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Soil microbial fuel cells (SMFCs) are an emerging technology which o�er

clean and renewable energy in environments where more traditional power

sources, such as chemical batteries or solar, are not suitable. With further

development, SMFCs show great promise for use in robust and a�ordable

outdoor sensor networks, particularly for farmers. One of the greatest challenges

in the development of this technology is understanding and predicting the

fluctuations of SMFC energy generation, as the electro-generative process is not

yet fully understood. Very little work currently exists attempting to model and

predict the relationship between soil conditions and SMFC energy generation,

and we are the first to use machine learning to do so. In this paper, we train Long

Short Term Memory (LSTM) models to predict the future energy generation of

SMFCs across timescales ranging from 3 min to 1 h, with results ranging from

2.33 to 5.71% Mean Average Percent Error (MAPE) for median voltage prediction.

For each timescale, we use quantile regression to obtain point estimates and

to establish bounds on the uncertainty of these estimates. When comparing

the median predicted vs. actual values for the total energy generated during

the testing period, the magnitude of prediction errors ranged from 2.29 to

16.05%. To demonstrate the real-world utility of this research, we also simulate

how the models could be used in an automated environment where SMFC-

powered devices shut down and activate intermittently to preserve charge, with

promising initial results. Our deep learning-based prediction and simulation

framework would allow a fully automated SMFC-powered device to achieve a

median 100+% increase in successful operations, compared to a naive model

that schedules operations based on the average voltage generated in the past.

KEYWORDS

microbial fuel cell (MFC), soil microbial fuel cells, deep learning, energy prediction,

quantile regression, Long Short Term Memory Networks (LSTM), time series analysis,

intermittent computing

1 Introduction

Climate change is already affecting every aspect of our society, widening existing

socioeconomic disparities across the world. Some of the most dangerous changes are

occurring in our global food systems, where extreme weather has made feeding our

growing population a challenge. Data-driven agriculture techniques, such as moisture

and nutrient monitoring, have enabled us to grow more food while using fewer

resources (Zotarelli et al., 2009). Unfortunately, the adoption rates for the sensor networks

that enable data-driven agriculture remain low (Rajak et al., 2023). Persistent monitoring
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systems consist of multiple components that must be integrated

and weatherproofed. A typical outdoor sensor node connects a

commercial sensor to a data logger, with additional costs and

complexity added by wireless communication modules, power

management modules and equipment like batteries and solar

panels. Farms and other managed lands typically lack robust power

and communication, making sensor systems are expensive and

difficult to deploy and maintain. If present, sensing is likely limited

in density or frequency—soil testing, for example, is usually done

only once per year (if at all, Kashyap and Kumar, 2021), and of the

11% of US farms that sense soil moisture, the density of deployed

sensors is typically far below the recommended amounts (Rossini

et al., 2021; Zotarelli et al., 2016). The next wave of sensor systems

must enable reliable, granular sensing at scale. One promising

area of investigation to ease adoption barriers involves harvesting

power for sensor networks from the soil itself (Josephson et al.,

2022). Soil microbial fuel cells (SMFCs) are a compact, low-cost

bioelectrochemical system that harvest power from exoelectrogenic

microbes that occur naturally in the soil.

Though SMFCs only produce microwatts of power, electronics

have progressed such that this is actually enough to power the

latest generation of ultra-low power devices (Josephson et al.,

2021; Yen et al., 2023; Feng et al., 2023). SMFCs are a renewable

source of energy, and unlike more traditional power sources

(chemical battery, solar, etc.), they are typically constructed

using environmentally inert materials with a very low carbon

footprint. Once fully developed, they could power outdoor sensor

networks, giving farmers access to high-resolution, real-time

data on their fields toward making educated decisions on farm

management. They also have the potential to be biosensors in

and of themselves (Olias et al., 2020). For example, the electricity

generated by the microbial communities can be used as a signal

to indicate heavy-metal contamination or dissolved oxygen in

water (Abbas et al., 2022; Wang et al., 2023).

A key challenge with leveraging this unique source of biopower

is that the electro-generative process is not yet fully understood,

with rises and drops in energy production being common due

to a variety of complex factors, including temperature, soil type,

moisture and more. This makes SMFCs difficult to use as a source

of consistent and reliable power. To address this barrier, we have

created a deep learning model to predict SMFC energy generation

over time, increasing their viability as an energy source for low-

power applications. To our knowledge this is the first work to

predict SMFC energy generation using deep learning.

In addition to making point estimates of future energy output,

our work models the uncertainty of these estimates using quantile

regression, as defined in Section 3.3.1. This helps us make

conservative energy generation estimates when needed, reducing

the risk of a device lacking the energy to perform predicted

operations. It is often necessary for low-power applications, such as

outdoor sensor networks, to shut down for periods of time to gather

energy, activating only when necessary to perform operations

(Marcano and Pannuto, 2021). This is known as intermittent

computing (Lucia et al., 2017). Our approach is key for the types of

intermittently active, low-power applications supported by SMFCs,

where every microwatt makes a difference, and trying to activate

a device before enough energy is stored would waste precious

energy. Our models, which have been trained and evaluated on

months of real SMFC data, predicts performance for future time

horizons using recently observed data. These predictions make

it possible to schedule device operations ahead of time, allowing

for more effective resource allocation. For example, it would be

possible to adjust the duty cycle of wireless data transmission—an

operation with high power consumption—based on the predicted

power budget. In times of low energy availability, for example, the

number of attempted wireless data transmissions could be reduced

to conserve energy for more essential operations (e.g. timekeeping,

local data logging).

There are multiple advantage of predictive models over a naive

approach that uses a fixed duty cycle. The first advantage is that

overall system downtime can be reduced. When no prediction

information is available, the only option to maximize longevity

is reducing the frequency of operation to as low as acceptably

possible. With a predictive model, the system can to take advantage

of times of high energy availability to performmore frequent and/or

sophisticated operations (e.g. over-the-air firmware updates). The

second advantage is that we can avoid wasting energy. Intermittent

computing applications should only activate only when there is

enough energy available to perform the desired operations, e.g.

transmitting a packet. If the operation is not successfully completed,

then no useful progress is made, and the stored energy is wasted and

unavailable to use in a future potentially-successful operation. Our

work addresses this need by allowing for a lower-bound prediction

of energy generation using quantile regression, as defined in

Section 3.3.1. Likewise, we introduce three unique metrics in this

paper to evaluate the usefulness of our models for intermittent

computing applications. This is in addition to the more standard

Mean Average Percent Error (MAPE), which is used to measure

the overall accuracy of the model’s predictions compared to the

ground truth values. The domain-specific metrics in this paper

include the Failed Prediction and Overestimation rates, designed to

measure how often the model predicts greater energy generation

than the true value, and the Missed Activation rate, designed to

predict how many more times a device could have been activated

by using a theoretical “perfect model” capable of predicting exact

energy generation. These metrics are defined in further detail in

Section 3.4.

2 Background

2.1 Microbial fuel cells

Most generally, microbial fuel cells (MFCs) are electrochemical

cells that generate electricity from the transfer of electrons resulting

from microbial interactions. Soil microbial fuel cells (SMFCs) use

the microbial interactions within soil, but other types of MFCs can

use wastewater or sediment as well (Josephson et al., 2022). Two

key requirements for SMFCs to operate are anaerobic conditions

and a sufficient presence of soil organic matter. Certain types of

microbes, known as exoelectrogens, produce a spare electron as

part of their natural respiration process. By placing an anode within

the soil connected to a cathode outside the soil, the anode can

receive these electrons from the soil microorganisms and allowing
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FIGURE 1

Visual diagram of soil microbial fuel cell electrogenerative process.

them to flow to the cathode, generating electricity. This process is

described visually in Figure 1, adapted from Josephson et al. (2022).

2.2 Quantile regression in energy
forecasting

Compared to other types of models, deep learning can be

used to make extremely accurate predictions in various application

areas. However, the non-statistical nature of deep learning makes

model interpretation difficult. Quantile regression is one way to

address this weakness by allowing deep learning models to obtain

prediction intervals as well as point estimates. Previous works have

used machine learning and deep learning with quantile regression

to forecast renewable energy generation (Wang et al., 2019; Xu

et al., 2023). However, our work is the first to use this technique

to predict the energy output of SMFCs. Forecasting energy output

for SMFCs is more difficult than for more traditional sources

(e.g. wind, solar) for several reasons. SMFC energy generation

is directly tied to microbial conditions, which are governed by

complex biological processes that are not yet fully understood.

For example, it can take microbial communities longer to respond

to changes in environmental conditions than solar or wind

systems, resulting in delayed and unpredictable changes to energy

generation (Josephson et al., 2022).

2.3 SMFC modeling for incubation phase

Before being deployed in the field, SMFCs usually undergo

an incubation phase within an indoor environment. Dziegielowski

et al. (2023) created a physics-based mathematical model to predict

the voltage of SMFCs during their incubation phase based on

initial soil conditions. However, this work only predicts voltage

(not current).

There are several key differences between this physics-based

model and the one presented in our paper, which makes direct

comparison of the models difficult. The physics-based model was

validated on the same data used for training, while the data

for our models are split into training, validation, and testing

sets, used to fit the model, tune hyper-parameters, and evaluate

performance, respectively. Furthermore, the physics-based model

directly simulates the biophysical conditions of an SMFC over the

course of several months in order to predict the output, starting

from the initial conditions of the soil. In contrast, our models

account for the rapidly-changing conditions of a non-laboratory

deployment by periodically reading in sensor data to update the soil

conditions, and uses this to predict SMFC at various time horizons

into the future. Furthermore, this model considers only incubation

data. The deployment (field, outdoors) and incubation (climate-

controlled laboratory) environments are substantially different. We

do provide a quantitative comparison of the physics-based model

against a variant of our model trained only on incubation data in

Section 4.4.2.

Overall, Dziegielowski et al. (2023) offers strong insight into

soil conditions that promote high voltage output for SMFCs during

incubation, but does not attempt to model these relationships in

an out-of-lab deployment setting. At the time of this writing, our

work is the first to (1)model and predict SMFC performance during

field deployment outside of the lab, (2) predict current as well as

voltage, and (3) predict for multiple time horizons with bounds on

the uncertainty.

2.4 Intermittently active, SMFC-powered
devices

Marcano and Pannuto (2021) successfully developed a low-

power, e-ink display device powered exclusively by an SMFC,

demonstrating the potential of this technology as a renewable

energy source. This device was designed to be active intermittently:

it is turned off while charging, and manually powered on once

enough energy had been stored for activation. However, the

evaluation was limited to laboratory settings where unrealistically

high moisture levels were necessary to sustain the device.

Yen et al. (2023) created a proof-of-concept system that

successfully powers an RF backscatter tag. They also developed a

framework for calculating the number of operations various SMFC-

powered devices can perform based on measured SMFC voltage

traces, accounting for the complex harvesting process required to

use SMFC-generated energy.

Our work focuses on modeling and predicting MFC energy

output. This allows us to develop a framework for scheduling

intermittent computing device operations in advance, so devices

can activate only when they have enough energy to do so, thereby

conserving energy. This would enhance the functionality of the

prototypes discussed in Yen et al. (2023) andMarcano and Pannuto

(2021), the latter of which required a human participant to monitor

energy availability and manually activate the device.

2.5 Task scheduling frameworks for
intermittently powered systems

This paper is the first work, to our knowledge, to present a deep

learning based approach to predicting SMFC power output, and

scheduling useful tasks and operations based on these predictions.

However, other works have created task scheduling frameworks for

intermittently powered systems not fueled by SMFCs. Zygarde is
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Overview and vision. This work aims to create a predictive model for scheduling the activation of SMFC powered devices, allowing them to activate

intermittently and then shut down to conserve energy.

one such framework, which has been validated on four standard

datasets—three consisting of labeled images for training machine

learning models, and one containing audio files—and deployed

in six real-world application settings, with RF and solar-powered

systems (Islam and Nirjon, 2020). The applications used for

validation are performed on audio and visual tasks, so we are unable

to compare their performance to our regression-based model.

Furthermore, Zygarde does not directly predict energy

generation, but rather uses a uses a probabilistic method to

model energy randomness. In contrast, our work uses deep

neural networks for regression to directly predict voltage, current

and power output, as well as the upper and lower bounds for

these values. A visual representation of this framework is given

in Figure 2.

3 Materials and methods

3.1 Dataset description

The dataset used to train the models in this paper is taken

from a cell that began operation at a Stanford laboratory in April

2021 and was retired in June 2022. We will refer to this as Dataset

1 for the remainder of the paper. Since Dataset 1 contains data

from both the incubation and deployment phases, we use Dataset 1

(incubation) and Dataset 1 (deployment) to refer to the separate

parts of the dataset. Most models in this paper are trained and

TABLE 1 A table representation of terminology related to datasets, which

datasets are used to train which models, and models that omit certain

types of training data.

Datasets

Dataset 1: SMFC data gathered at Stanford laboratory

Incubation The incubation portion of dataset 1

Deployment The deployment portion of dataset 1

Dataset 2: SMFC data gathered by the jLab in Smart Sensing at

UC Santa Cruz

Incubation Dataset 2 only contains incubation data

Models

Type 1 Models: Models trained on the deployment data of Dataset 1

1A Type 1 models trained without data on electricity

generation

1B Type 1 models trained without environmental data

Type 2 Models: Models trained on the incubation data of Dataset 1

2A Type 2 models trained without data on electricity

generation

2B Type 2 models trained without environmental data

validated on Dataset 1 (deployment), unless otherwise specified. A

tabular representation of the various types of datasets and models

used in this paper can be found in Table 1.
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For all models trained on Dataset 1 (deployment), we use

the first 70% of as the training set, the subsequent 15% for our

validation set, and the final 15% for our test set. Our input values

consist of the average values of various features over a desired time

interval, as described in Section 3.2. Therefore, the size of our sets

vary in size from 2,559 to 51,400 values for the training set and 548

to 11,015 values for the validation and testing set, with larger values

corresponding to shorter time intervals.

In addition to Dataset 1, a second dataset consisting solely of

incubation data was created in 2024, using soil from Santa Cruz,

CA. We will refer to this dataset at Dataset 2 for the remainder of

the paper. The data from Dataset 2 is used as additional validation

data for our models.

3.2 Data pre-processing and model
features

Our models aim to forecast the power generation of an

SMFC over five different timescales—3, 5, 15, 30, and 60 min

in the future. These timescales were selected to explore how

the accuracy of our models change over different prediction

horizons, and correspond to the upper end of typical measurement

frequencies for outdoor sensor systems. Soil moisture, for example,

changes rather slowly (Josephson et al., 2020). Measuring even

hourly is more than sufficient to determine whether a field needs

water, while irrigation events might be monitored by taking more

frequent samples every 3–5 min. To construct our models, we

begin by sanitizing our data (removing occasional erroneous zero

measurements due to data outages). The features we use to train

the model are the power, current and voltage of the SMFC,

and the electrical conductivity, temperature, and raw volumetric

water content of the soil. The power, current and voltage values

are gathered using the open-source RocketLogger system (Sigrist

et al., 2017), and the electrical conductivity, temperature, and raw

volumetric water content values are gathered using the commercial

TEROS-12 sensor (Meter, 2018). These values are sampled every

12-15 seconds. For each model we also re-sample the input features

to align with the prediction horizon (3, 5, 15, 30, or 60 min). For

example, if we want to train amodel that predicts the average SMFC

power generation over the next hour, we resample our data to

obtain the 1-h average for each of themodel’s features. Next we shift

the data such that at each timestamp, the model is given access to

the features of the previous three time intervals in order to predict

the average power, voltage and current for the current time interval.

Finally, we add the number of days since SMFC deployment, as well

as the hour of the day, to our list of features. The input features are

not normalized.

3.3 Model building

This work uses a Long Short-Term Memory (LSTM) model to

predict future energy generation for LSTMs. LSTMs are one of the

most-used deep learning models for time series data, data which is

indexed and processed in temporal order. Many past studies have

used LSTMs to predict solar and wind energy generation (Ying

et al., 2023; Srivastava and Lessmann, 2018), and we apply this

approach to SMFC energy forecasting for the first time.

We use a three-layer LSTM network with an input LSTM layer

with 200 neurons and a ReLU activation functions, a hidden dense

layer with 100 neurons and a ReLU activation functions, and a

terminal dense layer with three neurons. Our models use the Adam

optimizer at the default learning rate, and a sequence length of four

for the input data. We change our batch size depending on the

desired timescale of the prediction, with a batch size of 300 for 3

min, 150 for 5 min, 50 for 15 min, 20 for 30 min, and 8 for 60 min.

More information on the structure of our models can be found in

the open-source Github repository for this project at Hess-Dunlop

et al. (2024).

3.3.1 Quantile regression
While deep learning models excel in making accurate

predictions, it is difficult to calculate the uncertainty in the

predictions of these models, limiting their usefulness in real-world

settings (Gawlikowski et al., 2023). Onemethod to establish bounds

on uncertainty in deep learning models is quantile regression,

which allows us to train multiple models, which each explicitly

predict a different quantile of the data. For example, if we wish to

predict the energy generation at a given time and establish bounds

on uncertainty with a 90% confidence interval, we would train three

separate models using quantile regression: one model to obtain

point estimates by predicting the median quantile, one model to

obtain the lower bound of the prediction interval by predicting the

5th quantile, and another model to obtain the upper bound of the

prediction interval by predicting the 95th quantile (Wang et al.,

2019). To train these models, we use the following loss function,

also known as the “pinball loss” during training:

if predicted ≤ actual:

loss = α ∗ (actual - predicted)

else:

loss = (1− α) ∗ (predicted - actual)

where α is the desired quantile, predicted is the predicted

current, voltage, and power output for the SMFC, and actual is

the actual current, voltage, and power output for the SMFC.

Since performing gradient descent requires a differentiable

loss function, quantile regression cannot typically be used with

deep learning. However, the pinball loss function allows us to

overcome this limitation and use quantile regression to quantify

the uncertainty of our models (Rodrigues and Pereira, 2018;

Steinwart and Christmann, 2011). Several other works have also

used quantile regression with pinball loss to quantify uncertainty

for deep learning-based energy forecasting models (Wang et al.,

2019; Xu et al., 2023).

It should be noted that the data does not follow a normal

distribution, so the quantiles of our upper and lower bounds

will not be equidistant from the median. Furthermore, as the

model produces three outputs with different distributions (current,

voltage, and power), the outputs are expected to diverge somewhat
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from the desired quantile, since the model training optimizes the

average loss metric of the three.

3.4 Model evaluation

There are several techniques that we can use to interpret the

prediction and the accuracy of our models. For most of this

paper, we use our test set, as described in Section 3.1, to evaluate

our model.

3.4.1 MAPE
Model accuracy for regression tasks can be calculated using

Mean Average Percent Error (MAPE), defined as follows:

1

n

n
∑ |actual− predicted|

|actual|
× 100

Intuitively, this value is the average percent difference between

the predicted values and the actual values in a model. There is no

universally agreed upon acceptable value forMAPE, but aMAPE of

0% would indicate that the model predicts the data with zero error,

whereas an MAPE of 50% indicates that on average, the predicted

value is off by 50% of the actual value.

3.4.2 Total energy % error
This metric is the percent difference between the actual and

predicted values of the total energy generated. Energy is the

integral of power over time. The difference between predicted

energy income and actual energy income is a more valuable

metric thanMAPE because the actual magnitude of over-predicting

and under-predicting power does not actually matter if the over-

and under-predictions compensate for each other. The results for

the Total Energy % Error metric are recorded in Table 2, with

negative values indicating underestimation and positive values

indicating overestimation.

3.4.3 False positive rate
The false positive rate metric measures how often our models

schedule a device activation when there is not enough energy

available, resulting in the device failing to activate and the stored

energy being wasted. The false positive rate will be calculated

as follows:
false_positive

active_pred

false_positive refers to the amount of times the model

predicted there would be enough energy to perform an operation

when there was not enough energy, resulting in stored energy being

wasted when the device failed to activate. active_pred is the

total number of activations scheduled by our model.

3.4.4 Missed activation rate
Unlike overestimation and false positives, the missed activation

rate metric measures how many more times the device could have

successfully been activated, if we had access to a theoretical “oracle”

model that could perfectly predict and make use of the available

energy. It will be calculated as follows:

missed_active

max_active

missed_active is the number of additional times the device

could been have activated if the model had perfectly predicted how

much energy would be available. It is calculated as the theoretical

maximum possible number of operations, minus the number of

successful operations scheduled by ourmodel. max_active is the

theoretical maximum possible number of operations.

Readers will note the similarity of this metric to the false

negative rate. However, we divide by the theoretical maximum

amount of device activations (given by the oracle model) instead of

the total amount of activations scheduled by our model. The reason

we used the missed activation metric instead of false negative is

because the total amount of device activations scheduled by our

model is not necessarily indicative of the amount of activations that

could be performed with the available energy, and we wanted to use

a metric that highlights how well our model was able to make use

of the actual available energy.

3.5 Comparison models

In addition to the rest of the metrics described in this section,

we evaluate our scheduling framework by comparing it to two

different models: the naive model and the oracle model.

The naive model, also referred to as the naive fixed-duty cycle,

is used as a “baseline” model to compare our deep learning-based

model to. It operates in the same way as the runtime simulation

code described in Section 3.6, by using predictions of SMFC voltage

to estimate how much usable energy the SMFC will have access to

in the future, and then using these estimates to schedule activation

of a device. However, while our runtime simulation predicts the

voltage using deep learning models, the naive model simply takes

the average voltage over the past x days before the start of the test

set, with x being the size of the test set.

In contrast, the oracle model is designed to measure the

maximum possible number of times we could activate a device

using the energy generated during the duration of the test set.

This allows us to compare our scheduling framework against a

theoretical, perfect maximum. To obtain this maximum number of

activations, we simply measure the energy generated in the test set,

and divide by the energy required to activate our device.

3.6 Runtime simulation

Yen et al. (2023) have developed a framework for calculating

the number of operations various SMFC-powered devices can

perform based on measured SMFC voltage traces, accounting for

the complex harvesting process required to use SMFC-generated

energy. Our work adapts this simulation to use the voltage

predictions from our LSTMmodels, using publicly available python

code (Yen, 2023). To evaluate our model’s performance, we

investigate how many times an SMFC could be used to activate the

Cinamin beacon, a low-power device designed exclusively to send

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1447745
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


H
e
ss-D

u
n
lo
p
e
t
a
l.

1
0
.3
3
8
9
/fc

o
m
p
.2
0
2
4
.1
4
4
7
7
4
5

TABLE 2 Model performances.

Possible
activations

6,675

Times (min) 3 5 15 30 60

Batch size 300 150 50 20 8

Bound
estimate
(Lower,
Middle,
Upper)

L M U L M U L M U L M U L M U

Predicted

activations

6009 6012 6099 6004 6011 6112 5998 6036 6479 5998 6106 7073 5985 6162 7715

Failed

activations (%)

0.166% 2.428% 18.888% 0.033% 3.094% 18.865% 0.267% 7.787% 52.987% 0% 16.803% 97.088% 0.551% 21.340% 99.235%

Missed

activations (%)

10.127% 12.120% 25.888% 10.082% 12.734% 25.708% 10.382% 16.614% 54.367% 10.292% 23.895% 96.914% 10.831% 27.386% 99.166%

Total energy error –43.310% 3.669% 18.587% –36.920% –2.257% 35.855% –18.443% 10.893% 21.674% –21.854% 4.971% 22.965% –25.247% 0.854% 29.304%

Test MAPE power 38.976% 18.748% 26.801% 34.309% 12.486% 47.368% 16.760% 17.121% 27.602% 20.605% 9.678% 26.165% 23.360% 10.964% 32.182%

Test MAPE voltage 7.291% 2.326% 9.329% 6.422% 3.034% 9.584% 4.771% 3.636% 12.277% 14.407% 4.984% 14.305% 18.970% 5.709% 17.578%

Test MAPE

current

37.827% 16.210% 28.484% 31.629% 8.906% 20.852% 18.364% 4.267% 15.748% 14.107% 3.069% 8.192% 14.092% 5.016% 12.437%

L, U are upper (95th %ile) and lower bound (5th %ile) estimates for the models; M signifies the median. Total energy error is % difference between ground truth and predicted values of the total energy generated. The false positive metric measures how often our

models schedule a device activation when there is not enough energy. The “Missed Activations” metric measures how many additional times the device could have successfully been activated if operating with perfect knowledge. More information on bound estimates

and metrics can be found in Sections 3.3.1, 3.4.2, 3.4.3, and 3.4.4.
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BLE advertisement packets (Campbell et al., 2016). On average,

this device requires 3.9 µJ to activate. We also make the following

modifications to the code:

• The original simulation code uses an estimate of SMFC

internal resistance calculated using the one-resistance method

used in Fujinaga et al. (2022).We are unable to use thismethod

for the cell which gathered the data used in this paper, since

the deployment ended in 2022 and we no longer have access

to the cell. However, the cell we used to gather our data is very

similar to the v0 cell used in Yen et al. (2023), so we use the

same internal resistance of 6,926� for our calculations.

• Furthermore, in the absence of a better estimator, a flat

harvester efficiency of 60% is used for calculations, based on

the lowest efficiency found in the ADP5091/ADP5092 energy

harvester datasheet for V_in = 0.5V, V_SYS = 3V, and a lower

range of input voltages of 0.01V (Analog Devices, 2016).

3.7 Time-series cross validation

In time-series analysis, models cannot be trained using data

from a later time than the data in the validation or testing sets.

Doing so would defeat the purpose of making future predictions,

since the model would be trained on events taking place after the

data used to test the model. Because of this, traditional k-folds

cross validation, a method for testing the generalizability of a deep

learning model, cannot be used. However, a modified version of k-

folds called time-series cross validation can be used to test how well

a time-series model generalizes to new data (Howell, 2023). Using

this method, we train and test the performance of our deep learning

model with 4 different distributions of training, validation, and test

datasets. The first of these uses the first 20% of the data to train

the model, the next 10% to generate the average voltage used in the

naivemodel, as described in Section 3.5, and the next 10% as the test

set to evaluate model performance. The second dataset distribution

uses the first 40% of the data as a training set, the next 10% of the

data for the naive model, and the next 10% as the test set. The third

dataset distribution uses the first 60% of the data as a training set,

the next 10% of the data for the naive model, and the next 10% as

the test set, and the fourth dataset distribution uses the first 80%

of the data as a training set, the next 10% of the data for the naive

model, and the final 10% as the test set.

3.8 Generalizability

In order to test how our models generalize to out-of-domain

data, we take the models trained on Dataset 1 (deployment),

and without modification, test their performance on Dataset 2.

As discussed in Section 3.1, these models are trained exclusively

on Dataset 1 (deployment), which contains only data from the

deployment phase, while Dataset 2 contains only data from an

incubation phase. We were unable to acquire a second dataset of

deployment data, therefore, it is currently unknown how well our

models generalize when validated on never-before-seen deployment

data. However, we were able to gain insight on how well a model

trained solely on deployment data can predict behavior in a

novel incubation. We also trained additional models on Dataset

1 (incubation) to evaluate how well models specifically trained on

incubation data can generalize to novel incubation data. Further

discussion of this can be found in our results (Section 4.4).

3.9 Removing parameters

The datasets used in this paper require several sensors to collect

reliable data in real time. Some sensors are more energy intensive

than others—for example, the sensors used to record the voltage

and current of SMFC cells in real time are more energy intensive

than those used to record soil temperature, electrical conductivity,

and volumetric water content. Given the strict energy limitations

of SMFC-powered devices, it may be useful for models to be able

to make predictions without the use of certain data, in order

to limit the energy consumption associated with various sensors.

Therefore, we explore how well models trained and validated on

Dataset 1 (both incubation and deployment) perform when certain

parameters are omitted from the training data. Results can be found

in Section 4.5.

4 Results

We present here the final performance of our models, trained

across multiple timescales. In order to obtain upper and lower

bounds for each prediction as well as a point estimate, we train three

separate models for each timescale, using quantile regression: one

to predict the upper bound, one to predict the lower bound, and

one to predict the median. We evaluate these models using both

standard metrics as well as the custom metrics (overestimation,

false positive rate and missed activation rate) previously defined in

Section 3.4. Unless otherwise specified, the results in this section

refer to models trained and validated on Dataset 1 (deployment)

described in Section 3.1. However, we also include results from

models trained on both parts of Dataset 1 and validated on Dataset

2 in order to test the generalizability of our approach.

4.1 Predictions across di�erent time
horizons

Our models predict average energy generation over 3, 5, 15, 30,

and 60 min. In general, models trained at smaller timescales result

in less wasted energy. Furthermore, the lower-bound models for

each timescale allow for the most efficient use of energy compared

to the othermodels of that timescale. For example, when scheduling

device activation using our best performing models—the lower-

bound 3 and 5 min models trained and validated on Dataset 1

as described in section 3.1—we only activate the device 0.27%

fewer times than if we had made perfect use of available energy.

The lower-bound 60 min model, in contrast, misses 0.90% of

potential activations.

It is worth noting that in practice, using a model which

makes predictions across smaller timescales would require frequent

use of our prediction and scheduling framework, resulting in
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increased energy expenditure. Even checking the amount of energy

currently present in the MFC cell, a neccesary function for this

framework, requires energy expenditure. Therefore, a scheduling

framework that operates every 3 min would have 20 times the

operating costs as a model that operates every 60 min. Given

the low energy generation of SMFCs, increasing energy efficiency

from 99.10 to 99.73% may not be worth this increased energy

cost. It may even be worthwhile to explore the performance of

models which make predictions at timescales >60 min. Future

work will attempt to quantify the costs and benefits across

different prediction timescales in more detail, as well as exploring

the performance of models which make predictions across

longer timescales.

4.2 Evaluating Type 1 model performance

Initial results for our prediction and scheduling algorithm for

intermittent SMFC-powered device use are promising. Predictions

for a subset of our test set are graphed in Figure 3. We

present and discuss our initial results in this section, and

Table 2 contains a complete summary of the performance of

each model.

It is important to note that there are a total of 15 models solely

trained and validated onDataset 1 (deployment), with three models

(5th percentile, median/50th percentile, and 95th percentile) for

each of the five time horizons (3, 5, 15, 30, and 60 min). We will

call all of these models Type 1 models.

Using the lower bound of the model which predicts average

energy generation an hour into the future, we schedule device

activations for 549 h, or about 23 days. Compared to a naive

model which schedules device activations based on the average

voltage generated in the past, this framework allows the device

to successfully activate a median of 2.08 more times—this is

more than a 100% increase in successful operations. Furthermore,

when compared to a theoretical model described in Section 3.5

that can perfectly predict and make use of available energy, this

framework results in only 4.23% fewer device activations, if we

use the worst-performing lower bound model trained with time-

series cross validation. In comparison, when we exclude the models

trained on only the first 20% of the data, the worst-performing

lower bound model schedules only 1.13% less activations than the

theoretical maximum.

The performance of the scheduling framework generally—but

not always—becomes even stronger the lower the timescale of

prediction. However, as discussed in Section 4.1, shorter prediction

timescales require increased energy expenditure, and it may not be

worth increasing energy cost for improvements in an already high

operating efficiency. The tradeoffs between energy consumption

and operating efficiency will be further explored in future work.

Another topic for future work will be scheduling different

types of device operations, with different functions, energy costs,

and consequences for failure. For example, a simple read/record

operation could potentially be more aggressively scheduled than a

wireless transmission operation, because if the less energy intensive

read/record operation fails, the amount of wasted energy is less if

the wireless transmission operation had failed.

4.3 Time-series cross validation

At the time of writing, we have no deployment data outside of

Dataset 1, which we use to train our Type 1 models. Therefore, in

order to test how well our Type 1 models generalize to different

distributions of data, we perform time series cross validation to

train and evaluate four different models for each timescale. The

distribution of each training, validation, and test set is described

in Section 3.7. On the whole, the models trained on these data

distributions perform fairly strongly. Even the worst performing of

the lower-bound estimate models was able to successfully schedule

84.701% of possible device activation when compared to the oracle

model defined in Section 3.5. A full table of results for models

trained with time series cross validation can be found in Table 3.

4.4 Model generalizability

The results from Section 4.2 specifically discuss how Type 1

models (which are trained and validated solely on the deployment

data from Dataset 1) perform. In this section, we will explore how

Type 1 models generalize to out-of-domain data by quantifying

how well these models can make predictions on Dataset 2, which

contains new SMFCs with soil collected from a completely different

location. We also train additional models, which we will call Type 2

models. These models will be trained on the Dataset 1 (incubation),

rather thanDataset 1 (deployment). Type 2models will be validated

on the incubation data from Dataset 2.

4.4.1 Type 1 models validated on Dataset 2
At this point in our work, our Type 1 median models are not

able to make accurate predictions on the incubation data from

Dataset 2. This is not surprising, because cells in the incubation

phase have significantly different behavior when compared to

deployed cells. The voltage MAPE for Type 1 models validated

on Dataset 2 ranges from 26.74 to 171.33%, and the magnitude of

the total energy percent difference ranges from 32.77 to 423.75%.

By comparison, the voltage MAPE for Type 1 models validated

on Dataset 1 (deployment) ranged from 2.33 to 5.71%, and the

magnitude of the total energy percent difference ranges from 2.55

to 10.89%.

Although it is clear that Type 1 models (trained on

deployment data) poorly predict new incubation data, it remains

to be seen how well the models would perform with novel

deployment data. Results in Section 4.4.2, which evaluate

models trained solely on incubation data and subsequently

validate on novel incubation data, suggest that we would likely

see significantly improved performance if we were able to

validate Type 1 models on novel deployment data. We are

actively trying to acquire novel deployment data to try and

evaluate how well our Type 1 models generalize to novel

deployment data.

4.4.2 Type 2 models validated on Dataset 2
While our Type 1 models were not able to generalize to the

incubation data from Dataset 2, our Type 2 models, which were
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FIGURE 3

Estimates and prediction interval plots for various time horizons. Lower and upper bound lines refer to the 5th and 95th percentile predictions,

respectively. Plots for 3 min time horizon omitted, but performance results are available in Table 2. These figures present a subset of the data in order

to provide a more detailed view of model predictions. Since measurements vary so much for the 5 min time horizon, we also provide zoomed in

graphs of the first and last 8 h of (A). Dataset and code used for plotting will be open-source and available on Github and Google Colab. (A) 5 min

time horizon. (B) 15 min time horizon. (C) 30 min time horizon. (D) 60 min time horizon. (E) First 8 h of 5 min time horizon. (F) Last 8 h of 5 min time

horizon.
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TABLE 3 Successful device activations for Type 1 models trained using time series cross validation, as described in Section 4.3.

Times (min) 3 5 15 30 60

Model type
(Lower, Naive)

L N L N L N L N L N

Fold 1 94.735% 49.312% 95.002% 44.578% 94.947% 44.534% 94.724% 44.611% 85.961% 45.183%

Fold 2 95.553% 74.982% 95.062% 59.413% 95.426% 58.612% 94.225% 39.724% 95.044% 52.928%

Fold 3 95.773% 92.048% 95.765% 90.591% 95.751% 90.347% 95.730% 88.696% 95.694% 88.689%

Fold 4 84.701% 53.141% 87.893% 33.992% 87.943% 33.105% 88.551% 32.675% 88.475% 26.570%

L and N are the lower bound (5th %ile) estimates for the models, and the naive models, respectively. See Table 5 for models trained without time series cross validation.

trained on Dataset 1 (incubation), generalize far better. The MAPE

for the voltage predictions ranges from 2.65 to 6.43%, and the

magnitude of the total energy percent difference ranges from 15.13

to 20.36%. By comparison, the MAPE for the voltage predictions

of Type 1 models validated on Dataset 1 (deployment) ranged

from 2.33 to 5.71%, and the magnitude of the total energy percent

difference ranges from 2.55 to 10.89%.

The good performance of models trained and validated

on incubation data from different SMFCs paints an optimistic

picture for generalizability when we maintain “apples to apples”

comparisons, and do not try to use deployment data to predict

incubation behavior (or vice versa). We also attempt to compare

these results to the physics-based model from Dziegielowski et al.

(2023). Their model is only run on incubation data, similar

to our Type 2 models, which were also trained and tested on

incubation data. Dziegielowski et al. only provide Relative Error

(RE) metrics for their model, so we calculate the same for the

sake of comparison. RE is defined as the absolute error (real

value minus predicted value), divided by the real value. As shown

in Table 4, when averaging across all three soil types used in

the Dziegielowski model, 82.7% of predictions had an RE of

<10%, and 71.7% of predictions had a relative error of <5%.

In contrast, 100% of our model’s predictions achieve an RE of

<10%. However, only 11% of model’s predictions achieve an RE

of <5%. This interesting result indicates that our model achieves

good performance all the time, but rarely achieves excellent

performance. In contrast, the Dziegielowski model exhibits sub-par

performance (RE > 10%) for nearly a fifth of its predictions, but

also achieves excellent performance (RE < 5%) much more often

than our model does. This suggests that there may be opportunities

to seek the best of both worlds by exploring techniques like

physics-based machine learning (Karniadakis et al., 2021) in

the future.

4.5 Performance as a function of training
parameters

There can be serious hardware and energy constraints when

performing computing in outdoor environments. In real-world

deployment situations, users might not have access to all the

sensors and computational power used in this paper. This

section explores how models perform with the removal of certain

training parameters. For example, how will model performance

TABLE 4 Relative errors for our 60 min median Type 2 model (trained and

tested on incubation data) and the physics based model

from Dziegielowski et al. (2023).

RE ≤ 10% RE ≤ 7.5% RE ≤ 5%

Soil 1 (Dziegielowski

et al., 2023)

87% (not quantified) 78%

Soil 2 (Dziegielowski

et al., 2023)

83% (not quantified) 72%

Soil 3 (Dziegielowski

et al., 2023)

78% (not quantified) 65%

Our work (60 min

model)

100% 100% 11%

Metrics are given as percent of predictions which have a relative error below a certain value.

Soil 1, 2 and 3 refer to the performance of the physics-based model on three different types of

soil, as defined in the paper. Dziegielowski et al. only calculate RE every 24 h, so we selected

our 60 min model as the closest analog.

change when temperature, electrical conductivity, or volumetric

water content data are omitted? Or if we only use MFC

power output at from two previous timesteps instead of 3?

This serves as an initial exploration of how well our models

would perform with the removal of some of these sensors or

computational power.

We train the models in this section with three different

combinations of input variables: Type 1A and 2A models,

which omit eletricity generation data (voltage, current, and

power), Type 1B and 2B models, which omit environmental

data (soil temperature, volumetric water content, and

electrical conductivity), and the default Type 1 and 2

models, which use all avaiable data. We also describe these

different data combinations in Table 1 and in an itemized

list below.

1. For Type 1 and 2 models training data includes voltage,

current and power of previous three timesteps, soil temperature,

electrical conductivity, volumetric water content, as well as the

hour of the day and the time since deployment. Type 1 and 2

models also include variants (named Type 1A, Type 2B, etc.) that

exclude certain parameters, such as the soil sensor data.

2. For Type 1A and 2A models, training data explicitly omits

electricity generaton data, but includes sensor data on

soil temperature, electrical conductivity, volumetric water
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content, as well as the hour of the day and the time

since deployment.

3. For Type 1B and 2B models, training data omits soil sensor

data, but includes voltage, current and power of previous

three timesteps, as well as the hour of the day and the time

since deployment.

4.5.1 Type 1 models validated on Dataset 1
(deployment)

Allmodels in this section are trained and validated on data from

the June 4th 2021 to January 6th 2022 Stanford deployment.

Type 1: For Type 1 models trained on all available data, the

median model achieves between 2.55 and 10.89% for total energy

percent difference, and between 2.33 and 5.71% for voltage MAPE.

Type 1A: For Type 1Amodels, which omit electricty generation

data from the training set, our median models do not perform

as well: total energy percent difference ranges from 1.0 to 25.1%,

and voltage MAPE ranges from 6.9 to 21.7%. However, the lower

bound models were still able to predict the lower bound of energy

generation successfully, our scheduling framework was able to

perform between 88.0 and 89.71% of possible device activations

using these predictions. Table 5 compares the successful activation

rate of all Type 1 models, as well as the naive model.

Type 1B: However, we are able to achieve impressive accuracy

when removing data from entire sensors from the training

process. For Type 1B models, which omit environmental data

from the training set, our median models still achieve 9.7 to

23.0% total energy percent difference, and 0.4 to 4.9% for

voltage MAPE.

4.5.2 Type 2 models validated on Dataset 2
All models in this section are trained on data from the

incubation period of Dataset 1 and validated on Dataset 2, which

contains exclusively incubation data.

Type 2: For Type 2 models trained on all available

data, the median model achieves between 15.13 to 20.36%

for total energy percent difference, and between 2.65 and

6.43% for voltage MAPE. Again, we find that removing only

one parameter from the data, or limiting the number of

previous timesteps, has a negligible effect on the performance of

the model.

Type 2A: For Type 2A models, which omit electricity

generation data, we once again achieve similar results to the

Type 1A models validated on Dataset 1 (deployment): total

energy percent difference ranges from 3.0 to 27.0%, and voltage

MAPE ranges from 6.7 to 18.7%. Graphs of the performances of

these models can be found in Figure 4. Table 5 compares the

successful activation rate of all Type 2 models, as well as the

naive model.

Type 2B: For Type 2B models, which omit environmental

data, we achieve similar results to the Type 1B models validated

on Dataset 1 (deployment): total energy percent difference ranges

from 14.2 to 26.8%, and voltage MAPE ranges from 0.5 to

4.9%. Graphs of the performances of these models can be found

in Figure 5.

5 Discussion

5.1 Importance of SMFC energy prediction

The goal of a predictive model for SMFCs is to allow a system

to plan future activities to maximize utilization of the harvested

energy. This means wasting as little energy as possible while

performing the maximum possible number of useful operations.

SMFCs do not produce a great deal of energy, so it is vital that the

energy they produce is used effectively. Therefore, it is extremely

important for an SMFC powered device to activate only when there

is sufficient energy available. If our models over-predict the energy

available at a given time, attempting to activate a device when

there is not sufficient energy available, this wastes our carefully

stored energy.

To address this need, we go the single-point estimations most

often used in deep learning, and instead generate a range of feasible

predictions for energy production. By considering the confidence

intervals on these predictions, we can minimize the possibility of

wasting energy by activating a device only when there is a high

probability of success.

5.2 Notes on performance

When using the predictions of the lower bound model, our

scheduling framework rarely over-predicts how much energy will

be available, resulting in a low rate of false positives for each

timescale, as shown in Table 2. It is notable, however, that the

lower bound Type 1 model at the 30 min timescale has 0

false positives, despite this metric generally trending upward as

prediction timescales increase. The most likely cause of this is that

our models predict three values simultaneously—voltage, current,

and power—and so they optimize to predict the desired quantile, on

average, across these three values. Because of this, for some models,

certain predictions will be lower than the desired quantile. It is

not completely unexpected for our framework to predict energy

generation more conservatively for some models than others,

resulting in device activations being scheduled only when there is

enough available energy, resulting in no false positives.

It is also noteworthy that most of our models are able to

predict voltage more accurately than current, particularly at lower

timescales. This is likely due to the fact that current typically

changes far more from moment to moment than voltage does

in our dataset, though it tends to be more stable when averaged

across larger timescales. This would also explain why current

predictions are far less accurate at smaller timescales than larger

ones. Furthermore, since power is the product of voltage and

current, it makes sense that power is also predicted less accurately

than voltage.

In the graph of the 1-h time horizon models in Figure 3,

the ground truth voltage and power are greater than the upper

bound estimate for the much of the graph. In order to make our

graphs more legible, we chose a small subset of the test set to

include in the graphs, which happens to include a disproportionate

amount of data where the upper bound estimate is lower than

the ground truth data for this particular model. However, the
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TABLE 5 Successful device activation rate for models trained without certain types of data, as described in Section 4.5.

Times (min) 3 5 15 30 60

Bound estimate
(Lower, Median)

L M L M L M L M L M

Type 1 89.873% 87.880% 89.873% 87.266% 89.618% 83.386% 89.708% 76.105% 89.169% 72.614%

Type 1A 89.903% 50.412% 89.708% 43.940% 89.678% 9.408% 89.483% 19.071% 88.000% 33.079%

Type 1B 90.007% 88.315% 89.933% 89.184% 89.843% 88.479% 89.708% 89.543% 89.588% 89.139%

Type 1 Naive 6.637% 30.247% 5.693% 3.011% 2.876%

Type 2 99.043% 96.514% 99.729% 25.293% 99.567% 0.000% 99.503% 0.054% 98.871% 91.743%

Type 2A 99.639% 99.684% 99.720% 64.602% 99.567% 74.725% 99.386% 86.410% 98.871% 74.138%

Type 2B 99.377% 78.562% 99.377% 71.727% 99.449% 8.272% 99.521% 99.548% 99.196% 0.000%

Type 2 Naive 58.199% 53.341% 7.016% 7.152% 7.676%

L, M are lower bound (5th %ile) and median (50th %ile) estimates for the models. Naive model defined in Section 3.5.

a b

c d

FIGURE 4

Estimates and prediction interval plots for Type 2 Electricity Generation Omitted models validated on Dataset 2 (incubation). Lower and upper bound

lines refer to the 5th and 95th percentile predictions, respectively. Plots for 3 min time horizon omitted. These figures present a subset of the data in

order to provide a more detailed view of model predictions. Dataset and code used for plotting will be open-source and available on Github and

Google Colab. (A) 5 min time horizon. (B) 15 min time horizon. (C) 30 min time horizon. (D) 60 min time horizon.
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a b

c d

FIGURE 5

Estimates and prediction interval plots for Type 2 Environmental Data Omitted models validated on Dataset 2 (incubation). Lower and upper bound

lines refer to the 5th and 95th percentile predictions, respectively. Plots for 3 min time horizon omitted. These figures present a subset of the data in

order to provide a more detailed view of model predictions. Dataset and code used for plotting will be open-source and available on Github and

Google Colab. (A) 5 min time horizon. (B) 15 min time horizon. (C) 30 min time horizon. (D) 60 min time horizon.

upper bound estimate performs much better for the rest of

the dataset.

Readers may also note that there is not a monotonic

relationship between the length of our prediction intervals and

prediction uncertainty, with uncertainty of power predictions being

especially variable. As discussed in Section 3.3.1, quantifying the

uncertainty of deep learning models is an inherently difficult task.

Themethodwe use, quantile regression, attempts to directly predict

the upper and lower bounds for each model by modifying the loss

function, and there is a certain degree of randomness associated

with this task. While we don’t have a specific explanation for this

variability in prediction uncertainty, it is not entirely unexpected

given the nature of deep learning uncertainty quantification,

particularly with data as variable as SMFC energy generation.

Finally, we acknowledge that the models in this paper were

developed on hardware with more computation power than what

is available in most edge computing operations. It may be necessary

to modify the models in this paper to work with reduced energy

and computation cost, which will likely change the performance.

However, a full discussion of how the performance is likely to

change is beyond the scope of this paper.

5.3 Limitations of current models

It is currently extremely difficult to collect reliable, timestamped

data on both the power generation of a soil microbial fuel

cell and the immediate soil conditions (temperature, volumetric

water content, and electrical conductivity). It is import to gather

data frequently, as our sensed parameters can fluctuate relatively

quickly. Temperature typically changes diurnally with sun exposure

between day and night, but soil moisture can change dramatically

within minutes due to irrigation or weather events. Electrical
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conductivity varies similarly to moisture, and is also influenced

by salinity Because of the difficulty in gathering data, none of the

models in this paper have been validated on deployment data from

an SMFC that is not also used to train that model. As such, it is

currently unknown how well our Type 1 models, which are trained

exclusively on the deployment data from Dataset 1, generalize to

deployment data from novel SMFCs. Madden et al. (2023) have

recently developed specialized logging hardware to gather real-

time, accurate data for deployed SMFCs, and this work provides

a promising path for making collection of this data easier and

more affordable.

That being said, our Type 2 models, which are trained

exclusively on the deployment data fromDataset 1, are able tomake

accurate predictions on Dataset 2, which contains only incubation

data. Furthermore, as discussed in Section 4.3, our Type 1 models

perform well with time series cross validation, a method designed

to test the generalizabilty of a model in the absence of additional

data. These results paint an optimistic picture regarding the ability

of Type 1 models to generalize to novel deployment data.

5.4 Energy tradeo�s

Given the power limitations of embedded devices, we must

consider the energy costs associated with using deep learning

to schedule activations of intermittent powered devices. Recent

advances in spiking neural networks have allowed certain machine

learning tasks to be performed with 75–300 nW of power (Chundi

et al., 2021), but this is on custom chip prototypes that are not

commercially available. Recent developments have allowed deep

learning inference to be performed at low power on commercially

available micro-controllers (Sakr et al., 2020). Equation 1 describes

the energy cost of running deep learning inference. Taking numbers

from commonly-used hardware, we estimate that running a deep

learning model should cost a maximum energy of 633.6 µJ per

inference, assuming an absolute maximum inference time of 4 ms

(Sakr et al., 2020), a typical current consumption of 4.4 µA and a

maximum operating voltage of 3.6V (STMicroelectronics, 2020).

Energy = Power · Time = Voltage · Current · Time (1)

It is also possible to perform deep learning inference on

the edge, instead of locally. This involves transmitting relevant

data to a reliably-powered edge device, which runs the inference,

schedules future device activations, and transmits this information

back to the intermittently-powered sensor node. However, the

energy savings gained by avoiding local inference must be balanced

with increased communication costs–in small embedded systems,

traditional active-radio wireless communications like WiFi or

LoRa can consume orders of magnitude more energy than other

system operations (Josephson et al., 2019). The cost of wireless

communication can be significantly decreased when using passive

RF backscatter based approaches. Backscatter communication has

notoriously limited range, but techniques like mobile interrogation,

in which a wireless excitation signal is emitted from autonomous

UAVs or ground robots (Andrianakis et al., 2021), make it a

feasible approach for outdoor sensor networks. This, however,

severely constrains communication frequency, as realistically the

mobile UAV/robot will be limited to just one or a few sensor node

visitations per day. If we want to use a LoRa radio (which isn’t

bound by the communication constraints of backscatter), even if

we assume the minimum possible power cost of 20 mW and the

minimum possible uplink and downlink times of 30 and 17 ms

respectively, it would still take a minimum of 940 µJ to transmit

data and receive inference results (Eric, 2018). This relationship is

described in Equation 2.

LoRa_cost = 20 µW · (20 + 17)mS = 940 µJ (2)

Even assuming minimum energy constraints, this exceeds the

maximum estimated energy cost of running inference locally. A

graph of the estimated energy consumption per hour for running

inference both locally and on the edge, at different frequencies

corresponding to model time horizons, can be found in Figure 6.

We can see that running inference locally consumes less energy at

every time horizon.

Our scheduling framework also relies on knowing the actual

energy stored in the capacitor at the beginning of each timestep.

It takes∼22.5 µJ to measure the amount of energy in the capacitor

and record it to nonvolatile memory, which is significantly less than

the energy cost of local inference and LoRa radio usage. However,

this energy consumption could still prove costly for an SMFC-

powered device, especially for more frequent prediction horizons.

For example, we would need to perform inference twenty times

more often for a 3 min prediction horizon than for a 60 min

prediction horizon. During deployment, the SMFC from Dataset

1 generated 422.6 µJ per hour, on average. This is enough power to

check the capacitor once every 3.2 min. However, since the energy

generation of SMFCs is wildly variable, we will not always have this

amount of energy readily available. For example, during the last

month of the deployment, the SMFC fromDataset 1 was generating

an average of 48.5 µJ per hour, enough to check the capacitor once

every 27.8 min.

To explore the tradeoffs between the various compute-

communication architectures, we analyze four core use cases:

(1) passive communications with edge inference, (2) active

communication with local inference, (3) active communication

with edge inference, and (4) passive communication with local

inference. There are many more complex approaches to the

compute-communication tradeoff, such as hybrid approaches that

perform both local and edge inference, but in this paper we restrict

our analysis to the four cases below.

5.4.1 Passive communication with local inference
This use case combines passive communication with local

inference. Per Equation 1, we anticipate consuming an estimated

633.6 µJ per inference. The advantages to passive communication

with local inference are that we can run the inference as frequently

as our energy budget allows, and are not limited to the possibly

constrained communication schedule of the passive device.

However, the passive communication approach limits how

frequently we can transmit our data to its intended destination (e.g.

a database in the cloud). This and other factors makes this approach

difficult to effectively implement. Zhao et al. (2022) created the only

end-to-end implementation we are aware of, though a number of
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FIGURE 6

Energy consumption estimates for running models locally and on the edge for various time horizons/frequencies. (A) Estimated energy consumption

for traditional ANNs. (B) Estimated energy consumption for SNNs.

other works have explored approaches to intermittent ML without

considering the impact of wireless communication (Montanari

et al., 2020; Bakar et al., 2023; Islam and Nirjon, 2020; Gobieski

et al., 2019; Lee et al., 2020). Our models make it easier to

budget power for wireless communication in these embedded

ML systems, and could lead to an increase in future intermittent

systems able to implement passive communications with

local inference.

5.4.2 Active communication with local inference
This use case combines active communication with local

inference. We assume a LoRa radio, which per Equation 2,

consumes an estimated minimum of 940 µJ to transmit data

and receive inference results. Since inference is done locally, we

would not have the same communication frequency constraints

as with passive communication systems leveraging edge inference.

Furthermore, the use of active communication would allow us

to back up our data to an external storage more frequently, if

needed, while still enjoying the reduced energy costs of local

inference. A recent example of a system that uses an active

communication/local inference approach is Desai et al. (2022),

which performs local inference on image data and uses LoRa to

communicate results.

5.4.3 Active communication with edge inference
While this approach still allows us to backup data to an

external source more frequently than with passive communication,

running inference on the edge means we need to transmit and

receive data at regular intervals. Since local inference is less

energy intensive than transmitting and receiving data—633.6 µJ

per inference compared to 940 µJ to transmit data and receive

inference results this option consumes more energy than active

communication with local inference. Assuming the models run

on the edge and those run on the embedded device are identical,

this active communications/edge inference would not have any

additional benefits over the active communication/local inference

approach. However, models running on embedded devices often

need to be significantly modified in order to operate successfully

within resource constraints, and as a consequence may suffer

from losses in accuracy. Therefore, an additional trade off of

inference accuracy vs. energy cost is something that system

designers must also consider. Works like Naderiparizi et al.

(2017) and Chinchali et al. (2018) attempt to decrease the cost

of communication by reducing the amount of data sent off-

device, while hybrid approaches like Chinchali et al. (2021),

Zeng et al. (2021), and Ben Ali et al. (2022) perform both local

and edge inference depending on the necessary accuracy and

available resources.

5.4.4 Passive communication with edge inference
This final use case combines passive communication with edge

inference. Out of the four use cases proposed, this one is the least

energy intensive with respect to the embedded device, as there

is no active radio chain and no on-device computation resources

are used for inference. Instead, the system transmits and receives

data over short range using RF backscatter communication,

which consumes several orders of magnitude less energy than

LoRa (Andrianakis et al., 2021). A number of works have used this

approach: Josephson et al. (2019), Wang and Xie (2020), and Saffari

et al. (2021). An important drawback to pairing this approach with

our energy income modeling is that due to the low communication

frequency, the edge inference would have to predict energy income

significantly further into the future—8, 12 or 24+ h. These time

horizons are significantly larger than the<1 h horizons explored in

Section 3.4, but initial tests suggest we would still be able to achieve

60%–85% of maximum possible operations.

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1447745
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hess-Dunlop et al. 10.3389/fcomp.2024.1447745

5.5 Reducing inference costs

In this section, we explore the benefits of spiking neural

networks (SNNs) compared to traditional artifical neural networks

(ANNs), both in terms of energy efficiency and overall accuracy.

First, we define a spiking neural network, and subsequently test its

performance and compare it against non-spiking models.

ANNs and SNNs can model similar network topologies, but

SNNs use spiking neurons instead of artificial neurons. Like

artificial neurons (Rosenblatt, 1958), spiking neurons compute a

weighted sum of inputs. Instead of applying a nonlinearity like

sigmoid or ReLU, this sum contributes to the membrane potential

U(t). When U(t) reaches a threshold θ , the neuron spikes, sending

a signal to its connections. This introduces temporal dynamics that

maintain the membrane potential over time.

One of the simplest and most common spiking neuron models

is based on a low-pass filter constructed of resistive channels in

thin-film membrane in spiking neurons, and capactive dynamics

from the insulating thin-film of the bilipid membrane. This is

represented by a simple RC circuit:

τ
dU(t)

dt
= −U(t)+ Iin(t)R (3)

where τ = RC is the time constant. The Forward-Euler method

can be used to solve this equation, and along with several

approximations that reduce the number of hyperparameters, the

following solution is derived which describes a single leaky

integrate-and-fire neuron in discrete-time form:

U[t] = βU[t − 1]+ (1− β)Iin[t] (4)

where β = e−1/τ is the decay rate, and time is discretized. The

coefficient of input current (1− β) becomes a learnable weightW,

simplifying to Iin[t] = WX[t]. For a single input to a neuron:

U[t] = βU[t − 1]+WX[t]− Sout[t − 1]θ (5)

Here, Sout[t] ∈ 0, 1 is the output spike, which resets the

membrane potential if activated. A spike is generated if:

Sout[t] =

{

1, if U[t] > θ

0, otherwise.
(6)

Relating SNNs back to deep learning, this formulation in

discrete-time recasts SNNs as a simple RNN with a diagonal

recurrent matrix, i.e., each neuron is only recurrent with itself. Such

models are considered efficient for computation because SNNs can

be trained with an objective function that reduces firing activity,

and as a result, there is less data traffic to access weights that are

stored in main memory. This memory access is the dominant cost

of deep learning.

Estimating the energy consumption of a neural network is

extremely difficult to do without directly running it on the desired

hardware, but we can approximate the energy consumption of two

neural networks relative to one another by measuring the number

of floating point operations required to perform a single round of

inference. Using this method, we find that Type 1 SNNs [which are

trained on Dataset 1 (deployment)] are between 1.26 and 1.86 times

more energy efficient than the traditional Type 1 ANNs presented

in this paper. We also find the energy efficiency decreases at higher

model timesteps, with the 3 min models being the most energy

efficient and the 60 min models being the least energy efficient.

However, SNN models are not yet as accurate as their

traditional ANN counterparts. For each Type 1 median model,

we created our own SNN variants to quantify the differences

in accuracy. These SNNs are all trained with the snnTorch

framework developed by Eshraghian et al. (2023).1 When validated

onDataset 1 (deployment), the Type 1 SNNmedianmodels achieve

between 16.69 and 32.52% for total energy percent difference, and

between 21.03 and 29.09% for voltage MAPE. By contrast, when

validated on Dataset 1 (deployment), the traditional ANN median

models achieve between 2.55 and 10.89% for total energy percent

difference, and between 2.33 and 5.71% for voltage MAPE. A

complete summary of the Type 1 SNN performances compared to

the Type 1 ANNs can be found in Table 6.

6 Conclusion and future work

Soil Microbial Fuel Cells show great potential as a renewable

source of clean energy, but the unpredictability of their energy

generation poses a significant challenge in their adoption. Our

work attempts to address this challenge bymodeling and predicting

SMFC energy generation with deep learning, and is the first

work to do so at the time of writing. We also simulate how our

predictions could be used in a real-world deployment setting to

perform useful tasks, and how effective these predictions would be

in practice.

One of our highest priorities going forward is to gather

novel deployment data which we can use to validate our Type

1 models, which are trained exclusively on deployment data. As

discussed in Section 4.4.2, Type 2 models, which are trained

exclusively on incubation data, are able to generalize well to novel

incubation data. This paints an optimistic picture of how Type

1 models will generalize to novel deployment data, but we won’t

be sure of this until we acquire new deployment data to use

for validation. We would also like to gather data on soil pH for

future work, as it is well known that pH can impact fuel cell

performance (Jadhav and Ghangrekar, 2009). To the best of our

knowledge, there are no commercially-available continuous real

time pH measurement systems for soil that do not require soil

pre-treatment. Most of our data was collected from an active farm

where this was not practical, which is why we did not consider pH

in this work.

Another important area of future work involves considering

the fact that the operation of the model itself consumes valuable

harvested energy. There are opportunities to better quantify

the tradeoffs of predicting energy availability and scheduling

tasks across various timeframes, as well as accounting for the

different types of device operations that would be performed by

an SMFC-powered system. The framework scheduling presented

1 More information can be found on the public Github repository created

by Hess-Dunlop et al. (2024).
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TABLE 6 Performance metrics for Type 1 ANN and SNNmodels presented in Section 5.5.

Times (min) 3 5 15 30 60

Model
type

ANN SNN ANN SNN ANN SNN ANN SNN ANN SNN

Total energy error 3.669% 23.419% –2.257% 16.691% 10.893% 17.349% 4.971% 21.921% 0.854% 32.517%

Test MAPE voltage 2.326% 29.086% 3.034% 21.442% 3.636% 25.744% 4.984% 28.064% 5.709% 21.038%

Energy savings 53.824% 51.896% 57.487% 57.844% 79.496%

Energy savings refers to the estimate energy consumption of the relevant SNN vs. ANN. A negative value for energy savings would indicate an increase in energy consumption.

by Islam and Nirjon (2020) successfully accounts for a range

of tasks for intermittently powered (but not SMFC-powered)

systems, outperforming state-of-the-art task schedulers, and we

will need to determine to what extent this approach can be

adapted to SMFC-powered devices. In Figure 6, we graph the

expected energy needed to power models making predictions

across various different timesteps. In Section 5.4, we provide

an energy breakdown of various components that could be

used to implement our scheduling framework, as well as the

average energy generated in deployment by the SMFC from

Dataset 1. However, these values are likely to change depending

on the hardware and environmental conditions present in

future deployments.

We believe the results presented in this paper represent a

significant step toward realizing the potential of Soil Microbial Fuel

Cells a renewable source of clean energy, and we look to continuing

this promising line of research.
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