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Introduction: An automated computerized approach can aid radiologists in the 
early diagnosis of lung disease from video modalities. This study focuses on 
the difficulties associated with identifying and categorizing respiratory diseases, 
including COVID-19, influenza, and pneumonia.

Methods: We propose a novel method that combines three dimensional (3D) 
models, model explainability (XAI), and a Decision Support System (DSS) that 
utilizes lung ultrasound (LUS) videos. The objective of the study is to improve the 
quality of video frames, boost the diversity of the dataset, maintain the sequence 
of frames, and create a hybrid 3D model [Three-Dimensional Time Distributed 
Convolutional Neural Network-Long short-term memory (TD-CNNLSTM-
LungNet)] for precise classification. The proposed methodology involves 
applying morphological opening and contour detection to improve frame 
quality, utilizing geometrical augmentation for dataset balance, introducing 
a graph-based approach for frame sequencing, and implementing a hybrid 
3D model combining time-distributed CNN and LSTM networks utilizing vast 
ablation study. Model explainability is ensured through heatmap generation, 
region of interest segmentation, and Probability Density Function (PDF) graphs 
illustrating feature distribution.

Results: Our model TD-CNN-LSTM-LungNet attained a remarkable accuracy of 
96.57% in classifying LUS videos into pneumonia, COVID-19, normal, and other 
lung disease classes, which is above compared to ten traditional transfer learning 
models experimented with in this study. The eleven-ablation case study reduced 
training costs and redundancy. K-fold cross-validation and accuracy-loss curves 
demonstrated model generalization. The DSS, incorporating Layer Class Activation 
Mapping (LayerCAM) and heatmaps, improved interpretability and reliability, and 
PDF graphs facilitated precise decision-making by identifying feature boundaries. 
The DSS facilitates clinical marker analysis, and the validation by using the proposed 
algorithms highlights its impact on a reliable diagnosis outcome.

Discussion: Our proposed methodology could assist radiologists in accurately 
detecting and comprehending the patterns of respiratory disorders.
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1 Introduction

Respiratory diseases such as COVID-19 and pneumonia vary in 
severity, impacting the monitoring of their spread. Every year, 
pneumonia leads to over one million hospitalizations and more than 
50,000 fatalities (American Lung Association, 2022). Pneumonia is a 
pathological condition characterized by infection and inflammation 
in either one or both lungs, resulting in fluid accumulation (Kruckow 
et al., 2023). It can potentially hinder the process of oxygen exchange. 
Pneumonia severity depends on the cause, patient’s age, and overall 
health, with symptoms ranging from mild to life-threatening (Kassaw 
et al., 2023). The severity of COVID-19 can vary, ranging from modest 
symptoms to severe sickness and even death (Kapusta et al., 2023). 
Older adults and individuals with existing medical issues are more 
susceptible to experiencing severe results (Kapusta et al., 2023). The 
World Health Organization (WHO) reported a total of 396,558,014 
confirmed cases of COVID-19 globally, resulting in 5,745,032 
fatalities. COVID-19 is a highly contagious disease that is closely 
connected to severe acute respiratory syndrome (Rao et al., 2024). The 
complex characteristics and mutations of the COVID-19 virus provide 
significant difficulties in promptly identifying patients (Kapusta et al., 
2023). Influenza and other respiratory diseases can cause illnesses 
ranging from mild to severe, with the severity differing among various 
age groups and communities (Ambrosch et al., 2023).

Various modalities are available for the detection of lung disease, 
including computed tomography (CT), LUS (LUS) images and video, 
and chest X-rays (Philip et  al., 2023). LUS video is valuable for 
monitoring the progression of respiratory illnesses because it provides 
continuous motion. This technology enables quick and non-invasive 
evaluation of lung abnormalities, including pneumonia and lung 
damage caused by COVID-19. It assists in the early detection and 
monitoring of disease progression (Dugar et al., 2023; Philip et al., 
2023). Moreover, it can be utilized for immediate direction during 
medical operations such as thoracentesis and endotracheal intubation, 
improving patient care quality in managing respiratory diseases.

The utilization of computer-aided approaches in LUS videos helps 
accelerate the classification process of respiratory disorders. 
Computer-aided ultrasound analysis can utilize artificial intelligence 
(AI) algorithms to detect and classify lung abnormalities automatically. 
This integration could decrease the time required for interpretation 
and enhance the accuracy of diagnosis. Moreover, 3D deep learning 
models have demonstrated the potential to improve respiratory 
disease diagnosis significantly compared to alternative approaches 
(Wu et al., 2023). These models can analyze volumetric ultrasound 
data, allowing for a thorough evaluation of lung pathology and 
enhancing the accuracy of disease classification and monitoring. After 
getting an optimal result, ensuring the transparency and 
comprehensibility of models is essential for establishing user 
confidence and facilitating the efficacy of decision support systems, 
especially in the context of medical artificial intelligence (Panigutti 
et al., 2023). The deep learning model must be explained in complex 
AI-based solutions, such as respiratory disease prediction, to foster 
trust among clinicians, developers, and researchers.

In this regard, several studies have incorporated LUS videos 
(Barros et al., 2021; Diaz-Escobar et al., 2021; Ebadi et al., 2021; Li 
et al., 2023; Magrelli et al., 2021; Muhammad and Hossain, 2021; Roy 
et al., 2020; Shea et al., 2023; Tsai et al., 2021), however, a notable gap 
in the literature was identified in incorporating 3D models for 

enhanced visualization and understanding. Moreover, the absence of 
integrating explainability into prior investigations was a significant 
oversight in the decision-making process. To address the significant 
shortcomings found in previous studies, our research aims to fill these 
gaps by including three-dimensional models in the analysis of LUS 
videos, introducing model explainability, and proposing a Decision 
Support System (DSS).

Following are the contributions made about the proposed  
approach:

 • To enhance the quality of the frames of a video, we  applied 
morphological opening and largest contour detection techniques 
to eliminate unwanted artifacts and noise, enabling the model to 
extract meaningful features effectively.

 • We utilize geometrical augmentation techniques to increase the 
frame number of the videos, balance the dataset, and increase the 
diversity of the samples as well.

 • To preserve the sequence of the frames, we introduced a graph-
based approach. In this regard, Mean Squared Error (MSE), 
Structural Similarity Index (SSIM), and Minimum Spanning Tree 
(MST) based approaches establish the frame sequence 
and continuity.

 • After a vast ablation study, we proposed a hybrid model Three-
Dimensional Time Distributed Convolutional Neural Network-
Long short-term memory (TD-CNN-LSTM-LungNet) by 
combining a time-distributed convolutional neural network 
(TD-CNN) and a long short-term memory (LSTM) network, 
which can capture spatial–temporal dependency and improve 
contextual learning from the LUS videos.

 • To ensure the explainability of the model, a heatmap within the 
LUS frames and highlights the ROI of the frames that contribute 
to the model’s prediction has been generated.

 • The region of interest (ROI) from the video frame is segmented 
to extract the crucial features of that region to create PDF graphs.

 • The PDF graph illustrates the feature distribution to the 
corresponding classes and leads to creating a precise DSS for the 
decision-making process.

2 Related works

The increasing severity of lung diseases has prompted a rise in 
research efforts, with numerous researchers actively exploring the 
integration of computer-aided diagnostics (CAD) to enhance the 
accuracy and efficiency of lung disease prediction. These efforts aim 
to transform early identification and improve the treatment of 
respiratory conditions by recognizing the crucial requirement for 
enhanced technologies.

In this regard, Tsai et  al. (2021) proposed an automatic deep 
learning-based method for classifying pleural effusions in LUS images 
and videos to diagnose respiratory diseases on a custom dataset. 
Preprocessing techniques include digital imaging and communications 
in medicine processing, color space conversion, overlay removal, and 
image cropping have been performed. The mean accuracy of the 
video-based labeling approach was 91.12%, while the frame-based 
labeling approach achieved 92.38, 1.26% higher than the video-based 
labeling approach. In another study, Muhammad and Hossain (2021) 
recommended using multi-layer fusion from LUS videos to classify 
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between COVID-19 and non-COVID-19. Mean normalization and 
standardization were performed throughout the dataset using 
calculated standard deviation and mean for preprocessing. It employed 
several augmentation techniques (Shamrat et  al., 2022), such as 
scaling, rotations, and random reflections. The proposed efficient 
CNN model with five blocks of convolution connectors and multi-
layer feature fusion attained an accuracy of 91.8%. Ebadi et al. (2021) 
developed an automated method for detecting pneumonia in LUS 
utilizing deep video classification for COVID-19. They proposed a 
Two-Stream Inflated 3D ConvNet (I3D) for classifying video 
sequences with a 90% accuracy and a 95% average precision score. To 
classify LUS features related to pneumonia in videos using deep 
learning (Shea et al., 2023) worked. Every image was converted to 
grayscale and resized to a particular input size for preprocessing, and 
standard data augmentation techniques such as blurring, random 
pixel intensity adjustment, zero padding, frame averaging, and 
contrast adjustment have been utilized. By efficiently using frame-level 
and video-level annotations, the architectures provided an accuracy 
of 90%. Another study investigated by Barros et al. (2021) developed 
a model that effectively classified LUS videos to identify pulmonary 
appearances of COVID-19 by combining CNN and LSTM networks. 
Rulers and other artifacts were eliminated from the videos during 
pre-processing. The hybrid model (CNN-LSTM) outperformed 
models that relied only on spatial approaches. They evaluated several 
hybrid models, overall Xception-LSTM performed the best, with an 
average accuracy of 93% and sensitivity of 97% for COVID-19. Li et al. 
(2023) detected weakly semi-supervised video classification for LUS 
with temporal context. Spatial augmentation, such as rotation, scaling, 
shearing, translation, center cropping, random horizontal flipping, 
and temporal augmentation, were used during training. CNN and 
LSTM were used to detect and classify video sequences simultaneously 
with minimal frame-level annotation burden, achieving an accuracy 
of 93.6%. Another study by Diaz-Escobar et al. (2021) employed LUS 
imagery to develop a deep-learning-based method for detecting 
COVID-19. Splitting images at a frame rate of 3 Hz, cropping to a 
quadratic window, and resizing to 224 × 224 pixels were used to 
preprocess LUS videos. They implemented and verified deep learning 
models. InceptionV3 classified COVID-19, pneumonia, and healthy 
classes with 89.1% accuracy and COVID-19 vs. non-COVID-19 with 
91.5% accuracy. Their model POCOVID-net achieved 94.1% accuracy 
in COVID-19 and pneumonia classification.

An investigation by Magrelli et al. (2021) classified lung disease in 
children by using deep CNN and LUS images. Preprocessing includes 
RGB conversion, template-matching for artifact removal, cropping, 
resizing, and normalization. Data augmentation involves random 
Gaussian noise, pixel shifts, flips, rotations, regional zoom, and 
blurring. With 97.75% accuracy for healthy vs. bronchiolitis and 
91.5% accuracy for healthy vs. bronchiolitis vs. bacterial pneumonia, 
the Inception-ResNet-v2 model performed the best. Roy et al. (2020) 
proposed deep learning for classifying and localizing COVID-19 
markers in point-of-care LUS. Affine transformations, constant 
multiplication, Gaussian blurring, contrast distortion, horizontal 
flipping, and additive white Gaussian noise were all part of the 
augmentation method. A deep network based on Spatial Transformer 
Networks achieved a frame-based F1 score of 71.4% and a video-based 
F1 score of 61%. Furthermore, the segmentation model distinguishes 
areas in B-mode LUS images with a pixel-wise accuracy of 96% 
(Dastider et  al., 2021) combined an autoencoder with the hybrid 

CNN-LSTM model to identify the COVID-19 severity score 
employing LUS. To extract the intended region, they remove the 
undesired parts during preprocessing. For the hospital-independent 
scenario, a frame-based 4-score disease severity prediction 
architecture achieved an accuracy of 79.2%, whereas, for the hospital-
independent scenario, it reached 67.7% (Shandiz and Tóth, 2022) 
employed ConvLSTM and 3d-CNN to improve ultrasound tongue 
video processing. Down-sampling and normalization were part of 
preprocessing methods. This hybrid architecture obtained mean and 
MSE of 0.73 and 0.276, respectively. Studies from Dastider et al., and 
Shandiz et al. lacked a time-distributed CNN, which limited their 
ability to capture spatial–temporal processing. They also failed to 
compare their models with transformers or explore transfer learning. 
To address these gaps, we developed a time-distributed CNN and 
LSTM model that effectively captures spatial and temporal motions 
(Bhandari et al., 2022) employed deep learning and XAI to classify 
chest X-ray images into COVID-19, Pneumonia, and Tuberculosis. As 
part of the preprocessing, the images were resized, and data 
augmentation techniques, such as horizontal flipping, were applied. 
They proposed a lightweight CNN for lung disease detection, 
achieving an accuracy of 94.31 ± 1.01%. Though their work is novel, 
our approach differs in that we  have focused on lung ultrasound 
videos and proposed a framework like DSS.

After conducting a comprehensive analysis of the available 
research, it was determined that most researchers relied on publicly 
available datasets. Only a small number of researchers obtained 
datasets directly from clinics. Some researchers employed 
preprocessing and augmentation techniques to enhance and expand 
their datasets. However, several crucial aspects were found to 
be  lacking in most cases. These include frame augmentation, 
sequencing, denoising, hybrid model construction, spatial–temporal 
processing, comparison with transfer learning and transformers, and 
evaluations of diverse datasets. Additionally, only a limited number of 
studies made efforts to ensure the interpretability of their models.

Our study addresses these significant gaps in the current state-of-
the-art research by introducing innovative graph-based frame 
sequencing methods. We also propose a time-distributed deep hybrid 
model and present a comprehensive approach for ensuring the 
interpretability of the model using a decision support system. In 
addition to explaining the model’s decision-making using heat maps, 
we performed an ablation study on the baseline model to identify the 
optimal configurations for our proposed model. It is worth noting 
that, out of the eleven reviewed literature sources, only one has 
conducted a similar analysis. To demonstrate the substantial 
differences in shapes and areas between classes, we segmented the ROI 
from the entire frame. We further extracted and analyzed numerous 
clinically essential features from this ROI. We used these features to 
develop a DSS approach based on ultrasound videos. Our approach 
includes an algorithm that generates a PDF graph depicting the range 
of a specific feature for a particular class to facilitate accurate disease 
classification prediction. Notably, no other studies have featured this 
particular DSS and this system. In addition to Explainable Artificial 
Intelligence (XAI), our research novelty lies in conducting an ablation 
study, analyzing and extracting clinically significant features, 
developing a DSS, and proposing an algorithm incorporating precise 
feature ranges for individual classes. For a thorough comparison 
between the state-of-the-art studies and our proposed study, please 
refer to Table 1.
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TABLE 1 Comparison of state-of-the-art studies.

Paper Dataset name Model Classification type Accuracy 3D model Video 
processing

Ablation 
study

Feature 
Analysis

XAI DSS

Tsai et al. (2021) Custom Dataset CNN Binary – Normal, Abnormal 91.10% × ×  × × ×

Muhammad and 

Hossain (2021)
POCUS CNN

Multiclass – COVID-19, Pneumonia, 

Healthy
92.50% × × ×  × ×

Ebadi et al. (2022) LUS CNN
Multiclass – A-lines, B-lines, 

consolidation, or pleural effusion
90%  × ×  × ×

Shea et al. (2023)
Collected from patients of all ages 

in Nigeria and China.
CNN, LSTM

Multiclass – Pleural effusion and B 

lines (single and merged)
90% ×  × ×  ×

Barros et al. 

(2021)
LUS CNN, LSTM

Multiclass – COVID-19, Pneumonia, 

Healthy
93% ×   × × ×

Li et al. (2023)

Clinical dataset collected from 

8 U.S. clinical sites between 2017 

and 2020

CNN, LSTM Binary – Negative, Positive 93.60% × × × × × ×

Diaz-Escobar 

et al. (2021)
POCUS CNN

Multiclass – COVID-19, Pneumonia, 

Healthy
89.10% × ×  × × ×

Magrelli et al. 

(2021)

Collected from Agostino Gemelli 

University Hospital
CNN

Binary – Healthy, Bronchiolitis / 

Multiclass – Healthy, Bronchiolitis, 

Bacterial Pneumonia

97.75% × × ×  × 

Roy et al. (2020) LUS CNN
Multiclass – COVID-19, Pneumonia, 

Healthy
96% ×  × × × ×

Dastider et al. 

(2021)

COVID-19 LUS Database 

(ICLUSDB)

CNN, LSTM, 

autoencoder

Multiclass score (0–3) severity 

prediction
79.2% × × × × × ×

Shandiz and Tóth 

(2022)

Collected from a Hungarian 

female subject
CNN, LSTM – MSE 0.27 ×  × × × ×

Bhandari et al. 

(2022)

Kermany, Chest X-ray (Covid-19 

& Pneumonia), TUBERCULOSIS 

(TB) CHEST X-RAY DATABASE

CNN
Multiclass-COVID-19, Pneumonia, 

Tuberculosis
94.31 ± 1.01% × × × ×  ×

Proposed study LUS

TD-

CNNLSTM-

LungNet

Multiclass – COVID-19, Pneumonia, 

Normal, Other
96.57%%%      
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3 Medical analogy

LUS has become increasingly popular for detecting lung diseases 
due to its inherent convenience, absence of ionizing radiation, and 
notable accuracy. LUS differs from other ultrasound examinations in 
that it is mainly artifact-based. Several artifacts or abnormal results in 
LUS can distinguish between normal and infected lungs. Below is an 
explanation of a few of the artifacts.

3.1 A line

A-lines are bright, slowly diminishing horizontal lines placed at 
equal intervals beneath the pleural line that indicates the repeated 
artifact of the parietal pleura (Bard, 2021). The gap of A-lines is nearly 
identical to the gap between the skin surface and the pleural line. 
Alines are most visible in the normal lung because they are caused by 
air gas beneath the pleura (Bard, 2021). Figure 1A demonstrates the 
A-line of the lungs.

3.2 B line

B-lines, called LUS comets, are caused by separate vertical 
reverberation artifacts starting at the pleural line, extending throughout 
the image without intensity reduction, and moving synchronously with 
lung sliding (Ostras et al., 2021). Their distinguishing feature is that they 
conceal A-lines. Normal lungs may have diffused B-lines (less than two in 
each intercostal space). They are considered severe if three or more B-lines 
are seen in a single image within two ribs. The quantity of B-lines is 
strongly related to disease severity.

In Figure 1B, the B-lines conceal the horizontal Alines visible in 
the neighboring intercostal space (represented by an asterisk).

3.3 Pleural effusion

A pleural effusion is a fluid in the pleural cavity that appears as 
a dark, hypoechoic, or anechoic area (de Groot et al., 2023). An 
ultrasound video clip captures the lateral motion between the lung 
and the chest cavity during respiration. An infrequent finding in 
COVID-19 is pleural effusion, which usually arises from a coexisting 
disease. Ultrasound is a highly dependable pleural effusion 
detection, measurement, and follow-up technique (de Groot et al., 
2023). A pleural effusion is represented by the yellow arrow in 
Figure 1C.

3.4 Consolidations

When the air content in lung tissue falls below 10% of regular lung 
aeration, the pleural line is disrupted, and consolidative lesions occur 
(Soldati et al., 2020). Consolidations are more common in the lower 
posterior regions of patients with COVID-19 pneumonia, are often 
multiple, and may appear with or without air bronchograms. In 
Figure 1D, a B-line (dot) is illustrated with subpleural consolidation 
(arrow).

A normal LUS shows the pleural line as a continuous and 
consistent structure. Horizontal A-lines or fewer than two vertical 
B-lines are frequently observed. In ultrasound imaging, this pattern 
reflects the lung’s healthy state. Scattered B-lines are the most 
common US findings for diagnosing COVID-19. Pleural line 

FIGURE 1

Medical markers, (A) A-lines, (B) B-lines, (C) pleural effusion, (D) subpleural consolidation, (E) normal LUS, (F) COVID-19 LUNG, and (G) white LUS for 
severe COVID-19 pneumonia.
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irregularities and subpleural consolidations are the most likely 
findings, while pleural effusion is less frequent. In COVID-19 
pneumonia, interstitial patterns, pleural abnormalities, and 
consolidations are the most typical LUS findings. These abnormalities 
typically have a bilateral, inconsistent distribution and clearly 
defined spared regions. The most common sign of severe COVID-19 
pneumonia is a “white lung” that is entirely diffused with B-lines. 
Identifying COVID-19 pneumonia from other illnesses may 
be made easier using B-lines.

In clinical practice, LUS is being used more frequently to treat 
other diseases such as infection, asthma, pulmonary edema, 
pulmonary fibrosis, and pneumothorax. As in the case of interstitial 
lung disease/pulmonary fibrosis and acute respiratory distress 
syndrome (ARDS), the pleural line frequently appears thickened, 
irregular, or broken in affected areas. There will be  an irregular 
hyperechoic line at the interface between the consolidated pathological 
lung and the aerated healthy lung. A focal subpleural hypoechoic 
region could be an indication of a minor infection. B-lines and pleural 
effusions define pulmonary edema. Irregular thickening of the 
hyperechoic pleural line is seen in asthma LUS. The lung point is 
where the pneumothorax and normal lung meet. Identifying a lung 
point on LUS allows for attaining 100% specificity in diagnosing 
pneumothorax. In the Figure 1 comparison, (E) represents normal 
LUS, (F) COVID-19 indicative lung, and (G) white lung for severe 
COVID-19 pneumonia. LUS findings in COVID-19 pneumonia are 
similar to those seen before the COVID-19 era. Common ultrasound 

symptoms, such as multiple B-lines, consolidations, and pleural line 
irregularities, emphasize the remarkable resemblance between the 
two diseases.

4 Methodology

This research has been completed in seven stages: (1) dataset 
preparation, (2) preprocessing and augmenting data, (3) sequencing 
frames, and (4) developing a 3D model that includes an ablation study, 
(5) analysis of performance, (6) explainability of the model which 
involves generating a heat map, segmenting the ROI, and constructing 
a PDF graph, and (7) propose decision support system. The workflow 
for this study is shown in Figure 2.

4.1 Dataset description

In this research, a publicly accessible dataset of LUS videos called 
COVIDx-US (Ebadi et al., 2022) is used. The dataset is an Open-
Access Benchmark of COVID-19 Analytics Powered by AI for 
Ultrasound Imaging. With a standardized and consistent lung 
ultrasonography score for each video file, COVIDx-US is the first and 
biggest fully curated open-access benchmark dataset for lung 
ultrasonography imaging. This dataset contains four classes: 
pneumonia, COVID-19, normal, and others. The dataset is the merge 

FIGURE 2

Pipeline of the entire methodology.
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format of nine different sub datasets. Therefore, our study works with 
a single merge dataset, COVIDx-US. The nine sub-datasets (Born 
et al., 2020; Etter et al., 2024; Nehary et al., 2023) were collected in 
different hospitals and organizations. Firstly, the Butterfly Network 
dataset, where the images were produced by Butterfly Network Inc. 
and are restricted for use only during the MIT GrandHack 2018. This 
large dataset contains ultrasound images from 31 individuals, all taken 
using the Butterfly IQ device. Next is the PocusAtlas dataset, part of a 
collaborative ultrasound education platform. Additionally, we have 
the GrepMed dataset, a publicly accessible resource for medical 
images and videos. Another dataset is Life in the Fast Lane (LITFL), 
an emergency and critical care educational resource repository. 
Following that is the Radiopaedia dataset, an open-access educational 
platform that includes a radiology encyclopedia and imaging archives. 
We also have the Papers dataset, a video collection that provides over 
23,000 high-resolution frames from four ultrasound video 
sub-datasets. The core ultrasound dataset is a valuable medical 
imaging and research resource, especially for point-of-care ultrasound 
(POCUS). Additionally, there is the University of Florida (UF) dataset, 
where data has been collected from UF’s Department of 
Anesthesiology webpage. Lastly, Clarius produces portable ultrasound 
machines and scanners to collect raw data. Table 2 shows each of the 
datasets with their corresponding video numbers.

4.2 Image preprocessing

It is essential to provide models with appropriate input to classify 
video frames correctly. Image preprocessing is a necessary step to 
achieve the required accuracy before providing any input to the 
neural network (Raiaan et al., 2024). It involves multiple steps, such 
as removing artifacts and noise, finding the largest contour, and 
demonstrating important objects. In this study, we  performed 
several sequential preprocessing techniques to improve the quality 
of the images. The videos contain irrelevant numerical numbers and 
logos, which distort the feature pattern. Hence, it becomes 
challenging to obtain satisfactory performance in classifying LUS 
videos without preprocessing techniques, as the neural network 
model used for classification tends to require clean and 
improved data.

Figure 3 shows the preprocessing technique steps. Initially, Otsu 
thresholding is used to create a binarized image of the original image. 
The application of binarized images helps to separate the foreground 
and background of the images, which contributes to simplifying the 
images and extracting the object region. To remove artifacts, we use 
morphological openings. We employ the largest contour detection 
technique on the image to obtain the largest contour mask. Finally, 
we used the Bitwise AND operation to get the output image, which 
we can then feed into the model to get the correct accuracy. A brief 
description of the mentioned preprocessing techniques is discussed in 
the subsequent section.

4.2.1 Morphological opening
After binarizing the images, morphological opening is applied to 

eliminate small objects from the images (Raiaan et  al., 2023). 
Additionally, this technique helps to locate specific shapes in an image. T
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The morphological opening operation consists of two individual 
operations such as erosion and dilation.

 ( ) ( )( )1i i
Ie I e e I I−=′ ∗ ′

 
(1)

 ( ) ( )( )1i i
Id I d d I I−=′ ′



 
(2)

Here, Equations 1, 2 represent the erosion and dilation operation 
denoted by e and d, respectively. In these equations, “∗” and “∘” refer 
to the point-by-point minimum and maximum value, whereas I and 
I′ denote the actual and marker images. The combining operation of 
these techniques helps to remove the redundant artifacts from the 
lung frame.

4.2.2 Largest contour detection
The morphological opening removes most of the small objects 

from the frames successfully. However, there are still some thin, tiny 
artifacts at the border of the frames (Khan et al., 2023). After removing 
the artifacts from the mask image, several contours are explored, as 
seen in step  4. The find_contour function is utilized to find these 
individual contours. This function iterates over the image and returns 
the list of contours where each contour is the coordinates of the 
boundary points of each distinct object. We  employ the largest 
contour detection technique, where the contour area is calculated, and 
a max function compares the area of all contours. This function 
returns the largest contour based on the maximum contour area.

 
( )

i

i
p C

A C 1
∈

= ∑
 

(3)

 
( )max

1, ,
arg max i

i n
C A C

= …
=

 
(4)

Equation 3 defines the area of a contour, denoted by iC , where 
( )iA C  represents the area of contour iC . The area is calculated as the 

sum of all pixels p that belong to the contour. In the Equation 4, maxC  
is the contour that has the largest area among the n contours. The arg 
max  function returns the index i corresponding to the contour with 
the maximum area ( )iA C . In other words, maxC  is the contour for 
which ( )iA C  is maximized, making it the largest contour based on its 
area. Largest contour detection is the appropriate step that detects the 
most prominent objects and eliminates the irrelevant artifacts. 
Additionally, it obtains the precise ROI from the frames and 

focuses only on the significant features. Figure  3 shows the 
complete process.

4.3 Frame augmentation

Frame augmentation is an effective technique to artificially 
expand the size, diversity, and quality of a video dataset. A frame is a 
single image from a video that is considered a unit, and these frames 
are organized sequentially to create the video. Our study extracts the 
frames from ultrasound videos at a specific frame rate. These frames’ 
spatial and geometric transformations are then performed by flipping 
and rotating techniques.

4.3.1 Flipping
Flipping techniques reverse the image regarding the vertical or 

horizontal axis of the frame, whereas rotational augmentation 
transforms the frame pixel at a specific angle value. In this study, 
we performed horizontal and vertical flips.

 ( ) ( ): , ,Horizontalflip I x y I w x y= −′  (5)

 ( ) ( ): , ,Verticalflip I x y I x h y′ = −  (6)

Equations 5, 6 are employed for horizontal and vertical flipping. 
The output frame is denoted by ‘I,’ x, and y is the pixel coordinates, and 
n,d, the width and height of the corresponding frame, are indicated by 
w and h, respectively.

4.3.2 Rotation
Rotation is a common frame augmentation technique that 

involves rotating an image by a certain angle, enhancing the diversity 
of the training dataset for improved model generalization. Equation 5 
is employed to rotate a 2D frame in θ angle and create the rotational 
frame of the original frame.

 x yf f  =[ ][ ]  cos sin sin cos x yθ θ θ θ−  (7)

In Equation 7, the variables, xf  and yf  denote the updated 
positions of individual pixels following the rotation operation, with x 
and y representing pixels from the original image. The roles of cosine 
(cosθ ) and sine ( )sinθ in the equation are to ascertain the angular 
adjustments involved in the rotation.

FIGURE 3

Steps of image preprocessing.
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These techniques significantly increase the frame number for a 
particular video, create more diversity, and improve the generalizability 
of the model for extracting key features. However, frame augmentation 
can distort the temporal consistency of a video sequence. In some 
cases, it leads to the potential frame dropping or shuffling, which can 
affect the flow of the video and cause information loss. Consequently, 
it reduces the performance of the model. To address these challenges, 
we applied a novel frame sequencing strategy.

4.4 Frame sequencing

Frame sequencing is an effective solution to mitigate the 
discontinuity of frames by capturing temporal dependencies and 
identifying patterns within frames (Chen et al., 2023). This research 
performs frame sequencing steps before reconstructing the video 
using augmented frames. Various techniques, such as clustering, 
wrapping, and deep learning, have been employed to find the optimal 
strategy. In this study, we propose a novel and efficient graph-based 
technique for finding the optimal frame sequence. After applying 
augmentation techniques, all the frames from a video are stored in a 
list. To evaluate the quality of each frame, two metrics are calculated 
consecutively, MSE and SSIM. The MSE between two consecutive 
frames iF  and jF  is calculated using Equation 8.

 
( ) ( ) ( )( )2

1

1MSE ,
N

i j i j
k

F F F k F k
N =

= −∑
 

(8)

where k  represents each pixel in the frames, and N is the total 
number of pixels. A lower MSE value denotes a higher-quality frame. 
The SSIM between two consecutive frames iF  and jF  is given in the 
Equation 9.

 

( ) ( )( )
( )( )

1 2
2 2 2 2

1 2

2 2
SSIM , i j ij

i j
i j i j

c c
F F

c c

µ µ + σ +
=

µ + µ + σ + σ +
 

(9)

Here, ì i and ì j  are the mean intensities of frames iF  and jF , and 
2ói , 2ó j , and ijσ  represent the variance and covariance. A higher SSIM 

value indicates greater consistency between frames. Each frame iF  is 
represented as a node in a graph, and the edge between two 
consecutive frames iF  and jF  is assigned a weight ijw , which depends 
on both the MSE and SSIM values in the Equation 10.

 ( ) ( )·MSE , ·SSIM , ij i j i jw F F F F= α −β
 (10)

Here, á  and â are scaling factors used to balance the MSE and 
SSIM contributions to the weight.

The frame sequencing graph is constructed using the frames as 
nodes and the edge weights based on ijw . To determine the optimal 
sequence, we utilize the MST approach, which ensures that the frames 
are sequenced with minimal disruption. The MST is calculated using 
Equation 11.

 ( ) MST,MST arg min iji j E w∈= ∑
 

(11)

Here, MSTE  is the set of edges in the MST. The MST ensures that 
the frame sequence is coherent by minimizing the edge weights, which 
represent frame quality based on MSE and SSIM.

To further refine the sequence, a filtering technique is applied. 
Frames that meet the following threshold conditions are selected, 

( ) ( )MSE SSIMMSE , and SSIM ,i j i jF F T F F T . In this threshold, 
MSET  and SSIMT  are predefined thresholds for MSE and SSIM, 

respectively. This filtering step eliminates low-quality frames and 
selects those that ensure a smooth transition between consecutive 
frames. The final optimal sequence optS  is composed of the frames that 
satisfy these conditions and are part of the MST, 

{ } ( ) ( )opt 1 2 1 MST 1, , ,  where , a nd MSE ,m i i i iS F F F F F E F F+ += … ∈
( )MSE 1 SSIM,SSIM , .i iT F F T+  This final sequence optS  is then used 

for video restoration, as well as for subsequent classification and 
analysis tasks. Through this graph-based approach, we ensure that the 
frame sequence is optimized, reducing disruptions and enhancing the 
overall video quality. Figure  4 shows several graphs for different 
class videos.

4.5 3D model reconstruction

For the classification of videos of lung disease, we construct a 3D 
model. Reconstruction has several steps, which are detailed in 
this section.

4.5.1 Baseline model
In deep learning, the baseline model denotes an initial model used 

as a reference point for evaluating performance over time. It is crucial 
as it facilitates the benchmark comparison and highlights the 
improvement that validates further optimization techniques for the 
model. In this study, we performed extensive experiments and trials 
on the baseline model to obtain the best-optimized 3D model. A 
hybrid model combining CNN and LSTM for the classification of LUS 
video frames has been constructed as a baseline model. The model 
receives input as sequential data and processes it to predict the lung 
label. Initially, we utilized three convolutional layers with subsequent 
pooling layers to extract the local features. Average pooling was 
preferable at the beginning to down sample the features. Besides, the 
avg-pooling technique prevents the overfitting from the model 
initially. The 3×3 kernel size is traversed in the input frames for 
extracting and filtering the features and creating the corresponding 
feature map. The kernel numbers for the three convolutional layers are 
16, 32, and 64, respectively. After performing the filtering operation, 
the ReLU activation function activates the complex patterns. The 
Categorical Cross entropy loss function is used for the baseline model 
as it is a multi-class classification task. The proposed baseline model 
utilized a 0.0001 learning rate throughout the experiments. The reason 
behind the low learning rate is to ensure slow convergence in the 
model and not be stuck in the local solutions. The LSTM architecture 
handled the temporal frequency of the frame sequence. We  have 
utilized a total of 128 LSTM units to capture the longer sequence 
pattern from the LUS frames.

4.5.2 Ablation study
An ablation is conducted on the baseline model to determine the 

optimal configurations of the proposed 3D model. We have run 11 
experiments to fine-tune its many hyperparameters and attain the best 
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accuracy and computational cost performance. The ablation study is 
completed in 11 steps, with the conv and pooling Layer, filter size, 
number of filters, pooling layer, activation function, batch size, loss 
function, optimizer, learning rate, dilation rate, and LSTM units all 
being altered. The best test accuracy is 92.02% % in the first step of 
altering the conv and pooling layers, where the number of conv and 
pooling layers is 5 and 3, respectively. The second step is to modify the 
filer sizer, with the best test accuracy of 93.41 and a filter size 2×2. 
Then, in the following step, change the number of filters. In that step, 
we achieved 95.28% accuracy. The fourth step is to change the type of 
pooling layer to average pooling, which has a near-perfect accuracy of 
94.83%. The test accuracy we obtained when altering the activation 
function is 96.09% when the activation function is tanh. When 
adjusting for batch size, the accuracy is 96.09%, and the batch size is 
16. The same accuracy was obtained by changing the optimizer. With 
a learning rate of 0.001, our accuracy is at its highest, 96.23%. The step 
known as the dilation rate, where the best accuracy is 96.39%, comes 
before the final one. Finally, the best test accuracy is achieved at 
96.57% when the LSTM unit is 256 after altering the LSTM units. The 
ablation studies of our proposed hybrid model are shown in Table 3.

4.5.3 Proposed model (TD-CNNLSTM-LungNet)
This section elaborately discusses our proposed 3D model 

(TD-CNNLSTM-LungNet) after a comprehensive ablation study.

4.5.3.1 Backbone of time distributed CNN and LSTM
In our study, we combine LSTM and Time-Distributed CNN in 

our proposed model. CNN and LSTM are combined to build the 
architecture and covered with a Time Distributed layer (Montaha 
et  al., 2022). Within CNN, the most important layers are the 
convolutional layer and the activation layer (). The derivation of the 
convolution operation is given in Equation 12.

 ( )k kZ f W X b= ∗ +  (12)

Where X  denotes the input data, kW  denotes the thk  convolution 
kernel, b represents the offset and ‘*’ symbolizes the convolution 
operator. In a convolutional operation, the stride and padding 
methods work together to determine the size of the thk  feature matrix 

kZ . The nonlinear activation is denoted by f. The 3D ConvNets use 3D 
convolution and 3D pooling operations (Arif et al., 2019). Three-
dimensional convolution is an extension of two-dimensional 
convolution. The 2D convolution produces two-dimensional feature 
maps, whereas the 3D convolution produces a volume with multiple 
dimensions. When compared to standard RNNs or other variants, 

LSTM has been demonstrated to be the most reliable and effective 
model for learning lengthy temporal relationships in practical 
applications (Qiao et al., 2018). Time Distributed function is used to 
configure the input shape before moving on to convolution and 
pooling layers. A Time Distributed layer generally adds dimension to 
the corresponding argument layer’s input shape. As a result, CNN can 
receive multiple frames as a single input. When applied to an input 
tensor, the distributed layer acts as a layer wrapper that holds the CNN 
model itself. This wrapper allows to addition of a layer to each 
sequential slice of input data, where the inputs can be in 3D. The input 
dimensions in our experiment are (height, width, frame, and channel). 
LUS videos have provided the frame of input.

Three gate structures are used by the LSTM to regulate the 
memory cell tc . The cell state can have information added or removed 
by the three gates (Arif et al., 2019). The three gates, input gate ti , 
forget gate tf , and output gate to , can be considered as a means to 
allow information to pass through on an optional basis. From 
Equation 13–18 illustrate the information passing and updating 
process in LSTM.

 ( )1t xf t hf t ff W x W h bσ −= + +  (13)

 ( )1t xi t hi t ii W x W h bσ −= + +  (14)

 ( )1tanht xc t hc t cc W x W h b−∼ = + +  (15)

 1t t t t tc f c i c−= + ∼   (16)

 ( )1t xo t ho t oo W x W h bσ −= + +  (17)

 ( )tanht t th o c=   (18)

Here the Hadamard product is indicated by . Every time step t, 
the hidden state 1th − , memory cell state 1tc − , and current input tx  can 
be  used to update the hidden state th  and memory cell state tc  
respectively. Upon receiving a new input, tf  can determine the 
number of data in 1tc −  that should be overlooked. After that ti , and 

tc∼  will determine what fresh data can be  kept in the cell state. 
Updating the old cell state 1tc −  into the new cell state tc  is the next step. 

FIGURE 4

Abstract frame sequence graph for (A) covid-19 class, (B) other class, (C) pneumonia class, (D) normal class.
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TABLE 3 Ablation study.

Configuration No. No. of convolution 
layers

No. of pooling 
layers

Epoch × training time Test accuracy (%)

Case Study 1: Altering Conv and Pooling Layer

1 3 3 31 × 125s 88.13

2 4 3 49 × 125s 89.29

3 4 4 51 × 125s 89.37

4 5 3 58 × 125s 92.02

5 5 4 74 × 125s 90.53

Configuration No. Filter size Epoch × training time Test accuracy (%) Finding

Case Study 2: Altering Filter Size

1 3 × 3 58 × 125s 92.02 Previous accuracy

2 2 × 2 52 × 118s 93.41 Highest accuracy

3 4 × 4 66 × 139s 91.69 Accuracy dropped

Configuration No. No. of kernel Epoch × training time Test accuracy (%) Finding

Case Study 3: Altering the number of Filter

1 16 × 16 × 32 × 32 × 64 58 × 125 s 92.02 Previous accuracy

2 16 × 32 × 64 × 32 × 64 67 × 131 s 95.28 Highest accuracy

3 32 × 64 × 64 × 128 × 128 71 × 135 s 91.87 Accuracy dropped

4 16? 32?64?128?256 75 × 134 s 94.47 Near highest accuracy

Configuration No.
Type of pooling 
layer

Epoch × training time Test accuracy (%) Finding

Case Study 4: Altering type of Pooling Layer

1 MaxPooling 67 × 131 s 95.28 Previous accuracy

2 AveragePooling 75 × 129 s 94.83 Near highest accuracy

Configuration No. Activation function Epoch × training time Test accuracy (%) Finding

Case Study 5: Altering Activation Function

1 PReLU 71 × 134 s 95.79 Accuracy Increased

2 ReLU 69 × 126 s 96.09 Highest accuracy

3 Tanh 67 × 131 s 95.28 Previous accuracy

Configuration No. Batch size Epoch × training time Test accuracy (%) Finding

Case Study 6: Altering Batch size

1 16 66 × 130 s 96.09 Highest accuracy

2 32 69 × 126 s 96.13 Previous accuracy

3 64 72 × 139 s 91.17 Accuracy dropped

Configuration No. Loss Function Epoch × training time Test accuracy (%) Finding

Case Study 7: Altering Loss Functions

1 Categorical Crossentropy 66 × 130 s 96.09 Previous accuracy

2 Mean Squared Error 71 × 128 s 92.14 Accuracy dropped

3 Mean absolute error 68 × 132 s 92.78 Accuracy dropped

Configuration No. Optimizer Epoch × training time Test accuracy (%) Finding

Case Study 8: Altering Optimizer

1 Adam 66 × 130 s 96.09 Previous accuracy

(Continued)
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Ultimately, the output th  is determined by tx , 1th − , and tc . The LSTM’s 
input, cell state, and output are all one-dimensional vectors.

Time-distributed CNN is extremely useful in a variety of 
fields, including magnetic resonance imaging (MRI), action 
recognition, health monitoring, speech-emotion recognition, and 
so on. In our case, we  classified LUS videos to determine 
the disease.

4.5.3.2 Model description
Our proposed model combines LSTM and time-distributed 

CNN. Eleven layers comprise this hybrid model: five convolutional 
layers, three max pool layers, one LSTM layer, one flattened layer, and 
one dense layer. A frame taken from LUS videos is the input. The input 
image has dimensions of (224,224,3,1) for height, width, channel, and 
frame, respectively. The input image is fed into a convolution layer 
with a dilation rate of (1,1) and corresponding height, width, channel, 
and frame values of 224,224,3,16. There are 16 filters of size 5×5 while 
padding remains “same.” A max pool layer with the height, width, 
channel, and frame values of (224,112,2,16) follows this convolution 
layer. The pool size and strides are 2×2. Here, padding remains the 
“same” as well. Two convolution layers in a row are different in frame 
size but have the same height, width, and channels 224, 112, and 2. The 
frame sizes of Conv2 and Conv3 are 32 and 64, subsequently. The 
dilation rates of these two layers are (2,2) and (3,3), respectively. There 
are 32, and 64 filters of size 5×5 for Conv2, and Conv3, respectively. A 
second max pool layer, with height, width, channel, and frame size of 
224, 56, 1, and 64, consequently, comes after those convolution layers. 
The pool size, stride, and padding is as same as the previous pooling 

layer. Two convolution layers are present again with various frame 
sizes. The frame sizes of Conv4 and Conv5 are 32 and 64, respectively. 
These two convolution layers have height, width, and channel 
measurements of 224,56,1 and dilation rates of (4,4) and (5,5), 
respectively. The filter number and size remain same like previous two 
convolutional layers.

Then, it is passed to the third max pool layer, where 224,28,1,64 
represents the height, weight, channel, and frame. The pool size, 
stride, and padding is same as the previous two pooling layers.

In every convolution and pooling layer, the activation function is 
ReLU. The input is sent to a flattened layer with 1792 neurons and 224 
heights. All of the layers have the same height up until the flattened 
layer. The width of the input image is reduced by half after each max 
pool layer. The flattened layer is followed by the LSTM layer, and the 
dropout is 0.5, which produces 256 outputs. It is then passed to the 
dense layer, where the activation function is softmax. The categorical 
cross-entropy loss function is used to construct the model. Training 
is done with the Adam optimizer.

The output is a disease, which can be COVID-19, pneumonia, 
normal, or other.

Figure  5 represents the framework of our proposed model. 
Using frames taken from LUS videos, we  categorize the videos 
according to the type of disease that has occurred including 
pneumonia, COVID-19, other, or normal. Our proposed model is 
a hybrid model that combines LSTM and TD CNN. This minimizes 
the computational cost and produces a satisfactory result that has 
correctly classified the frames while preserving their temporal and 
spatial dependencies.

TABLE 3 (Continued)

Configuration No. Optimizer Epoch × training time Test accuracy (%) Finding

2 Nadam 65 × 133 s 95.71 Accuracy dropped

3 SGD 73 × 136 s 91.19 Accuracy dropped

4 Adamax 65 × 128 s 95.86 Accuracy dropped

Configuration No. Learning rate Epoch × training time Test accuracy (%) Finding

Case Study 9: Altering Learning Rate

1 0.01 59 × 127 s 94.18 Accuracy dropped

2 0.001 66 × 130 s 96.23 Highest accuracy

3 0.0001 61 × 132 s 96.09 Previous accuracy

Configuration No. Dialation Rate Epoch × training time Test accuracy (%) Finding

Case Study 10: Dialation Rate

1 (2,2),(2,2),(3,3),(4,4),(4,4) 68 × 133 s 93.8 Accuracy dropped

2 (2,2),(3,3),(3,3),(4,4),(5,5) 71 × 131 s 94.58 Accuracy dropped

3 (1,1),(2,2),(2,2),(3,3),(4,4) 66 × 130 s 96.23 Previous accuracy

4 (1,1),(2,2),(3,3),(4,4),(5,5) 63 × 134 s 96.39 Highest accuracy

Configuration No. Units Number Epoch × training time Test accuracy (%) Finding

Case Study 11: LSTM Units

1 64 59 × 128 s 94.18 Accuracy dropped

2 128 63 × 134 s 96.39 Previous accuracy

3 256 69 × 132 s 96.57 Highest accuracy

4 512 77 × 134 s 96.51 Near highest accuracy
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5 Experimental results

5.1 Performance analysis

Performance metrics, such as train accuracy, validation 
accuracy, test accuracy, precision, recall, specificity, and F1 score 
(%), are used in this section to assess the models’ performance. 
Table  4 shows that, with the optimal configuration, the model 
we proposed, TD-CNNLSTM-LungNet, was evaluated using the 
COVIDx-US dataset, a comprehensive merged format of nine 
individual video datasets. The model demonstrated exceptional 
performance, achieving a training accuracy of 96.16%, validation 
accuracy of 96.26%, and test accuracy of 96.57%. Additionally, the 
model exhibited strong precision (95.56%), recall (96.51%), 
specificity (96.24%), and F1 score (96.02%).

The accuracy curve, loss curve, and confusion matrix are shown 
in Figure  6. The accuracy curve between training and validation 
begins low initially, as seen in Figure 6A, but increases with epochs. 
There is significantly less distance between the lines, representing 
training and validation accuracy. Since there is a close margin between 
these two lines, indicating that neither overfitting nor underfitting 
occurs. For each epoch, two curves fall into the same range. Similarly, 

Figure 6B demonstrates the loss curve where the loss is large in the 
first epoch but eventually diminishes. The optimized model’s 
confusion matrix is shown in Figure 6C. The diagonal value indicates 
the true positive value in the data set, while the column and row 
represent the actual and predicted data, respectively. It is neutral 
toward any classes and can accurately classify all four diseases.

To ensure the robustness of our results, we conducted tests on 
each of the nine individual datasets. Although the accuracy was 
slightly lower on these sub-datasets, likely due to the smaller number 
of videos, the model still performed admirably. For example, the 
ButterflyNetwork dataset achieved a training accuracy of 87.32%, 
validation accuracy of 88.42%, and test accuracy of 87.97%, with an 
F1 score of 86.02%. Similarly, on the PocusAtlas dataset, the model 
recorded a training accuracy of 85.17%, validation accuracy of 86.81%, 
and test accuracy of 85.82%, with an F1 score of 83.94%. The lowest 
performance was observed on the GrepMed dataset, where the model 
still managed a training accuracy of 81.7%, validation accuracy of 
83.72%, and test accuracy of 81.91%, with an F1 score of 79.9%. These 
results highlight the effectiveness and robustness of the 
TD-CNNLSTM-LungNet model across diverse datasets, with slightly 
lower but still competitive performance in scenarios with fewer 
training samples.

FIGURE 5

Proposed 3D-CNN-LSTM Model.

TABLE 4 Performance evaluation of the optimal configuration of the proposed model.

Dataset 
type

Dataset name Performance analysis of the best configuration

Train 
accuracy 

(%)

Validation 
accuracy 

(%)

Test 
accuracy 

(%)

Precision 
(%)

Recall 
(%)

Specificity 
(%)

F1 
score 

(%)

Main dataset COVIDx-US 96.16 96.26 96.57 95.56 96.51 96.24 96.02

Sub dataset

ButterflyNetwork 87.32 88.42 87.97 86.73 85.99 85.69 86.02

PocusAtlas 85.17 86.81 85.82 84.04 84.09 83.28 83.94

GrepMed 81.7 83.72 81.91 80.22 80.75 80.63 79.9

LITFL 92.03 93 92.53 91.1 91.12 91.16 90.83

Radiopaedia 78.32 79.85 79.28 77 77.57 77.29 77.55

CoreUltrasound 84.74 85.68 85.95 83.94 84.1 83.69 83.91

Papers 87.92 88.54 88.61 87.25 86.48 86.59 86.86

UF 81.56 83.4 82.67 80.1 80.27 80.81 80.65

Clarius 80.95 82.8 81.39 79.81 79.67 79.28 79.84
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5.2 K-fold cross validation

After curve analysis, we applied K-fold cross-validation in our 
proposed model to ensure robustness. The K-fold cross-validation 
method divides the sample into K groups, each treated as a testing data 
set to assess the model. Then, model weights are selected by 
minimizing the total squared prediction errors acquired from every 
group. K-Fold cross-validation is performed with 3-fold, 5-fold, 
7-fold, 9-fold, and 11-fold values, achieving testing accuracy of 96.41, 
96.33, 96.55, 96.59, and 96.47%, respectively. The highest accuracy is 
found at 9-fold, which was 96.59%. The accuracies at each fold are all 
close to one another. There are no statistically significant differences 
between the accuracies of each fold. As a result, our model will achieve 
the same level of test accuracy in other training scenarios using the 
same dataset.

5.3 Comparison with transfer learning 
models

TD-CNNLSTM-LungNet has been compared with ten transfer 
learning models (Khan et al., 2023; Raiaan et al., 2024) to validate 
the performance with respect to other models. The proposed 
model, TD-CNNLSTM-LungNet, achieves an impressive accuracy 
of 96.57%, significantly outperforming several well-established 
transfer learning models in computer vision. Among the compared 
models, the closest competitor is ResNet101V2, which achieves an 
accuracy of 92.03%. While this is a strong performance, it falls 
short by a notable margin of 4.54% compared to our model. 
DenseNet121 and InceptionResNetV2 also demonstrate robust 
results with 91.54 and 91.23% accuracy, respectively. However, 
they lag by approximately 5%. Other models such as VGG19, 
InceptionV3, and ResNet50V2 offer competitive accuracies of 
90.74, 89.65, and 88.45%, respectively. Nonetheless, they are 
outperformed by a considerable 5–8% margin. The relatively 
lower performances of ResNet50 and ResNet101, at 81.32 and 
83.71%, respectively, emphasize our proposed model’s substantial 
leap in accuracy. The exceptional performance of 
TD-CNNLSTM-LungNet highlights its robustness and superior 
capability in handling complex video classification tasks, 
demonstrating its potential as a highly reliable model in 
this domain.

5.4 Comparison with transformers

Transformer architectures have significant advantages in 
processing sequencing data like time sequences, video frame 
sequences (Khan et  al., 2023; Raiaan et  al., 2024). It has its own 
attention mechanism and parallelism, facilitating feature extraction 
and achieving an optimal outcome. In addition to comparing TL 
models, this study also compares the performance with widely applied 
transformer variants, including vision transformer (ViT), swine 
transformer (ST), and compact convolutional transformer (CCT). It 
is stated previously that utilizing distributed convolutional layers 
substantially reduces the parameter numbers. This comparison aims 
to highlight the proposed TD-CNN-LSTM-LungNet model, which 
can attain the desired performance by requiring less time. The Vit, ST, 
and CCT achieved comparatively higher accuracy than the TL models. 
They obtain 93.78, 92.44, and 94.27%, respectively. However, the 
proposed model marginally outperforms by obtaining 96.57% 
accuracy. Moreover, it requires 205s–2024s times on average per 
epoch, whereas the ViT and ST execute per epoch for a longer time, 
taking an average of 927 s and 805 s, respectively. CCT requires a 
comparatively lower operation time of 439 s. This assessment upholds 
the benefits of the proposed model for efficient LUS video classification.

6 Explainability of proposed model 
(TD-CNN-LSTM-LungNet)

In this section, the explainability of the (TD-CNN-LSTM-
LungNet) is included to provide insight into the model’s decision-
making. Explainable AI is an emerging and advanced field integrated 
into several domains to explain the model predictions and visualize 
the area that needs to be focused. Especially in medical domains, it 
ensures clinical transparency and acceptance of the diagnosis tool. To 
increase the reliability of the deep learning model, this content is 
integrated. This study incorporates LayerCAM, provides a class 
activation map for both shallow and final layers hierarchically, and 
offers a better visual interpretation of the proposed model’s prediction 
(Jiang et  al., 2021). Gradient-weighted Class Activation Mapping 
(GradCAM) or its updated version often struggles to capture the 
shallow convolution layer’s heatmap output, heavily relying on the 
final layer. LayerCAM addresses this limitation, providing a detailed 
extraction of the feature map for the shallower layer also. Therefore, 

FIGURE 6

Curve analysis of the proposed model (A) accuracy curve, (B) loss curve, (C) confusion matrix.
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this explainability technique is more effective for the multi-layered 
model. To enhance the output of the heatmap, we  fuse the class 
activation map of layers 2, 3, and 4. The dimension of the class 
activation map is resized for each of these layers, and the fusion 
operation aggregates the positive weighted gradients. This fusion 
substantially increases the measurement of the actual ROI area, 
indicating the crucial area that contributes to the determination of the 
influential class label. Figure 7 shows the heatmaps of multiple frames 
of the corresponding classes. The dynamic changes in ROI across the 
frames are clearly displayed in the figure.

These regions can be utilized for further analysis, and the features 
of these shapes can be  leveraged into a DSS that can profoundly 
validate the proposed approach for diagnosing lung diseases from the 

ultrasound videos. To introduce a DSS, a systematic approach needs 
to be followed. All of the processes are comprehensively defined in the 
subsequent section.

6.1 Segment the ROI

The primary step is to segment the ROI from the whole frame. 
Figure  8 demonstrates the distinct variations in shapes and areas 
among different classes, and the intensity values of the pixel can also 
vary. As a result, it will create significant variance among the classes 
and effectively distinguish them from one another. Considering the 
entire frame will include unwanted ambiguity to the feature value. 

FIGURE 7

LayerCAM visualization for different lungs frames.

FIGURE 8

(I) Segmentation of ROI and (II) feature analysis.
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Several image processing techniques are employed to segment the 
ROI efficiently.

Figure 8 (I) illustrates the sequential process of ROI segmentation, 
including all five steps. Initially, the original image and its 
corresponding heatmap are acquired. Then, the binarization is 
performed on a heatmap where the pixel value is converted to black 
and white. Otsu thresholding is utilized for this step. A mask is 
subsequently generated using this binarized image. Finally, the bitwise 
AND operation is performed on the mask and original image to 
segment the ROI. Additionally, Figure 8 (II) displays the associated 
geometric and pixel-based features calculation of the segmented ROI 
area. In general, these features indicate the underlying characteristics 
of the ROI area and utilizing these features distinguish the class label 
effectively. The following section facilitates feature extraction using 
mathematical expressions.

6.2 Feature extraction

Our heat map generation is based on how interpretable the model 
is. Considering that each class’s hand-crafted features are created 
utilizing that ROI. These features are significantly essential to represent 
the fundamental characteristics of the ROI area, and using them to 
distinguish the class label is beneficial. These features are described 
as follows:

6.2.1 Sphericity
Sphericity measures how much an object’s shape resembles a 

perfect sphere. It is calculated using the following equation where Ψ  
is the sphericity, pV  is the object’s volume, and pA  is the surface’s area.

 

( )( )2/31/3 6 p

p

V

A

π ∗
Ψ =

 
(19)

It clarifies from the Equation 19 that, sphericity is the ratio of an 
object’s volume and the surface’s area of a sphere. Figure 8 (B) shows 
the sphericity from the lung’s ultrasound frame.

6.2.2 Eccentricity
Eccentricity is a measure of how far a conic section deviates from 

a circular shape. To be specific, a circle has 0 eccentricity, and an 
ellipse that is not a circle has an eccentricity that ranges from 0 to 1. 
Figure 8 (D) depicts the eccentricity and it can be measured using 
Equation 20.

 
ce
a

=
 

(20)

Here, e refers to the eccentricity, c refers to the distance from the 
center to the focus and a refers to the distance from the center to 
the vertex.

6.2.3 Perimeter
A closed path that covers, encompasses, or shapes a 

one-dimensional length or a shape with 2 dimensions is 
called a perimeter. In a circle, the perimeter is calculated using 
Equation 21.

 2P rπ=  (21)

Here p is the perimeter and r is the radius of the circle. Figure 8 
(C) illustrates the perimeter of the lung’s ultrasound frame.

6.2.4 Standard deviation
The standard deviation indicates how measurements within a 

group depart from the mean expected value or average. Most of the 
data are close to the mean when the standard deviation is low, and the 
data varies more widely when the standard deviation is high.

6.2.5 Equivalent diameter
The diameter of a sphere with the same projected area as the 

projection of the particle is known as the area-equivalent diameter, 
also known as the circular-equivalent diameter. This translates into a 
pixel-by-pixel measurement of the projection area, made possible by 
the development of digital image analysis, and the equivalent diameter 
depicted in the Figure 8 (G).

6.2.6 Region entropy
In image processing, entropy is a measurement of an image’s 

content of information. An image with a large range of pixel values 
and a high entropy number is said to be complex, while an image with 
a low entropy value is simpler and more consistent. Entropy can 
be  used to determine the most informative areas of an image for 
further processing or analysis, as well as to evaluate the quality or 
complexity of the image.

6.2.7 Extent
The area of an image object divided by the area of its bounding 

rectangle is the definition of its extent. The extent of lung ultrasound 
is illustrated in Figure 8 (A).

6.2.8 Elliptical ratio
The elliptical ratio is the ratio of the major axis to the minor axis. 

Figure 8 (E) shows the elliptical ratio and Equation 22 describes it.

 

MajorAxisLengthEllipticalRatio
MinorAxisLength

=
 

(22)

Here, an ellipse’s major axis is its longest diameter, and its minor 
axis is its shortest diameter.

6.2.9 Width-height ratio
An image’s width-to-height ratio, sometimes referred to as its 

aspect ratio, is the ratio of its width to its height, depicted in 
Equation 23 and Figure 8 (F) shows it.

 
 Widthwidth height ratio

Height
− =

 
(23)

7 Decision support system

A DSS method mitigates data scarcity, computational resource 
constraints, and time complexity and ensures explainability; the 
main goal of this study was to create a DS system with features 
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based on frames extracted from ultrasound videos. The disease 
class can be predicted using the proposed DS system. Identifying 
the frames that led to accurate categorization was critical in the 
classification tasks. We used LayerCAM to identify the important 
region and extract the geometrical features of that ROI. These 
features, detailed in Section 6.2, were generated from each frame 
of every video. We developed our DSS using these extracted feature 
values. Each feature produces a value for every video frame, which 
helps reveal distinct geometrical patterns. Each disease has a 
specific threshold value associated with a single feature that is clear 
from the PDF graphs. The probability function that shows the 
density of a continuous random variable falling inside a given 
range of values is the PDF graph. The PDF graphs provide the 
continuous random variable’s probable values (Azam et al., 2024). 
The distribution of data points along a variable’s range is graphically 
shown in PDF plots. In total, we extracted nine features. If at least 
seven out of the nine features for a frame fall within the defined 
range for a particular class, we classify that frame as belonging to 
that class. This also allows us to understand the underlying 
connections and patterns in the data, allowing for more accurate 
decision-making and predictive modeling. Figure 9 depicts the 
clear range visible from the PDF graphs. The range has been 
verified by three experienced medical professionals, along with the 
whole DSS process and explainability.

The relationships between the nine distinct features for the 
classification task were evaluated in this study using PDF graphs. 
Every feature was a distinct quality that influenced the classification 
outcome. One can quickly overview the feature distributions by 
generating PDFs for each feature. We can spot patterns in the graph 
in this way. Figure 9 displays the PDF graph for each feature.

In Figure 9, the orange graph represents the feature values for the 
normal class, whereas the green graph represents the feature values for 
the other class, the blue graph represents the COVID-19 class, and the 
red graph represents the pneumonia class. To determine whether a 
disease is normal, other, COVID-19, or pneumonia, a DSS was 
developed using the PDF graphs shown in Figure 9. The DSS analyzed 
the extracted features. After rapidly analyzing the plots, a class was 
identified by determining the threshold values for each feature.

Algorithm 1 and Figure 9 displays the threshold value for each 
feature in each class. The sphericity graph displays four different 
types of ranges of values for each of the four distinct classes. While 
the pneumonia class ranges from 0.136 to 1.507, the COVID-19 
class has the second-highest density value, ranging from 0.04 to 
0.13. The other class has the widest range, ranging from 0.15 to 
0.23. The normal class has the highest density and the shortest 
range, ranging from 0.235 to 0.258. With a range of 0.022 to 0.213, 
the normal class has the highest density in the case of the 
eccentricity graph. The COVID-19 class is characterized by the 

FIGURE 9

PDF graph illustration for the extracted features.

https://doi.org/10.3389/fcomp.2024.1438126
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Abian et al. 10.3389/fcomp.2024.1438126

Frontiers in Computer Science 18 frontiersin.org

lowest density and the highest range, which falls between 0.2 and 
0.4. The density of the pneumonia class and the other class is the 
same, falling between 0.815 and 1.130 and 0.397 and 0.968, 
respectively. There are two groups of density if the perimeter 
graph is analyzed. The normal and the other classes, which have 
the highest and same density, are both contained in one group. 
The COVID-19 and pneumonia classes with the lowest and same 
density are found in the other group. The ranges for pneumonia, 
COVID-19, normal, and other illnesses are 9,680 to 13,540, 5,070 
to 9,830, 81 to 2073, and 2000 to 5,312. According to the PDF 
graph, the normal class has the second-highest density and a 
range of 80 to 94.78. Although the other class’s range is the largest, 
spanning from 90 to 122.38, its density level is extremely low. 
Conversely, the COVID-19 class has the highest density, although 
it only varies from 119.85 to 130.05 over a very narrow range. 
With ranges of 128.44 to 141.55, the pneumonia class density is 
nearly identical to the normal class density. In that order, the three 
classes, normal, pneumonia, and COVID-19, have nearly identical 
densities in the equivalent diameter graph, with ranges of 17 to 
118.57, 493.63 to 600.01, and 388.24 to 498.06. When it comes to 
density, the other class has fallen behind, with the largest range 
occurring between 117.57 and 391.433. Two classes with the same 
density in the region entropy graph are pneumonia and the other 
class, which have ranges of 0.862 to 1.014 and 0.495 to 0.728, 
respectively. The traits of the COVID-19 class have the widest 
range, ranging from 0.682 to 0.875. The normal class has the 
highest density and ranges from 0.395 to 0.499. With a narrow 
range between 5,000 and 6,435, COVID-19has the highest density 
in the extent graph. The range from 6,388 to 8,415 is also very 
restricted for the other class. Compared to the prior two classes, 
the pneumonia class has a slightly wider range, ranging from 170 
to 5,040. The normal class, which encompasses from 8,165 to 
17,048, is the largest ranged class. The density of the other 
COVID-19 and pneumonia classes has nearly equal ranges of 
0.207 to 0.568, 0.6 to 0.862, and 0.833 to 1.892, respectively, 
according to the elliptical ratio graph. The density of the normal 
class is highest, but its range is narrowest, ranging from 0.568 to 
0.618. The other and the COVID-19 class have the same and 
highest density, with ranges between 0.977 to 1.492 and 1.306 to 
1.814, respectively, if we look at the width-height ratio graph. The 
normal class extends from 0.5 to 1.115. Pneumonia falls most 
widely within the range of 1.762 to 2.735.

Algorithm 1 depicts the pseudocode to understand the DSS 
deeply and clearly. The pseudocode has three stages, which are shown 
in Algorithm 1.

ALGORITHM 1 : Decision Support System

Stage 1:
CSV = Read the CSV for normal, other, COVID-19, or 

pneumonia class;
Stage 2:
Call Check_NormalValues function
or
Call Check_OtherValues function;
or
Call Check_ COVID-19Values function;

or
Call Check_PneumoniaValues function;
Stage 3:
Call the Caluculate_Accuracy function and pass the count value;
#FunctionsCheck_NormalValues(){
     Initialize count = 0
     if 0.235 <= 'sphericity' <= 0.258:
          increase count value;
     if 0.022 <= 'eccentricity'<= 0.213:
          increase count value;
     if 81 <= 'perimeter' <= 2073:
          increase count value;
     if 80 <= 'standard_deviation' <= 94.78:
          increase count value;
     if 17 <= 'equivalent_diameter<= 118.57:
          increase count value;
     if 0.395 <= 'region_entropy' <= 0.499:
          increase count value;
     if 8165 <= 'extent' <= 17048:
          increase count value;
     if 0.568 <= 'elliptical_ratio' <= 0.618:
          increase count value;
     if 0.5 <= 'width_height_ratio' <= 1.115:
          increase count value;
     return count
}
Check_OtherValues(){
     Initialize count = 0
     if 0.15 <= 'sphericity' <= 0.23:
          increase count value;
     if 0.2 <= 'eccentricity'<= 0.4:
          increase count value;
     if 2000 <= 'perimeter' <= 5312:
          increase count value;
     if 90 <= 'standard_deviation' <= 122.38:
          increase count value;
     if 117.57 <= 'equivalent_diameter<= 391.433:
          increase count value;
     if 0.495 <= 'region_entropy' <= 0.728:
          increase count value;
     if 6388 <= 'extent' <= 8415:
          increase count value;
     if 0.207 <= 'elliptical_ratio' <= 0.586:
          increase count value;
     if 0.977<= 'width_height_ratio' <= 1.492:
          increase count value;
     return count
}
Check_ COVID-19Values(){
Initialize count = 0
if 0.04 <= 'sphericity' <= 0.13:
          increase count value;
     if 0.397 <= 'eccentricity'<= 0.968:
          increase count value;
     if 5070 <= 'perimeter' <= 9830:
          increase count value;
     if 119.85 <= 'standard_deviation' <= 130.05:
          increase count value;
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     if 388.24 <= 'equivalent_diameter<= 498.06:
          increase count value;
     if 0.682 <= 'region_entropy' <= 0.875:
          increase count value;
     if 5000 <= 'extent' <= 6435:
          increase count value;
     if 0.6 <= 'elliptical_ratio' <= 0.862:
          increase count value;
     if 1.306 <= 'width_height_ratio' <= 1.814:
          increase count value;
     return count
}
Check_PneumoniaValues(){
     Initialize count = 0
     if 0.136 <= 'sphericity' <= 1.507:
          increase count value;
     if 0.815 <= 'eccentricity'<= 1.130:
          increase count value;
     if 9680 <= 'perimeter' <= 13540:
          increase count value;
     if 128.44 <= 'standard_deviation' <= 141.55:
          increase count value;
     if 493.63 <= 'equivalent_diameter<= 600.01:
          increase count value;
     if 0.862 <= 'region_entropy' <= 1.014:
          increase count value;
     if 170 <= 'extent' <= 5040:
          increase count value;
     if 0.833 <= 'elliptical_ratio' <= 1.892:
          increase count value;
     if 1.762 <= 'width_height_ratio' <= 2.735:
          increase count value;
     return count
}
Calculate_Accuracy(){
#Check the value for each row
     for row in CSV:
          if count < 7:
               Not Passed -> Save the row as non passed value;
          else:
               Passed = Passed + 1;
          TotalRows = Passed + len(not_passed)
PassPercentage(Accuracy) = (passed / TotalRows) * 100
}

The DSS first reads the normal, other, COVID-19, or pneumonia 
class data. Since the DSS calls the functions Check_NormalValues, 
Check_OtherValues, Check_COVID-19Values, or Check_
PneumoniaValues in this second stage, the second stage is critical. 
This function counts the number of normal values in a row by taking 
the row of the CSV file as input. As shown in Algorithm 1, the 
functions compare each value in the row to a set of predetermined 
thresholds. The function increases the count if a value falls inside the 
threshold. The function does nothing with the count variable and 
moves on to the next value if a value is outside of the threshold. When 
we get the value from stage 2 of the Algorithm 1, we call the Calculate_
Accuracy function. This function determines the model’s accuracy by 
counting the number of rows greater than or equal to 7. The accuracy 
is then determined by dividing the total number of rows in the CSV 

file by the number of rows with counts greater than or equal to 7. If an 
image meets the seven-feature threshold, it is considered predicted 
true. Our DSS performed so elegantly, and only two videos of 
COVID-19 and three from pneumonia could not meet the ranges in 
the DSS; other than that, all other videos meet the threshold. It implies 
the robustness of the DSS.

7.1 Validation of DSS

Table  5 includes the validation result for the proposed 
DSS. We randomly selected 20 videos and applied the algorithm to 
evaluate the final class label.

The class distribution of the tables is 5 samples from the 
COVID-19 and Normal classes and 4 samples for both pneumonia 
and other lung diseases. According to Algorithm 1, if at least 7 
features obtain the same class labels, then that class label will 
be assigned for the corresponding sample. The overall assessment 
highlights that the DSS successfully predicts the actual class label. 
In every case, the samples meet the threshold range and confirm the 
true class label. This comprehensive analysis indicates the 
robustness of the proposed DSS, providing a reliable diagnostic 
method using the clinical marker and assessing the efficacy of this 
study in lung abnormality diagnosis.

7.2 Medical validation

We have generated a heatmap for each video in every class and 
extracted features from ultrasound video frames feature maps to 
develop a DSS approach. If seven or more of the nine feature values 
fall into the range of that specific class, we classify the frame as that 
particular class. We have validated our model’s heatmaps to ensure 
explainability with medical professionals. Information on four 
classes of diseases was collected from multiple medical experts and 
accumulated in Table 6. It perfectly aligns with our model’s findings, 
which shows our model’s competence in effectively classifying the 
disease into four classes: COVID-19, pneumonia, normal, 
and others.

8 Discussion

This study presented a complete framework for performing 
multiclass classification on LUS videos. The aim of this study is to 
develop a robust model (TD-CNN-LSTM-LungNet) that can 
accurately learn the temporal consistency from the videos and predict 
the actual class label. All the experiments were successfully executed 
and emphasize the effectiveness of this study contributing to the lung 
disease diagnosis.

This work adheres to a systematic approach to conducting all the 
experiments. An ultrasound video dataset consisting of four distinct 
classes is utilized for the experiments. Each class possesses videos of 
different durations containing crucial temporal features. Developing 
a deep learning model for video classification is quite challenging 
since it contains an additional temporal feature. In this study, 
we propose a hybrid framework comprised of a time-distributed CNN 
model and LSTM. The time-distributed CNN layer wraps up the input 
with a temporal sequence. Consequently, it helps to extract the spatial 
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TABLE 5 Performance assessment of the proposed DSS with random samples.

Video 
no

Sphericity Eccentricity Perimeter Standard 
deviation

Equivalent 
diameter

Region 
entropy

Extent Elliptical 
ratio

Width-
Height 
ratio

Actual 
class

Predicted 
class

Video 1 0.98 1.05 12,264 132.01 534 0.883 2,994 1.434 2.11 Pneumonia Pneumonia

Video 2 0.26 0.168 259 88 75.7 0.403 12,641 0.586 0.83 Normal Normal

Video 3 0.17 0.248 3,085 97.32 162 0.529 6,469 0.316 1.02 Other Other

Video 4 0.98 0.91 11,494 129.04 514 0.95 1,515 1.61 2.04 Pneumonia Pneumonia

Video 5 0.078 0.426 6,283 126.78 397 0.693 5,736 0.64 1.406 Covid Covid

Video 6 0.242 0.204 832 92 105.24 0.427 16,641 0.608 1.03 Normal Normal

Video 7 0.238 0.061 93 81.08 42.11 0.398 9,819 0.581 0.64 Normal Normal

Video 8 0.2 0.381 4,257 117.83 326 0.683 7,639 0.42 1.16 Other Other

Video 9 0.97 1.09 11,992 139.81 506 1.05 3,164 1.47 2.49 Pneumonia Pneumonia

Video 10 0.251 0.203 1901 116.1 104.31 0.465 16,015 0.614 1.082 Normal Normal

Video 11 0.108 0.892 8,480 129.08 471.43 0.804 6,102 0.84 1.69 Covid Covid

Video 12 0.18 0.317 3,954 92.12 226 0.614 7,097 0.476 1.25 Other Other

Video 13 0.096 0.921 8,018 121.54 439.27 0.791 6,021 0.814 1.738 Covid Covid

Video 14 0.251 0.21 1937 113.15 74.51 0.474 15,832 0.605 1.08 Normal Normal

Video 15 0.103 0.816 8,741 121.15 463.56 0.818 6,027 0.81 1.77 Covid Covid

Video 16 0.21 0.315 5,035 117.02 274.08 0.582 7,141 0.422 1.3 Other Other

Video 20 0.086 0.71 8,041 124.52 408 0.793 6,062 0.752 1.53 Covid Covid

Video 18 0.246 0.13 1,338 92.41 61.03 0.408 10,912 0.602 1.02 Normal Normal

Video 19 0.958 0.86 10,291 136.43 572 0.9 4,065 1.01 1.91 Pneumonia Pneumonia

Video 20 0.084 0.661 7,288 127.15 413 0.732 5,962 0.704 1.479 Covid Covid
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features from each frame. The LSTM layer captures the temporal 
dependency and predicts the video label. The primary novelty that 
adheres to this proposed TD-CNN-LSTM model is the ability to 
capture the temporal features, handling the videos frame by frame, 
which cannot be processed in baseline CNN models. Additionally, the 
(2 + 1) D convolutional layer of this model reduces the total 
parameters number compared to the 3D convolutional layer, resulting 
in a more efficient execution process. Several image processing 
techniques are implemented to reduce unwanted artifacts from 
frames. Moreover, this technique denoises the frames and substantially 
aids in obtaining remarkable accuracy. Another novelty of this study 
is the augmentation and frame sequencing technique. This frame 
sequencing technique includes another key advantage to this study as 
it maintains the temporal order of the frames, enhances the context 
utilization as well as improves the overall feature extraction process. 
In this study, a graph-based approach is applied to sequence the frame 
after performing the frame augmentation. Each frame is associated 
with its respective MSE and SSIM values, and the MST concept 
efficiently determines the best frame sequence and restores the video 
using that order. The main benefits of this technique compared to the 

traditional frame sequencing algorithm are the scalability and flexible, 
efficient representation. It assigns each frame as a node, and the 
relationship between nodes symbolizes an edge, which improves the 
structural representation of the algorithm. Moreover, this structural 
approach increased the scalability and efficiency of this proposed 
frame sequencing algorithm. The proposed model, combined with the 
preprocessing and frame sequencing, achieves a satisfactory outcome, 
obtaining a test accuracy of 96.57%. Additionally, a higher value of 
precision of 96.56%, recall of 96.51%, and F1 score of 96.02%, along 
with a lower value of FPR of 0.037%, FDR 0.044%, indicates the 
consistency and effectiveness of the implemented technique. 
TD-CNN-LSTM-LungNet has been compared with ten transfer 
learning models to validate the performance with respect to other 
models, suppressing the result for all the models. It is also compared 
with several transformer architectures to highlight the efficiency of the 
proposed model. Besides, this model is tested on a separate LUS video 
dataset to establish the applicability of this study in a wide range. The 
explainability of the proposed model is investigated to increase the 
reliability of the approach. It generates the heatmap in the frame and 
highlights the influential area for the classification. This interpretation 

TABLE 6 Medical findings of the feature maps.

Image Medical findings Sensational impression

Normal lung aeration; Pleural sliding present; Absence of 

B-lines and consolidations; Normal A-lines visible.
Normal Ultrasound findings

Subpleural consolidations; irregular, thickened and 

discontinued pleural line; Absence of significant pleural 

effusion.

Features suggestive of viral pneumonia, consistent with 

COVID-19

Hypoechoic areas suggestive of cavitary lesions; Pleural 

thickening and irregularity.
Other Disease US findings

Consolidation with air bronchograms; Pleural line 

irregularities; Hepatization of the lung noted in affected areas.
Features suggestive of bacterial pneumonia
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technique will aid the radiologist in  localizing the focus area and 
improve clinical transparency substantially. In addition to utilizing 
heat maps to evaluate the model’s decision-making process through 
explainability, we also conducted an ablation on the baseline model. 
We segmented ROI from the entire frame to emphasize the significant 
differences in shape and area between classes. We extracted different 
shapes, textures, and intensity-based features containing distinctive 
patterns for different lung diseases using that ROI. We developed a 
DSS method using features extracted from ultrasound videos. To help 
with accurate disease classification prediction, we  proposed an 
algorithm and designed a PDF graph with a defined range of a single 
feature for a specific class. Apart from XAI, our contributions include 
creating DSS, analyzing features, conducting an ablation study, and 
coming up with an algorithm that specifies the exact ranges of a 
certain feature for each class. The application of PDF graphs and DSS 
performs the critical feature analysis and validates the model’s 
prediction. PDF graph interprets the feature interaction according to 
the classes, and the proposed DSS enhances the overall reliability of 
the classification process by obtaining a remarkable result. The 
amalgam of these different approaches presents an effective automated 
solution for efficient lung disease classification.

9 Conclusion

This study introduced a hybrid framework to perform multiclass 
classification from the LUS video dataset and highlighted the 
advancements of the computer-aided system in healthcare. The 
proposed model (TD-CNN-LSTM-LungNet) is developed by 
integrating the time-distributed CNN layer and LSTM to capture the 
spatial and temporal dependency of the videos. The frame 
augmentation technique is applied to prevent the overfitting tendency. 
Subsequently, a novel frame sequencing technique is employed to 
establish the flow and continuity of the video. The developed model 
attained a remarkable accuracy of 96.57% in classifying the videos into 
pneumonia, COVID-19, normal, and other lung disease classes. 
Moreover, eleven ablation studies are adopted to determine the 
model’s optimal parameters, which successfully reduce the training 
cost and redundancy of the parameters in the model. K-fold cross-
validation and the accuracy and loss curve demonstrate the 
generalization of the model. Ten transfer learning models are also 
utilized for experimentation, and our model performs best across all 
the models. Besides, incorporating LayerCAM improves the 
interpretability and reliability of deep learning, and the heatmap 
generation helps localize the ROI from the frames for each class. A 
precise segmentation technique helps to separate the ROI, and some 
intensity and shape-based features are extracted to create PDF graphs. 
The graphs facilitate identifying the boundaries of the feature and 
develop a DSS to increase the practical applicability of this study. 
Additionally, the validation of this DSS highlights the precise outcome 
and offers crucial insights and aids the medical expert in making a 
precise diagnosis. In conclusion, this study advances lung disease 
classification by integrating the optimal denoising, augmentation, and 
hybrid models. The incorporation of explainability of DSS underscores 
the transparency of the model. The intersection of these approaches 
contributed to a more efficient and accurate diagnosing process and 
improved the outcomes of AI models in real-world scenarios.

10 Limitations and future works

While this study has significantly contributed to the 
advancement of multiclass classification from LUS videos, it is also 
associated with several limitations. It is necessary to acknowledge 
these limitations to highlight the potential constraints of the 
proposed methodology. This study conducted the experiment on 
ultrasound videos; however, including other imaging modalities 
datasets, such as CT scans and X-rays, would increase the data sets’ 
diversification and validate the model’s generalizations. Besides, 
multi-modal and demographic data may increase the stability of the 
model over time. The deployment of the model in the web-based 
interface will substantially facilitate real-world clinical practice. 
Nevertheless, addressing these potential limitations will significantly 
increase the quality of the paper. This study will investigate other 
datasets and establish the model’s effectiveness on a broad scale. 
Longitudinal data will be  utilized to perform the lung disease 
progression simultaneously. Real-time implementation techniques 
will be integrated to offer an efficient and immediate diagnosis. The 
geometric deep learning concept can be  explored to find the 
temporal–spatial relationship.
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