
Frontiers in Computer Science 01 frontiersin.org

Secure communication in the
digital age: a new paradigm with
graph-based encryption
algorithms
Nasir Ali 1,2*, Ayesha Sadiqa 2†, Muhammad Amir Shahzad 2†,
Muhammad Imran Qureshi 2†, Hafiz Muhammad Afzal Siddiqui 1†,
Suhad Ali Osman Abdallah 3† and Nashaat S. Abd El-Gawaad 4†

1 Department of Mathematics, COMSATS University Islamabad, Lahore, Punjab, Pakistan, 2 Department
of Mathematics, COMSATS University Islamabad, Vehari, Punjab, Pakistan, 3 Applied College at Khamis
Mushait, King Khalid University, Abha, Saudi Arabia, 4 Applied College at Muhayil Asir, King Khalid
University, Abha, Saudi Arabia

In the contemporary technological landscape, ensuring confidentiality is a paramount
concern addressed through various skillsets. Cryptography stands out as a scientific
methodology for safeguarding communication against unauthorized access. Within
the realm of cryptography, numerous encryption algorithms have been developed
to enhance data security. Recognizing the imperative for nonstandard encryption
algorithms to counter traditional attacks, this paper puts forth novel encryption
techniques. These methods leverage special corona graphs, star graphs, and
complete bipartite graphs, incorporating certain algebraic properties to bolster the
secure transmission of messages. The introduction of these proposed encryption
schemes aims to elevate the level of security in confidential communication, some
of the applications of these schemes are given in the later section.

KEYWORDS

encryption algorithms, decryption, security, secure communication, data transfer,
symmetric cipher

1 Introduction

Throughout history, military officers and diplomats have sought clandestine means of
communication. In our contemporary era, characterized by widespread reliance on

the internet, mobile phones, and computer technology across various aspects of daily life,
the imperative to safeguard crucial information has escalated steadily. Over time, as
advancements in data security persist, novel methods of breaching private Correspondence are
constantly emerging. Cryptography, aims to ensure secure transmission without the risk of
unauthorized access. Initially employed for wartime strategies, classical cryptography boasts a
history spanning over two millennia. The foundations of modern cryptography were laid by
Shannon (1949). Cryptography has evolved into an indispensable element of contemporary
society. Encryption is the process of transforming an original message into a coded format, and
its reverse operation is referred to as decryption (Rosen, 2005). Encryption serves to prevent
the interception of the original content, known as plaintext. The information is given in
plaintext and then it is coded using encryption with specific keys to generate ciphertext. The
ciphertext is then deciphered back into a readable message through the process of decryption.
The key is a very important part of information employed to encode the original data and
subsequently decrypt it to obtain the real text. With the provision of the correct key, the
authorized recipient can effortlessly unveil the concealed message, while interception by an

OPEN ACCESS

EDITED BY

Shancheng Zhao,
Jinan University, China

REVIEWED BY

Ammar Odeh,
Princess Sumaya University for Technology,
Jordan
Jims Marchang,
Sheffield Hallam University, United Kingdom

*CORRESPONDENCE

Nasir Ali
 nasirzawar@gmail.com

†These authors have contributed equally to
this work

RECEIVED 24 June 2024
ACCEPTED 10 October 2024
PUBLISHED 31 October 2024

CITATION

Ali N, Sadiqa A, Shahzad MA, Imran Qureshi M,
Siddiqui HMA, Abdallah SAO and Abd
El-Gawaad NS (2024) Secure communication
in the digital age: a new paradigm with
graph-based encryption algorithms.
Front. Comput. Sci. 6:1454094.
doi: 10.3389/fcomp.2024.1454094

COPYRIGHT

© 2024 Ali, Sadiqa, Shahzad, Imran Qureshi,
Siddiqui, Abdallah and Abd El-Gawaad. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 31 October 2024
DOI 10.3389/fcomp.2024.1454094

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1454094&domain=pdf&date_stamp=2024-10-31
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1454094/full
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1454094/full
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1454094/full
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1454094/full
mailto:nasirzawar@gmail.com
https://doi.org/10.3389/fcomp.2024.1454094
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1454094

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 02 frontiersin.org

unauthorized entity becomes infeasible. Contemporary cryptographic
methods mainly rely on three distinct schemes named as symmetric
key cryptography employs a single key for both encryption and
decryption operations then there is public key cryptography in which
we utilize separate keys for encryption and decryption purposes, and
lastly is hash functions where employ transformations to securely
encrypt data in an irreversible manner (Stinson, 2018). These
cryptographic techniques are fundamental in ensuring the security of
digital communication and information.

1.1 Simplified explanation of key concepts

Our focus is on advancing encryption methods through the
utilization of graph theory and algebraic concepts. To begin, let us
revisit some essential concepts from graph theory (West, 2001).

Basic concepts of graph theory:
Graph: In graph theory, a graph, represented as G V E= (), ,

consists of two distinct sets: the vertex set V G() and the
edge set E G() .

Bipartite graph: If the vertices in V G() can be separated into
two non-overlapping subsets in such a way that every edge connects
a vertex from one subset to a vertex in the other, the graph G is
classified as a bipartite graph.

Complete-bipartite graph: A bipartite graph becomes complete-
bipartite when each vertex in one subset is linked to every vertex in
the other subset.

Star graph: Among complete-bipartite graphs, a particular
instance is the star graph, characterized by having only one vertex in
one subset and all other vertices in the other subset.

Pendent vertex and pendent edge: Furthermore, a vertex with a
degree of one is known as a pendent vertex, and the edge incident to
it is referred to as a pendent edge.

Corona product of graphs: The corona product of two graphs
G and H is denoted as G H , and defined as by taking one copy
of graph G and V G() - copies of graph H . In this construction,
the vertex labeled ′ ′i in G is connected to every vertex in the
′ ′−i th copy of H. This corona operation, introduced by Frucht and
Harary (1970), proves to be a significant operation between graphs.
An interesting example is the star graph Sn +1, consisting of n+1
vertices, which can be viewed as a corona graph K Kn1 .
Additionally, the corona graph of the cycle Cn with Cn , i.e.,
C Cn n , forms a graph with n n+()1 vertices achieved by
attaching n cycles to main cycle graph Cn .

Graph-based encryption techniques: Using these graph
structures, we can develop encryption methods that transform
messages into secure, coded formats. Here’s a simplified overview of
how these methods work:

Graph construction: We start by constructing specific graphs
(like the star graph or corona graph) based on the message to
be encrypted. Each part of the message corresponds to a vertex or an
edge in the graph.

Encoding messages: The vertices and edges are labeled with parts
of the message (letters, numbers, etc.). The structure of the graph (how
vertices and edges are connected) helps encode the message in a way
that is difficult to decipher without the correct key.

Key Generation: A key, which is an essential piece of information,
is generated to help encode and decode the message. This key ensures
that only authorized recipients can decrypt the message by
understanding the graph structure used.

Encryption and decryption: During encryption, the plaintext
message is transformed into a complex graph-based format
(ciphertext) using the key. For decryption, the key is used to
reconstruct the original graph and retrieve the plaintext message.

By understanding these fundamental graph theory concepts,
readers can better appreciate the innovative encryption techniques
presented in this paper.

Recent research has witnessed a surge in interest in leveraging
graphs to propose innovative methodologies across various
cryptographic domains (Selim, 2020). In (Ali et al., 2024a), Selvakumar
and Gupta introduced a novel coding and decryption algorithm
employing connected graphs. Authors in Kedia and Agrawal (2015),
discussed an encryption approach incorporating numeric
representation and letters, utilizing fundamental mathematical
concepts such as Venn diagrams. Yamuna and Elakkiya (2015)
proposed a graph-based encryption algorithm where fundamental
circuits are chosen based on corresponding edge weights. Yamuna and
Karthika (2015) presented a unique data transfer method using
bipartite graphs and a numeric table for alphabet representation.
Mahmoud and Etaiwi (2014) introduced a symmetric encryption
algorithm (Arunkumar, 2015) explored extensive applications of
bipartite graphs in computation. Sinha and Sethi (2016) introduced a
data security scheme using line sigraph, a new graph concept with
labeled edges belonging to − +1 1, . In (Hu et al., 2017), authors have
proposed a bipartite graph-based encryption. Razaq et al. utilized
coset diagrams in Ali et al. (2024b) to construct a substitution box
(S-box) for cryptography, focusing on the action of PSL 2() on the
projective line over the finite field 2

9 . Strong S -box construction
was further explored in Ali N. et al. (2023). In this paper we aim to
introduce some new encryption schemes based on Explicit categories
of graphs, defined by C C K Kn n n , 1 (also known as a star graph),
and complete bipartite graphs. The proposed algorithms facilitate the
secure transmission of messages, regardless of word length, through
the utilization of graph structures and specific Mathematical
characteristics. Following the given algorithmic steps ensures
comprehensive data protection, with the recipient ultimately
recovering the original message from the labeled graph. Section 2
Presents cryptographic techniques using C Cn n , accompanied by a
formulated algorithm. An example illustrates the application of this
algorithm. Section 3 introduces the use of complete bipartite graphs to
construct a secure encryption scheme, accompanied by a detailed
algorithm. The scheme’s applicability to important information is
demonstrated through an example. Within the specified section 4,
we introduce a robust encryption scheme based on a distinctive corona
graph, denoted as K Kn1 . The algorithm is detailed, accompanied
by practical illustrations showcasing its application.

2 Encryption scheme using corona
graph C Cn n

The encryption of the scheme is given as follows:

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 03 frontiersin.org

2.1 Plaintext Encoding

Begin with the plaintext message that needs to be securely
transmitted. Each symbol in the message (including alphabetic
characters, numbers, punctuation, and other special symbols) is
encoded using a numeric representation. This can be based on an
ASCII, Unicode, or any appropriate character encoding table. Let the
encoded message consist of a sequence of numeric values
a a a an1 2 3, , ,.., , where n is the length of the plaintext message.

2.2 Shift cipher

Apply a shift-type cipher to each numeric value of the encoded
message. The shift is performed modulo m, where m is the size of the
character encoding set (for example, m =128 for ASCII or m = 256
for extended character sets). The shift cipher can be represented as:

e x x n mn () = +()mod

Here, x is the numeric value of the character, and n is a
predefined shift value. This transformation ensures that each character
in the message is shifted by n positions in the character set, providing
an initial layer of encryption.

2.3 Selection of bi values

For each shifted numeric value a_i, randomly select a positive
integer bi such that gcd b a b mi i i,() = >1and (ensuring that bi is
relatively prime to the numeric representation ai and greater than the
size of the encoding set).

2.4 Corona graph C Cn n construction

Consider the Corona graph C Cn n which consists of n n+()1
vertices. Assign the values b b bn1 2, ,.., to the main cycle vertices and
distribute these values to the vertices adjacent to the new cycles in a
random manner.

2.5 Modular inverses

For each ai , compute the inverse of a bi imod . The inverse is
denoted by ci , where:

c a bi i i= −1 mod

These inverse values c c cn1 2, ,.., are assigned to the cycles in the
Corona graph, forming the encrypted message.

2.6 Transmission

The labeled Corona graph C Cn n with the inverse values ci
assigned to the cycles and the values bi assigned to the main cycle
vertices, is transmitted to the receiver as the encrypted data.

3 Decryption algorithm

3.1 Receive the corona graph

The receiver obtains the transmitted Corona graph C Cn n ,
which contains the labeled cycles with values c c cn1 2, ,.., and the main
cycle vertices labeled with b b bn1 2, ,.., .

3.2 Organize the values

Arrange the cycles in ascending order according to their
associated bi values.

3.3 Modular inverse calculation

For each ci , compute the inverse modulo the corresponding bi ,
resulting in the values ai . This inverse operation is calculated as:

a c bi i i= −1 mod

These values a a an1 2, ,.., correspond to the encoded
message symbols.

3.4 Undo the shift cipher

Reverse the shift operation applied during encryption
by computing:

w a n mi i= −()mod

for each i , where n is the original shift value used during
encryption and m is the size of the character set.

3.5 Translate numeric values back to
symbols

Convert the resulting numeric values w w wn1 2, ,.., back to their
corresponding characters using the same character encoding table
(e.g., ASCII or Unicode) that was used during encryption.

3.6 Reconstruct the plaintext

The translated symbols now represent the original plaintext
message, completing the decryption process.

Example 1: Suppose the task at hand involves transferring
information, denoted as “MATHS,” by encrypting it before sending it

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 04 frontiersin.org

FIGURE 1

Corona graph.

to the intended recipient. The first step involves transforming the
alphabetic letters into their respective numerical positions, utilizing
the encoding table ASCII.

M A T H S
13 1 20 8 19

Here, with the word length n = 5 , applying the shift cipher
e x nn = + ()mod26 , we obtain:

13 5 18
1 5 6

20 5 25
8 5 13

19 5 24

1

2

3

4

5

+ = =
+ = =
+ = =
+ = =
+ = =

a
a
a
a
a

,
,
,

.

The given word is encrypted in the following form:

R F Y M X.

Choosing random increasing integers bi such that the value of bi
is greater than 26:

gcd gcd ,
gcd gcd ,
gcd

b a
b a
b a

1 1

2 2

3 3

18 35 1
6 41 1

, ,
, ,
,

() = () =
() = () =
() = ggcd ,

gcd gcd ,
gcd gcd

25 49 1
13 51 1
24 71

4 4

5 5

,
, ,
, ,

() =
() = () =
() = (
b a
b a)) =1

Constructing the Corona graph C Cn n and randomly assigning
the values of bi to the main vertices of the main cycle, as illustrated
in Figures 1, 2.

Now, proceeding with the following step:

c a bi i i= () ()−1 mod

we get.

c a b

c a b
1 1

1
1

1

2 2
1

2
1

18 35 2

6

= () () = () () =
= () () = ()

− −

− −
mod mod ,

mod mod 441 7

25 49 23 3
1

3
1

4 4
1

4

() =
= () () = () () =
= () () =

− −

−

,

mod mod ,

mod

c a b

c a b 113 51 4

24 71 3

1

5 5
1

5
1

() () =
= () () = () () =

−

− −
mod ,

mod mod .c a b

The reciprocal values obtained are assigned to the neighboring
cycles of main cycle in Figure 2, as illustrated in Figure 3.

Proceed with the transmission of this labeled graph (Figure 3) to
the recipient.

Decryption process:

Upon receiving the labeled graph, the recipient organizes the main
vertices in ascending order, ensuring the security and integrity of the
encrypted information.

 35 41 49 51 71< < < <

and regards these numbers as the values of bi in the process.

 b b b b b1 2 3 4 5< < < <

Taking inverses of corresponding new cycles of adjacent main
cycle in reference to the value of each bi , illustrated in Figure 3,
we obtain.

2 35 18
7 41 6
2 49 25
4 51

1
1

1
2

1
3

1

−

−

−

−

() = =

() = =

() = =

() =

mod
mod
mod
mod

a
a

a
113

3 71 24
4

1
5

=

() = =−
a
amod .

Now, for wi ,

w a

n n
ni i= −
+()
+

1
1

26mod

Find values of a a a a1 2 3 4, , , , and a5 :

w a M

w a

1 1

2 2

5 1 5
5 1

26 13

5 1 5
5 1

= −
+ ()
+

= =

= −
+ ()
+

mod ,

mood ,

mod ,

26 1

5 1 5
5 1

26 20

5 1 5
5

3 3

4 4

= =

= −
+ ()
+

= =

= −
+ ()
+

A

w a T

w a
11

26 8

5 1 5
5 1

26 195 5

= =

= −
+ ()
+

= =

mod ,

mod .

H

w a S

In conclusion, we obtain the original text “MATHS.”

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 05 frontiersin.org

4 Encryption scheme using complete
bipartite graphs

In this section, we introduce an encryption method tailored to
ensure the confidentiality and security of communication between
two parties involved in message interchange. The foundation of this
encryption method lies in utilizing a bipartite graph in conjunction
with the principles of a unique factorization domain (UFD).

The algorithm comprises the following steps:

Begin by choosing a UFD that encompasses infinite primes. As an
illustrative example, consider the set of integers, denoted as .

Create a set, denoted as Pn comprising the initial " "n prime
numbers, where n k k= () +26 / and 2 13< <k . The value of k
serves as the key, which remains fixed based on the desired
word length.

Take a message of length S characters that you aim to encrypt

Construct a table with dimensions n k k−()× , where the first
value represents the number of rows, and the second value
denotes the number of columns.

Partition the alphabets into the table, filling each cell with a
distinct alphabet from the message. Begin the allocation by
populating the table row-wise and continue until the entire
message is accommodated.

Subsequently, the alphabets are grouped into two categories: those
at the 1st through kth prime positions (arranged horizontally),

and those at the k th+()1 through nth prime positions
(arranged vertically).

Now, associate each alphabet with the corresponding integers r ci i ,
Where as ri stands for the row position and ci stands for the
column position.

Classify the entry ij with r ci i , where k i n j k+ ≤ ≤ ≤ ≤1 1,
constructing each number as a vertex within a path graph based
on the sequence of letters.

We calculate the product of i and j , denoted as i j. , and assign
each vertex a label corresponding to that product, represented as
ap where p ranges from 1 to k . It should be noted that digits in
the tens place are not considered for the column position. In

FIGURE 2

Encrypted message.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 06 frontiersin.org

simpler terms, we ensure that the column position consists solely
of two-digit prime numbers.

Create a path graph by associating consecutive pairs of numbers
i j, with each vertex.

Organize the graph labels based on their corresponding row and
column numbers. V1 is set of vertices are in descending order and
V2 is set of vertices are in ascending order with thier repetition.

V1 = { Initially, arrange numbers starting from i}

V2 = { The numbers securing the second position from j}

The edge set of G is formed by the pairs r c r c r ci i n i1 2, , ,() () … (), , , .

Proceed to create a complete bipartite graph using the specified
set of edges. Edges move from r c r c r ci i n i1 2, , ,() () … (), , , .

Apply weights to the adjacent edges by sum of two labeled vertices.

Send that labeled graph.

Decryption process:

The recipient obtains the fully labeled complete bipartite graph
sent by the sender.

Arrange the weights of edges in the complete bipartite graph
in descending order.

Organize the edges based on their weights, forming a set of
ordered pairs. Each ordered pair should indicate the number of
rows at the first position and the number of columns at the second
position, respectively, V1 is set of vertices and V2 is set of vertices
are consider as shown in graph with thier repetition.

Utilize the ordered pair information to construct a path
graph. Connect vertices based on the specified rows and columns,
creating a linear graph.

Perform prime factorization on each vertex label of the path
graph. Decompose the labels into their prime factors.

Retrieve the required alphabets corresponding to the prime
factorization by referencing the decoding table mentioned earlier
in the algorithm.

Example 2: Let us take a word UNITED.

U N I T E D
21 14 9 20 5 4

Step 1: Select a unique factorization domain (UFD) containing an
infinite number of prime elements. i.e., .

Step 2: In this example, n k= () + < <26 6 6 2 13/ ; . Hence, n =11
. We consider a set P11 of first 11 primes
denoted as P11 2 3 5 7 11 13 17 19 23 29 31={ }, , , , , , , , , , .

Step 3: In Figure 4, a tabular representation is depicted. This
illustration pertains to the creation of a table, showcasing,

n k k−()× = ×5 6 . First value, i.e., 5 shows the no. of rows and 6 the
no. of columns.

Step 4: message becomes ci to ri

U N I T E D i j= = = = = = ≤ ≤ ≤ ≤529 323 519 329 1117 717 5 11 1 6, , , , , ; , .

Step 5: Values that correlate with each other are determined.

a
a
a
a

a

1

2

3

4

5

5 29 145
3 23 69
5 19 95
3 29 87

11 17 187

= × =
= × =
= × =
= × =

= × =

,
,
,
,
,

aa6 7 17 119= × = ,

Step 5: Now, we construct a path graph of these corresponding
values ai . See Figure 5.

Here,

V1 1 6 9 8 11={ }, , , , ,

V2 45 9 5 7 87 19={ }, , , , ,

Now, the vertices set of complete bipartite graph becomes,

G , , , , , , ,V V r c r c r ci i n i1 2 1 2() = () () … ()()

G ,, , , ,, ,, ,, ,= () () () () () () ()1 6 1 9 8 1 12 2 2 2 2 2 2V V V V V V, , , , , , ,

Step 6: Assign weights to the edges connecting adjacent vertices
in the complete bipartite graph, calculated as the sum of the incident
weights on the respective 2-vertices (Figure 6).

FIGURE 3

Tabular representation.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 07 frontiersin.org

Step 7: Send labeled graph.

Decryption process:

Step 1: Our initial action involves organizing the edge weights in
a descending order:

W = { , , , , , , , , , , ,
, , , , , , ,

96 94 93 88 88 88 54 53 51 46 46
46 28 27 25 20 20 20 188 17 16 15 15 14, , , , , .

13 13 11 10 10 10 8 8 8 6 6 6, , , , , , , , , , , }

Step 2: Now, arrange the edges based on their weights in
descending order.

FIGURE 4

Path graph for values of .ai

FIGURE 5

Complete bipartite graph.

FIGURE 6

Complete bipartite graph with weights.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 08 frontiersin.org

{ , , , , ,
, , ,

9 87 8 87 6 87 1 87 1 87
1 87 9 45 8 45 6

, , , , ,
, , ,
() () () () ()
() () () ,, ,45 1 45() (), ,

1 45 1 45 9 19 8 19 6 19 119
119 119 9
, , , , , ,
, , ,

() () () () () ()
() ()

, , , , , ,
, , 99 8 9 6 9 8 7() () () (), , , ,, , ,

9 5 8 5 6 7 6 5 1 9 1 9
1 9 1 7 1 7 1 7

, , , , , ,
, , , ,

() () () () () ()
() () () (

, , , , , ,
, , ,)) () () (), , , }1 5 1 5 1 5, , ,

Step 3: Now, Construct the set of vertices V1 arrange the elements
as shown in graph upper labbelled vertices, and V2 is consist of lower
labbeled vertices.

V1 1 6 9 8 11={ }, , , , ,

V2 45 9 5 7 87 19={ }, , , , ,

Step 3: Construct the corresponding path graph (Figures 7, 8).
Step 4: Apply the prime factorization of each labeled vertices in

the path graph.

a
a
a
a

a

1

2

3

4

5

145 5 29
69 3 23
95 5 19
87 3 29

187 11 17

= = ×
= = ×
= = ×
= = ×

= = ×

,
,
,
,
,

aa6 119 7 17= = × ,

So, Numerical values are 529, 323, 519, 329, 1,117, 717.
Step 5: We finally get the alphabets UNITED.

5 Secure data transfer using star
graphs

Numerous strategies have been devised to safeguard data, and the
highlighted approach centers around star graphs. This particular
scheme ensures the complete confidentiality of the primary concept
during the transmission of information. This encryption algorithm is
built upon the utilization of a star graph and the principles of a unique
factorization domain (UFD). The encryption and decryption
processes involve a systematic set of steps.

The encryption process follows the algorithm outlined below:

Begin by choosing a UFD that encompasses infinite no. of primes.
As an illustrative example, consider the set of integers,
denoted as .

Generate a set Pn containing the first “ n “primes, where
n k k= () +Γ 26 / and 2 13< <k . The value of k serves as the key,
which remains fixed based on the desired word length.

Select a message of length S characters that you wish
to encrypt.

Construct a table with dimensions n k k−()× , where the first
value represents the number of rows, and the second value

denotes the number of columns. Partition the alphabets into the
table, filling each cell with a distinct alphabet from the message.
Begin the allocation by populating the table row-wise and
continue until the entire message is accommodated.

(Note: In this step, the dimensions of the table are determined
by the difference n k− , which gives the number of rows, and k ,
which provides the number of columns. These values are chosen to
structure the message into a grid for encryption, and are not
necessarily prime numbers).

Following this, the alphabets undergo partitioning into prime
positions horizontally from the 1st to the position, and vertically
from the to the position. k th− k th+() −1 nth

Now, classify the alphabets with the integers r c ri i i, ; = row
position, ci = column position.

Label the entry ij with r ci i , where k i n j k+ ≤ ≤ ≤ ≤1 1,
Constructing a star graph by representing each number as a
vertex, following the sequence of letters.

We calculate the product of i and j , denoted as i j. and
assign each vertex a label corresponding to that product,
represented as ap where p ranges from 1 to k . It should be noted
that digits in the tens place are not considered for the column
position. In simpler terms, we ensure that the column position
consists solely of two-digit prime numbers.

Next, a star graph, denoted as S K Kn n+ =1 1 , is constructed
to correspond to the length of the message. The central vertex of
the star graph is anchored at the numerical value zero. The no. of
vertices in the star graph is set to be equal to one plus the number
of alphabetic characters present in the text. In this representation,
The information is depicted graphically, where each data point is
illustrated as a vertex in a graph, and each vertex is denoted by a
corresponding letter. It’s important to note that adjacent vertices
in the graph are represented by adjacent letters.

Assign each vertex a label corresponding to its numeric
representation denoted by ai .

Subsequently, assign weights, denoted as w w w wn1 2 3, , , ,⊃ to
individual edges e e e en1 2 3, , , ,⊃ in a manner that ensures.

w e w e w e w en n1 1 2 2 3 3() < () < () < < () .

Algorithm for determining edge weights.
Decrease the exponent of 10 from every vertex label in

succession along the edges, ensuring adjacency, as follows:

 V V V Vn
n

1 2
2

3
310 10 10 10− − − … −, , , ,

where Vi ∈ vertex tex i n= …{ }1 2 3, , , , .
The resulting values obtained from the conversion process

serve as the weights for the corresponding edges, denoted as ei .
Afterward, the resulting graph forms into a star configuration,

where each edge possesses specific weights, effectively obscuring
the labels of the vertices.

Send this diagram to the recipient.

The decryption procedure follows these steps:

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 09 frontiersin.org

Arrange the edge weights in ascending order.
Then, sequentially sum up the increasing powers of 10

corresponding to the ordered weights.
Perform prime factorization on each vertex label

of the star graph. Decompose the labels into their
prime factors.

Retrieve the required alphabets corresponding to the prime
factorization by referencing.

Decode the characters utilizing the encoding table, leading to
the retrieval of the desired text.

Example 3: To elucidate the outlined scheme, it’s imperative to
illustrate its operation through a practical example. Let us consider the
word “SECURITY” to fulfill the procedural steps.

S E C U R I T Y
19 5 3 21 18 9 20 25

.

Step 1: Begin with a unique factorization domain (UFD) featuring
an infinite set of prime elements. i.e., .

Step 2: In this example, n k= () + < <26 8 8 2 13/ ; . Hence, n =12
so we can take a set P12 of first 12 primes
denoted as P12 2 3 5 7 11 13 17 19 23 29 31 37={ }, , , , , , , , , , , .

Step 3: In Figure 9, a tabular representation is depicted. To
construct this table, the equation n k k−()× = ×4 8 is utilized, where

the first value, denoted as 4 , corresponds to the number of rows,
while the second value, indicated as 8, represents the number
of columns.

Step 4: message becomes
= = = = = =315 2311 235 3111 313, , , , ,E C U R I
292 317 372 4 12 1 8, , ; ,T Y i j= = ≤ ≤ ≤ ≤ .

Step 5: corresponding values are.

a
a
a
a
a

1
2
3
4
5

31 5 155
23 11 253
23 5 115
31 11 341
31 3

= × =
= × =
= × =
= × =
= × =

,
,

,
,

993
29 2 58
31 7 217
37 2 74

6
7
8

,
,

,
,

a
a
a

= × =
= × =
= × =

Now, we construct a star graph, denoted as S K Kn n+ =1 1 , of
these corresponding values ai . See Figure 10.

Step 6: Now give weights w ii ,∀ ∈{ }1 2 3 4 5 6 7 8, , , , , , , to the
corresponding edges of the vertices:

 i

w w w w
w w w w
1 2 3 4

5 6 7 8

155 253 115 341
93 58 217 74

() < () < () < ()
< () < () < () < (()

Weights are given by subtracting the increasing power of 10 from
each adjacent numeric value.

FIGURE 7

Corresponding path graph.

FIGURE 8

Corresponding tabular representation.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 10 frontiersin.org

weight of edge
weight of edge

e w
e w

1 1

2 2
2

155 10 145
253 10

= = − =

= = − =1153
115 10 885

34
3 3

3

4 4

weight of edge
weight of edge

e w
e w

= = − = −

= = 11 10 9659
93 10 99907

4

5 5
5

− = −

= = − = −weight of edge
weight of edg

e w
ee

weight of edge
e w

e w
6 6

6

7 7
7

58 10 999942
217 10 9999783

= = − = −

= = − = −

wweight of edge e w8 8
874 10 99999926= = − = −

Our resulting star graph is shown in Figure 10. Send labeled graph.
Decryption process:
The recipient receives the labeled star graph transmitted by

the sender.
Step 1: Arrange the weights of edges in the star graph in ascending

order of mod values, i.e.,

145 153 885 9659 99907
999942 9999783 99999926
< < − < − < −

< − < − < −

Step 2: Increase each adjacent value by the power of 10,
progressively.

145 10 153 100 885 1000
9659 10000 99907 100000

999942

+ < + < − +
< − + < − +

< − ++ < − +
< − +

1000000 9999783 10000000
99999926 100000000

Step 3: Through this mod operation we get values ai

a
a
a
a

a
a

a
a

1

2

3

4

5

6

7

8

155
253
115
341
93
58

217
74

=
=
=
=
=
=
=
=

,
,
,
,
,
,
,
,

Step 4: Apply the prime multiplication of ai

a
a

a
a

a

1
2

3
4

5

155 31 5
253 23 11
115 23 5

341 31 11
93 31

= = ×
= = ×
= = ×
= = ×
= =

,
,
,
,

××
= = ×
= = ×
= = ×

3
58 29 2

217 31 7
74 37 2

6
7

8

,
,
,
,

a
a
a

Step 5: Finally we get values 315 2311 235 3111 313 292 317 372, , , , , , , .
Through the encoding table, we get their respective letters as
SECURITY. Get the required hidden text.

This illustration elucidates the concealment and security of data
until it reaches the intended recipient. The algorithm relies on star
graphs, with labeled graphs being transmitted to the receiver. This
method represents an optimal approach for ensuring data security.

FIGURE 9

Star graph.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 11 frontiersin.org

6 Discussion

In this study, we adopt a comprehensive methodology to develop
and evaluate our proposed encryption algorithms. Initially, we conduct
a rigorous analysis of existing cryptographic techniques, identifying
their vulnerabilities to conventional cyber-attacks. This analysis serves
as a foundation for our exploration into nonstandard encryption
methods. We then delve into graph theory, selecting corona graphs, star
graphs, and complete bipartite graphs for their unique algebraic
properties and suitability for cryptographic applications. Our approach
involves the mathematical formulation of these graphs, followed by the
integration of algebraic structures to define encryption operations. To
assess the efficacy and security of our proposed algorithms, we employ
a combination of theoretical analysis and empirical testing. Theoretical
analysis focuses on proving the cryptographic strength of our methods
against known attack vectors, while empirical testing involves
simulating real-world attack scenarios. This dual approach ensures a
comprehensive evaluation of our encryption schemes, highlighting
their potential to significantly enhance data security.

6.1 Performance analysis

The proposed encryption techniques, leveraging special corona
graphs, star graphs, and complete bipartite graphs, introduce
innovative approaches to enhance data security in confidential
communication. Here, we analyze the performance of these schemes,
considering their advantages and drawbacks:

Advantages:

Advantage Description

Enhanced

security

By incorporating algebraic properties of specialized graphs, the

encryption techniques offer heightened security, making it

challenging for unauthorized parties to decipher transmitted

messages.

Resistance to

traditional

attacks

These nonstandard encryption algorithms provide a defense

mechanism against traditional cryptographic attacks, such as

brute force and frequency analysis, due to their unique

structures and operations.

Diverse

application

scenarios

The utilization of various graph types allows for versatile

application scenarios, accommodating different communication

environments and requirements.

Scalability The proposed schemes demonstrate scalability, enabling efficient

encryption and decryption processes even for large datasets and

complex communication networks.

Drawbacks:

 1. Complexity: Implementing and understanding the underlying
mathematical concepts of the proposed encryption techniques
may require a significant level of expertise, potentially limiting
widespread adoption.

 2. Computational overhead: The computational complexity of
encrypting and decrypting messages using specialized

FIGURE 10

Encrypted message to be sent.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 12 frontiersin.org

graph-based algorithms could result in increased processing
overhead, impacting real-time communication systems.

 3. Key management: Effective key management strategies are
crucial for the security of these encryption schemes. However,
the management of keys for graph-based encryption algorithms
may introduce additional complexities and vulnerabilities.

Moreover, Evaluating the computational efficiency of our
proposed encryption schemes is vital for determining their
practicality, especially for real-time applications where speed and
resource usage are critical. Here, we analyze the performance of the
encryption methods based on Corona Graphs, Complete Bipartite
Graphs, and Star Graphs.

6.1.1 Corona Graph C Cn n

For the Corona Graph C Cn n scheme, the encryption process
begins with encoding the message and applying a shift cipher, both of
which are relatively quick operations. The more computationally
intensive steps involve selecting suitable integers and computing
modular inverses, which together have a moderate complexity.
Constructing the Corona graph itself is the most time-consuming part
due to the need to handle a larger number of vertices and edges.
Decryption involves sorting and modular arithmetic, both manageable
in terms of computational demand. Overall, the scheme is efficient but
may require optimization for handling very large graphs.

6.1.2 2. Complete bipartite graphs
This scheme starts with generating prime numbers and

constructing a table to encode the message, both of which are
straightforward operations. The main computational load comes from
labeling the graph and setting up the complete bipartite structure.
Decryption involves sorting edge weights and performing prime
factorization, which are efficient but could become a bottleneck with
very large datasets. Generally, this method balances computational
efficiency with robust encryption.

6.1.3 Star graphs
The Star Graphs method is the most efficient of the three. The

initial steps of generating primes and setting up the table are quick.
Constructing and labeling the star graph is simpler compared to the
other graph types, making this method faster overall. Decryption is
straightforward, involving sorting and prime factorization, which are
computationally light. This makes the star graph approach particularly
suitable for scenarios requiring quick encryption and decryption.

Key management is a crucial aspect of our proposed graph-
based encryption methods, ensuring the secure generation,
distribution, and storage of keys used for encryption and decryption.
For the Corona Graph scheme, managing the integers bi and their
modular inverses is essential, requiring secure channels for
distribution. In the Complete Bipartite Graphs scheme, the integer
k serves as the key, which must be securely shared, alongside the
selected primes arranged into the bipartite graph, protected from
interception. Similarly, the Star Graph scheme relies on securely
managing the integer k and the initial set of primes. Employing
robust key exchange protocols, such as Diffie-Hellman, is
recommended to safeguard these keys. Effective key management
practices, including secure key generation, distribution, and storage,
are vital to maintain the integrity and security of the encrypted data,
enhancing the robustness of our encryption methods.

6.2 Key management strategies

In the context of cryptography, key management is a component
that plays an essential role in any protective layer required in an
encryption system. Key management is defined broadly and involves
generation, exchange, storage, utilization, and retirement/
decommissioning of the keys. Therefore, it is crucial to pay attention
to the key management in the graph-based encryption algorithms, as
the methods within it are quite different from the traditional ones
because of the differences in the properties of the new methods.

6.2.1 Key generation
Particularly for graph-based encryption algorithms the process of

key generation includes the generation of keys corresponding to the
structural characteristics of graphs like, corona graphs, star graphs,
and complete bipartite graphs etc. It is for these keys to have very high
entropy and all appearances of randomness in order to avoid
predictability and ore security. It can be pointed out that the generation
process can be based on the complexing and combinatorial properties
of the chosen graph structures.

6.2.2 Key exchange protocols
The exchange of keys is basic to security in transit and is the

means by which confidentiality is maintained. For instance, GraphKey
exchange protocols like Diffie Hellman and RSA are easily applicable
to work alongside Graph-based Encryption systems. Here, I provide
an overview of how these protocols can be integrated with the
proposed methods: Here, I provide an overview of how these protocols
can be integrated with the proposed methods:

Diffie-Hellman Key Exchange: In this protocol, the key
transference is achieved when both parties agree to settle for a big
prime number and a base which are both disclosed. The members of
each party choose a private key, and then, produce the corresponding
public key by using the graph-based encryption function. Since the
public key exchange gives both parties ability to compute the shared-
secret key from their private key, no one can intercept the exchange.

RSA Key Exchange: RSA can be used to perform Secure Encryption
to safely pass graph based encryption keys. RSA key wherein the sender
uses the recipient’s public Key to encrypt the key and vice versa the
recipient uses his/her private keys to decrypt the key. This method will
help safeguard the encryption key while on the process of transmission.

Key Distribution: Ensuring that keys get to all the relevant parties
with as much discretion as possible is also important. Two structures
that can be used to issue, store, and distribute keys for letter-based
encryption schemes are Key Distribution Centers (KDCs) and Public
Key Infrastructures (PKIs). These infrastructures make it possible for
keys to be in the possession of only the authorized persons and are
jointly updated to reduce risks.

Key Storage: It is advised not to keep the keys where people can
easily find them or make a copy of them. It is advisable to save keys
with HSM or any other secure software that is capable of resisting key
tampering and key extraction. Likewise, keys should be encrypted at
rest using advanced encryption methodologies that are irreversible to
a certain extent.

Key Replacement and Revocation: Keying management must also
consider issues to do with replacement of existing keys and also
revocation of issued keys. Key management involves changing keys
often so that more advanced or compromised keys do not get exploited
and revocation mechanism helps to provide that compromised keys are

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 13 frontiersin.org

recalled immediately. Both processes can be integrated to ensure that
the operations are on abreast, secure, and viable for implementation.

Practical Challenges and Considerations: While integrating these
key management strategies with graph-based encryption algorithms,
several practical challenges may arise: While integrating these key
management strategies with graph-based encryption algorithms,
several practical challenges may arise:

Scalability: Making sure that the key management systems of
these digital goods are deployable sufficiently to handle sizeable user
and device bases.

Interoperability: One of the main challenges is the problem of
achieving interoperability between diverse cryptographic systems
and protocols.

Performance: It identifies some of the challenges that include a
trade-off between security and performance within highly
constrained environments.

Usability: Developing utterly key management processes that are
convenient for users and where the risks of mistakes are minimal.

6.3 Comparative analysis with existing
techniques

To highlight the strengths and innovations of our proposed graph-
based encryption schemes, it is important to compare them with
existing encryption techniques that also utilize graph theory (See
Table 1). Here, we present a comparative analysis including recent
studies by Ali M. A. H. et al. (2023), Hashem and Ajeena (2023),
Shathir et al. (2023), and Sabharwal et al. (2024).

We claim that the novel schemes given above are advantageous over
the existing methods in the following ways. The concepts of corona

graphs, complete bipartite graphs, and star graphs increase the level of
complexity and, by the same token, enhance the level of security. Adding
these graph structures to algebraic properties, the overall encryption
becomes stronger compared to the cases when much simpler graphs
were used in the referenced studies. Also our schemes specify radical
management policies for every phase of key generation, issuing and
storages, an aspect that has received a lot of attention among the existing
methods. As for algorithmic performances, the scalability and the
computation time of the proposed schemes have been discussed for their
relevance from real-time systems. This is an improvement from some
degraded methods that do not give an assessment of the computational
efficiency. In addition, specific examples and case studies are utilized in
developing our schemes more precisely and in showing how they can
be applied in practice.

Two new graph based techniques have been proposed by Ali
M. A. H. et al. (2023) entitled ‘Cartesian product graphs for
recommender systems’, Hashem and Ajeena (2023) titled ‘Tensor
product bipartite graphs for recommender systems’, Shathir et al.
(2023) ‘Triple vertex path graphs for recommender systems and
Sabharwal et al. (2024) entitled ‘Association schemes in recommender
systems’. These methods provide high encryption strength and
provides the generic procedure of key management while both of our
proposed schemes. However, all our methods can ensure the given
balance theoretical adjunct to the applied research approach, emphasis
on the specific uses, improvements to the security, critical examination
of the computational complexity. In conclusion, our graph-based
encryption schemes stand out due to their innovative use of complex
graph structures, detailed key management protocols, enhanced
security features, and thorough analysis of computational efficiency,
making them a significant advancement in the field of
cryptographic techniques.

TABLE 1 Comparative analysis table.

Feature/Aspect Proposed
schemes

Ali M. A. H. et al.
(2023)

Hashem and
Ajeena (2023)

Shathir et al.
(2023)

Sabharwal et al.
(2024)

Graph type used Corona, complete

bipartite, star

Cartesian product graphs Tensor product bipartite

graphs

Triple vertex path graphs Association schemes

Key management Detailed protocols for

secure key handling

Discussed with focus on

graph properties

Detailed symmetric key

management

Key management

protocols using vertex

properties

Secure key exchange

using association

properties

Encryption strength High, due to complex

graph structures and

algebraic properties

High, leveraging

Cartesian product

properties

High, utilizing tensor

product for added

complexity

High, based on triple

vertex path complexity

High, using association

schemes for robust

encryption

Computational efficiency Analyzed for efficiency in

speed and resource use

Analyzed, efficient for

large graphs

Analyzed, efficient for

symmetric operations

Analyzed, efficient for

specific use cases

Analyzed, effective for

large datasets

Real-world applications Practical examples and

case studies included

Practical applications in

secure communication

Symmetric encryption for

secure data exchange

Practical encryption

schemes for data security

Applications in secure

graph data and

steganography

Innovation Introduction of novel

graph-based methods

Novel use of Cartesian

product graphs

Innovative use of tensor

product in symmetric

encryption

New approach with triple

vertex path graphs

Combining cryptography

and steganography for

graph data

Security against attacks Enhanced security against

traditional attacks

Strong resistance to

graph-based attacks

Enhanced security due to

tensor product

complexity

Robust security

leveraging vertex paths

High security with

combined cryptographic

and steganographic

methods

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 14 frontiersin.org

6.4 Time complexity for encryption and
decryption schemes

6.4.1 Corona graph C Cn n

In this scheme, the encryption process involves several steps:

 • Encoding the message: Each character in the message (whether
alphabetic or any other ASCII character) is converted into its
corresponding numeric representation. For a message of length
n , this operation takes O(n) time.

 • Applying a shift cipher: After encoding, we apply a shift cipher to
each character. Since this operation processes each character
independently, the time complexity remains O(n).

 • Choosing integers bi : The algorithm selects integers bi that are
relatively prime to the encoded values ai Given that this step
requires verifying the greatest common divisor (GCD) for each
pair a bi i,() , the time complexity for checking GCD using the
Euclidean algorithm is O bilog() for each character. Thus, for n
characters, this step takes O n bilog() time.

 • Modular inverse calculations: Computing the inverse of
a bi imod involves using the extended Euclidean algorithm,
which has a time complexity of O bilog() for each character.
Therefore, for n characters, this step contributes O n bilog() to
the overall time complexity.

 • Graph construction: The Corona graph C Cn n has n n+()1
vertices, and constructing this graph, with each vertex assigned
a weight from the set b b bn1 2, , ,…{ } takes O n2() time.

Combining all the steps, the total time complexity for encryption
is O n n bi

2 +()log . The decryption process follows similar steps
(modular inverse calculations, rearrangement, etc.), leading to the
same overall time complexity.

6.4.2 Complete bipartite graphs Km n,
For the complete bipartite graph-based encryption:

 • Message encoding: Similar to the Corona graph scheme, encoding
each character into its numeric representation takes O n().

 • Graph construction: A complete bipartite graph Km n, is
constructed, where the size of each set in the bipartition is mmm
and n . The number of edges in such a graph is O mn() , leading
to a time complexity of O mn() for graph construction.

Thus, the overall time complexity for this scheme is O mn() for
encryption, with decryption having the same time complexity.

6.4.3 Star graphs
In the star graph-based encryption scheme:

 • Message encoding: Again, encoding the message into numeric
values takes O n().

 • Graph construction: A star graph has n vertices (one central
vertex and n−1 leaf vertices). Constructing this graph, with each
leaf vertex assigned a numeric value, takes O n() time.

Therefore, both the encryption and decryption processes have a
time complexity of O n().

6.4.4 Security against advanced attacks
While our proposed graph-based encryption schemes have

demonstrated strong resistance to traditional attacks, it is crucial to
evaluate their robustness against more advanced threats, including
those posed by quantum computing and side-channel attacks.

6.4.5 Quantum computing threats
Quantum computing presents a significant challenge to classical

cryptographic algorithms due to its potential to solve complex
mathematical problems more efficiently. Traditional encryption
methods, such as RSA and ECC, are particularly vulnerable to
quantum attacks like Shor’s algorithm, which can efficiently factorize
large integers and solve discrete logarithms.

6.4.5.1 Quantum-resistant properties

 • Graph-Based Structures: The inherent complexity of the graph
structures used in our proposed schemes (corona graphs,
complete bipartite graphs, and star graphs) adds a layer of
security that is inherently difficult for quantum algorithms to
exploit directly.

 • Algebraic Properties: By incorporating algebraic properties
into the encryption process, we introduce additional layers of
complexity that further enhance resistance to quantum
attacks. These properties can be designed to align with
principles from lattice-based cryptography, known for its
quantum resistance.

6.4.5.2 Future adaptations
 • Integration with Post-Quantum Algorithms: Our schemes

can be augmented with post-quantum cryptographic
techniques, such as lattice-based, hash-based, or code-based
algorithms, to provide an additional safeguard against
quantum computing threats. This hybrid approach can
leverage the strengths of both graph-based and post-quantum
cryptographic methods.

6.4.6 Side-channel attacks
Side-channel attacks exploit physical implementations of

cryptographic algorithms to gain information and breach security,
often through timing analysis, power consumption, or
electromagnetic leaks.

6.4.6.1 Mitigation techniques

 • Constant-Time Algorithms: Implementing our graph-based
encryption schemes using constant-time algorithms can mitigate
timing analysis attacks. This involves ensuring that the execution
time of cryptographic operations does not vary with the input or
the processed data.

 • Power Analysis Resistance: Techniques such as masking
(randomizing intermediate values) and hiding (reducing the
correlation between power consumption and processed data)
can be employed to protect against power analysis attacks. Our
schemes can be adapted to incorporate these techniques,
enhancing their resistance to side-channel attacks.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 15 frontiersin.org

6.4.6.2 Implementation considerations
 • Secure Hardware: Utilizing secure hardware components

designed to withstand side-channel attacks can further bolster
the security of our encryption schemes. This includes hardware
with built-in protections such as noise generation and shielding
(See Table 2).

6.5 Real-world applications and case
studies

In the real world, graph-based encryption finds practical
applications that safeguard sensitive information while facilitating
various tasks.

6.5.1 Empirical testing in real-world scenarios
To validate the effectiveness and practicality of the proposed

graph-based encryption schemes, we implemented and tested these
methods in real-world scenarios within a small organizational setting.
The following case studies illustrate the application and performance
of the encryption techniques:

Financial Transactions: Setup: The encryption schemes were
incorporated into a payment processing system between a client
program and a server.

Application: Before transmission, financial data which were
considered sensitive was encrypted using the proposed graph-
based methods.

Outcome: The encrypted transactions were decrypted by the
server which proved the efficiency and security of the methods. There
was no information leakage and hacking incident during the
test phase.

Confidential Messaging: Setup: An internal messaging
system within the organization that applies the graph-
based encryption schemes to enable communication
between employees.

Application: Any message that was communicated and contained
sensitive information was encoded prior to being communicated
across the network.

Outcome: There was no disconnect in the communication; the
encryption and decryption processes did not slow down the flow of
any message. The users also expressed no performance degradation
from the traditional methods of encryption, which proves the efficacy
of the proposed schemes.

The mentioned examples show that the introduced algorithms
for graph-based encryption do not only enhance the security level
of the system but also can be easily implemented into various
practical applications while retaining performance and
user-friendliness.

6.5.2 Document Categories
 • By encrypting documents based on their content structure,

we can control access to specific categories or topics within a
document. This ensures that only authorized users or groups can
view relevant content (Figure 11).

TABLE 2 Resistance to advanced attacks.

Feature/Aspect Proposed schemes

Quantum computing resistance High, due to complex graph structures and algebraic properties; potential for integration with post-quantum algorithms

Side-channel attack resistance Moderate to High, with implementation of constant-time algorithms, masking, and hiding techniques; secure hardware utilization

recommended

FIGURE 11

 InfoSift document classification system.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ali et al. 10.3389/fcomp.2024.1454094

Frontiers in Computer Science 16 frontiersin.org

6.5.3 Private keyword searches
 • Utilizing graph-based encryption allows for confidential

keyword searches within documents. This is crucial for scenarios
where privacy is paramount, such as in medical or legal contexts.

7 Conclusion

This study introduces graph theoretic-based encryption schemes
aimed at enhancing the quality of encryption methods. Three novel
encryption algorithms are proposed, providing valuable tools for the
secure communication of confidential messages. Each algorithm
offers unique features. The initial algorithm employs encryption and
decryption through a designated corona graph C Cn n ,
incorporating fundamental algebraic properties. The second
algorithm is based on an encoding table, a complete bipartite graph,
and the principle of a UDF. This approach adds diversity to
encryption strategies. The third algorithm utilizes a specific labeling
of vertices and edges within the star graph K Kn1 , introducing a
symmetric described tabular encryption method. All three algorithms
incorporate the concept of a shared key, which needs to
be predetermined and shared between the two communicating
parties for successful encryption and decryption processes.
Modifications can be made to adapt these algorithms for the
communication of sentences or sets of sentences. To increase
complexity, further enhancements may involve integrating public key
cryptography principles. Additionally, there is potential for
implementing and testing these algorithms in various programming
languages, providing practical insights into their real-world
applicability like C + + , JAVA, or Microsoft.Net.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author/s.

Author contributions

NA: Writing – review & editing, Writing – original draft,
Conceptualization. AS: Writing – review & editing, Writing – original
draft, Validation. MS: Writing – review & editing, Writing – original
draft, Methodology, Investigation, Data curation. MI: Writing –
review & editing, Writing – original draft, Supervision. HS: Writing
– review & editing, Writing – original draft, Project administration.
SA: Writing – review & editing, Writing – original draft, Resources.
NSA: Writing – review & editing, Writing – original draft,
Funding acquisition.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References
Ali, N., Kousar, Z., Safdar, M., Safdar, J., and Tolasa, F. T. (2024a). A mathematical

analysis of concealed non-Kekulean benzenoids and subdivided networks in associated
line graphs. Acadlore Trans. Appl Math. Stat 2, 72–80. doi: 10.56578/atams020202

Ali, N., Kousar, Z., Safdar, M., Tolasa, F. T., and Suleiman, E. (2023). Mapping
connectivity patterns: degree-based topological indices of Corona product graphs. J.
Appl. Math. 2023, 1–10. doi: 10.1155/2023/8975497

Ali, M. A. H., Omran, A. A., and Ajeena, R. K. K. (2023). The cartesian product graph
for encryption schemes. In 2nd international conference on modern applications of
information and communication technology, AIP conference proceedings (Vol. 2591).

Ali, N., Siddiqui, H. M. A., and Qureshi, M. I. (2024b). Exploring ring structures:
multiset dimension analysis in compressed zero-divisor graphs. arXiv preprint
arXiv:2405.06187.

Arunkumar, B. R. (2015). Applications of bipartite graph in diverse fields including
cloud computing. Int. J. Modern Engin. Res. 5:7.

Frucht, R., and Harary, F. (1970). On the corona of two graphs. Aequationes Math. 4,
322–325. doi: 10.1007/BF01844162

Hashem, M. H., and Ajeena, R. K. K. (2023) The tensor product bipartite graph for
symmetric encryption scheme. In AIP conference proceedings (Vol. 2591, No. . AIP
Publishing.

Hu, J., Liang, J., and Dong, S. (2017). A bipartite graph propagation approach for
mobile advertising fraud detection. Mob. Inf. Syst.:12.

Kedia, P., and Agrawal, S. (2015). Encryption using Venn-diagrams and graph. Int. J.
Advanced Comp. Technol. 4, 94–99.

Mahmoud, W., and Etaiwi, A. (2014). Encryption algorithm using graph theory. J. Sci.
Res. Rep. 3, 2519–2527.

Rosen, K. H. (2005). Elementary number theory and its applications. 5th Edn.
Boston, MA, USA: Addison-Wesley.

Sabharwal, A., Yadav, P., and Kumar, K. (2024). Graph crypto-Stego system for
securing graph data using association schemes. J. Appl. Math. 2024:2084342. doi:
10.1155/2024/2084342

Selim, G. A. (2020). How to encrypt a graph. Int. J. Parallel Emergent Distributed Syst.
35, 668–681. doi: 10.1080/17445760.2018.1550771

Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Syst. Tech. J.
28, 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x

Shathir, M. K., Ajeena, R. K., and Arif, G. E. (2023) The triple vertex path graph for
hill encryption schemes. In AIP conference proceedings (Vol. 2845, No. . AIP Publishing.

Sinha, D., and Sethi, A. (2016). Encryption using network and matrices through
signed graphs. Int. J. Comp. Appl. 138, 6–13. doi: 10.5120/ijca2016908780

Stinson, D. R. (2018). Cryptography: Theory and practice. 4th Edn. Boca Raton, FL,
USA: Chapman and Hall/CRC.

West, D. B. (2001). Introduction to graph theory. 2nd Edn. London, UK: Pearson.

Yamuna, M., and Elakkiya, A. (2015). Data transfer using fundamental circuits. Int. J.
Comp. Modern Technol. 2.

Yamuna, M., and Karthika, K. (2015). Data transfer using bipartite graphs. Int. J.
Advance Res. Sci. Engin. 4, 128–131.

https://doi.org/10.3389/fcomp.2024.1454094
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://Microsoft.Net
https://doi.org/10.56578/atams020202
https://doi.org/10.1155/2023/8975497
https://doi.org/10.1007/BF01844162
https://doi.org/10.1155/2024/2084342
https://doi.org/10.1080/17445760.2018.1550771
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.5120/ijca2016908780

	Secure communication in the digital age: a new paradigm with graph-based encryption algorithms
	1 Introduction
	1.1 Simplified explanation of key concepts

	2 Encryption scheme using corona graph
	2.1 Plaintext Encoding
	2.2 Shift cipher
	2.3 Selection of values
	2.4 Corona graph construction
	2.5 Modular inverses
	2.6 Transmission

	3 Decryption algorithm
	3.1 Receive the corona graph
	3.2 Organize the values
	3.3 Modular inverse calculation
	3.4 Undo the shift cipher
	3.5 Translate numeric values back to symbols
	3.6 Reconstruct the plaintext

	4 Encryption scheme using complete bipartite graphs
	5 Secure data transfer using star graphs
	6 Discussion
	6.1 Performance analysis
	6.1.1 Corona Graph
	6.1.2 2. Complete bipartite graphs
	6.1.3 Star graphs
	6.2 Key management strategies
	6.2.1 Key generation
	6.2.2 Key exchange protocols
	6.3 Comparative analysis with existing techniques
	6.4 Time complexity for encryption and decryption schemes
	6.4.1 Corona graph
	6.4.2 Complete bipartite graphs
	6.4.3 Star graphs
	6.4.4 Security against advanced attacks
	6.4.5 Quantum computing threats
	6.4.5.1 Quantum-resistant properties
	6.4.5.2 Future adaptations
	6.4.6 Side-channel attacks
	6.4.6.1 Mitigation techniques
	6.4.6.2 Implementation considerations
	6.5 Real-world applications and case studies
	6.5.1 Empirical testing in real-world scenarios
	6.5.2 Document Categories
	6.5.3 Private keyword searches

	7 Conclusion

	References

