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Introduction:The dynamic and sophisticated nature of phishing attacks, coupled

with the relatively weak anti-phishing tools, has made phishing detection a

pressing challenge. In light of this, new gaps have emerged in phishing detection,

including the challenges and pitfalls of existing phishing detection techniques.

To bridge these gaps, this study aims to develop a more robust, e�ective,

sophisticated, and reliable solution for phishing detection through the optimal

feature vectorization algorithm (OFVA) and supervised machine learning (SML)

classifiers.

Methods: Initially, the OFVA was utilized to extract the 41 optimal intra-URL

features from a novel large dataset comprising 2,74,446 raw URLs (134,500

phishing and 139,946 legitimate URLs). Subsequently, data cleansing, curation,

and dimensionality reductionwere performed to remove outliers, handlemissing

values, and exclude less predictive features. To identify the optimal model, the

study evaluated and compared 15 SML algorithms arising from di�erent machine

learning (ML) families, including Bayesian, nearest-neighbors, decision trees,

neural networks, quadratic discriminant analysis, logistic regression, bagging,

boosting, random forests, and ensembles. The evaluation was performed

based on various metrics such as confusion matrix, accuracy, precision,

recall, F-1 score, ROC curve, and precision-recall curve analysis. Furthermore,

hyperparameter tuning (using Grid-search) and k-fold cross-validation were

performed to optimize the detection accuracy.

Results and discussion: The findings indicate that random forests (RF)

outperformed the other classifiers, achieving a greater accuracy rate of 97.52%,

followed by 97.50% precision, and an AUC value of 97%. Finally, a more robust

and lightweight anti-phishing model was introduced, which can serve as an

e�ective tool for security experts, practitioners, and policymakers to combat

phishing attacks.
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1 Introduction

In recent years, the world has experienced a profound technological revolution,

resulting in greater Internet accessibility than ever before. As of January 2023, there have

been 5.16 billion Internet users globally, comprising 64.4 percent of the world’s population

(Petrosyan, 2023). This exponential surge in Internet use has brought about significant

transformations in traditional systems and people’s daily lives (Hoehe and Thibaut, 2020;
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Maqsood et al., 2023). Consequently, data have become the

lifeblood of individuals, organizations, and complex processes.

In this data-driven landscape, prioritizing data security must

be paramount. The emphasis on safeguarding information needs

to be ingrained into every facet of data collection, analysis, and

utilization, from the very conception of any project or initiative.

Numerous studies already underscored this criticality. For instance,

Li et al. (2021) warned of the security and privacy risks inherent

in storing and processing large volumes of energy data in cloud

environments. Kasim (2022), concerned with the sensitivity of

electronic medical records (EMRs), proposed a robust ensemble

architecture to ensure data privacy and security. Similarly, Deepika

et al. (2021) and Yuan et al. (2021) focused on data security in

cloud-based systems and medical image diagnosis, respectively,

both advocating for novel approaches to thwart security threats.

This emphasis on data security is not a mere theoretical concern.

However, suspicious online activities are evolving and escalating,

leading to a surge in both cyber-dependent and cyber-enabled

crimes. Cybercrime also poses a substantial threat to the global

economy, national security, social stability, and individual interests

(Chen et al., 2023). According to the 2020 Official Annual

Cybercrime Report, cybercrime is one of the greatest challenges

that humanity will face in the next two decades (The 2020

Official Annual Cybercrime Report, 2020). These concerns are

compounded by the escalating costs induced by cybercrime, which

surged from around $3 trillion in 2015 to over $6 trillion in 2021,

with projections indicating an increase to over $10.5 trillion by 2025

(Morgan, 2020).

Amid this digital landscape, cybercriminals employ various

tactics (Phillips et al., 2022) to hook their targets, and among

them, phishing stands as the most common but dynamic and

threatening strategy. Phishing has been defined in various ways

by experts, researchers, and cybersecurity institutions due to

its continuous evolution and contextual variation. Consequently,

there is no universally accepted or rigid definition for the term

“phishing” (Alkhalil et al., 2021). However, as proposed by

Alabdan (2020), the term “phishing” has originated from the term

“fishing,” where attackers use bait to lure victims and illicitly

access their information or trick them into downloading malware.

In this phenomenon, rather than technical or coding-based

approaches, attackers utilize human weaknesses and psychological

manipulation; hence, the term “human hacking” is often used

to refer to phishing (Klimburg-Witjes and Wentland, 2021).

In essence, phishing can be defined as a cyber-enabled crime

employing both social engineering and technical subterfuge to trick

individuals into disclosing confidential information (e.g., credit

card numbers, login credentials, or personal identification details)

by posing as a trustworthy source.

Every phishing attack passes through a series of phases (see

Figure 1), or more specifically, three phases: lure, hook, and catch

(US-CER, 2016). In the first phase (lure), the attacker gathers

sufficient information about the target (e.g., an individual or

organization) and decides the attack technique to be utilized to trap

the victim. Subsequently, the attacker sends legitimate-looking e-

mails, messages, SMS, and QR codes with a phishing website link

to the intended person or organization, containing enticing offers

or creating a sense of urgency (Tang and Mahmoud, 2021). In the

second phase (hook), the victim unintentionally opens the email,

clicks on the link, or downloads and installs malware. In the third

phase (catch), the victim loses control of their system, leading to

various malicious activities, such as password changes, fraudulent

transactions, missing sensitive information, or further fraud. The

attacker then erases all evidence (Alkhalil et al., 2021).

Phishing is an old yet effective cybercrime due to its dynamic

and ever-evolving nature (Ribeiro et al., 2024). Unlike other

forms of cybercrime, where the attacker’s motives are known

and victim types have been consistent, phishers have varying

goals, motivations, and victim types. Although there are plenty of

preventive and detective strategies for combatting phishing attacks,

none of them perform as a “bullet of silver” against phishing (Gupta

et al., 2016). To bypass anti-phishing tools, phishers frequently

change their attacking tactics and look for new and creative ways.

Consequently, phishing has become one of the most organized and

hard-to-detect cybercrimes of the twenty-first century (Vayansky

and Kumar, 2018). This has led to a substantial increase in phishing

attacks in recent years, as illustrated in Figure 2 (APWG Phishing

Activity Trends Reports, 2022). As reported by the Anti-Phishing

Working Group [Anti-Phishing Working Group (APWG), 2022],

1,270,883 unique phishing attacks took place in the third quarter of

2022, whichwas the worst the APWGhad ever recorded. This rising

tendency highlights the shortcomings of current anti-phishing

methods, revealing that existing countermeasures are insufficient in

detecting and preventing these attacks (Gupta et al., 2016; Vayansky

and Kumar, 2018; Alkhalil et al., 2021; Alnemari and Alshammari,

2023; Zieni et al., 2023).

In contrast to the ever-evolving tactics of phishers, most

existing phishing detection methods remain static and rigid,

relying on predefined patterns and rules. This leads to high

false-positive rates and often renders them ineffective against

modern, tailored social engineering attacks. This discrepancy

between the dynamic nature of phishing attacks and the static

nature of current detection techniques underscores the urgent

need for innovative approaches to combat phishing. To this

end, this study aims to develop an efficient large data-driven

model for detection of phishing through the optimal feature

vectorization algorithm (OFVA) and supervised machine learning

(SML) algorithms. Here, the key objective is to ensure a safe

cyberspace for individuals as well as organizations by strengthening

resilience against the growing number of phishing attacks.

The overall contributions of this study can be summarized

as follows:

• This study focuses specifically on the intra-URL features that

possess the capability to differentiate between phishing and

legitimate sites, excluding other content-based aspects such as

text, message, DOM, and CSS logo.

• The study employs the optimal feature vectorization algorithm

(OFVA) to extract optimal intra-URL features, 10 of which are

entirely novel and previously unexplored.

• To ensure high phishing detection accuracy, this study utilizes

a large dataset (N = 2,74,446) and 15 supervised machine

learning (SML) algorithms derived from various machine

learning types.

• Finally, this study introduces a lightweight anti-phishing

model that aims to effectively detect phishing attacks with low

computational overhead.
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FIGURE 1

Phases of a phishing attack.

FIGURE 2

Number of unique phishing attacks (2011–2022).

2 Literature review

To combat phishing attacks, two types of approaches are

typically followed: (1) preventive approach and (2) detective

approach. The preventive approach relies on campaigns, awareness

training, anti-phishing training, phishing simulation, seminars,

press releases, and notices to increase user awareness against

phishing attacks. Previous studies have found that these approaches

are effective in enhancing both organizational and individual

security awareness and knowledge (Dodge and Ferguson, 2006;

Jensen et al., 2017; Daengsi et al., 2021; Quinkert et al., 2021; Yeoh

et al., 2021; Alahmari et al., 2022). For example, Quinkert et al.

conducted an empirical investigation in a real-world workplace

environment and found that the implementation of awareness

training initiatives resulted in a significant reduction in click rates

on phishing sites (from 19% to 10%). The authors also found

that some psychological vectors, such as an authoritative tone

and curiosity, were more effective than others at tricking users

into falling for phishing scams (Quinkert et al., 2021). Similarly,

Daengsi et al. investigated the effects of age and gender on

cybersecurity awareness using phishing simulations on 20,134 Thai

employees working in a large financial service organization. They
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found that before the awareness program, 23.4% of employees

opened malicious emails and 22.1% clicked on phishing links.

However, after the program, there was a substantial decrease

of 71.5% in the number of employees who opened phishing

emails (Daengsi et al., 2021). In another study, Jensen et al.

investigated the effectiveness of mindfulness training on students,

faculty, and staff at a U.S. university in preventing phishing

attacks (Jensen et al., 2017). The findings revealed that the training

improved the ability of participants to dynamically yield attention

during message evaluation, enhance contextual cues, and prevent

suspicious messages by early judgment, and eventually helped

avoid phishing attacks. Another training approach, based on the

Transitive Memory System (TMS) theory, was proposed, where

the awareness training was implemented using a bespoke app that

deployed a game to deliver security training and encourage sharing

(Alahmari et al., 2022). The findings of the study suggested that this

app-based training approach could be an effective way to improve

organizational security knowledge sharing (SKS). To explain the

success of preventive approaches, Yeoh et al. emphasized the

importance of phishing awareness as a continuous learning process

that can strengthen individuals’ behavior and equip them with the

tools to effectively combat phishing attacks (Yeoh et al., 2021).

While phishing preventive approaches focus on educating

individuals about the risks and tactics of phishing attacks, detective

approaches mainly encompass technical measures, such as the list-

based approach, rule-based approach, similarity-based approach,

and ML-based approach. The list-based approach uses a list of

known phishing websites to identify and block suspicious URLs.

This approach involves the implementation of three distinct

techniques: whitelist-based, blacklist-based, or a combination of

both (Prakash et al., 2010; Li et al., 2014; Jain and Gupta, 2016;

Rao and Pais, 2017; Azeez et al., 2021). In all three cases, the

detection of phishing sites relies on the comparison of predefined

databases containing approved and unapproved URLs, domains, IP

addresses, etc. Several studies have demonstrated the effectiveness

of these techniques, such as their speed and ease of use (Ludl

et al., 2007; Prakash et al., 2010; Li et al., 2014; Azeez et al.,

2021). However, a majority of current studies contended that these

techniques might have struggled to detect unlisted phishing sites,

commonly referred to as zero-hour or zero-day attacks (Sonowal

and Kuppusamy, 2018; Aljofey et al., 2022; Sanchez-Paniagua et al.,

2022).

The rule-based approach is another widely used method for

detecting phishing attacks. It involves deriving predefined rules

from known characteristics (e.g., poor grammar, spelling mistakes,

and suspicious domain) of phishing websites, URLs, SMS, emails,

or contents (Jain and Gupta, 2018; SatheeshKumar et al., 2022). For

instance, one study (Moghimi and Varjani, 2016) proposed a rule-

based approach that extracted two feature sets from phishing and

legitimate websites: content-based features and document object

model (DOM)-based features. The proposed model achieved a

high true positive rate of 99.14% with a minimal false negative

alarm rate of 0.86% in detecting phishing attacks. In a separate

study, Mohammad et al. extracted 17 distinct features capable

of distinguishing phishing websites from legitimate ones, which

eventually can detect phishing attacks with a 4.75% error rate

(Mohammad et al., 2014). Similarly, Adewole et al. (2019) proposed

a hybrid rule-based model where they generated 55 rules based

on 30 features of phishing websites. The findings showed an

average accuracy of 96.8% in detecting suspected phishing sites

(Adewole et al., 2019). While rule-based approaches were effective

at identifying known phishing attack patterns, they proved less

effective at detecting new or evolving phishing attacks (Vayansky

and Kumar, 2018; Suleman, 2021). This is because they rely on

predefined rules, which cannot be easily updated to keep up with

the latest phishing tactics. Consequently, rule-based systems are

difficult and time-consuming to maintain and update, especially as

the number and sophistication of phishing attacks increase.

To detect phishing, scholars frequently use the visual similarity-

based approach that compares the visual appearance of a suspected

phishing website to the visual appearance of a legitimate website

(Zieni et al., 2023). This approach considers features such as

font styles, images, screenshots, page layout, logos, text content,

HTML tags, text format, Cascading Style Sheets (CSS), images, and

DOM to differentiate between legitimate and phishing websites

(Jain and Gupta, 2017; Sattari and Montazer, 2023). For example,

Ardi and Heidemann (2016) developed an efficient browser plugin

named AuntieTuna that utilized cryptographic hashing of each

web page’s rendered DOM with more than 50% accuracy and

zero false positives (FP). However, this approach failed when an

attacker created different DOMs for the same website or when

the website consisted solely of images. In another study, Chiew

et al. (2015) proposed a logo-based phishing detection technique

that extracted the logo image from a website and compared it

with a database of legitimate logos to identify phishing websites.

Although this approach successfully achieved a 93.4% accuracy

rate in distinguishing phishing sites from legitimate ones, it

presents a challenge due to its reliance on a vast database of

genuine logos. Consequently, it becomes difficult to regularly

update the database to include new logos and remove those

that are no longer in use, hampering its practicality. Likewise,

another study introduced VisualPhishNet, a visual similarity-based

phishing detection technique employing a triplet convolutional

neural network (CNN) to learn website profiles and identify

phishing websites based on a similarity metric (Abdelnabi et al.,

2020). While VisualPhishNet boasts a remarkable accuracy of

99.7%, it is crucial to consider that its training data were small

(only 155 websites with 9363 screenshots). Hence, its effectiveness

against real-world phishing websites remains an open question. In

contrast, Khan et al. proposed SpoofCatch, a client-side solution

that leverages the overall visual similarity of web pages to detect

phishing attempts and provided impressive results (96% success

rate) and minimal user experience impact (Khan et al., 2021).

However, visual similarity-based detection has drawbacks. Recent

studies (Aljofey et al., 2022; Zieni et al., 2023) highlighted potential

limitations, including computational burdens, implementation

hurdles, time-consuming nature of the analysis, and the challenge

of identifying novel phishing attempts (potentially leading to high

false-negative rates).

Among all the approaches employed to detect phishing,

machine learning (ML)-based approaches have been extensively

utilized by scholars and security experts globally (Mewada and

Dewang, 2022; Safi and Singh, 2023). Considering phishing

detection as a binary classification problem, both supervised ML
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algorithms (Nagaraj et al., 2018; Rao and Pais, 2018; Sahingoz

et al., 2019; Zamir et al., 2020; Balogun et al., 2021; Kasim, 2021)

and deep learning algorithms (Adebowale et al., 2020; Singh et al.,

2020; Anitha and Kalaiarasu, 2022; Saeed, 2022; Aldakheel et al.,

2023; Dhanavanthini and Chakkravarthy, 2023) have been used

to distinguish phishing sites from legitimate ones. However, ML-

based phishing detection approaches also face many challenges.

For example, one of the primary challenges faced by ML models

is the necessity for comprehensive training on large, high-quality

datasets that encompass a diverse array of phishing attacks. This

training data must accurately mirror the real-world scenarios,

allowing ML models to generalize effectively to new phishing

threats. Furthermore, the efficacy of these models is contingent on

the quality of features extracted from phishing sites. Insufficient

or biased data, coupled with less predictive features, can lead to

subpar performance. Therefore, the volume of data, identification

of high-quality features, proper data preprocessing, and precise

hyperparameter tuning play pivotal roles in ensuring the efficacy of

ML models against the constantly evolving landscape of phishing

threats (Salihovic et al., 2018; Luca et al., 2022).

While various preventive and detective approaches exist against

phishing attacks, the majority often struggle with limitations such

as small datasets, static nature, difficulty in detecting zero-hour

attacks, and high rates of false positives and false negatives. To

address these challenges, this study introduces a novel phishing

detection solution by harnessing the power of the optimal feature

vectorization algorithm (OFVA) in conjunction with supervised

machine learning (SML) algorithms. Unlike static methods (e.g.,

list-based and rule-based), our approach thrives on adaptability and

scalability, enabling it to keep pace with the ever-evolving tactics

employed by phishers. By continuously learning from an extensive

dataset and leveraging machine learning techniques, our approach

aims to address the shortcomings of traditional approaches and

achieve a higher level of robustness and accuracy in distinguishing

phishing sites from legitimate ones.

3 Materials and methods

The methodological flow of the proposed approach is depicted

in Figure 3, which contains the following four phases: (a) dataset

acquisition, (b) data preprocessing (c) model selection and

evaluation, and (d) model deployment.

3.1 Dataset acquisition

In dataset acquisition, raw unstructured phishing and

legitimate URLs were acquired and merged from different reliable

and valid sources. As data volume and quality are always crucial

for machine learning-based approaches (Wu et al., 2021), this

study utilized a large volume of data to address data insufficiency,

bias or class imbalance that could lead to poor or inaccurate

approximation. Among the 274,446 URLs (before undergoing

preprocessing), 48,009 legitimate URLs and 48,009 phishing URLs

were obtained from Aalto University’s research data (Marchal,

2014), while 86,491 phishing URLs were collected from OpenPhish

(OpenPhish-Phishing Intelligence, 2023) and 91,937 legitimate

URLs collected from DomCop (Download List of top 10 Million

Domains Based on Open Data from Common Crawl and Common

Search, 2023). These URLs were in their original form (e.g.,

https://www.facebook.com/), lacking any specific structure or

organization where analysis can be performed.

3.2 Feature generation

In the second phase, unstructured raw URLs (strings) were

initially transformed into semi-structured components (scheme,

network location, path, etc.) using the “urllib.parse” python

module (Urllib.parse- Parse URLs Into Components Python

Documentation, 2023). Subsequently, a list of 41 features

was extracted to generate a particular feature vector (x =

F1, F2, F3, . . . . . . . . . . . . F41) for each of the URLs to create a

labeled dataset using a self-developed OFVA (see Appendix A).

The key purpose of the OFVA was to extract the optimal

intra-URL features from a given semi-unstructured URL list

(see Phase 2 of Figure 3). Table 1 depicts the extracted feature

list with a detailed explanation. In particular, features F1 −

F2, F4−F21, F25−F26, F30 − F33, F35−F39 were considered, as

suggested in previous studies (Jeeva and Rajsingh, 2016; Singh,

2020; Vrbančič et al., 2020; Mourtaji et al., 2021); however, we

have modified and adjusted them to get better outputs. In contrast,

features F3, F22−F24, F27 − F29, F34, F40 − F41 are completely

novel and are proposed in this study based on the observation of

phishing and legitimate URLs.

3.3 Data cleansing and curation

After feature generation, data cleansing and curation were

performed to enhance the predictive performance of the SML

classifiers. As data were obtained from multiple sources, there

was a possibility of having duplicate URLs. Hence, in order to

achieve optimal data quality, the data cleansing phase involved

the removal of a total of 9,725 duplicate URLs. Moreover, to

ensure the disproportionate effect of outliers on SML classifiers,

rigorous outlier detection and removal were undertaken using

the interquartile range (IQR) and box plot method, specifically

targeting URL length (see Figure 4). Through this process, data

points that were deemed to be outliers were systematically

identified and subsequently removed from the dataset (n= 16,771).

Hence, the final dataset which is uploaded in Mendeley Data

(Tamal, 2023) comprised 2,47,950 records (phishing URLs =

119409; legitimate URLs= 128541).

3.4 Dimensionality reduction

To enhance the efficiency and accuracy of the SML classifiers

and reduce model complexity, this study employed dimensionality

reduction techniques to identify the most informative features.

Specifically, the random forest algorithm (Breiman, 2001) was

utilized to quantify the importance of each feature concerning the

overall model’s performance. The importance score of each feature

was determined by assessing the extent of impurity reduction that

resulted from splitting the data based on that feature. Figure 5
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FIGURE 3

Methodological flow: comprising four key phases: (A) dataset acquisition, (B) data preprocessing, (C) model selection and evaluation, and (D) model

deployment.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1428013
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tamal et al. 10.3389/fcomp.2024.1428013

TABLE 1 Generated features by OFVA.

SN Feature Description Type

F1 Url_length Representing the number of characters in a URL, including the domain name, path, and
any query parameters.

Numeric

F2 Number_of_dots_in_url Indicating the number of dots (“.”) in the URL Numeric

F3 Having_repeated_digits_in_url A Boolean feature that denotes whether the URL has repeated digits (e.g., 2232) Boolean

F4 Number_of_digits_in_url Representing the number of digits (0–9) in the URL. Numeric

F5 Number_of_special_char_in_url Indicating the number of special characters (e.g., “, #, $, %, &, and∼) in the URL. Numeric

F6 Number_of_hyphens_in_url Representing the number of hyphens (“-”) in the URL. Numeric

F7 Number_of_underline_in_url Indicating the number of underscores (“_”) in the URL. Numeric

F8 Number_of_slash_in_url Representing the number of forward slashes (“/”) or backward slashes (“/”) in the URL. Numeric

F9 Number_of_questionmark_in_url Indicating the number of question marks (“?”) in the URL. Numeric

F10 Number_of_equal_in_url Representing the number of equal signs (“=”) in the URL. It is a numeric feature Numeric

F11 Number_of_at_in_url Indicating the number of at symbols (“@”) in the URL. Numeric

F12 Number_of_dollar_sign_in_url Representing the number of dollar signs (“$”) in the URL. Numeric

F13 Number_of_exclamation_in_url Indicating the number of exclamation marks (“!”) in the URL. Numeric

F14 Number_of_hashtag_in_url Representing the number of hashtags (“#”) in the URL. Numeric

F15 Number_of_percent_in_url Indicating the number of percent signs (%) in the URL. Numeric

F16 Domain_length Representing the length of the domain name in the URL. Numeric

F17 Number_of_dots_in_domain Representing the number of hyphens (“-”) in the domain name. Numeric

F18 Number_of_hyphens_in_domain It is a Boolean feature that denotes whether the domain name contains special characters
(e.g., !, “, #, $, %, &, and∼).

Numeric

F19 Having_special_characters_in_domain Having special characters (e.g.,!, “, #, $, %, &, and∼ ) in domain. Boolean

F20 Number_of_special_characters_in_domain Indicating the number of special characters in the domain name. Numeric

F21 Having_digits_in_domain It is a Boolean feature that denotes whether the domain name contains digits (e.g., 0–9). Boolean

F22 Number_of_digits_in_domain Representing the number of digits in the domain name. Numeric

F23 Having_repeated_digits_in_domain A Boolean feature that denotes whether the domain name has repeated digits (e.g., 223321). Boolean

F24 Number_of_subdomains Representing the number of subdomains in the URL. Numeric

F25 Having_dot_in_subdomain Denoting whether the subdomain contains a dot (“.”). Boolean

F26 Having_hyphen_in_subdomain It is a Boolean feature that denotes whether the subdomain contains a hyphen (“-”). Boolean

F27 Average_subdomain_length Representing the average length of the subdomains in the URL. Continuous

F28 Average_number_of_dots_in_subdomain Indicating the average number of dots (“.”) in the subdomains. Continuous

F29 Average_number_of_hyphens_in_subdomain Representing the average number of hyphens (“-”) in the subdomains. Continuous

F30 Having_special_characters_in_subdomain Having special characters (e.g., “, #, $, %, &, and∼) in the subdomain Boolean

F31 Number_of_special_characters_in_subdomain Number of special characters (e.g., “, #, $, %, &, and∼) in the subdomain Numeric

F32 Having_digits_in_subdomain It is a Boolean feature that denotes whether the subdomain contains special characters (e.g.,
“, #, $, %, &, and∼).

Boolean

F33 Number_of_digits_in_subdomain Representing the number of digits in the subdomain. Numeric

F34 Having_repeated_digits_in_subdomain It is a Boolean feature that denotes whether the subdomain has repeated digits (e.g.,
223342).

Boolean

F35 Having_path Denoting whether the URL has a path. Boolean

F36 Path_length Representing the length of the path in the URL Numeric

F37 Having_query It is a Boolean feature that denotes whether the URL has a query. Boolean

F38 Having_fragment It is a Boolean feature that denotes whether the URL has a fragment. Boolean

F39 Having_anchor It is a Boolean feature that denotes whether the URL has an anchor. Boolean

(Continued)
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TABLE 1 (Continued)

SN Feature Description Type

F40 Entropy_of_url Representing the Shannon entropy of the URL. It is a continuous feature calculated based
on the probabilities of each character in the URL.
entropy_of_url, E =

∑
Pi∗ Pi . Here, Pi = probability of each character in the URL, and

log2 is the binary logarithm.

Continuous

F41 Entropy_of_domain Representing the Shannon entropy of the domain. It is a continuous feature calculated
based on the probabilities of each character in the domain name.
entropy_of_domain,E =

∑
Pi∗ Pi . Here, Pi = probability of each character in the domain,

and log2 is the binary logarithm.

Continuous

FIGURE 4

Outliers in the dataset (targeting URL length).

illustrates the relative ranking of the 41 features according to their

importance scores. The results revealed that the average length

of subdomains, URL length, URL entropy, and domain entropy

were the most significant features in terms of their contributions to

phishing classification, while the presence of a path in the URL was

the least significant feature. After conductingmultiple experiments,

a subset of the top 34 features was selected as the most relevant

and informative to train SML models. The associations between

the selected features are visualized in Figure 6 using hierarchical

clustering (based on their mean values).

3.5 Model selection and evaluation metrics

To find out the optimal model, this study utilized 15

mostly cited SML algorithms arising from different ML families
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FIGURE 5

Feature importance (targeting URL length). It illustrates the relative ranking of the 41 features according to their importance scores.

(Bayesian, nearest-neighbors, decision trees, neural networks,

quadratic discriminant analysis, logistic regression, bagging,

boosting, random forests, and ensembles). Appendix B presents a

detailed list of the selected classifiers, and the corresponding grid-

search generated optimal hyperparameters that maximize accuracy.

As part of the experimental setup, we considered 80% of the dataset

for training the SML classifiers and 20% of the dataset for testing

the classifiers. In addition, a 5-fold cross-validation technique was

considered for obtaining stable performances from the classifiers.

To apply different machine learning classifiers, the Scikit-learn.org

package was considered (Pedregosa et al., 2011).

To assess the performance of the SML classifiers and determine

the best optimal model, this study employed seven evaluation

metrics (confusion matrix, accuracy, precession, recall, F1-score,

ROC curve, and precision-recall curve) for reporting the results

of SML prediction models, as suggested by the studies Sattari and

Montazer (2023) and Zieni et al. (2023). Initially, a confusion

matrix, a commonly used metric for evaluating an ML classifier’s

performance, is formulated for each of the classifiers. To visualize

and summarize a classifier’s correct and incorrect predictions, the

confusionmatrix utilizes four basic terminologies, namely, TP (true

positive), TN (true negative), FP (false positive), and FN (false

negative). Then, the accuracy scores of the classifiers are calculated

(using Equation 1) to see how well they perform.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

However, accuracy might be misleading in some circumstances

when employed with imbalanced datasets; thus, there are other

metrics to consider when evaluating the classifier’s performance.

Precession is a metric that defines the ratio between true-positive

predictions (TP) and the total number of positive predictions

(TP+FP) (see Equation 2). It refers to a classifier’s ability to not
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FIGURE 6

Association between the top features (based on their mean values).

categorize a negative sample as positive.

Precision (P) =
TP

TP + FP
(2)

This study also used recall to assess the proportion of TP cases

correctly identified by the classifiers as positive (or true positive).

As of Equation 3, recall is defined as the number of actual positives

(TP) over the number of true positives and the number of false

negatives (TP+FN).

Recall (R) =
TP

TP + FN
(3)

Then, to measure the classifiers’ output quality, this study

further utilized the F1-score, also known as the harmonic mean of

the precision and recall (see Equation 4).

F1− score (F1) = 2
P∗R

P + R
(4)

Finally, the diagnostic capability of the classifiers was evaluated

using both the receiver operating characteristic (ROC) curve and

the precision-recall curve, ensuring a comprehensive assessment.

While the ROC curve illustrates the trade-off between true-positive

rate and false-positive rate, the precision-recall curve offers a more
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TABLE 2 Distinguishing characteristics between phishing and legitimate

URLs.

Key features Phishing Legitimate

Average STD Average STD

URL length 71.36 36.41 46.28 13.21

Number of dots in URL 3.31 2.21 2.51 0.82

Number of digits in URL 7.45 12.75 1.50 2.98

Number of special
characters in URL

11.94 6.02 8.79 2.11

Number of slashes in
URL

5.29 2.24 4.32 1.11

Domain length 22.61 17.68 16.93 4.34

Number of digits in the
domain

7.45 12.75 1.50 2.98

Number of subdomains 2.19 1.80 2.06 0.55

Average subdomain
length

7.62 5.62 4.35 2.84

Number of digits in
subdomain

0.43 1.79 0.03 0.28

Entropy of URL 4.38 0.37 4.14 0.23

Entropy of the domain 3.49 0.42 3.29 0.30

nuanced view by focusing on the trade-off between precision and

recall. Typically, the ROC curve plots the true-positive rate on the

Y-axis against the false-positive rate on the X-axis. However, the

precision-recall curve emphasizes precision on the Y-axis against

recall on the X-axis. Both curves provide valuable insights into

the performance of the classifiers across various thresholds and are

essential tools for assessing model effectiveness.

3.6 Deployment

Based on the performances of the selected classifiers,

the best ML model was proposed for deployment into a

production environment to combat phishing attacks (e.g.,

Anti-Phishing Tool, Anti-phishing Browser Extension, and

Security Recommendation Tool).

4 Results

4.1 Key feature analysis

Table 2 provides a comprehensive analysis of the distinguishing

characteristics between phishing and legitimate URLs. The results

shed light on several significant findings. First, phishing URLs are

substantially longer (avg = 71.36) in comparison to legitimate

URLs (avg = 46.28). The considerable standard deviation

associated with phishing URLs (STD = 36.41) indicates a wide

variation in URL length, while legitimate URLs demonstrate

relatively lower variability (STD = 13.21). Second, phishing URLs

display a higher number of dots (avg. = 3.31) than legitimate

URLs (avg. = 2.51), indicating a discernible discrepancy between

the two categories in terms of dot usage. Third, the investigation

reveals that phishing URLs tend to include a significantly greater

number of digits (avg. = 7.45) than legitimate URLs (avg. = 1.50).

Additionally, phishing URLs exhibit a higher frequency of special

characters (avg. 11.94) than legitimate URLs (avg. 8.79). Moreover,

phishing URLs have a slightly higher average number of slashes

(avg = 5.29) than legitimate URLs (avg = 4.32). Phishing URLs

have a longer domain (avg = 22.61) than legitimate URLs (avg =

16.93). Interestingly, phishing URLs also manifest a significantly

higher average number of digits (avg = 7.45) in their domains

relative to legitimate URLs (avg = 1.50). Concerning the number

of subdomains, phishing URLs demonstrate a slightly higher

average count (avg = 2.19) than legitimate URLs (avg = 2.06).

However, phishing URLs have a longer subdomain (avg = 7.62)

than legitimate URLs (avg = 4.35). Additionally, phishing URLs

display a slightly higher average number of digits (avg=0.43) in

their subdomains in comparison to legitimate URLs (avg = 0.03).

In terms of the entropy (randomness or complexity) of the URLs,

phishing URLs and domains show a higher level of randomness

than legitimate URLs and domains.

4.2 Performance comparison of the 15
SML algorithms

Tables 3, 4 present a detailed assessment of the performance of

15 supervised machine learning classifiers in a binary classification

task focused on identifying phishing URLs. The evaluation

encompasses key performance metrics such as accuracy, 5-fold

cross-validation (CV) accuracy, precision, recall, F1 score, training

time, and testing time for each classifier. The primary objective was

to determine the most effective classifier for accurately detecting

phishing URLs.

The results reveal that the overall accuracy of the classifiers

varies between 62.8% and 97.52%. In a binary classification

scenario, RF and ETC exhibited superior performance when

compared to other classifiers. Specifically, RF with the Gini

criterion achieved an accuracy of 97.5%, 5-fold CV accuracy of

97.52%, precision of 97.50% (legitimate = 0.97; phishing = 0.98),

recall of 97.5% (legitimate = 0.98; phishing = 0.97), F1-score of

98% (legitimate = 0.98; phishing = 0.98), training time of 47.9 s,

and testing time of 2.9 s. ETC also demonstrated the second-highest

accuracy at 96.7%, with a 5-fold CV accuracy of 96.63%, precision

of 96.5% (legitimate = 0.96; phishing = 0.97), recall of 97%

(legitimate = 0.97; phishing = 0.98), F1-score of 97% (legitimate

= 0.97; phishing = 0.97), training time of 33.63 s, and testing

time of 3.05 s. Moreover, BAG with base estimator DT secured

the third-best performance with an accuracy of 96.00%, 5-fold CV

accuracy of 96.00%, precision of 96% (legitimate = 0.95; phishing

= 0.97), recall of 96% (legitimate = 0.97; phishing = 0.95), F1-

score of 96% (legitimate = 0.96; phishing = 0.96), training time

of 16.58 s, and testing time of 0.23 s. DT followed closely as the

fourth-best classifier with an accuracy of 95.4%, 5-fold CV accuracy

of 95.36%, precision of 96.5% (legitimate = 0.96; phishing = 0.97),

recall of 97.0% (legitimate = 0.98; phishing = 0.96), F1-score of

97% (legitimate = 0.97; phishing = 0.97), training time of 2.5 s,

and testing time of 0.03 s. Additionally, KNN, MLP, and HGBS
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TABLE 3 Confusion matrixes of 15 classifiers.

Classifier True positive (TP) False positive (FP) False negative (FN) True negative (TN)

Random forest (RF) 25,227 585 688 23,090

Decision tree (DT) 22,639 1,019 1,283 24,649

K-nearest neighbors (KNN) 21,518 1960 2,404 23,708

Gaussian naive Bayes (GNB) 12,908 2,002 11,014 23,666

MultinomialNB (MNB) 10,273 4,801 13,649 20,867

ComplementNB (CNB) 10,310 4,825 13,612 20,843

SGDClassifier (SGDC) 20,354 8,455 3,568 17,213

Bagging (BAG) 22,606 678 1,316 24,990

ExtraTreesClassifier (ETC) 22,878 619 1,044 25,049

Adaboost (AB) 19,157 3,113 4,765 22,555

GradientBoostingClassifier (GBC) 19,722 2,581 4,200 23,087

HistGradientBoostingClassifier (HGBS) 20,751 1,924 3,171 23,744

Quadratic Discriminant Analysis (QDA) 9,775 972 14,147 24,696

Logistic regression (LR) 17,207 3,365 6,715 22,303

Multi-layer perceptron (MLP) 20,922 1,985 3,000 23,683

classifiers exhibited commendable performance, achieving overall

accuracy scores ranging from 89.9% to 91.4%. Conversely, MNB

and CNB classifiers emerged as the least performing, recording

an accuracy score of 62.8%. The accompanying figure illustrates

the summarized analysis of ROC curves among the 15 classifiers

(see Figure 7). The ROC curve’s vertical axis represents the true-

positive rate, while the horizontal axis signifies the false-positive

rate. A higher AUC value of 0.97 for both RF and ETC suggests

superior performance compared to other classifiers, as depicted

in Figure 7. This trend is consistent in the precision-recall curve,

indicating high precision and recall for RF and ETC (see Figure 8).

The overall evaluation offers a comprehensive understanding of

the performance of the selected 15 machine learning classifiers in

phishing classification, highlighting variations in their effectiveness

for specific classes (both legitimate and phishing).

5 Discussion

Initially, this study revealed several significant distinguishing

characteristics between phishing and legitimate URLs, as presented

in Table 2. From this analysis, it is evident that phishing URLs

are significantly longer and exhibit more variation in length

than legitimate ones. They also contain more dots, digits, and

special characters, potentially aiming to appear more complex and

making them harder to detect at a glance. Additionally, the higher

number of dots in phishing URLs could be due to the inclusion

of subdomains or additional path components, which may be

used to mimic legitimate website structures or redirect users to

malicious pages. Interestingly, while the number of subdomains

is not drastically higher for phishing URLs, the subdomains

themselves are longer and contain more digits. Finally, the higher

entropy observed in phishing URLs suggests a greater level of

randomness or complexity, possibly resulting from automated

generation techniques used by cybercriminals to create a large

volume of unique phishing URLs quickly.

Along with revealing these distinguishing characteristics, this

study also examined the performance of different classifiers from

various machine learning families in classifying phishing URLs, as

shown in Tables 3, 4 and Figures 7, 8. High-performing classifiers

such as RF and ETC demonstrated exceptional performance, with

average precision (AP) and area under the curve (AUC) values both

reaching 0.95 and 0.97, respectively. This robustness is likely due

to their use of ensemble techniques that average multiple decision

trees, effectively reducing variance and capturing complex patterns.

DT classifiers also showed strong performance, with AP and AUC

values of 0.93 and 0.95, respectively, owing to their ability to capture

non-linear relationships and their interpretability.

Moderate-performing classifiers such as KNN, histogram-

based HGBC, GBC, and MLP showed reasonable performance,

with AP and AUC values ranging from 0.81 to 0.91. KNN

benefits from its non-parametric nature, capturing local data

structures without assuming specific distributions, although

its performance heavily depends on the choice of distance

metric and the value of k. Boosting methods such as GBC

and HGBC sequentially focus on hard-to-classify instances,

improving overall accuracy, while the ability of MLP to model

complex, non-linear relationships through neural networks leads

to high AP and AUC values, despite significant training time

requirements. In contrast, low-performing classifiers such as LR,

stochastic SGDC, and Naive Bayes variants (GNB, MNB, and

CNB) exhibited poorer performance. This might be due to

their underlying assumptions, sensitivity to data characteristics,

and limited ability to capture complex patterns inherent in

phishing URLs.

Our proposed approach, also compared with existing methods

as presented in Table 5, demonstrates superior performance

in several aspects. First, this study introduces the OFVA to
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TABLE 4 Classifiers’ performance in binary-class classification.

Classifiers Accuracy 5-fold CV
accuracy

Class Precision Recall F1 score Training
time (S)

Testing
time(S)

Support

Random forest (RF) 97.50% 97.52% 0 0.97 0.98 0.98 47.9 2.9 25,668

1 0.98 0.97 0.98 23,922

Decision tree (DT) 95.4% 95.36% 0 0.96 0.98 0.97 2.5 0.03 25,668

1 0.97 0.96 0.97 23,922

K-Nearest neighbors
(KNN)

91.2% 91.3% 0 0.95 0.96 0.96 0.09 73.1 25,668

1 0.96 0.95 0.95 23,922

Gaussian Naive Bayes
(GNB)

73.8% 73.73% 0 0.68 0.92 0.78 0.19 0.02 25,668

1 0.87 0.54 0.67 23,922

MultinomialNB (MNB) 62.8% 63.10% 0 0.61 0.81 0.69 0.14 0.03 25,668

1 0.68 0.43 0.53 23,922

ComplementNB (CNB) 62.8% 63.12% 0 0.61 0.81 0.69 0.14 0.02 25,668

1 0.68 0.43 0.53 23,922

SGDClassifier (SGDC) 75.8% 77.33% 0 0.83 0.67 0.74 17.16 0.02 25,668

1 0.71 0.85 0.77 23,922

Bagging (BAG) 96.00% 96.00% 0 0.95 0.97 0.96 16.58 0.23 25,668

1 0.97 0.95 0.96 23,922

ExtraTreesClassifier
(ETC)

96.7% 96.63% 0 0.96 0.98 0.97 33.63 3.05 25,668

1 0.97 0.96 0.97 23,922

Adaboost (AB) 84.1% 84.52% 0 0.83 0.88 0.85 13.4 0.4 25,668

1 0.86 0.80 0.83 23,922

GradientBoostingClassifier
(GBC)

86.3% 86.5% 0 0.84 0.90 0.87 55.98 0.11 25,668

1 0.88 0.82 0.85 23,922

HistGradientBoosting
Classifier (HGBC)

89.7% 89.8% 0 0.88 0.93 0.90 10.61 0.49 25,668

1 0.92 0.87 0.89 23,922

Quadratic Discriminant
Analysis (QDA)

69.5% 72.52% 0 0.64 0.96 0.77 0.83 0.09 25,668

1 0.91 0.41 0.56 23,922

Logistic Regression (LR) 79.7% 80.00% 0 0.77 0.87 0.82 6.34 0.01 25,668

1 0.84 0.72 0.77 23,922

Multi-layer Perceptron
(MLP)

89.9% 89.71% 0 0.89 0.92 0.91 852.8 0.54 25,668

1 0.91 0.88 0.89 23,922

extract 41 optimal intra-URL features. Among them, 10 novel

features are entirely new, exhibiting a high distinguishing

ability in classifying phishing URLs compared to existing

approaches (see Figure 3). These novel features not only enhance

the accuracy of phishing detection but also contribute to a

deeper understanding of the underlying characteristics that

can be leveraged to identify phishing attacks (see Table 2).

Second, this study employs a larger, more up-to-date dataset,

consisting of 274,446 instances. This extensive dataset enables

a comprehensive analysis and evaluation of the proposed

approach. However, most of the previous studies considered

small datasets (see Table 5). Additionally, the study incorporates

a thorough data preprocessing step, performs hyperparameter

tuning, and utilizes 15 supervised machine learning (SML)
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FIGURE 7

ROC curve analysis of 15 classifiers.

FIGURE 8

Precision-recall curves of 15 classifiers.

algorithms derived from various machine learning families. This

ensures a diverse range of models for robust performance

assessment and comparison (see Table 4). Lastly, this study

introduces a lightweight anti-phishing model (random forest)

capable of detecting phishing attacks with 97.52% accuracy. This

model focuses on specific intra-URL features, offering a fast,

efficient, and practical solution for combating phishing attempts.

The lightweight nature of the model implies that it can be easily

implemented in real-world scenarios, providing a valuable tool for

organizations and individuals seeking enhanced protection against

phishing threats.

6 Study limitations and future
research directions

While this study presents several strengths, it is important
to acknowledge its inherent limitations. One such limitation
pertains to the evaluation metrics employed. Although a variety

of evaluation metrics (confusion matrix, accuracy, precession,

recall, F1-score, and ROC curve) were utilized in this study,

it falls short of explicitly addressing the potential constraints

and trade-offs associated with these metrics. It is crucial to

recognize that different metrics may prioritize distinct facets
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TABLE 5 Comparison of the proposed approach with existing approaches.

References Approach Proposed solution Key characteristics Advantages and disadvantages

Dutta (2021) ML-based This study proposed an ML-based framework to predict
phishing URLs without visiting the webpage or utilizing any
third-party services.

Data volume: 969241
Algorithms used: NB, LR, SVM, KNN, MLP, J48, AB, and RF
No. of features: 100
Novel features: 10
Preprocessing: Yes Hyperparameter tuning: No
K-fold cross-validation: No
Accuracy (avg.): 93.87 (benchmark datasets)

The proposed framework demonstrates computational efficiency
and attains superior accuracy, yet it lacks both hyperparameter
tuning and cross-validation.

Aljofey et al.
(2022)

ML-based This study proposed a solution to detect phishing websites
based on a new set of features.

Data volume: 60252
Algorithms used: XGBoost, RF, LR, NB, Ensemble, and AB
No. of features: 15
Novel features: 8
Preprocessing: Yes
Hyperparameter tuning: No
K-fold cross-validation: No
Accuracy: 96.76%

The proposed solution demonstrated improved accuracy and a
low false-positive rate. Nevertheless, it lacks both hyperparameter
tuning and cross-validation, raising concerns about its
generalizability.

Zouina and
Outtaj (2017)

ML-based This study proposed a lightweight phishing detection
system using SML algorithms and a similarity index.

Data volume: 2000
Algorithms used: NB, SVM, and PNN
No. of features: 6
Novel features: 0
Preprocessing: Yes
Hyperparameter tuning: No
K-fold cross-validation: No
Accuracy: 95.80%

The proposed system is relatively lightweight, but its performance
may be limited due to the small dataset. Furthermore, it lacks
both hyperparameter tuning and cross-validation, which raises
concerns about its ability to generalize for widespread use.

Chiew et al.
(2019)

ML-based This study proposed an ML-based hybrid ensemble feature
selection framework to detect phishing attacks.

Data volume: 5000
Algorithms used: SVM, NB, C4.5, JRip, PART
No. of features: 48
Novel features: 0
Preprocessing: Yes
Hyperparameter Tuning: No
K-fold cross-validation: No
Accuracy: 94.6%

The approach demonstrates innovation, and the dataset is small.
Additionally, the absence of hyperparameter tuning and
cross-validation raises doubts about its practical applicability.

Dutta (2021) ML-based This study proposed an ML-based approach using
(RNN-LSTM) to detect phishing attacks.

Data volume: 13700
Algorithms used: RNN (LSTM)
No. of features: Not mentioned
Novel features: Not mentioned
Preprocessing: Yes
Hyperparameter Tuning: No
K-fold cross-validation: No
Accuracy: 97.4%

The proposed approach achieved high accuracy;
however, several important metrics are missing such as
hyperparameter tuning and cross-validation.

Alsariera et al.
(2021)

Meta-learners-
based

This study proposed three meta-learner models
(ForestPA-PWDM, Bagged-ForestPAPWDM, and
Adab-ForestPA-PWDM) based on Forest Penalizing
Attributes (ForestPA) algorithm to detect phishing websites

Data volume: 11055
Algorithms used: ForestPA,
Bagging and Boosting. No. of features: 30
Novel features: 0
Preprocessing: Not mentioned
Hyperparameter Tuning: No
K-fold cross-validation: Yes
Accuracy: 96.26%

This study has introduced a novel method for detecting phishing
websites, which has demonstrated a high level of accuracy.
Nonetheless, the limited size of the dataset poses a challenge for
achieving generalization.

Nagaraj et al.
(2018)

ML-based This study proposed an ensemble machine
learning model for classifying phishing websites.

Data volume: 10,068
Algorithms used: Ensemble, RF, and NN
No. of features: 30
Novel features: Not mentioned

This study achieved good accuracy by employing an ensemble
machine-learning model. Nevertheless, the limited size of the
dataset poses a challenge when it comes to generalizing the
model’s performance.
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TABLE 5 (Continued)

References Approach Proposed solution Key characteristics Advantages and disadvantages

Preprocessing: Yes
Hyperparameter Tuning: No
K-fold cross-validation: Yes
Accuracy: 93.41

Balogun et al.
(2021)

Meta-learner
based

This study proposed a Functional Tree (FT)-based
meta-learning model for detecting phishing websites.

Data volume: 22408 (total)
Algorithms used: Baseline: NB, SMO, SVM, and DTs;
Ensemble: Bagging, AB,
Rotation forest No. of features: 30, 48, and 10 (for datasets 1, 2, and
3 respectively)
Novel features: 0
Preprocessing: Yes
Hyperparameter Tuning: No
K-fold cross-validation: Yes
Accuracy: 98.51% (highest)

The proposed approach demonstrated commendable accuracy on
one dataset. Nevertheless, in certain cases, the accuracy decreased
significantly, reaching as low as 87.73%, which raises concerns
about the stability and trustworthiness of the approach for
practical applications.

Mourtaji et al.
(2021)

Hybrid
Rule-based

This study proposed a hybrid rule-based solution for
phishing detection using CNN

Data Volume: 40000
Algorithms used: CART, SVM, KNN, CNN, and MLP
No. of features: 37
Novel features: Not mentioned
Preprocessing: Yes
Hyperparameter Tuning: Yes
K-fold cross-validation: Yes
Accuracy (avg.): 93.47 (highest= 97.945)

The study found deep learning to outperform SML with good
accuracy, but the dataset is too limited for a deep learning model.
In addition, increasing the dataset could raise concerns about
computational efficiency.

Orunsolu et al.
(2022)

ML-based This study proposed an ML-based predictive model for
phishing detection.

Data volume: 5041
Algorithms used: SVM, NB
No. of features: 37
Novel features: Not mentioned
Preprocessing: Yes
Hyperparameter Tuning: No
K-fold cross-validation: Yes
Accuracy: 99.96%

The study attained higher accuracy compared to previous
research. Yet the study’s small dataset raises concerns regarding
its generalizability for broader applications.

Alsariera et al.
(2020)

Meta-learner
based

This study proposed four AI-based meta-learners to predict
phishing websites.

Data volume: 11055
Algorithms used: ABET, BET, RoFBET, and LBET
No. of features: 30
Novel features: 0
Preprocessing: Yes
Hyperparameter Tuning: No
K-fold cross-validation: Yes
Accuracy: >97%

The authors claimed that the proposed models exhibited superior
performance compared to existing ML-based models.
Nonetheless, the limited dataset they utilized raises concerns
regarding the applicability of these models in real-life scenarios.

Proposed
Approach

ML-based In this study, we have proposed a more robust, effective,
sophisticated, and reliable solution for phishing detection
through the optimal feature vectorization algorithm
(OFVA) and supervised machine learning (SML)
algorithms.

Data Volume: 274446
Algorithms used: Feature
extraction: OFVA;
classification: RF, DT, KNN, GNB, MNB, CNB, SGDC, BAG, ETC, AB,
GBC, HGBS, QDA, LR, and MLP
No. of features: 41
Novel features: 10
Preprocessing: Yes (data cleansing, curation, feature extraction, and
feature selection)
Hyperparameter Tuning: Yes
K-fold cross-validation: Yes
Accuracy: 97.52%

The approach presented in this study surpasses previous studies
on several fronts. For instance, the study utilizes a previously
unused, large dataset. Furthermore, it employs an organized
preprocessing pipeline. To enhance accuracy and generalizability,
hyperparameter tuning and cross-validation were diligently
conducted.
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of performance, underscoring the necessity of comprehensively

considering the limitations and ramifications tied to the reliance

on specific metrics. Furthermore, this study primarily focused on

supervised machine learning algorithms, potentially overlooking

the benefits that could arise from the incorporation of deep

learning techniques for enhanced outcomes. Regrettably, due

to constraints in hardware infrastructure, the exploration of

deep learning was omitted. Lastly, in pursuit of a more

simple, fast, and responsive model, certain content-related

features such as web images or logos, DOM (document

object model), as well as HTML and CSS structural elements,

were excluded. While this design choice aimed to optimize

speed and responsiveness, it should be acknowledged that the

inclusion of these features could conceivably lead to heightened

accuracy. To this end, future research could address these

limitations by exploring the use of deep learning techniques,

investigating the impact of content-related features, developing

new evaluation metrics, and applying the findings to other

types of data and tasks. Additionally, future research could

investigate the impact of different training data sets, develop

ensemble methods, and explore the use of explainable AI

(XAI) techniques.

7 Conclusions

Currently, phishing has taken a terrifying shape globally and

is considered the door for all kinds of malware and ransomware

(Basit et al., 2022). Unlike other forms of cybercrime, where

attackers’ motives are known and victim types are consistent,

phishers are likely to have varying goals, motivations, and

victim types. Consequently, phishing detection has become a

major challenge over time, resulting in an exponential growth

of phishing attacks over the last few years. To pull the reins

off the present growing trend of phishing attacks, this study

employed an ML-based, real-world data-driven approach

to detect phishing sites based on URL-based features. The

study utilized a large dataset comprising 2,74,446 raw URLs,

consisting of both phishing and legitimate URLs, and extracted

41 optimal intra-URL features using the OFVA. Among these

features, 10 novel ones were introduced, exhibiting high

distinguishing ability in classifying phishing URLs. Through

a comprehensive evaluation and comparison of 15 SML algorithms

from various machine learning families, our experiments suggested

that the RF classifier outperformed the others, achieving an

accuracy rate of 97.52% with high precision and an AUC

value of 98%. We expect that the proposed lightweight anti-

phishing model, specifically focusing on intra-URL features, will

provide a fast, efficient, and practical solution for combating

phishing attempts.
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