
TYPE Original Research

PUBLISHED 26 August 2024

DOI 10.3389/fcomp.2024.1431788

OPEN ACCESS

EDITED BY

Shuai Xu,

Case Western Reserve University,

United States

REVIEWED BY

Jin Chen,

Cleveland Clinic, United States

Xinpeng Li,

Case Western Reserve University,

United States

*CORRESPONDENCE

Suryansh Upadhyay

sju5079@psu.edu

RECEIVED 12 May 2024

ACCEPTED 07 August 2024

PUBLISHED 26 August 2024

CITATION

Upadhyay S and Ghosh S (2024) Trustworthy

and reliable computing using untrusted and

unreliable quantum hardware.

Front. Comput. Sci. 6:1431788.

doi: 10.3389/fcomp.2024.1431788

COPYRIGHT

© 2024 Upadhyay and Ghosh. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Trustworthy and reliable
computing using untrusted and
unreliable quantum hardware

Suryansh Upadhyay* and Swaroop Ghosh

The Pennsylvania State University, University Park, PA, United States

Security and reliability are primary concerns in any computing paradigm,

including quantum computing. Currently, users can access quantum computers

through a cloud-based platform where they can run their programs on a

suite of quantum computers. As the quantum computing ecosystem grows

in popularity and utility, it is reasonable to expect that more companies

including untrusted/less-trusted/unreliable vendors will begin o�ering quantum

computers as hardware-as-a-service at varied price/performance points. Since

computing time on quantum hardware is expensive and the access queue could

be long, the users will be motivated to use the cheaper and readily available

but unreliable/less-trusted hardware. The less-trusted vendors can tamper with

the results, providing a sub-optimal solution to the user. For applications such

as, critical infrastructure optimization, the inferior solution may have significant

socio-political implications. Since quantum computers cannot be simulated in

classical computers, users have no way of verifying the computation outcome.

In this paper, we address this challenge by modeling adversarial tampering

and simulating it’s impact on both pure quantum and hybrid quantum-classical

workloads. To achieve trustworthy computing in a mixed environment of trusted

and untrusted hardware, we propose an equitable distribution of total shots

(i.e., repeated executions of quantum programs) across hardware options. On

average, we note ≈ 30X and ≈ 1.5X improvement across the pure quantum

workloads and a maximum improvement of ≈ 5X for hybrid-classical algorithm

in the chosen quality metrics. We also propose an intelligent run adaptive

shot distribution heuristic leveraging temporal variation in hardware quality to

user’s advantage, allowing them to identify tampered/untrustworthy hardware

at runtime and allocate more number of shots to the reliable hardware, which

results in amaximum improvement of≈ 190X and≈ 9X across the pure quantum

workloads and an improvement of up to ≈ 2.5X for hybrid-classical algorithm.

KEYWORDS

quantum computing, quantum security, temporal variation, cloud computing, Quantum

Approximate Optimization Algorithm (QAOA)

1 Introduction

Quantum computing (QC) can solve many combinatorial problems exponentially

faster than classical counterparts by leveraging superposition and entanglement properties.

Examples include machine learning (Cong et al., 2019), security (Phalak et al., 2021),

drug discovery (Cao et al., 2018), computational quantum chemistry (Kandala et al.,

2017), and optimization (Farhi et al., 2014). However, quantum computing faces technical

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1431788
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1431788&domain=pdf&date_stamp=2024-08-26
mailto:sju5079@psu.edu
https://doi.org/10.3389/fcomp.2024.1431788
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1431788/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

challenges like quantum bit (qubit) decoherence, measurement

error, gate errors and temporal variation. As a result, a quantum

computer may sample the wrong output for a specific quantum

circuit. While quantum error correction codes (QEC) can provide

reliable operations (Gottesman, 2010), they require thousands of

physical qubits per logical qubit, making them impractical in the

foreseeable future. In the presence of these errors, another method

of getting the most out of qubit-constrained quantum computers is

to use multiple executions of the same quantum circuit to obtain

the output. Existing Noisy Intermediate-Scale Quantum (NISQ)

computers have a few hundred qubits and operate in the presence

of noise. The NISQ computing paradigm offers hope to solve

important problems such as, discrete optimization and quantum

chemical simulations. Since noisy computers are less powerful and

qubit limited, various hybrid algorithms are being pursued, such

as, the Quantum Approximate Optimization Algorithm (QAOA)

and Variational Quantum Eigensolver (VQE), in which a classical

computer iteratively drives the parameters of a quantum circuit.

The purpose of the classical computer is to tune the parameters

that will guide the quantum program to the best solution for a

given problem. On high-quality hardware with stable qubits, the

algorithm is likely to converge to the optimal solution faster, i.e.,

with fewer iterations.

Security and reliability are primary concerns in quantum

computing. Researchers are currently exploring a suite of quantum

computers offered by IBM, Rigetti, IonQ, and D-Wave (via a cloud-

based platform) to solve optimization problems. The hardware

vendors of quantum computers provide a compiler for their

hardware, such as, IBM’s Qiskit compiler (Aleksandrowicz et

al., 2019), Rigetti’s QuilC compiler (Smith et al., 2020), and so

on. Users can create circuits for specific hardware and upload

them to the cloud, where they are queued. The results of the

experiment are returned to the user once the experiment is

completed. As the quantum computing ecosystem evolves, third-

party service providers are expected to emerge offering potentially

higher performance at cheaper price points. This will entice users to

utilize these services. For example, some third-party compilers like

Orquestra (Computing, Z. 2021) and tKet (Computing, C. Q. 2021),

are appearing that support hardware frommultiple vendors. Baidu,

the Chinese internet giant, recently announced an “all-platform

quantum hardware-software integration solution that provides

access to various quantum chips via mobile app, PC, and cloud.”

referred to as “Liang Xi.1” It provides flexible quantum services

via private deployment, cloud services, and hardware access, and

can connect to other third-party quantum computers. While

trusted hardware remains the preferred choice for applications

with significant economic or social impact, the scenario changes

when dealing with hybrid quantum-classical algorithms. These

algorithms, widely used in optimization problems and quantum

machine learning, may incur substantial costs due to the high

number of iterations required to reach a solution. Additionally,

lengthy wait queues can further delay convergence. Even though

dedicated resources may be an option for governments and

larger entities, the steep costs associated with such solutions

1 https://www.insidequantumtechnology.com/news-archive/chinas-

baidu-rolls-beijing-based-quantum-computer-and-access-platform/

often prove prohibitive. Furthermore, geographical restrictions

on computation location can introduce costly consequences and

limit the application of quantum computing to a broader array of

problems. These trends can result in a dependence on third-party

compilers, hardware suites, and service providers that may not be

as reliable or secure as trusted alternatives.

1.1 Proposed attack model

In this paper, we discuss a security risk associated with the use

of third-party service providers and/or any untrusted vendor. In the

proposed attack model, less-trusted quantum service providers can

pose as trustworthy and tamper with the results, resulting in the

worst-case scenario of users receiving a sub-optimal solution. To

show the extent of damage done by the proposed tampering model,

we run a simple program on tampered and non-tampered hardware

and compare the probability distributions of basis states for both

cases (Figure 1). The correct output is “111.” The tampering

coefficient (t) models the various degrees of hardware tampering.

As t increases, the probability of basis state “111” decreases while

the probabilities of the other erroneous states increase. For the case

of t = 0.5, state “111” is no longer the dominant output; instead,

the incorrect state “100” becomes the dominant output. In practical

scenario, as the correct solution to the optimization problem is

unknown, the user must rely on the sub-optimal output of the

tampered quantum computer.

1.2 Novelty

Although the proposed attack model sound similar to classical

domain, quantum computing bring new twists e.g., (a) users can

not verify the results (which is possible in classical domain) after

adversarial tampering since the correct output of a quantum

program cannot be computed in classical computer, (b) the results

of computation are probability distribution of basis states (instead

of deterministic results in classical domain) which opens up new

ways of tampering via manipulation of basis state probabilities, (c)

the attack models could be low-overhead (e.g., by manipulation

of gate error rates) which can be challenging to detect, while

significantly affecting the probability of program’s correct output.

1.3 Viability of the proposed attack model

The proposed attack model is feasible since, (a) Quantum

computers are expensive. We examined cloud-based quantum

computing pricing from AWS Braket, IBM, and Google Cloud for

IonQ, OQC, Rigetti processors, and IBM’s processors. Assuming

1ms runtime per shot, current prices range from $0.35 to $1.60

per second for qubit counts in the range of 8 to 40. With many

new vendors entering the quantum service market, it is likely that

some of these vendors will be untrusted who will offer access to

quantum hardware via the cloud at a lower cost, enticing users to

use their services. This is more likely if the third party is based

offshore, where labor, fabrication, and packaging costs are cheaper.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.insidequantumtechnology.com/news-archive/chinas-baidu-rolls-beijing-based-quantum-computer-and-access-platform/
https://www.insidequantumtechnology.com/news-archive/chinas-baidu-rolls-beijing-based-quantum-computer-and-access-platform/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

FIGURE 1

Sample benchmark (to�oli−n3, correct output = “111”) simulated on the fake back-end (Fake−montreal) for 10,000 shots. Changing the tampering

coe�cient (t) models the extent of adversarial tampering. For t = 0.5 erroneous state “100” becomes the most occurring output.

(b) Access to quantum computers incur long wait time. When a

user submits a job to a quantum system, it enters the scheduler

where it is queued. For IBM Quantum systems, Ravi et al. (2021)

reports that only about 20% of total circuits have ideal queuing

times of less than a minute. The average wait time is about 60 min.

Furthermore, more than 30% of the jobs have queuing times of

more than 2 h, and 10% of the jobs are queued for as long as a

day or longer! Third party vendors may provide access to quantum

hardware with little or no wait time. Quick access may be vital for

quantum machine learning applications to lower the training and

inference time.

1.4 Proposed solution

We propose two solutions, (a) Split and distribution of

shots/trials: To mitigate the adversarial tampering we propose

splitting shots on available hardware. The idea is to distribute

the computation among the various hardware (a mix of trusted

and untrusted ones or mixture of untrusted hardware for multiple

vendors) available. The results from individual hardware and

iterations are stitched or combined to obtain the probability

distribution of the solution space. (b) Intelligent shot/trial split and

distribution: Although splitting of shots is effective, users may end

up using trusted and untrusted hardware equally which may not

be optimal in terms of performance. We propose an intelligent

run-adaptive shot distribution which leverages temporal variation

in hardware quality to identify untrusted hardware and bias the

number of shots to favor trusted/reliable hardware to maximize the

overall computation quality.

1.5 Novelty

(a) Redundant computation for resilience is well-known in

classical domain. However, the proposed approach in quantum

domain avoids performing any redundant computation by keeping

the total number of trails/shots fixed at original value while

improving the resilience to tampering. Distribution of shots to

multiple vendors/hardware may increase the overall expense only

if a hardware with higher price than the baseline hardware is

employed for shot distribution. (b) The proposed approach of

identification of tampered hardware at run-time by monitoring the

dynamic behavior of computation results by leveraging temporal

variation is novel and specific to quantum domain. (c) Prior

works have not investigated the proposed adaptive shot splitting

approach, which not only allows user to identify tampering

attempts but enables them to bias the number of shots to favor

trusted/reliable hardware to maximize the overall computation

quality.

1.6 Research challenges

Although the proposed tampering model and shot distribution

based defense may appear trivial, there are many associated

technical challenges. For example, (a) what should be the tampering

approach? Should all qubits be tampered equally or randomly or

selectively and by how much to evade detection? (Section 4.4)

(b) how to decide the split boundary i.e., equal or asymmetric

split? (Section 6.2) (c) since the trustworthiness of the hardware

is not known in advance, how can the user distribute the shots to

maximize the quality of solution? (Section 6.3) (d) what kind of

metric should be used to evaluate the impact of tampering and

effectiveness of the defense? (Section 5.4) (e) does the tampering

affect all quantum algorithms equally? We address such research

questions in this paper through extensive analysis (Section 6.4).

1.7 Contributions

(1) We propose and compare random vs. selective tampering

model. (2) To counteract adversarial tampering, we propose equally

distributing shots among available hardware and an intelligent

run-adaptive shot splitting heuristic leveraging temporal variation.

(3) We demonstrate the effectiveness of our proposed approach

for pure quantum and hybrid quantum-classical workloads on a

variety of fake back-ends. (4) We validate the attack model and the

proposed defense on real hardware.

In the remaining paper, Section 2 provide quantum computing

background and related work. The proposed attack model is

described in Section 3. Section 4 proposes the tampering model,

simulations and evaluation on real hardware. Section 5 presents

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

and evaluates the defense using simulations and experiments on

real hardware. Section 6 concludes the paper.

2 Background

In this section, we discuss the basics of a quantum computing

and the terminologies used in this paper.

2.1 Qubits and quantum gates

Qubits are the building blocks of a quantum computer that

store data as various internal states (i.e., |0〉 and |1〉). In contrast

to a classical bit, which can only be either 0 or 1, a qubit can

concurrently be in both |0〉 and |1〉 due to quantum superposition.

A qubit state is represented as ϕ = a |0〉 + b |1〉 where a and b are

complex probability amplitudes of states |0〉 and |1〉 respectively.

The gate operations change the amplitudes of the qubits to produce

the desired output. Mathematically, quantum gates are represented

using unitary matrices (a matrix U is unitary if UU† = I, where U†

is the adjoint of matrix U and I is the identity matrix). Only a few

gates, known as the quantum hardware’s native gates are currently

practical in current systems. ID, RZ, SX, X (single qubit gates),

and CNOT (2-qubit gate) are the basic gates for IBM systems. All

complex gates in a quantum circuit are first decomposed to native

gates.

2.2 Quantum error

Quantum gates are realized with pulses that can be erroneous.

Quantum gates are also prone to error due to noise and

decoherence (Suresh et al., 2021). The deeper quantum circuit

needs more time to execute and gets affected by decoherence

which is usually characterized by the relaxation time (T1) and the

dephasing time (T2). The buildup of gate error (Reagor et al., 2018)

is also accelerated by more gates in the circuit. Cross-talk is another

form of quantum error where parallel gate operations on several

qubits can negatively impact each others performance. Because

of measurement circuitry imperfections, reading out a qubit

containing a 1 may result in a 0 and vice versa. The qubit quality

metrics e.g., gate error, measurement error, decoherence/dephasing

and cross-talk vary significantly over time (Alam et al., 2019). A

program running on quantum hardware may not always exhibit the

repeatable behavior due to temporal variation. This also accounts

for the hardware converging to a different outcome for the same

program at different points in time. Hardware variability manifests

itself in quantum computing as variation in hardware performance,

or more precisely, different gate error rates, decoherence times and

so on across quantum devices.

2.3 QAOA

QAOA is a hybrid quantum-classical variational algorithm

designed to tackle combinatorial optimization problems. A p-

level variational circuit with 2p variational parameters creates the

quantum state in QAOA. Even at the smallest circuit depth (p =

1), QAOA delivers non-trivial verifiable performance guarantees,

and the performance is anticipated to get better as the p-value

increases (Zhou et al., 2020). Recent developments in finding

effective parameters for QAOA have been developed (Wecker et

al., 2016; Crooks, 2018; Guerreschi and Matsuura, 2019; Zhou et

al., 2020). In QAOA, a qubit is used to represent each of the binary

variables in the target C(z). In each of the p levels of the QAOA

circuit, the classical objective function C(z) is transformed into a

quantum problem Hamiltonian. With optimal values of the control

parameters, the output of the QAOA instance is sampled many

times and the classical cost function is evaluated with each of these

samples. The sample measurement that gives the highest cost is

taken as the solution (Brandao et al., 2018). In a quantum classical

optimization procedure,the expectation value of HC is determined

in the variational quantum state Ep(γ ,β) = ϕp(γ ,β)|HC|ϕp(γ ,β).

A classical optimizer iteratively updates these variables (γ ,β) so as

to maximize Ep(γ ,β). A figure of merit (FOM) for benchmarking

the performance of QAOA is the approximation ratio (AR) and is

given as (Zhou et al., 2020):

AR = Ep(γ ,β)/Cmax (1)

where Cmax = MaxSat(C(z)).

2.4 Related work

Several recent works on the security of quantum computing

(Tannu and Qureshi, 2019; Acharya and Saeed, 2020; Phalak et al.,

2021; Saki et al., 2021; Suresh et al., 2021) exist in literature. The

authors of Acharya and Saeed (2020) consider an attack model

where a rogue element in the quantum cloud reports incorrect

device calibration data, causing a user to run his/her program

on an inferior set of qubits. The authors propose that test points

be added to the circuit to detect any dynamic malicious changes

to the calibration data. The objective of our attack model is to

tamper with the result so that incorrect or sub-optimal outcome

is reported to the user. As such, the impact of the proposed attack

is much higher. The proposed attack is also low-overhead since it

only involves manipulation of qubit outcomes post-measurement

whereas (Acharya and Saeed, 2020) will require complex gate

pulse manipulation to increase the error rate. The proposed equal

shot distribution and adaptive shot splitting approach to improve

resilience is also significantly different than test point insertion. In

Tannu and Qureshi (2019), Ensemble of Diverse Mappings (EDM)

is proposed to tolerate correlated errors and improve the NISQ

machine’s ability to infer the correct answer. Rather than using a

single mapping for all the shots, EDM uses multiple mappings and

divide their shots among these different mappings on a single piece

of hardware, then merge the output to get the final solution space.

However, this is yet another case of mapping agnostic optimization.

If the hardware used for EDM is tampered, suboptimal solutions

will be returned even with different mapping splits. In this paper,

we propose heuristics to counter adversarial tampering as well as

methods for detecting tampered hardware. The attack model in

Phalak et al. (2021) assumes a malicious entity in the cloud that

can schedule a user circuit to inferior hardware rather than the

requested one. To authenticate the requested device, they propose

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

FIGURE 2

(A) Readout assignment errors for various IBM quantum hardware. (B) Performance Metric (PM). (C) Total Variational Distance (TVD) between two

sets of probability densities. (D) Proposed attack model where the attacker introduces targeted or random tampering, resulting in the users receiving

a less-than-optimal solution. (E) Adversarial random tampering and targeted tampering by introducing a bit flip error during measurement.

quantum PUFs (QuPUFs). In our attack model, users have a choice

of hardware but are unaware of their trustworthiness.

3 Proposed attack model

In this section, we describe the attack model and a few methods

for the adversary to tamper with the results.

3.1 Basic idea

We consider that the quantum hardware available via cloud

service may tamper with the computation outcome. The objective

is to manipulate the results that could have financial and/or socio-

political implications.

This is feasible under following scenarios, (a) untrusted third

party may offer access to reliable and trusted quantum computers

e.g., from IBM in the future but may tamper the computation

results, (b) untrusted vendors may offer access to untrusted

quantum hardware via cloud at cheaper price and/or quick access

(without wait queue) motivating the users to avail their services.

The less-trusted quantum service providers can pose as trustworthy

hardware providers and inject targeted/random tampering, causing

the sub-optimal solution to be sent back. For both scenarios, the

user will be forced to trust the less-than-ideal output from the

quantum computer since the correct solution to the optimization

problem is unknown.

3.2 Adversary capabilities

We assume that adversary, (a) has access to the measured

results of the program run by the user. This is likely if the quantum

computing cloud provider is rogue, (b) does not manipulate the

quantum circuit. This is possible since tampering the quantum

circuit may drastically alter the computation outcome which can

be suspected, (c) has the computational resources to analyze the

program results to determine which qubit lines to tamper with,

and (d) methods to mask the tampering from showing up as a

significant change in errors (one such method is shown later in the

paper using Example1).

3.3 Attack scenario

The adversary in the proposed attack model (Figure 2D) takes

the form of a less reliable/untrusted quantum service provider while

posing as a reliable/trusted hardware provider. The adversary then

modifies the solution before reporting it to the users and seeks

to minimally tamper with the output of the program, either by

making the sub-optimal solution the optimal for the users or by

lowering the probability of the most likely solution. For example,

assuming a 3 qubit (q2, q1, q0) quantum program that has optimal

output of “100” while the next probable output being “101.” The

adversary can target the q0 and tamper the results such that “101”

becomes the optimal output being sent to the user instead of “100.”

This tampering can be accomplished in a variety of ways, one of

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

Input: original bit-string counts

Output: tampered bit-string counts

1 Array a = most sampled correct bit string

2 Array b = most sampled wrong bit string

3 for i ∈ number of qubits in a bit string do

4 if ai 6= bi then

5 add tampering to qubit-line i;

6 else

7 no tampering;

8 end

9 end

Output: tampered bit string counts

Algorithm 1. Adversarial targeted tampering.

which is to introduce a targeted bit flip error on the q0 qubit line

during measurement operation. Note that adversary has access to

computation results (e.g., basis state probabilities of qubits) before

sending to the user. Assuming that the quantum circuit itself is

correct and optimal, the solution obtained by the adversary will be

optimal which in turn can be tampered. In the following section, we

will discuss some of the tampering models.

3.4 Adversarial tampering model

Various rogue providers may adopt their favorite method for

tampering the results. Some examples are as follows.

3.4.1 Random tampering
While measuring the qubit lines, the adversary can introduce

random bit flip error. In this type of tampering which has no

overhead, the adversary tampers with the results by lowering the

probability of the most likely solution. The adversary can introduce

tampering in the form of qubit measurement error (Figure 2E),

either on all of the qubit lines or on a subset of the qubit lines

randomly.

3.4.2 Targeted tampering
In the case of targeted tampering, the attack will be more

strategic in nature (Figure 2E) focusing on specific qubit lines

to introduce measurement errors. The proposed algorithm for

targeted tampering is described in Algorithm 1.

4 Proposed tampering model

This section details the adversarial tampering model, starting

with the simulation framework and benchmarks used. We then

describe the evaluation metrics, followed by the impact of random

and targeted tampering on hardware performance. Next, we

discuss the effect of varying shot counts and the impact on

QAOA performance. Additionally, the section includes modeling

tampering on real hardware and concludes with a summary

of the findings.

4.1 Tampering framework used for
simulations

We model adversarial tampering by introducing extra

measurement error on the qubit lines i.e., while performing

final measurement on a qubit, we flip the state of the qubit with

probability t, which we refer to in the paper as the tampering

coefficient. The proposed sample attack model is depicted in

Figure 2D. We use IBM’s fake backends to mimic real hardware

and add this bit flip error as an attempt by the adversary to tamper

with it. This bit flip error can be added to either a targeted qubit

(per the Algorithm 1), to all qubit lines, or randomly selected qubit

lines. The extra measurement error can be easily hidden when

reported alongside readout errors. Consider following example

to understand how an adversary can conceal the tampering while

reporting measurement errors of the hardware.

Example 1:We consider the real hardware measurement errors,

quoted as Readout assignment error (RAE), for the IBM’s 5

qubit devices (Figure 2A). Assuming tampering and RAE to be

independent and uncorrelated sources of error, we can get the total

error as:

1RAEnet =
√

(1RAEqi)2 + (1Tampering)2 (2)

where (1RAEqi) = RAE value for ith qubit line and 1Tampering is

defined as Equation 3:

1Tampering = t/n (3)

where t = tampering coefficient, n = (total qubit lines−tampered

qubit lines + 1).

Assuming that the adversary uses (t = 0.1 or t = 0.5), for

ibmq−lima q1 RAE, we can calculate the final measurement error

(which is 0.028 and 0.09, respectively) for that qubit line using

Equation 2 for targeted tampering. These final error values are

comparable to the values quoted for various devices (Figure 2A)

and qubit lines. For example the new RAE (t = 0.1) for ibmq−lima

q1 is comparable to RAE’s of q0, q2 and even less than q4. When

the RAE value for t = 0.5 is compared with the tamper-free RAE

values of other hardware such as ibmq−quito q3, it is still found to

be less. However, our simulations show that an adversarial attack

with a tampering coefficient (t = 0.1). As a result, the adversary

can easily get away with the tampering.

4.2 Benchmarks

We use the open-source quantum software development kit

from IBM (Qiskit) (Cross, 2018) for simulations. A Python-based

wrapper is built around Qiskit to accommodate the proposed

attack model.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

FIGURE 3

Comparison of (A) PM and (B) TVD for random vs targeted tampering. Benchmark (to�oli−n3) is run for 10,000 shots on Fake−montreal. Correct o/p:

111 (q2, q1, q0) and erroneous o/p with highest freq.: 101. As per Algorithm 1 we introduce targeted bit flip error on q1. Random tampering is

simulated by introducing bit flip error to all the qubit lines. The (C) PM and (D) TVD variation with the tampering coe�cient for various benchmarks. A

PM < 1 indicates that the hardware has converged to an incorrect result.

4.2.1 Pure quantum workloads
The benchmark circuits/workloads include 2- and 3- qubit

Grover search (grover−n2 and grover−n3), 3-qubit Fredkin

gate (fredkin−n3), 3-qubit Toffoli gate (toffoli−n3), 4-qubit

Hidden-Subgroup algorithm (hs4−n4), 4 and 10-qubit Adder

(adder−n4 and adder−n10), 4-qubit Inverse QFT (inverseqft−n4),

and 13-qubit Multiply (multiply−n13). These are adopted

from QASMBench (Li et al., 2020) which contains a low-

level, benchmark suite based on the OpenQASM assembly

representation. Selected benchmark suite covers a wide range

of communication patterns, number of qubits, number of gates

and depths that are needed to evaluate the proposed attack

and defenses.

4.2.2 Hybrid quantum classical workload
We use the iterative algorithm QAOA (Zhou et al., 2020)

to solve a combinatorial optimization problem MaxCut (Karp,

1972) to investigate the effects of adversarial tampering and its

impact on the hybrid quantum-classical algorithms. The MaxCut

problem involves identification of a subset S∈V such that the

number of edges between S and it’s complementary subset is

maximized for a given graph G = (V ,E) with nodes V

and edges E. MaxCut is NP-hard problem (Karp, 1972), but

there are effective polynomial time classical algorithms that can

approximate the solution within a defined multiplicative factor

of the optimum (Papadimitriou and Yannakakis, 1991). Using

a p-level QAOA, an N-qubit quantum system is evolved with

H−C and H−B p-times to find a MaxCut solution of an N-

node graph. QAOA-MaxCut iteratively increases the probabilities

of basis state measurements that represent larger cut-size for the

problem graph.

4.3 Simulators and hardware

We use the fake provider module in Qiskit as noisy simulators

to run our benchmarks. The fake backends are created using

system snapshots to mimic the IBM Quantum systems. Important

details about the quantum system, including coupling map, basis

gates, and qubit parameters (T1, T2, error rate, etc.), are contained

in the system snapshots. We use following backends (mimicking

their actual hardware representations) for our experiments:

Fake−Montreal (27 qubit), Fake−Mumbai (27 qubit), etc. We also

run some of our benchmarks on ibmq−manila (actual quantum

hardware provided by IBM) and use the modeled tampering

parameters for proof-of-concept demonstration of the proposed

tampering and defenses.

4.4 Evaluation metric

4.4.1 Performance metric
We define Performance Metric (PM) (Figure 2B) (which is the

ratio of the probability of correct and the most frequent incorrect

basis states), Equation 4 as a way to measure how well a NISQ

machine can infer the right response. PM greater that 1 indicates

that the system will be able to correctly infer the output. As our

objective is quantify the effect of tampering on sampled output,

we use PM as the primary figure of merit in evaluations. This

metric has also been used in previous works for performance

quantification (Tannu and Qureshi, 2019). The equation for PM is

given by:

PM =
Pcorrect

Pincorrect
(4)

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

FIGURE 4

(A) Approximation ratio (r) variation for di�erent graph sizes when run on tampered hardware fake−montreal for 50 iterations. (B) Performance

comparison of QAOA for four-node graph with varying iterations on fake−montreal. (C) PM and (D) TVD variation with the tampering coe�cient for

benchmark to�oli−n3 across various fake back-ends. All tested fake backends fail to converge to the correct solution at t = 0.5.

where Pcorrect and Pincorrect are the probabilities of the correct

output and erroneous output with the highest frequency,

respectively. Example: Suppose a NISQ machine yields a

probability of 0.6 for the correct basis state and 0.3 for the most

frequent incorrect basis state. The PM would be 2.

4.4.2 Total variation distance
We also use total variation distance (TVD) (Figure 2C) as

an additional metric to quantify the impact of tampering on the

probability distribution of the output states for a given program.

TVD compares the probabilities of the same binary states between

two distributions. If the probabilities are identical, then TVD = 0.

The TVD will also be higher for extremely diverse distributions.

The Equation 5 for TVD is given by:

TVD =
1

2

∑

x∈X

|P1(x)− P2(x)| (5)

where P1 and P2 are the probability distributions of the binary

states before and after tampering, respectively. Example: Assume

two probability distributions P1 and P2 for a binary state x:

P1 = {0.4, 0.6}, P2 = {0.3, 0.7}

The Equation 6 TVD would be:

TVD =
1

2
(|0.4− 0.3| + |0.6− 0.7|) =

1

2
(0.1+ 0.1) = 0.1 (6)

4.5 Simulation and results

This subsection presents simulation results, starting with a

comparison of random vs. targeted tampering. We then discuss

the impact of tempering on hardware performance, varying shot

counts, and QAOA performance.

4.5.1 Random vs. targeted tampering
The performance of a randomly tampered version and a

targeted tampered version of the Fake−montreal backend is

evaluated. The Figures 3A, B depicts the PM and TVD variation

of the benchmark toffoli−n3 after 10,000 shots on these tempered

back-ends. We introduce bit flip error on all qubit lines during

measurement to account for random tampering. However, for

targeted tampering, we choose q1 (as per the Algorithm 1) to

introduce the bit flip error. We note a 75% reduction in PM for

random tampering and an 80% reduction in PM for minimal

tampering (t = 0.1). Therefore, the attack is able to degrade the

resilience of computation significantly. At t = 0.5, the PM for

all programs becomes less than 1, indicating that the correct

result cannot be inferred. For t = 0.1, the probability distributions

for random and targeted tampering differ by 24% and 29%,

respectively, with a very high TVD of 70% and 72% for random

and targeted tampering, respectively, when t = 0.5.Weuse targeted

tampering in the simulations that follow throughout the paper

since it is more effective in degrading performance.

4.5.2 Impact of adversarial tampering on
hardware performance

Figures 3C, D depicts the performance metric (PM) and TVD

variation with the tampering coefficient (which quantifies the

amount of adversarial tampering) for the various programs in our

benchmark suite. Each benchmark is run on the Fake−montreal

backend for 10,000 shots. A PM < 1 indicates that the hardware

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

TABLE 1 PM vs. shots (tampering coe�cient = 0.5) (_-t denotes tampered

results).

Benchmark Number of shots

500 1,000 2,000 5,000 10,000

grover−2 11 13.5 11 11.8 12.4

grover−2−t 0.92 0.93 0.91 0.90 0.87

fredkin−3 23.6 24.3 26.5 31.7 26.3

fredkin−3−t 0.82 0.79 0.78 0.89 0.77

toffoli−3 19.2 18.2 21.4 22.2 23.3

toffoli−3−t 0.89 0.90 0.85 0.83 0.92

grover−3 9.3 8.9 10 9.3 9.3

grover−3−t 0.87 0.74 0.96 0.92 0.84

adder−4 18.2 19.1 18.9 19 17.3

adder−4−t 0.85 0.93 0.89 0.86 0.95

inverseqft−4 20.4 23.5 25.1 20.2 21.4

inverseqft−4−t 0.72 0.70 0.74 0.87 0.94

hs4−4 18.5 19.4 18.34 17.5 16.6

hs4−4−t 0.72 0.68 0.96 0.95 0.96

adder−10 3.2 4.3 3.4 3.3 2.4

adder−10−t 0.64 0.76 0.74 0.91 0.91

multiply−13 2.4 2.0 1.9 2.2 2.4

multiply−13−t 0.71 0.85 0.79 0.80 0.87

converges to the wrong result, i.e., the probability of the correct

solution falls below the probability of the other incorrect states.

PM should ideally be as high as possible (at least greater than 1.0).

On the contrary, a lower value is preferred for TVD metric. As a

result, the adversarial attack seeks to reduce the PM and increase

the TVD for the programs, degrading the overall computation

performance. The simulation result (Figures 3C, D) shows that

as tampering coefficient is increased, the PM for all benchmarks

drops significantly (≈ 65% on average at just t = 0.1) and a high

TVD is observed. This pattern holds true across all benchmarks.

Furthermore, at t = 0.5, the PM for all programs falls below 1,

indicating that the correct result from cannot be inferred with

reasonable confidence.

Following that, we run the benchmark (toffoli−n3) for 10,000

shots across 10 fake backends to quantify the effect of the proposed

tampering model on different hardware with varying number of

available qubits, qubit connectivity, error rates, and so on. The

PM and TVD variations with tampering with 10 different Fake

backends is depicted in Figures 4C, D. The same trend of PM

degradation (≈ 68% on average at just t = 0.1) and significant

increase in TVD is observed. For t = 0.5, all of the tested fake

backends fail to converge to the correct solution.

4.5.3 E�ect of tampering with varying number of
shots

We run various benchmarks with different number of qubits,

depth, and gate sizes by varying the number of shots for t = 0.5.

The results are summarized in the Table 1. Even 10,000 shots for

a 2-qubit program (grover−2) is insufficient to achieve correct

convergence. When programs with a large number of qubits are

run for a small number of shots, adversarial tampering has a greater

impact.

4.5.4 Impact of tampering on QAOA performance
For the sake of simplicity, we will focus on MaxCut

on unweighted d-regular graphs (UdR), where each vertex is

connected to only adjacent vertices. We use the approximation

ratio defined in Equation 1 as the performance metric for QAOA.

We run QAOA for each node graph ten different times and report

the average values for the approximation ratio (r). The greater the

r value, the better the performance. Ideally, the performance of

QAOA can improve as p increases, with r→ 1 when p→∞. For

our simulations, we run QAOA for maxcut on U2R, U3R, U4R,

and U5R graphs to investigate the effects of adversarial tampering

on quantum-classical hybrid algorithms. Figure 4A shows the

variation in AR for QAOA solving maxcut for various graph

nodes. In each case, we run QAOA (p = 1) for 50 iterations (50

shots/iteration). We note 8% and 25% average reduction in AR for t

= 0.1 and t = 0.5, respectively. Figure 4B depicts the variation in AR

with the number of iterations for a 4-node graph run on tampered

hardware with varying degrees of tampering. When we run QAOA

for 10 iterations rather than 50, AR degrades by 10% for t = 0.1

and 25% for t = 0.5, indicating that the performance of the hybrid-

classical algorithm QAOA is sensitive to the number of available

iterations when run on tampered hardware. However, reducing the

number of iterations from 50 to 10 for tamper-free hardware results

in a marginal (2%) decrease in AR. Higher levels of tampering

increase the variability in measurement outcomes, resulting in less

reliable convergence or even failure to converge. As tampering

increases, the algorithm may require more iterations or a higher

number of shots to achieve similar levels of approximation ratios.

Beyond a certain threshold of tampering, increasing the iterations

or shots may still fail to achieve convergence. For instance, at

a tampering level of t = 0.5, convergence significantly slows

down, often resulting in no convergence or incorrect outcomes in

most cases.

4.6 Modeling tampering on real hardware

We created fake backends to simulate real hardware and test

adversarial tampering and proposed solutions in our experiments.

Since adding bit flip errors during measurement on real hardware

is not possible, we model a back-end to mimic the real hardware

using Qiskit’s fake provider module. Then, for a specific

program, we mimic the effects of tampering on the backend

we built and use those results to model tampering on real

hardware for that particular benchmark. The Figure 5 compares

the performance of the fake backend (fake−manila) that we

modeled from the real IBM hardware (ibmq−manila) and the real

hardware (ibmq−manila). We simulate adversarial tampering by

running benchmark toffoli−n3 for 10,000 shots on the simulator

and actual hardware. We find that the probability distributions

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

FIGURE 5

The proposed tampering model is used to compare the performance of a fake backend (manila−modeled) modeled from the real hardware (ibmq−
manila) and the actual hardware (ibmq−manila). We observe that the tampering results are comparable, with only minor variations which can be

attributed to temporal variations.

FIGURE 6

Two di�erent shot splitting approaches to mitigate the e�ect of adversarial tampering. The user can either do a 50–50 split, where the shots are

distributed equally on available hardware and the results are stitched together to get the converged result, or the user can start with two initial runs of

small number of shots (say, 50) on both hardware, compare PM, TVD, and output confidence, and run the rest of the remaining shots on the

hardware that appears to be better.

are very similar. The effect of modeled tampering is similar to the

trends seen with the fake backend. As the extent of adversarial

tampering (t) increases, the probability of the correct output ‘111’

decreases in both cases, and at t = 0.5, both the simulator and

hardware fail to converge to the correct answer “111”.

4.7 Summary of tampering analysis

(a) The adversary uses targeted tampering to degrade

performance at the expense of computing the solution to the

user’s program from raw data. (b) Even minor tampering (t =

0.1) is enough to reduce the confidence in the correct output.

(c) For benchmarks with a high qubit count, minimal tampering

is sufficient to change the output. (d) Users are more sensitive

to tampering when fewer shots are used for a given program.

(e) Tampering (t = 0.1 to 0.5) can be easily masked by the

adversary since the change in measurement error is negligible.

(f) Performance of quantum-classical hybrid workloads is very

sensitive to number of iterations when run on tampered hardware.

5 Proposed defenses

This section outlines defense mechanisms against adversarial

tampering, beginning with the basic concepts and assumptions.

We then describe the equal shot distribution and adaptive shot

distribution methods. Following this, we present simulation results

for pure quantum and hybrid quantum-classical workloads. The

section also validates the defenses on actual hardware, discusses

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

their scalability, and analyzes the computational and time overhead.

It concludes with a summary of the defense analysis.

5.1 Basic idea and assumptions

We assume that, out of n hardware options available to

the user, at least one is reliable, i.e., tamper-free (we show

results for up to 2 tampered hardware out of 3). Furthermore,

user may avail the services of multiple untrusted cloud vendors

which may have different tampering model. However, the user is

unaware of tamper-free and tampered hardware and the adversarial

tampering model.

We propose splitting shots on available hardware to mitigate

the effects of adversarial tampering. For example, one may

assume hardware from well-established AWS or IBM to be

trusted and from less-established vendor X to be untrusted.

Since untrusted/reliable hardware will provide correct solution,

the chances of masking the tampered results is higher with shot

splitting. Even if the vendors are untrusted, their tampering

model may differ. Therefore, splitting the shots may increase

the likelihood of suppressing the incorrect outcomes and

obtaining correct outcome. We explain the methodology reliability

enhancements provided by the proposed shot distribution

strategies below. The summary of the two shot splitting approaches

is shown in Figure 6.

5.2 Equal shot distribution

The user can divide the shots evenly among the available

hardware without incurring any computational overhead

(assuming the hardware are homogeneous and queuing delays are

identical). For example, assuming the user has access to hardware

HW1 and HW2 provided by two different service providers. HW2

however is plagued with tampering. User has to run a program

P1 with 1,000 shots. If he runs all those 1,000 shots on HW2,

the results received will be tampered and unreliable. Therefore,

we split the shots between these hardware equally to make the

results more resilient, thereby mitigating the adversary’s tampering

(Figure 6). This can be generalized to a scenario with n number

of available hardware.

5.3 Adaptive shot distribution

The user can also intelligently and adaptively distribute the

shots. This can be done by running a few initial shots on all available

hardware, comparing the results, doing majority voting, and then

running the rest of the shots on the hardware that is more reliable

(Algorithm 2). Reliable, tamper-free hardware is characterized by

low noise levels. With a sufficient number of shots, programs on

this hardware will converge to a specific solution. Additionally, it

will exhibit minimal increases in Total Variation Distance (TVD)

between batches and have higher Performance Metric (PM) values.

The tampered hardware may return a different solution for each

batch of shots run on it due to temporal variation in qubit quality

Require: Total shots N, Hardware list

HW = {HW1,HW2, . . . ,HWk}, Initial batch size B

1: remaining_shots← N

2: while remaining_shots > 0 do

3: for all hw ∈ HW do

4: Run B shots on hw

5: Calculate TVD, PM, and record results

6: end for

7: Majority voting to select reliable hardware

8: if reliable hardware found then

9: Allocate remaining shots to it

10: remaining_shots← 0

11: else

12: remaining_shots← remaining_shots− B× |HW|

13: end if

14: end while

Algorithm 2. Adaptive shot distribution.

and will exhibit higher TVD and lower PM among the batch of runs.

For example, we assume the case of HW1 and HW2 again, with

user having 1,000 shots to run. For Run 1, the user fires 50 shots

on HW1 and HW2, records the results, and fires 50 shots again as

Run 2. The TVD, PM, and repeatability of the final answer from

the two iterations are then compared. The user will look for low

TVD, high PM, and repeatable converged output and it’s confidence

(probability) to determine the best hardware (Figure 6). In this way,

the user can choose a better hardware to allocate the remaining

shots. If not, another iteration of 50 shots on each hardware can

be fired and the process is repeated until the user is satisfied. When

more than two hardware is available, the same procedure can be

used, and majority voting can be done to select the tamper-free

hardware from a batch of given hardware.

The number of shots per run in the adaptive shot distribution

method should be determined based on the number of qubits, the

depth of the program, and the complexity of the results. As these

factors increase, more shots are needed to achieve reliable results.

Based on the study in Kessler et al. (2023), which analyzes the

required shots for Grover’s search algorithm, we provide rough

estimates for different scales of quantum circuits. The number

of quantum states increases exponentially with the number of

qubits, leading to an immense state space. For example, with 30

qubits, the number of possible states is 230 ≈ 109. The required

number of shots to estimate probabilities for each state with a

certain confidence factor would be significantly high. However, our

solution is typically represented by a single state or a smaller subset

of the larger state space, so we focus on identifying these specific

states with high probability rather than estimating the probabilities

of all possible states. Therefore, increasing the number of shots

by a few hundred will generally be sufficient to achieve reliable

results. The proposed shot increases for small, medium, and large

scale quantum circuits are rough estimates intended to provide

a starting point. The exact optimal number of shots required

will vary depending on the specific algorithm and the number of

distinguishing output states needed. We recommend the following

approach:

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

FIGURE 7

With t = 0.5 and 10,000 shots, we simulate one tamper-free (Fake−montreal) and one tampered hardware (Fake−montreal− tampered). A 50–50 split

results in a significant improvement in PM (≈300% on average).

FIGURE 8

Improvement in (A) PM and (B) TVD for varying degrees of tampering. TVD reduction of ≈ 55% on average and improvement in PM margin (≈ 125%

on average and a maximum of ≈ 400% for t = 0.5). (C) PM and (D) TVD improvements as a function of the percentage of shots run on tamper-free

hardware. The benchmark to�oli−n3 is run on Fake−montreal (tamper-free hardware) and Fake−montreal−tampered (tampered with t = 0.5) for

10,000 shots. If the majority of shots are run on tamper-free hardware, the user can significantly improve resilience against tampering.

(a) Initial runs: Begin with amoderate number of shots (e.g., 50

to 100) for the initial runs. This allows for a preliminary assessment

of hardware reliability without excessive computational overhead.

(b) Scaling shots:

• Small scale quantum circuits: For circuits using 2 to 10 qubits

and depth less than 20, if reliable results are not obtained in

initial runs, increase the shots by 1X–1.5X.

• Medium scale quantum circuits: For circuits using 11 to 27

qubits and depth greater than 20, increase the shots by 2X–3X

if initial results are not reliable.

• Large scale quantum circuits: For circuits using 28 to 433

qubits or more, increase the shots by 3X-5X if initial results

are not reliable.

(c) Iterative adjustment: Monitor the performance

metrics (PM, TVD, and AR) after each batch of runs.

If the metrics reveal significant noise or variability and

reliable hardware has not been identified, incrementally

increase the number of shots in subsequent runs until

reliable hardware is determined and stable results

are achieved.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

TABLE 2 Intelligent shot distribution: identifying tampered/bad hardware (shots/run = 50; _t denotes tampered results).

toffoli−n3 adder−n10

t HW Run PM TVD (%) O/P Prob. PM TVD (%) O/P Prob.

HW 1 22 – 111 44/50 4.75 – 10000 19/50

0.1 2 11 7 111 44/50 2.71 0.9 10000 19/50

HW−t 1 2.77 – 111 24/50 0.8 – 10111 5/50

2 2.66 13 111 25/50 0.5 18 00000 4/50

HW 1 22 – 111 44/50 2 – 10000 16/50

0.2 2 8.4 6 111 42/50 3.2 1.2 10000 16/50

HW−t 1 2.22 – 111 20/50 0.2 – 01010 4/50

2 1.72 12 111 19/50 0.25 15 00000 4/50

HW 1 14.33 – 111 43/50 4.2 – 10000 21/50

0.3 2 21 6 111 45/50 3 1 10000 21/50

HW−t 1 1.53 – 111 16/50 0.43 – 01100 4/50

2 1.6 15 111 17/50 0.5 17 00000 4/50

HW 1 14.33 – 111 43/50 2.5 – 10000 18/50

0.4 2 10.74 6 111 43/50 4.5 1.2 10000 18/50

HW−t 1 0.91 – 101 11/50 0.6 – 00011 5/50

2 1.37 17 111 11/50 0.5 19 00001 3/50

HW 1 23.5 – 111 47/50 2 – 10000 16/50

0.5 2 20.5 1 111 41/50 3.6 1 10000 18/50

HW−t 1 0.62 – 000 8/50 0.5 – 10110 4/50

2 0.66 10 101 9/50 0.28 14 11110 7/50

FIGURE 9

E�ect of tampering (t = 0.5) on the (A) objective and (B) AR for a 4-node graph over 50 iterations and proposed 50–50 iteration split defense. (C) PM

and (D) TVD variation with the 50–50 split heuristic, when 2 of 3 hardware are tampered (Fake−montreal−tampered, Fake−mumbai−tampered).

Benchmark used: to�oli−n3, no. of shots: 10,000.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

5.4 Simulation results

5.4.1 Pure quantum workloads
The Figure 7 depicts the performance improvement from the

50–50 split countermeasure against adversarial tampering across

multiple benchmarks. With t = 0.5, we simulate one tamper-free

(Fake−montreal) and one tampered hardware (Fake−montreal−
tampered). Figures 3C, D showed that t = 0.5 is so detrimental

that the user no longer samples the correct output across

all benchmarks. However, a 50–50 split shows a significant

improvement (≈ 300% PM increase on average) for all simulated

benchmarks compared to running all shots on the tempered

hardware. Figures 8A, B shows the improvement in PM and TVD

with t, validating the proposed defense for a single benchmark

(toffoli−n3) under the same assumption of one tampered and

one tamper-free hardware. The proposed 50–50 split results in a

significant TVD reduction (≈ 55% on average) and improvement

in PM margin (≈ 125% on average and a maximum of ≈

400% for t = 0.5). The Figures 8C, D depicts the improvements

in PM and TVD as a function of the percentage of shots

run on tamper-free hardware. The benchmark toffoli−n3 is run

for 10,000 shots on Fake−montreal (tamper-free hardware) and

Fake−montreal−tampered (tampered with t = 0.5). We note a ≈

60% improvement in PM and a 50% reduction in TVDwith the 50–

50 split (than when all 10,000 shots are allocated to the tampered

hardware). For the 90–10 split, we see a massive improvement in

PM of approximately 1,900% and a significant TVD reduction 90%

compared to the tampered hardware.

A sample simulation of how a user can determine the tamper-

free hardware and allocate the majority of the shots to that

preferred hardware is shown in the Table 2. We run two 50-

shot runs for two benchmarks, toffoli−n3 (3-qubit benchmark)

and adder−n10 (10-qubit benchmark), on two different hardware

HW (Fake−montreal) and HW−t(Fake−montreal−tampered). The

simulations account for the extent of tampering experienced by

HW−t (by varying t from 0.1 to 0.5). We compare the PM, TVD,

frequent output, repeatability, and confidence factor (probability)

across the two runs for each hardware. HW outperforms HW−t

for both distinct benchmarks in every way. Adversarial tampering

(even minor tampering e.g., t = 0.1) along with the temporal

variations in quantum hardware leads to the HW−t converging

to different outputs for the two different runs for benchmark

addern10. In contrast, when other factors such as low TVD

variation across two runs are considered as well, along with the

tamper-free HWproducing the same output for both runs, makes it

more reliable. As a result, the user can choose to run the remaining

shots in HW only. Hence the user can get a performance boost

comparable to the 90-10 split (as much as 1,900% and 90% in two

chosen performance metrics, Figures 8C, D).

5.4.2 Hybrid quantum classical workload
The proposed 50–50 split is also applicable to hybrid-classical

algorithms like QAOA. Figures 9A, B compares how the objective

and the AR converges over 50 iterations using the 50–50 split.

Table 3 shows the improvement in AR with t, assuming one

tampered (HW−t) and one tamper-free of hardware (HW). We

TABLE 3 AR vs. tampering (iterations = 50, Split = 50:50) (
−
t denotes

tampered results).

Tampering Run Graph nodes

t 2 3 4 5

0.1 HW 0.84 0.63 0.68 0.68

HW−t 0.78 0.60 0.65 0.65

Split 0.81 0.61 0.67 0.65

0.2 HW 0.84 0.63 0.68 0.68

HW−t 0.76 0.56 0.61 0.58

Split 0.78 0.61 0.65 0.62

0.3 HW 0.84 0.63 0.68 0.68

HW−t 0.67 0.54 0.57 0.56

Split 0.70 0.59 0.61 0.63

0.4 HW 0.84 0.63 0.68 0.68

HW−t 0.57 0.53 0.54 0.55

Split 0.65 0.60 0.58 0.63

0.5 HW 0.84 0.63 0.68 0.68

HW−t 0.50 0.50 0.50 0.55

Split 0.62 0.59 0.57 0.60

TABLE 4 Intelligent iteration distribution: identifying tampered/bad

hardware by comparing the approximation ratio between the two runs for

each hardware (iteration/run = 5;
−
t denotes tampered results).

t Hardware AR AR

Run 1 Run 2

0.1 HW 0.61 0.62

HW−t 0.56 0.52

0.2 HW 0.62 0.62

HW−t 0.53 0.50

0.3 HW 0.63 0.62

HW−t 0.51 0.50

0.4 HW 0.62 0.61

HW−t 0.49 0.50

0.5 HW 0.62 0.66

HW−t 0.48 0.49

run 25 iterations (50 shots/iteration) on HW (fake− montreal)

out of a total of 50 iterations, extract the parameters (γ ,β) after

25 iterations, and use them as a starting point for parameter

optimization in HW−t for another 25 iterations. We observe AR

improvement for various levels of tampering. For t = 0.5, we report

the maximum improvement in AR (15% on average) across various

graph sizes.

Table 4 shows a sample simulation of how a user can determine

the tamper-free hardware and allocate the majority of iterations

for a hybrid algorithm such as QAOA to that preferred hardware

using the adaptive shot distribution method. We execute two 5-

iteration (50 shot/iteration) runs on two different hardware HW

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

TABLE 5 Validation on IBM hardware (shots/run = 50).

Tampering System Run PM TVD (%) Most frequent
O/P

Probability

t = 0.1 Manila 1 8.2 – 111 41/50

2 8 10 111 38/50

Manila−t 1 2.8 – 111 21/50

2 2.4 24 111 24/50

t = 0.2 Manila 1 4.4 – 111 26/50

2 4.8 16 111 29/50

Manila−t 1 0.69 – 011 13/50

2 0.54 28 101 13/50

t = 0.3 Manila 1 4.6 – 111 37/50

2 5.14 8 111 36/50

Manila−t 1 0.53 – 011 13/50

2 1.1 34 111 12/50

t = 0.4 Manila 1 8.4 – 111 42/50

2 7.4 10 111 37/50

Manila−t 1 1.2 – 111 12/50

2 0.41 26 110 12/50

t = 0.5 Manila 1 5.1 – 111 31/50

2 7.2 9 111 36/50

Manila−t 1 0.35 – 011 14/50

2 0.13 31 010 15/50

(Fake−montreal) and HW−t (Fake−montreal−tampered) for a 4

node graph. The simulations account for the degree of tampering

experienced by HW−t (by varying t from 0.1 to 0.5). We compare

the approximation ratio between the two runs for each hardware.

Hardware with a higher AR is better and more reliable. The user

can choose to run the remaining iterations in HW only. As a result,

the user will benefit from better performance (upto 15%).

5.5 Validation of defense on real hardware

We run a sample experiment on real hardware to validate

the effectiveness of the proposed run-adaptive shot splitting

heuristic against adversarial tampering. We extend the results

of our tampering model from the fake backend simulations

for the benchmark toffoli−n3 to mimic tampering in the real

IBM device ibmq−manila. Table 5 summarizes the experiment’s

findings. The real ibmq−manila device is represented as manila,

and the tampered hardware is manila−t (for which we run our

benchmark on actual hardware and tamper by modeling the

tampering results obtained from the fake manila that we created).

The user performs two initial runs of 50 shots on each hardware,

then compares the PM, TVD, frequent output, repeatability, and

confidence factor (probability) across the two runs to determine the

superior hardware. Adversarial tampering (even minor tampering

with t = 0.2) combined with temporal variations in the real

quantum hardware causes the tampered hardware to diverge to

different outputs for the two different runs. For t = 0.2 and above,

the tampered hardware manila−t begins to diverge to different

correct outputs across runs. The user can now allocate the rest of

the shots intelligently on seemingly more reliable hardware manila.

5.6 Generalizing the proposed defense

The proposed heuristics (50–50 split and adaptive-run shots

split) provide scalable improvement for a general case where

the user must choose among n tampered and one tamper-free

hardware (without knowing the idenity of tamper-free hardware).

In Figures 9C, D we consider 2 tampered (montreal−tampered,

mumbai−tampered) and 1 tamper-free hardware, with 10,000 shots

for the program toffoli−n3. We see PM improvement and TVD

reduction when using the 50–50 split heuristic. Similarly, the user

can perform two runs with 50 initial shots to determine the reliable

hardware and divide the remaining shots accordingly to counter

any adversarial tampering.

5.7 Computational and time overhead

We assumed that shot distribution among untrusted and

trusted hardware will not incur performance overhead due

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

to similar queue sizes, which may not always hold true. The

queue depths of various vendors and their hardware can differ,

potentially resulting in higher run times and performance

overhead. In this work, we consider n shots that would have

been run on a single hardware, and to defend against attacks,

we split those n shots between multiple hardware options,

keeping the total number of shots the same and incurring

no overhead. However, cheaper and noisier hardware may

require an increased number of shots, introducing further

overhead. Therefore, careful consideration of hardware

selection and queue management is essential to mitigate these

impacts.

5.8 Summary of defense analysis

(a) The proposed 50–50 split effectively mitigates the worst-

case tampering scenario where the user originally samples incorrect

output. (b) The proposed intelligent run adaptive shot distribution

enables the user to identify tamper-free hardware. (c) For purely

quantum and hybrid workloads, the adaptive shot distribution

heuristic almost entirely mitigates the proposed adversarial

threat. (d) The proposed defense heuristics are applicable to

real quantum hardware. (e) The proposed heuristics provide

scalable improvement for a general case of n tampered and one

tamper-free hardware.

6 Conclusion

In this paper, we propose an adversarial attack by a less

reliable third-party provider. We report an average reduction

of 0.12X in the PM and an increase in TVD of 7X across

purely quantum workloads for minimally tampered hardware

(t = 0.1) and an average reduction in AR of 0.8X (t =

0.1) and 0.25X (t = 0.5) for quantum classical workload. We

propose distributing the total number of shots available to the

user among various hardware options to ensure trustworthy

computing using a mix of trusted and untrusted hardware. On

average, we note a 30X improvement in PM, a 0.25X reduction

in TVD for pure quantum workloads and AR improvement

upto 1.5X. Our proposed heuristics mitigate the adversary’s

tampering (random/targeted) efforts, improving the quantum

program’s resilience.

Data availability statement

The original contributions presented in the study are

included in the article, further inquiries can be directed to the

corresponding author/s.

Author contributions

SU: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Software,

Validation, Visualization, Writing – original draft, Writing –

review & editing. SG: Conceptualization, Funding acquisition,

Project administration, Resources, Supervision, Writing – review

& editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported in parts by the NSF (CNS-1722557, CNS-2129675,

CCF-2210963, CCF-1718474, OIA-2040667, DGE-1723687, DGE-

1821766, and DGE-2113839), Intel’s gift and seed grants from Penn

State ICDS, and the Huck Institute of the Life Sciences.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Acharya, N., and Saeed, S. M. (2020). “A lightweight approach to detect
malicious/unexpected changes in the error rates of NISQ computers,” in
Proceedings of the 39th International Conference on Computer-Aided Design, 1–9.
doi: 10.1145/3400302.3415684

Alam, M., Ash-Saki, A., and Ghosh, S. (2019). “Addressing temporal variations
in qubit quality metrics for parameterized quantum circuits,” in 2019 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED) (IEEE), 1–6.
doi: 10.1109/ISLPED.2019.8824907

Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim,
Y., Bucher, D., et al. (2019). Qiskit: an open-source framework for quantum

computing. https://doi.org/10.5281/zenodo/2562111 (accessed March 16,
2023).

Brandao, F. G., Broughton, M., Farhi, E., Gutmann, S., and Neven, H. (2018). For
fixed control parameters the quantum approximate optimization algorithm’s objective
function value concentrates for typical instances. arXiv preprint arXiv:1812.04170.

Cao, Y., Romero, J., and Aspuru-Guzik, A. (2018). Potential of quantum computing
for drug discovery. IBM J. Res. Dev. 62, 6–1. doi: 10.1147/JRD.2018.2888987

Computing, C. Q. (2021). “pytket,” Available at: https://cqcl.github.io/pytket/build/
html/index.html

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://doi.org/10.1145/3400302.3415684
https://doi.org/10.1109/ISLPED.2019.8824907
https://doi.org/10.5281/zenodo/2562111
https://doi.org/10.1147/JRD.2018.2888987
https://cqcl.github.io/pytket/build/html/index.html
https://cqcl.github.io/pytket/build/html/index.html
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

Computing, Z. (2021). “Orquestra,” Available at: https://www.zapatacomputing.
com/orquestra/

Cong, I., Choi, S., and Lukin, M. D. (2019). Quantum convolutional neural
networks. Nat. Phys. 15, 1273–1278. doi: 10.1038/s41567-019-0648-8

Crooks, G. E. (2018). Performance of the quantum approximate optimization
algorithm on the maximum cut problem. arXiv preprint arXiv:1811.08419.

Cross, A. (2018). “The IBM q experience and QISKIT open-source quantum
computing software,” in APS Meeting Abstracts.

Farhi, E., Goldstone, J., and Gutmann, S. (2014). A quantum approximate
optimization algorithm. arXiv preprint arXiv:1411.4028.

Gottesman, D. (2010). “An introduction to quantum error correction and
fault-tolerant quantum computation,” in Quantum Information Science and Its
Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics, 13–58.
doi: 10.1090/psapm/068/2762145

Guerreschi, G. G., and Matsuura, A. Y. (2019). QAOA for Max-
Cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9:6903.
doi: 10.1038/s41598-019-43176-9

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., et al.
(2017). Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets. Nature 549, 242–246. doi: 10.1038/nature23879

Karp, R. M. (1972). “Reducibility among combinatorial problems,” in Complexity of
computer computations (Cham: Springer), 85–103. doi: 10.1007/978-1-4684-2001-2_9

Kessler, M., Alonso, D., and Sánchez, P. (2023). Determination of the
number of shots for Grover’s search algorithm. EPJ Quant. Technol. 10:47.
doi: 10.1140/epjqt/s40507-023-00204-y

Li, A., Stein, S., Krishnamoorthy, S., and Ang, J. (2020). QASMbench: a low-
level QASM benchmark suite for NISQ evaluation and simulation. arXiv preprint
arXiv:2005.13018.

Papadimitriou, C. H., and Yannakakis, M. (1991). Optimization,
approximation, and complexity classes. J. Comput. Syst. Sci. 43, 425–440.
doi: 10.1016/0022-0000(91)90023-X

Phalak, K., Ash-Saki, A., Alam, M., Topaloglu, R. O., and Ghosh, S. (2021).
Quantum PUF for security and trust in quantum computing. IEEE J. Emer. Select.
Topics Circ. Syst. 11, 333–342. doi: 10.1109/JETCAS.2021.3077024

Ravi, G. S., Smith, K. N., Gokhale, P., and Chong, F. T. (2021). “Quantum
computing in the cloud: analyzing job and machine characteristics,” in 2021 IEEE
International Symposium on Workload Characterization (IISWC) (IEEE), 39–50.
doi: 10.1109/IISWC53511.2021.00015

Reagor, M., Osborn, C. B., Tezak, N., Staley, A., Prawiroatmodjo, G., Scheer, M.,
et al. (2018). Demonstration of universal parametric entangling gates on a multi-qubit
lattice. Sci. Adv. 4:eaao3603. doi: 10.1126/sciadv.aao3603

Saki, A. A., Suresh, A., Topaloglu, R. O., and Ghosh, S. (2021).
“Split compilation for security of quantum circuits,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD) (IEEE), 1–7.
doi: 10.1109/ICCAD51958.2021.9643478

Smith, R. S., Peterson, E. C., Skilbeck, M. G., and Davis, E. J. (2020).
An open-source, industrial-strength optimizing compiler for quantum
programs. Quant. Sci. Technol. 5:044001. doi: 10.1088/2058-9565/ab
9acb

Suresh, A., Saki, A. A., Alam, M., Onur Topaloglu, R., and Ghosh, S. (2021).
“Short paper: A quantum circuit obfuscation methodology for security and privacy,” in
Proceedings of the 10th International Workshop on Hardware and Architectural Support
for Security and Privacy, 1–5. doi: 10.1145/3505253.3505260

Tannu, S. S., and Qureshi, M. (2019). “Ensemble of diverse mappings: improving
reliability of quantum computers by orchestrating dissimilar mistakes,” in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (pp.
253–265). doi: 10.1145/3352460.3358257

Wecker, D., Hastings, M. B., and Troyer, M. (2016). Training a quantum optimizer.
Phys. Rev. A 94:022309. doi: 10.1103/PhysRevA.94.022309

Zhou, L., Wang, S. T., Choi, S., Pichler, H., and Lukin, M. D. (2020). Quantum
approximate optimization algorithm: performance, mechanism, and implementation
on near-term devices. Phys. Rev. X 10:021067. doi: 10.1103/PhysRevX.10.
021067

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1431788
https://www.zapatacomputing.com/orquestra/
https://www.zapatacomputing.com/orquestra/
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1090/psapm/068/2762145
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1038/nature23879
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1140/epjqt/s40507-023-00204-y
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1109/JETCAS.2021.3077024
https://doi.org/10.1109/IISWC53511.2021.00015
https://doi.org/10.1126/sciadv.aao3603
https://doi.org/10.1109/ICCAD51958.2021.9643478
https://doi.org/10.1088/2058-9565/ab9acb
https://doi.org/10.1145/3505253.3505260
https://doi.org/10.1145/3352460.3358257
https://doi.org/10.1103/PhysRevA.94.022309
https://doi.org/10.1103/PhysRevX.10.021067
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Trustworthy and reliable computing using untrusted and unreliable quantum hardware
	1 Introduction
	1.1 Proposed attack model
	1.2 Novelty
	1.3 Viability of the proposed attack model
	1.4 Proposed solution
	1.5 Novelty
	1.6 Research challenges
	1.7 Contributions

	2 Background
	2.1 Qubits and quantum gates
	2.2 Quantum error
	2.3 QAOA
	2.4 Related work

	3 Proposed attack model
	3.1 Basic idea
	3.2 Adversary capabilities
	3.3 Attack scenario
	3.4 Adversarial tampering model
	3.4.1 Random tampering
	3.4.2 Targeted tampering

	4 Proposed tampering model
	4.1 Tampering framework used for simulations
	4.2 Benchmarks
	4.2.1 Pure quantum workloads
	4.2.2 Hybrid quantum classical workload

	4.3 Simulators and hardware
	4.4 Evaluation metric
	4.4.1 Performance metric
	4.4.2 Total variation distance

	4.5 Simulation and results
	4.5.1 Random vs. targeted tampering
	4.5.2 Impact of adversarial tampering on hardware performance
	4.5.3 Effect of tampering with varying number of shots
	4.5.4 Impact of tampering on QAOA performance

	4.6 Modeling tampering on real hardware
	4.7 Summary of tampering analysis

	5 Proposed defenses
	5.1 Basic idea and assumptions
	5.2 Equal shot distribution
	5.3 Adaptive shot distribution
	5.4 Simulation results
	5.4.1 Pure quantum workloads
	5.4.2 Hybrid quantum classical workload

	5.5 Validation of defense on real hardware
	5.6 Generalizing the proposed defense
	5.7 Computational and time overhead
	5.8 Summary of defense analysis

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

