attacks

These nonstandard encryption algorithms provide a defense 

mechanism against traditional cryptographic attacks, such as 

brute force and frequency analysis, due to their unique 

structures and operations.

Diverse 

application 

scenarios

The utilization of various graph types allows for versatile 

application scenarios, accommodating different communication 

environments and requirements.

Scalability The proposed schemes demonstrate scalability, enabling efficient 

encryption and decryption processes even for large datasets and 

complex communication networks.

Drawbacks:

 1. Complexity: Implementing and understanding the underlying 
mathematical concepts of the proposed encryption techniques 
may require a significant level of expertise, potentially limiting 
widespread adoption.

 2. Computational overhead: The computational complexity of 
encrypting and decrypting messages using specialized 

FIGURE 10

Encrypted message to be sent.
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graph-based algorithms could result in increased processing 
overhead, impacting real-time communication systems.

 3. Key management: Effective key management strategies are 
crucial for the security of these encryption schemes. However, 
the management of keys for graph-based encryption algorithms 
may introduce additional complexities and vulnerabilities.

Moreover, Evaluating the computational efficiency of our 
proposed encryption schemes is vital for determining their 
practicality, especially for real-time applications where speed and 
resource usage are critical. Here, we analyze the performance of the 
encryption methods based on Corona Graphs, Complete Bipartite 
Graphs, and Star Graphs.

6.1.1 Corona Graph C Cn n

For the Corona Graph C Cn n  scheme, the encryption process 
begins with encoding the message and applying a shift cipher, both of 
which are relatively quick operations. The more computationally 
intensive steps involve selecting suitable integers and computing 
modular inverses, which together have a moderate complexity. 
Constructing the Corona graph itself is the most time-consuming part 
due to the need to handle a larger number of vertices and edges. 
Decryption involves sorting and modular arithmetic, both manageable 
in terms of computational demand. Overall, the scheme is efficient but 
may require optimization for handling very large graphs.

6.1.2 2. Complete bipartite graphs
This scheme starts with generating prime numbers and 

constructing a table to encode the message, both of which are 
straightforward operations. The main computational load comes from 
labeling the graph and setting up the complete bipartite structure. 
Decryption involves sorting edge weights and performing prime 
factorization, which are efficient but could become a bottleneck with 
very large datasets. Generally, this method balances computational 
efficiency with robust encryption.

6.1.3 Star graphs
The Star Graphs method is the most efficient of the three. The 

initial steps of generating primes and setting up the table are quick. 
Constructing and labeling the star graph is simpler compared to the 
other graph types, making this method faster overall. Decryption is 
straightforward, involving sorting and prime factorization, which are 
computationally light. This makes the star graph approach particularly 
suitable for scenarios requiring quick encryption and decryption.

Key management is a crucial aspect of our proposed graph-
based encryption methods, ensuring the secure generation, 
distribution, and storage of keys used for encryption and decryption. 
For the Corona Graph scheme, managing the integers bi  and their 
modular inverses is essential, requiring secure channels for 
distribution. In the Complete Bipartite Graphs scheme, the integer 
k  serves as the key, which must be securely shared, alongside the 
selected primes arranged into the bipartite graph, protected from 
interception. Similarly, the Star Graph scheme relies on securely 
managing the integer k  and the initial set of primes. Employing 
robust key exchange protocols, such as Diffie-Hellman, is 
recommended to safeguard these keys. Effective key management 
practices, including secure key generation, distribution, and storage, 
are vital to maintain the integrity and security of the encrypted data, 
enhancing the robustness of our encryption methods.

6.2 Key management strategies

In the context of cryptography, key management is a component 
that plays an essential role in any protective layer required in an 
encryption system. Key management is defined broadly and involves 
generation, exchange, storage, utilization, and retirement/
decommissioning of the keys. Therefore, it is crucial to pay attention 
to the key management in the graph-based encryption algorithms, as 
the methods within it are quite different from the traditional ones 
because of the differences in the properties of the new methods.

6.2.1 Key generation
Particularly for graph-based encryption algorithms the process of 

key generation includes the generation of keys corresponding to the 
structural characteristics of graphs like, corona graphs, star graphs, 
and complete bipartite graphs etc. It is for these keys to have very high 
entropy and all appearances of randomness in order to avoid 
predictability and ore security. It can be pointed out that the generation 
process can be based on the complexing and combinatorial properties 
of the chosen graph structures.

6.2.2 Key exchange protocols
The exchange of keys is basic to security in transit and is the 

means by which confidentiality is maintained. For instance, GraphKey 
exchange protocols like Diffie Hellman and RSA are easily applicable 
to work alongside Graph-based Encryption systems. Here, I provide 
an overview of how these protocols can be  integrated with the 
proposed methods: Here, I provide an overview of how these protocols 
can be integrated with the proposed methods:

Diffie-Hellman Key Exchange: In this protocol, the key 
transference is achieved when both parties agree to settle for a big 
prime number and a base which are both disclosed. The members of 
each party choose a private key, and then, produce the corresponding 
public key by using the graph-based encryption function. Since the 
public key exchange gives both parties ability to compute the shared-
secret key from their private key, no one can intercept the exchange.

RSA Key Exchange: RSA can be used to perform Secure Encryption 
to safely pass graph based encryption keys. RSA key wherein the sender 
uses the recipient’s public Key to encrypt the key and vice versa the 
recipient uses his/her private keys to decrypt the key. This method will 
help safeguard the encryption key while on the process of transmission.

Key Distribution: Ensuring that keys get to all the relevant parties 
with as much discretion as possible is also important. Two structures 
that can be used to issue, store, and distribute keys for letter-based 
encryption schemes are Key Distribution Centers (KDCs) and Public 
Key Infrastructures (PKIs). These infrastructures make it possible for 
keys to be in the possession of only the authorized persons and are 
jointly updated to reduce risks.

Key Storage: It is advised not to keep the keys where people can 
easily find them or make a copy of them. It is advisable to save keys 
with HSM or any other secure software that is capable of resisting key 
tampering and key extraction. Likewise, keys should be encrypted at 
rest using advanced encryption methodologies that are irreversible to 
a certain extent.

Key Replacement and Revocation: Keying management must also 
consider issues to do with replacement of existing keys and also 
revocation of issued keys. Key management involves changing keys 
often so that more advanced or compromised keys do not get exploited 
and revocation mechanism helps to provide that compromised keys are 
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recalled immediately. Both processes can be integrated to ensure that 
the operations are on abreast, secure, and viable for implementation.

Practical Challenges and Considerations: While integrating these 
key management strategies with graph-based encryption algorithms, 
several practical challenges may arise: While integrating these key 
management strategies with graph-based encryption algorithms, 
several practical challenges may arise:

Scalability: Making sure that the key management systems of 
these digital goods are deployable sufficiently to handle sizeable user 
and device bases.

Interoperability: One of the main challenges is the problem of 
achieving interoperability between diverse cryptographic systems 
and protocols.

Performance: It identifies some of the challenges that include a 
trade-off between security and performance within highly 
constrained environments.

Usability: Developing utterly key management processes that are 
convenient for users and where the risks of mistakes are minimal.

6.3 Comparative analysis with existing 
techniques

To highlight the strengths and innovations of our proposed graph-
based encryption schemes, it is important to compare them with 
existing encryption techniques that also utilize graph theory (See 
Table 1). Here, we present a comparative analysis including recent 
studies by Ali M. A. H. et al. (2023), Hashem and Ajeena (2023), 
Shathir et al. (2023), and Sabharwal et al. (2024).

We claim that the novel schemes given above are advantageous over 
the existing methods in the following ways. The concepts of corona 

graphs, complete bipartite graphs, and star graphs increase the level of 
complexity and, by the same token, enhance the level of security. Adding 
these graph structures to algebraic properties, the overall encryption 
becomes stronger compared to the cases when much simpler graphs 
were used in the referenced studies. Also our schemes specify radical 
management policies for every phase of key generation, issuing and 
storages, an aspect that has received a lot of attention among the existing 
methods. As for algorithmic performances, the scalability and the 
computation time of the proposed schemes have been discussed for their 
relevance from real-time systems. This is an improvement from some 
degraded methods that do not give an assessment of the computational 
efficiency. In addition, specific examples and case studies are utilized in 
developing our schemes more precisely and in showing how they can 
be applied in practice.

Two new graph based techniques have been proposed by Ali 
M. A. H. et  al. (2023) entitled ‘Cartesian product graphs for 
recommender systems’, Hashem and Ajeena (2023) titled ‘Tensor 
product bipartite graphs for recommender systems’, Shathir et  al. 
(2023) ‘Triple vertex path graphs for recommender systems and 
Sabharwal et al. (2024) entitled ‘Association schemes in recommender 
systems’. These methods provide high encryption strength and 
provides the generic procedure of key management while both of our 
proposed schemes. However, all our methods can ensure the given 
balance theoretical adjunct to the applied research approach, emphasis 
on the specific uses, improvements to the security, critical examination 
of the computational complexity. In conclusion, our graph-based 
encryption schemes stand out due to their innovative use of complex 
graph structures, detailed key management protocols, enhanced 
security features, and thorough analysis of computational efficiency, 
making them a significant advancement in the field of 
cryptographic techniques.

TABLE 1 Comparative analysis table.

Feature/Aspect Proposed 
schemes

Ali M. A. H. et al. 
(2023)

Hashem and 
Ajeena (2023)

Shathir et al. 
(2023)

Sabharwal et al. 
(2024)

Graph type used Corona, complete 

bipartite, star

Cartesian product graphs Tensor product bipartite 

graphs

Triple vertex path graphs Association schemes

Key management Detailed protocols for 

secure key handling

Discussed with focus on 

graph properties

Detailed symmetric key 

management

Key management 

protocols using vertex 

properties

Secure key exchange 

using association 

properties

Encryption strength High, due to complex 

graph structures and 

algebraic properties

High, leveraging 

Cartesian product 

properties

High, utilizing tensor 

product for added 

complexity

High, based on triple 

vertex path complexity

High, using association 

schemes for robust 

encryption

Computational efficiency Analyzed for efficiency in 

speed and resource use

Analyzed, efficient for 

large graphs

Analyzed, efficient for 

symmetric operations

Analyzed, efficient for 

specific use cases

Analyzed, effective for 

large datasets

Real-world applications Practical examples and 

case studies included

Practical applications in 

secure communication

Symmetric encryption for 

secure data exchange

Practical encryption 

schemes for data security

Applications in secure 

graph data and 

steganography

Innovation Introduction of novel 

graph-based methods

Novel use of Cartesian 

product graphs

Innovative use of tensor 

product in symmetric 

encryption

New approach with triple 

vertex path graphs

Combining cryptography 

and steganography for 

graph data

Security against attacks Enhanced security against 

traditional attacks

Strong resistance to 

graph-based attacks

Enhanced security due to 

tensor product 

complexity

Robust security 

leveraging vertex paths

High security with 

combined cryptographic 

and steganographic 

methods
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6.4 Time complexity for encryption and 
decryption schemes

6.4.1 Corona graph C Cn n

In this scheme, the encryption process involves several steps:

 • Encoding the message: Each character in the message (whether 
alphabetic or any other ASCII character) is converted into its 
corresponding numeric representation. For a message of length 
n , this operation takes O(n) time.

 • Applying a shift cipher: After encoding, we apply a shift cipher to 
each character. Since this operation processes each character 
independently, the time complexity remains O(n).

 • Choosing integers bi   : The algorithm selects integers bi that are 
relatively prime to the encoded values ai  Given that this step 
requires verifying the greatest common divisor (GCD) for each 
pair a bi i,( ) , the time complexity for checking GCD using the 
Euclidean algorithm is O bilog( )  for each character. Thus, for n  
characters, this step takes O n bilog( )  time.

 • Modular inverse calculations: Computing the inverse of 
a bi imod  involves using the extended Euclidean algorithm, 
which has a time complexity of O bilog( )  for each character. 
Therefore, for n  characters, this step contributes O n bilog( )  to 
the overall time complexity.

 • Graph construction: The Corona graph C Cn n  has n n+( )1  
vertices, and constructing this graph, with each vertex assigned 
a weight from the set b b bn1 2, , ,…{ }  takes O n2( )  time.

Combining all the steps, the total time complexity for encryption 
is O n n bi

2 +( )log . The decryption process follows similar steps 
(modular inverse calculations, rearrangement, etc.), leading to the 
same overall time complexity.

6.4.2 Complete bipartite graphs Km n,
For the complete bipartite graph-based encryption:

 • Message encoding: Similar to the Corona graph scheme, encoding 
each character into its numeric representation takes O n( ).

 • Graph construction: A complete bipartite graph Km n,  is 
constructed, where the size of each set in the bipartition is mmm 
and n . The number of edges in such a graph is O mn( ) , leading 
to a time complexity of O mn( )  for graph construction.

Thus, the overall time complexity for this scheme is O mn( )  for 
encryption, with decryption having the same time complexity.

6.4.3 Star graphs
In the star graph-based encryption scheme:

 • Message encoding: Again, encoding the message into numeric 
values takes O n( ).

 • Graph construction: A star graph has n  vertices (one central 
vertex and n−1 leaf vertices). Constructing this graph, with each 
leaf vertex assigned a numeric value, takes O n( )  time.

Therefore, both the encryption and decryption processes have a 
time complexity of O n( ).

6.4.4 Security against advanced attacks
While our proposed graph-based encryption schemes have 

demonstrated strong resistance to traditional attacks, it is crucial to 
evaluate their robustness against more advanced threats, including 
those posed by quantum computing and side-channel attacks.

6.4.5 Quantum computing threats
Quantum computing presents a significant challenge to classical 

cryptographic algorithms due to its potential to solve complex 
mathematical problems more efficiently. Traditional encryption 
methods, such as RSA and ECC, are particularly vulnerable to 
quantum attacks like Shor’s algorithm, which can efficiently factorize 
large integers and solve discrete logarithms.

6.4.5.1 Quantum-resistant properties

 • Graph-Based Structures: The inherent complexity of the graph 
structures used in our proposed schemes (corona graphs, 
complete bipartite graphs, and star graphs) adds a layer of 
security that is inherently difficult for quantum algorithms to 
exploit directly.

 • Algebraic Properties: By incorporating algebraic properties 
into the encryption process, we introduce additional layers of 
complexity that further enhance resistance to quantum 
attacks. These properties can be  designed to align with 
principles from lattice-based cryptography, known for its 
quantum resistance.

6.4.5.2 Future adaptations
 • Integration with Post-Quantum Algorithms: Our schemes 

can be  augmented with post-quantum cryptographic 
techniques, such as lattice-based, hash-based, or code-based 
algorithms, to provide an additional safeguard against 
quantum computing threats. This hybrid approach can 
leverage the strengths of both graph-based and post-quantum 
cryptographic methods.

6.4.6 Side-channel attacks
Side-channel attacks exploit physical implementations of 

cryptographic algorithms to gain information and breach security, 
often through timing analysis, power consumption, or 
electromagnetic leaks.

6.4.6.1 Mitigation techniques

 • Constant-Time Algorithms: Implementing our graph-based 
encryption schemes using constant-time algorithms can mitigate 
timing analysis attacks. This involves ensuring that the execution 
time of cryptographic operations does not vary with the input or 
the processed data.

 • Power Analysis Resistance: Techniques such as masking 
(randomizing intermediate values) and hiding (reducing the 
correlation between power consumption and processed data) 
can be employed to protect against power analysis attacks. Our 
schemes can be  adapted to incorporate these techniques, 
enhancing their resistance to side-channel attacks.
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6.4.6.2 Implementation considerations
 • Secure Hardware: Utilizing secure hardware components 

designed to withstand side-channel attacks can further bolster 
the security of our encryption schemes. This includes hardware 
with built-in protections such as noise generation and shielding 
(See Table 2).

6.5 Real-world applications and case 
studies

In the real world, graph-based encryption finds practical 
applications that safeguard sensitive information while facilitating 
various tasks.

6.5.1 Empirical testing in real-world scenarios
To validate the effectiveness and practicality of the proposed 

graph-based encryption schemes, we implemented and tested these 
methods in real-world scenarios within a small organizational setting. 
The following case studies illustrate the application and performance 
of the encryption techniques:

Financial Transactions: Setup: The encryption schemes were 
incorporated into a payment processing system between a client 
program and a server.

Application: Before transmission, financial data which were 
considered sensitive was encrypted using the proposed graph-
based methods.

Outcome: The encrypted transactions were decrypted by the 
server which proved the efficiency and security of the methods. There 
was no information leakage and hacking incident during the 
test phase.

Confidential Messaging: Setup: An internal messaging 
system within the organization that applies the graph-
based encryption schemes to enable communication 
between employees.

Application: Any message that was communicated and contained 
sensitive information was encoded prior to being communicated 
across the network.

Outcome: There was no disconnect in the communication; the 
encryption and decryption processes did not slow down the flow of 
any message. The users also expressed no performance degradation 
from the traditional methods of encryption, which proves the efficacy 
of the proposed schemes.

The mentioned examples show that the introduced algorithms 
for graph-based encryption do not only enhance the security level 
of the system but also can be  easily implemented into various 
practical applications while retaining performance and 
user-friendliness.

6.5.2 Document Categories
 • By encrypting documents based on their content structure, 

we can control access to specific categories or topics within a 
document. This ensures that only authorized users or groups can 
view relevant content (Figure 11).

TABLE 2 Resistance to advanced attacks.

Feature/Aspect Proposed schemes

Quantum computing resistance High, due to complex graph structures and algebraic properties; potential for integration with post-quantum algorithms

Side-channel attack resistance Moderate to High, with implementation of constant-time algorithms, masking, and hiding techniques; secure hardware utilization 

recommended

FIGURE 11

 InfoSift document classification system.
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6.5.3 Private keyword searches
 • Utilizing graph-based encryption allows for confidential 

keyword searches within documents. This is crucial for scenarios 
where privacy is paramount, such as in medical or legal contexts.

7 Conclusion

This study introduces graph theoretic-based encryption schemes 
aimed at enhancing the quality of encryption methods. Three novel 
encryption algorithms are proposed, providing valuable tools for the 
secure communication of confidential messages. Each algorithm 
offers unique features. The initial algorithm employs encryption and 
decryption through a designated corona graph C Cn n , 
incorporating fundamental algebraic properties. The second 
algorithm is based on an encoding table, a complete bipartite graph, 
and the principle of a UDF. This approach adds diversity to 
encryption strategies. The third algorithm utilizes a specific labeling 
of vertices and edges within the star graph K Kn1 , introducing a 
symmetric described tabular encryption method. All three algorithms 
incorporate the concept of a shared key, which needs to 
be  predetermined and shared between the two communicating 
parties for successful encryption and decryption processes. 
Modifications can be  made to adapt these algorithms for the 
communication of sentences or sets of sentences. To increase 
complexity, further enhancements may involve integrating public key 
cryptography principles. Additionally, there is potential for 
implementing and testing these algorithms in various programming 
languages, providing practical insights into their real-world 
applicability like C + + , JAVA, or Microsoft.Net.
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