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Accurate pain detection is a critical challenge in healthcare, where 
communication and interpretation of pain often limit traditional subjective 
assessments. The current situation is characterized by the need for more 
objective and reliable methods to assess pain, especially in patients who cannot 
effectively communicate their experiences, such as young children or critically ill 
individuals. Despite technological advances, the effective integration of artificial 
intelligence tools for multifaceted and accurate pain detection continues to 
present significant challenges. Our proposal addresses this problem through an 
interdisciplinary approach, developing a hybrid model that combines the analysis 
of facial gestures and paralanguage using artificial intelligence techniques. 
This model contributes significantly to the field, allowing for more objective, 
accurate, and sensitive pain detection to individual variations. The results 
obtained have been notable, with our model achieving a precision of 92%, a 
recall of 90%, and a specificity of 95%, demonstrating evident efficiency over 
conventional methodologies. The clinical implications of this model include the 
possibility of significantly improving pain assessment in various medical settings, 
allowing for faster and more accurate interventions, thereby improving patients’ 
quality of life.
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1 Introduction

Accurate pain recognition is a critical aspect of healthcare and is vital in diagnosing, 
treating, and monitoring patients (Höfel et al., 2021). Pain, a complex sensory and emotional 
experience, presents significant challenges in its assessment due to its inherently subjective 
nature. Traditionally, pain assessment has been based on self-reports, which, while 
indispensable, face limitations in subjectivity and feasibility, especially in non-communicative 
populations such as young children and critically ill patients (Béra-Louville et al., 2019).

With the advancement of artificial intelligence (AI) technology, new possibilities for 
objective pain detection are emerging. The ability of AI to analyze large volumes of data and 
recognize complex patterns offers an opportunity to advance pain assessment (Yue et al., 
2024). Recent studies have explored using facial gestures and paralanguage as objective 
indicators of pain, showing promising results. However, effective integration of these various 
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modalities for accurate pain detection remains an active and 
challenging area of research. For example, Chu et al. (2017) presented 
a method based on physiological signals to measure pain intensity, 
highlighting the importance of integrating multiple data sources to 
improve pain assessment precision.

In this study, we address the challenge of pain detection using a 
multimodal approach, integrating facial gestures and paralanguage 
analysis through AI techniques. This integration uses information in 
different modalities for a comprehensive and accurate pain assessment. 
By implementing sophisticated algorithms and multimodal data 
analysis, our model aims to overcome the barriers of traditional 
methods, providing a more robust and reliable solution for pain 
detection (McGrath et al., 2019). The literature review indicates that 
although there is a considerable amount of work on pain recognition 
using AI technologies, most studies have focused on single modalities, 
and few have explored the synergy between facial gestures and pain 
integration—paralanguage (Luangrath et  al., 2023). Our research 
contributes to this area by demonstrating how the combination of 
these modalities can significantly improve the precision of pain 
detection, addressing the complexities associated with its 
multifactorial and subjective nature (Shi et al., 2023).

Methodologically, we took a systematic approach to develop and 
validate our pain detection model. Feature selection, algorithm 
calibration, and detailed data analysis formed the basis of our research 
strategy, culminating in a system that is not only innovative in its 
design but also effective in its practical application (Sandeep and 
Kumar, 2024). The results obtained are impressive, and the 
effectiveness of our model has reached a precision of 92%, a recall of 
90%, and a specificity of 95%. For this reason, our pain detection 
system stands out significantly compared to conventional 
methodologies. Furthermore, with an area under the curve (AUC) of 
93% and an F1 score of 91%, it sets a new standard in the field, 
demonstrating an exceptional balance between precision and the 
ability to recover relevant information. These results validate our 
interdisciplinary approach and methodology and illustrate the 
immense potential of AI-based solutions to revolutionize pain 
assessment in diverse clinical and research settings. The superiority of 
our model over traditional alternatives points to a new era in which 
AI technology can offer a more nuanced, accurate, and adaptive 
interpretation of pain, promoting a significant change in the quality 
and effectiveness of pain treatment and management.

2 Literature review

Pain detection using AI technologies has become a critical field of 
study at the intersection of medicine and informatics. This 
advancement promises to improve patients’ quality of life but also 
represents a significant challenge due to pain’s subjective and 
multifaceted nature (Quintas et  al., 2023). The literature review 
identifies various methods and approaches instrumental in improving 
pain detection.

Initial work in this field focused on analyzing facial expressions, 
where machine learning techniques such as support vector machines 
(SVMs) were widely used to classify facial images reflecting pain. 
Nagireddi Meng et  al. (2022) and their studies highlighted the 
importance of specific visual features, such as forehead wrinkles and 
frowning, as key indicators of pain. With the advent of deep learning, 

the trend shifted towards using convolutional neural networks (CNN). 
Research such as Hu et al. (2019) demonstrated that CNNs outperform 
traditional techniques in identifying complex patterns in facial 
expressions, providing more detailed and accurate analysis. However, 
these methodologies are mainly limited to visual assessment without 
considering other dimensions of pain, such as paralanguage or 
physiological signals.

Integrating multiple data sources was presented as a solution in 
more recent studies. For example, Borna et al. (2023) explored hybrid 
systems that combine visual, auditory, and physiological data for more 
holistic pain detection. These hybrid systems allow for a more 
complete assessment, capturing the complexity and variability of 
different individuals’ pain expressions. These evolutions inspire our 
model and take it further by effectively integrating facial gesture 
analysis with paralanguage, using advanced artificial intelligence 
techniques to decode and interpret these complex pain signals (De 
Sario et al., 2023). Unlike unidimensional approaches, our model is 
based on a deep understanding of the multidimensional nature of 
pain, allowing for a more precise and sensitive analysis of 
pain manifestations.

Our work aligns with the emerging need in the medical 
community for more accurate and adaptable pain detection tools. As 
the field advances, it is crucial to improve the technical precision of 
these systems and their ability to generalize and adapt to a wide range 
of contexts and populations.

3 Materials and methods

3.1 Study participants

The participants in this study were selected following strict 
inclusion and exclusion criteria to ensure the validity and ethics of the 
research. Inclusion criteria were adults between 20 and 60 years old, 
able to give informed consent and communicate effectively about their 
pain experiences. Individuals under 20 and over 60 were excluded, as 
were those with cognitive or physical disabilities that could affect their 
ability to participate in the study or fully understand the informed 
consent. Individuals with medical conditions that could interfere with 
pain assessment, such as neurological or psychiatric disorders, were 
also excluded.

To improve the generalizability of the results, the study population 
was equally composed in terms of gender, including a wide range of 
ethnicities and socioeconomic backgrounds. Participants represented 
a spectrum of common medical conditions associated with chronic 
and acute pain, excluding those conditions that could bias pain 
perception due to specific neurological or psychiatric factors.

The study’s objective was to recruit 200 participants, seeking an 
equitable distribution in age and gender between 20 and 60 years old. 
Using a multi-channel recruiting strategy, ads were disseminated 
across a university’s digital platforms, including professional social 
networks and online forums, to reach a broad spectrum of the 
population. Interested parties were directed to a website where they 
completed a preliminary questionnaire to assess their eligibility 
according to previously defined inclusion and exclusion criteria. The 
objective was to obtain a diverse sample, with 50% of participants of 
each gender and an equal representation of different age groups 
(20–30, 31–40, 41–50, and 51–60 years).

https://doi.org/10.3389/fcomp.2024.1424935
https://www.frontiersin.org/computer-science
https://www.frontiersin.org


Gutierrez et al. 10.3389/fcomp.2024.1424935

Frontiers in Computer Science 03 frontiersin.org

After initial screening, 250 candidates were deemed eligible. These 
individuals were provided with detailed information about the study 
through virtual information sessions, where the importance of 
informed consent was emphasized. Finally, the participation of 200 
people who accepted informed consent was confirmed, ensuring they 
fully understood their rights and responsibilities within the study.

This recruitment allowed us to obtain a representative and diverse 
sample in demographic terms. It also guaranteed adherence to ethical 
principles, emphasizing voluntariness and informed consent of 
the participants.

3.2 Experimental design

The study was structured as a noninvasive observation in the 
participants’ workplace. AI models were used to analyze facial gestures 
and paralanguage related to pain. The duration of the study was two 
weeks, allowing for data collection in a representative range of 
everyday work situations.

The start-up phase lasts two days. During this time, participants 
are informed about using artificial intelligence technologies and how 
the monitoring will work. High-definition cameras and ambient 
microphones are installed in the workplaces, which do not interfere 
with the participant’s daily activities and guarantee their privacy 
and consent.

In the 10-business-day monitoring phase, video and audio data 
were continuously collected. Video cameras were used to analyze 
facial gestures, while microphones captured paralanguage, including 
tone of voice, rhythm, and pauses, which could indicate experiences 
of pain or discomfort. No physical sensors were used on the 
participants, avoiding any physical intrusion.

The monitoring was carried out in the participants’ usual work 
environments to guarantee the naturalness of the data collected. The 
cameras and microphones used were discreet to minimize the feeling 
of being observed and did not alter the participants’ natural behavior. 
High-definition cameras are strategically placed to capture facial 
expressions without causing distractions or disturbances. Ambient 
microphones record natural communications and paralanguage, 
ensuring reliable data collection in the workplace context.

The choice of both image and sound capture devices is crucial to 
ensure the precision and effectiveness of the analysis of facial gestures 
and paralanguage (Ayuningsih et al., 2022; Azzahra et al., 2022). As 

shown in Table 1, a detailed comparison of the technical characteristics 
of various devices was performed to make an informed decision about 
the most suitable ones for our purpose.

The Intel RealSense D435i depth camera was selected for its 
advanced 3D capture capabilities and wide depth range (0.2 m to 
10 m). It is ideal for analyzing facial gestures and microexpressions in 
a work environment. With a resolution of 1920×1080 and a frequency 
of up to 90 fps, this camera offers the clarity and detail necessary for 
our study, surpassing options such as the Logitech Brio 4 K Webcam, 
which, despite its high resolution and RightLight 3 technology with 
HDR, does not it do not provide the 3D capture necessary for our 
detailed analysis of facial gestures.

Audio-wise, the Rode NT-USB was the microphone of choice due 
to its cardioid polar pattern that picks up sounds from the front, which 
is vital for analyzing paralanguage in a work environment. This studio 
microphone offers a frequency range of 20 Hz to 20 kHz. It comes 
equipped with accessories such as a pop guard and tabletop tripod, 
helping to minimize background noise and capture paralanguage with 
high fidelity. Other options considered, such as the Shure MV88+ video 
kit and the Audio-Technical AT2020USB+, while providing comparable 
sound quality, offered a different combination of features and 
accessories that suited the specific needs of our studio environment. 
This selection of devices ensures that our study can accurately capture 
and analyze paralinguistic cues and facial gestures, providing reliable 
and detailed data for pain analysis in work environments.

3.3 Data collection

For the training and validation of our model, we used a data set 
composed of 200 participants, selected following strict inclusion and 
exclusion criteria to ensure the validity and ethics of the research. 
Participants included adults between the ages of 20 and 60 who could 
provide informed consent and communicate effectively about their 
pain experiences. Individuals younger than 20 and older than 60 were 
excluded, as were those with cognitive or physical disabilities that 
could affect their ability to participate in the study or fully understand 
the informed consent. Individuals with medical conditions that could 
interfere with pain assessment, such as neurological or psychiatric 
disorders, were also excluded.

To improve the generalizability of the results, the study population 
was equally composed in terms of gender, including a wide range of 

TABLE 1 Device selection: comparison of cameras and microphones for multimodal pain detection.

Device Model Technical characteristics Rationale for selection

Camera Intel real sense depth 

camera D435i

Resolution: 1920×1080 – frequency: up to 90 fps – field of view: 86° × 57° 

– depth range: 0.2 m to 10 m

Capture 3D images and their depth of field.

Camera Logitech brio 4 K 

webcam

Resolution: up to 4 K (4096×2160) – frequency: up to 90 fps in Full HD 

– field of view: up to 90 degrees – RightLight 3 technology with HDR

High resolution, good performance in variable 

lighting conditions, and lack of 3D capture.

Microphone Rode NT-USB Cardioid polar pattern – frequency range: 20 Hz – 20 kHz – includes pop 

shield, tabletop tripod, mounting ring, and case

Studio quality and cardioid polar pattern that 

captures front sound clearly, minimizing 

background noise.

Microphone Shure MV88+ video 

kit

Adjustable polar pattern and DSP – lightning and USB-C connector – 

stereo or mono recording – includes mobile recording kit

Versatile and portable, it may be less effective at 

capturing more controlled, high-quality sound.

Microphone Audio-technica 

AT2020USB+

Cardioid polar pattern – frequency range: 20 Hz – 20 kHz – mix and 

volume control – includes tripod and carrying case.

It has excellent audio quality, but the Rode NT-USB 

was preferred for its accessories and adaptability.
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ethnicities and socioeconomic backgrounds. Participants represented 
a spectrum of common medical conditions associated with chronic 
and acute pain, excluding those conditions that could bias pain 
perception due to specific neurological or psychiatric factors. The 
study’s objective was to recruit 200 participants, seeking an equitable 
distribution in age and gender between 20 and 60 years old. Using a 
multi-channel recruiting strategy, ads were disseminated across a 
university’s digital platforms, including professional social networks 
and online forums, to reach a broad spectrum of the population. 
Interested parties completed a preliminary questionnaire on a website 
to assess their eligibility according to previously defined inclusion and 
exclusion criteria. The participation of 200 people who accepted 
informed consent was confirmed, ensuring they fully understood their 
rights and responsibilities within the study. This recruitment allowed 
us to obtain a representative and diverse sample in demographic terms 
and guaranteed adherence to ethical principles, emphasizing the 
voluntariness and informed consent of the participants.

The study was structured as a non-invasive observation in the 
participants’ workplace. AI models were used to analyze facial gestures 
and paralanguage related to pain (Oualla et al., 2021). The duration of 
the study was two weeks, allowing data collection in a representative 
range of everyday work situations. The start-up phase lasted two days, 
during which participants were briefed on using AI technologies and 
how monitoring would work (Chen et al., 2024). Microphones were 
placed at a constant distance of approximately 50 cm from the 
participants, facing (Chen et al., 2023). High-definition cameras and 
ambient microphones were installed in the workplaces, ensuring the 
privacy and consent of the participants.

During the 10-business-day monitoring phase, video and audio 
data were continuously collected. Video cameras were used to analyze 
facial gestures, while microphones captured paralanguage, including 
tone of voice, rhythm, and pauses, which could indicate experiences 
of pain or discomfort. No physical sensors were used on the 
participants, avoiding any physical intrusion. Monitoring was carried 
out in the participants’ usual work environments to ensure the 
naturalness of the data collected. The cameras and microphones used 
were discreet to minimize the feeling of being observed and did not 
alter the natural behavior of the participants. High-definition cameras 
were strategically placed to capture facial expressions without causing 
distractions or disturbances. Ambient microphones recorded natural 
communications and paralanguage, ensuring reliable data collection 
in the workplace context.

The choice of image and sound capture devices was crucial to 
ensure the accuracy and effectiveness of facial gestures and 
paralanguage analysis. The Intel RealSense D435i depth camera was 
used for its advanced 3D capture capabilities and wide depth range 
(0.2 m to 10 m). With a resolution of 1920×1080 and a frequency of up 
to 90 fps, this camera offers the clarity and detail necessary for our 
study, surpassing options such as the Logitech Brio 4 K Webcam, 
which, despite its high resolution and Right Light 3 technology with 
HDR, does not provide the 3D capture needed for our detailed facial 
gesture analysis.

Regarding audio, the Rode NT-USB microphone was chosen for 
its cardioid polar pattern that picks up sounds from the front, which 
is vital for analyzing paralanguage in a work environment. This studio 
microphone offers a frequency range of 20 Hz to 20 kHz. It comes 
equipped with accessories such as a pop guard and tabletop tripod, 
helping to minimize background noise and capture paralanguage with 

high fidelity. Other options considered, such as the Shure MV88+ 
video kit and the Audio-Technica AT2020USB+, while providing 
comparable sound quality, offered a combination of features and 
accessories that better suited the specific needs of our 
studio environment.

The data collected is calculated as follows: Although each 
participant was monitored for ten days, not all recorded data was 
valid. Participants were under observation at their workplaces during 
an average workday of approximately 8 h. However, to respect 
participants’ privacy and consent, only selected intermittent periods 
where it was anticipated that participants might experience or discuss 
pain were recorded. Additionally, times when participants were not 
present or were out of range of cameras and microphones were 
excluded. This explains the apparent discrepancy, resulting in 
approximately 200 h of valuable data.

Annotation of pain-related data was performed by a team of pain 
and behavioral experts, who reviewed the collected videos and audio 
to identify specific times when participants showed signs of pain. 
These experts used a combination of participants’ self-reports, direct 
observations of facial gestures, and paralanguage analysis to label the 
data. The ratio of instances of pain versus no pain in the data was 
approximately 1:3, reflecting the fact that participants were generally 
healthy and only experienced pain occasionally. This data imbalance 
was managed during model training using data balancing techniques 
and class weight adjustments to ensure that the model could learn to 
distinguish between the two conditions effectively.

In addition to the collected data set, we used the BioVid Heat Pain 
Database dataset (Benavent-Lledo et  al., 2023) as an additional 
reference for training and validation. This dataset is widely used in pain 
research and provides high-quality annotated data on the response to 
heat-induced pain in human subjects. Including this dataset has 
allowed us to increase the robustness and generalization of our model.

3.4 Data preprocessing

The study generated approximately 200 h of video and audio, 
corresponding to two weeks of monitoring 200 participants, assuming 
an 8-h workday. Each hour of video was meticulously processed to 
identify and extract relevant segments, resulting in an average of 
30 min of adequate data per participant for detailed analysis. Table 2 
describes the type of data collected, the anomalies found during 
preprocessing, and the techniques applied to mitigate these problems.

Video preprocessing for facial gestures included several critical 
stages. Lighting normalization was performed by adjusting the 
brightness and contrast of the videos to ensure that facial expressions 
were visible under different lighting conditions. Filtering of obstructed 
segments was implemented, where segments where the view of the face 
was obstructed were discarded, using detection algorithms to identify 
these anomalies automatically. Additionally, image stabilization was 
applied to videos with motion artifacts due to the camera or the subject 
to ensure the consistency and quality of the facial gesture data (Liao 
et al., 2023).

Specific measures were taken to ensure sound quality during 
audio preprocessing for paralanguage. Loudness normalization was 
done by adjusting audio levels to maintain consistency, ensuring all 
speech segments were audible and comparable. Noise filtering 
removed unwanted background sounds, improving the recorded 
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audio quality. Finally, speech clarity enhancement was employed using 
specialized software, which clarified and highlighted vocal 
characteristics important for detailed paralanguage analysis.

Synchronization of temporal data from different sources, especially 
facial gestures and paralanguage, is fundamental to data processing. A 
multifaceted approach aligned these data, ensuring temporal 
consistency and accurate correlation between modalities. Initially, a 
unified time stamping system was implemented during data capture, 
ensuring that each piece of information, whether video or audio, had 
an accurate time stamp. This practice facilitated the exact alignment of 
the video segments with the corresponding audio recordings. For 
effective synchronization, software capable of processing and adjusting 
the data streams to align them temporally was used. This software 
analyzed the timestamps and signals of both data types, correcting 
phase shifts and ensuring millimeter synchronization.

In cases where automatic synchronization faced challenges, a 
manual check by the researchers was performed to confirm data 
alignment. This meticulous process ensured that facial gestures and 
paralinguistic sounds associated with pain expressions were correctly 
matched, providing a solid foundation for integrated analysis in 
subsequent stages of the research.

3.5 Analysis of data

3.5.1 Feature extraction techniques
Feature extraction is essential in data processing to transform raw 

video and audio into an analyzable format for AI algorithms 
(Adusumalli et al., 2021). Using the OpenCV library in Python, facial 
key point detection algorithms and computer vision techniques were 
used to identify and quantify facial gestures. Figure  1 presents 
characteristics such as the position and movement of specific points 
on the face (eyes, mouth, eyebrows), and metrics such as the amplitude 
and speed of the gestures were calculated.

As for the audio, signal processing techniques were applied to 
extract paralinguistic features using the Python Librosa library. 
Aspects such as tone, intensity, rhythm, and pauses were analyzed. The 
extracted features included fundamental frequency (pitch), sound 
intensity, duration of words and silences, and speaking rate.

3.5.2 Modeling and algorithms
In this study, we developed a hybrid model that combines facial 

gesture analysis and paralanguage for pain detection using advanced 
deep learning techniques. We  use CNN to analyze facial image 
sequences. The architecture of our CNN consists of four convolutional 
layers followed by max pooling layers. Convolutional layers use 3×3 

filters with ReLU activation functions to capture important spatial 
features of facial images (Huang et al., 2019). The hyperparameter 
settings included a learning rate of 0.001, a batch size of 32, and 100 
training epochs. The convolutional layers had 32, 64, 128, and 256 
filters. We use the Categorical Cross Entropy loss function and the 
Adam optimizer (Arashloo et al., 2017). For image preprocessing, 
lighting normalization, and image stabilization techniques were 
applied, resizing the images to 224×224 pixels and using data 
augmentation such as rotation, brightness change, and horizontal flip 
(Mekruksavanich and Jitpattanakul, 2021; Nguyen et al., 2021).

We implemented Recurrent Neural Networks (RNN) with Long 
Short-Term Memory (LSTM) units due to their ability to capture 
temporal dependencies in audio data sequences. The hyperparameter 
settings included a learning rate of 0.01, a batch size of 16, and 50 
training epochs. The LSTM layers were configured with 100 units in two 
recurrent layers, using the Mean Squared Error loss function and the 
RMSprop optimizer. The audio data was processed using the Librosa 
library to extract features such as fundamental frequency (pitch), sound 
intensity, rhythm, and pauses. Audio signals were sampled at 16 kHz, 
and noise-filtering techniques were applied to improve data clarity.

For data integration and synchronization, we  implemented a 
time-synchronization system to align video and audio data, using 
timestamps to ensure accurate correlation between modalities. Facial 
feature extraction was performed with OpenCV and MediaPipe, 
detecting facial vital points like eyes, mouth, and eyebrows and 
calculating metrics such as gesture amplitude and speed. For the 
audio, feature extraction was done with Librosa, analyzing the speech’s 
tone, intensity, rhythm, and pauses.

Each video frame is processed independently through the CNN to 
extract relevant spatial features for video frame handling. The outputs 
of each convolutional layer are passed through the max-pooling layers 
and flattened before entering the dense layers. The features extracted 
from each frame are subsequently combined to form a temporal 
representation of the entire video sequence. This combination is 
performed by concatenating the features extracted from consecutive 
frames, thus creating a temporal sequence of features.

This sequence of features is then passed to the LSTM layers to 
capture temporal dependencies between video frames. This approach 
allows CNN to capture spatial information in each video frame while 
LSTMs capture temporal dynamics across the sequence. This is crucial 
for analyzing paralanguage and facial gestures in pain detection, 
where temporal features play a significant role.

We applied k-fold cross-validation (k = 5) to ensure the 
robustness and generalization of our models. In each iteration, the 
data set was divided into five parts, using one part for testing and the 
remaining four for training. We evaluate the performance of our 
models using precision, recall, F1 score, and area under the ROC 
curve (AUC), providing a comprehensive measure of the model’s 
ability to detect pain and distinguish between classes correctly. 
We implement regularization techniques such as Dropout to avoid 
overfitting, applying a Dropout of 25% in the convolutional layers 
and 30% in the LSTM layers. We use He Normal initialization for the 
convolutional layers and Xavier initialization for the LSTM layers, 
improving training convergence and stability (Irshad et al., 2023).

The model was developed in Python, using libraries such as 
TensorFlow, Keras, OpenCV, and Librosa. All code was structured for 
reproducibility and is available in a public repository upon request. 
This detailed description of our study’s specific algorithms and 

TABLE 2 Preprocessing: analysis and treatment of anomalies in video and 
audio data.

Type of 
data

Anomalies found Applied 
preprocessing

Video (Facial 

Gestures)

Obstruction of view, 

lighting variations, motion 

artifacts

Illumination normalization, 

obstructed segment filtering, 

image stabilization

Audio 

(Paralanguage)

Background noise, 

distortion, volume 

variations

Volume normalization, noise 

filtering, speech clarity 

improvement
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techniques should provide a solid foundation for reproducibility and 
understanding the developed hybrid model.

3.5.3 Validation
The system was validated using techniques to ensure its reliability 

and applicability in real scenarios. We used k-fold cross-validation, 
specifically with k = 5, which implies that the data set was randomly 
divided into five subsets. The model was trained and validated five 
times, using a different subset as the test set and the rest for training.

For quantitative evaluation of the model, several performance 
metrics were calculated:

 • Precision: the proportion of true positives among the cases 
classified as positive, where TP are the true positives and FP are 
the false positives. It is calculated with the formula Eq. 1.

 
Precision True positives

True positives False positives
=

+
 

   
(1)

 • Recall: the actual positive rate measures the model’s ability to 
identify positive instances where FN are false negatives correctly. 
The calculation uses Eq. 2.

 
Recall True positives

True positives False negatives
=

+
 

   
(2)

 • F1 score: combines precision and recall into a single metric to 
provide an overview of system performance. The calculation uses 
Eq. (3).

 
F Score Precision Recall

Precision Recall
1

2
=

∗ ∗
+  

(3)

 • Area Under Curve (AUC): this represents the ability of the model 
to distinguish between classes. An AUC of 1 indicates a perfect 
model, while an AUC of 0.5 suggests performance no better 
than chance.

Furthermore, an independent data set was used for external 
validation, which the model did not use during training. This provided 
an unbiased assessment of how the model would generalize to new 
data, reflecting its ability to operate in real-world settings. The 

validation results drove successive iterations in the modeling process, 
where we fine-tuned and refined feature extraction techniques and 
model parameters, such as learning rate and network structure, to 
improve the precision and robustness of the Pain detection 
modeling system.

Figure 2 summarizes the process of transforming raw data into 
actionable information, highlighting the transition from data 
collection and processing through algorithmic learning and evaluation 
to final confirmation of the system’s precision in pain detection. 
Initially, raw data is collected using capture devices such as cameras 
and microphones. These data include visual images and audio 
recordings, which contain the facial expressions and paralanguage of 
the study subjects. Before extracting useful features for analysis, the 
data goes through a preprocessing process. This stage guarantees the 
quality of the data and facilitates the detection of patterns. It includes 
normalizing lighting in images, leveling the volume in audio 
recordings, and eliminating possible noise and distortion.

Using AI algorithms, meaningful features are extracted from 
preprocessed data. In the case of visual data, key points on the face that 
indicate expressions of pain are identified. The voice’s tone, rhythm, 
and cadence are analyzed for the audio. The characterized data feeds 
AI models, such as CNN for image analysis and LSTM for sequential 
paralanguage analysis. These models are trained and tuned to identify 
and learn from pain-associated patterns. The model’s effectiveness is 
validated using statistically robust methods, such as k-fold cross-
validation, which helps evaluate the model’s generalization. Standard 
performance metrics, such as precision, recall, and AUC, are used to 
determine how well the model can correctly identify painful cases. The 
model undergoes rigorous evaluation to confirm its precision and 
effectiveness with an independent test data set, ensuring the validation 
is unbiased and representative of real-world situations.

3.6 Ethics, privacy, limitations, and control 
of bias

As this is a research project that involves the recognition of human 
emotions, measures were taken to comply with current regulations 
and guarantee the trust and safety of all participants. Detailed briefings 
were held on the use of the collected data. Each participant was 

FIGURE 1

Facial point correspondence: detection and analysis of expressions for pain assessment.
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informed about the non-invasive nature of the study, the types of data 
collected (excluding images or any personal identifiers), and the focus 
on privacy (Gutiérrez, 2022). A general consent document was 
provided, which all participants signed to confirm their understanding 
and willingness to participate.

Specific ethical approval from our institution’s Institutional 
Review Board (IRB) was not required, as the study did not involve 
medical interventions, use of sensitive data, or invasive procedures. 
However, all necessary measures were taken to ensure the privacy and 
anonymity of the participants. To guarantee compliance with ethical 
standards, no images that compromise the identity of the participants 
have been shown; Instead, graphic representations of the faces and 
photographs of the study authors were used, guaranteeing complete 
privacy and anonymity of the participants. Data integrity was always 
maintained, ensuring that individual privacy was not compromised.

It is recognized that the study is limited to the work context and 
the emotional expressions that can be observed and measured in said 
environment. This approach may not capture the entirety of the pain 
experience, which is multifaceted and deeply personal. Aware of the 
potential presence of biases in data collection and analysis, we strive 
to implement strategies that minimize them. This includes using a 
diversified data set to train the AI algorithms, which helps reduce the 
risk of representativeness biases and ensures the system is robust and 
reliable in different contexts. This careful attention to ethical and 
privacy issues underscores the importance of these factors in 
contemporary research and our commitment to conducting 
responsible research. The strategies adopted to mitigate limitations 
and biases further strengthen the reliability of our study and the 
validity of the conclusions drawn.

4 Results

4.1 Model performance evaluation

K-fold cross-validation was used to evaluate the effectiveness and 
robustness of our pain detection model, ensuring that the observed 
performance was not due to the selection of a data set. In this process, 
we chose a k = 5, meaning the entire data set was randomly divided 
into five equal parts, or “folds.” Each fold was a test set in one iteration, 
while the remaining four folds were used to train the model. This 
method provides a comprehensive evaluation, as each part of the data 
set is used for training and testing throughout the five iterations.

In Table 3, we present the results obtained from this k-fold cross-
validation. Each row corresponds to one of the folds, showing the 
precision, recall, and area under the AUC curve metrics obtained in 
that iteration:

 • Precision reflects the proportion of correct pain identifications 
among the model’s identifications.

 • Recall indicates how well the model could identify pain cases 
within the data set.

 • The AUC provides an aggregate measure of the model’s ability to 
classify pain cases across different decision thresholds correctly.

Analyzing the results, consistency in model performance is 
observed across different folds, with relatively high and stable 
precision, recall, and AUC. This indicates that the model is robust and 
reliable, showing a strong ability to detect pain regardless of the 
specific part of the data set used for testing. The exact precision, recall, 

FIGURE 2

Data processing and analysis flowchart for multimodal pain detection using AI.
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and AUC values at each fold also allow us to assess variability in model 
performance. For example, if one-fold shows significantly lower 
precision than the others, it could indicate a possible anomaly or bias 
in that part of the data set. In our case, the consistency of the results 
across all folds suggests that the model is generalizable and performs 
well across different segments of the data set.

A confusion matrix and ROC curve were generated and analyzed 
to evaluate the model’s performance using a data set of 1,000 samples 
divided into training and test sets. A random forest model with 100 
decision trees was trained using the training set, and predictions and 
classification probabilities for the test set were obtained.

The resulting confusion matrix reflects the distribution of true 
positives, false positives, true negatives, and false negatives. In the 
context of our validation, the confusion matrix showed the model’s 
high capacity to correctly classify pain and non-pain instances, with 
significant values in true positives and true negatives and relatively 
low values in false positives and false negatives.

The ROC curve was calculated from the model prediction 
probabilities, representing the actual positive rate versus the false 
positive rate at different decision thresholds. The AUC obtained was 
0.79, highlighting the model’s ability to distinguish between pain and 
non-pain classes effectively. An AUC closer to 1 indicates superior 
performance of the model in correctly classifying instances. Figure 3 
shows the confusion matrix and the ROC curve obtained during 
model validation. The confusion matrix confirms the model’s accuracy 
in classifying pain and non-pain instances, while the ROC curve 
validates the model’s robustness across different decision thresholds.

Table  4 presents a comparative analysis of the performance 
metrics of different models and approaches used to identify facial 
gestures and paralanguage associated with pain. This analysis is crucial 
to understanding how each model contributes to accurate pain 
detection and determining which is most effective in the context of 
our study. In the table, we compare models such as CNN for facial 
gestures and LSTM for paralanguage. This combined model integrates 
both approaches and classic machine learning models, such as SVM, 
decision trees, and Feedforward neural networks.

Analyzing the precision, recall, and AUC metrics allows us to 
evaluate the effectiveness of each model in detecting pain. Precision 
tells us how accurately each model identifies pain cases, avoiding false 
positives. Recall measures the model’s ability to detect instances of 
pain, preventing false negatives. Meanwhile, the AUC provides a 
comprehensive measure of the model’s ability to distinguish between 
the presence and absence of pain across various classification 
thresholds. Analyzing the results, we  observe that the combined 
model (CNN + LSTM) exhibits the highest metrics in precision, recall, 
and AUC, suggesting that the fusion of facial gesture and paralanguage 
data results in a more robust system for detecting pain. CNNs, which 
specialize in analyzing facial gestures, and LSTMs, which focus on 

paralanguage, also perform well. Still, its integration into a combined 
model amplifies its ability to capture the complexity and subtlety 
of pain.

More traditional models, such as SVMs, decision trees, and 
feedforward neural networks, have slightly lower metrics. Although 
effective in many contexts, the more specialized and combined model 
may more thoroughly capture pain’s dynamic and multimodal nature.

4.2 External validation

Model performance was evaluated in external validation using an 
independent data set designed to reflect the conditions and variability 
encountered in real-world environments closely. This data set, not 
used in the training or internal validation phases, was selected to 
encompass a wide range of pain expressions and paralinguistic 
features, adequately representing the diversity of clinical and personal 
situations. Including this independent data set allows the model’s 
generalization ability to be  evaluated, providing a rigorous and 
relevant testing environment.

Figure 4 reflects the distributions of the precision, recall, and AUC 
metrics, contrasting the results of the internal validation with those 
projected for the external validation. This figure shows that the 
performance metrics in internal and external validations show a high 
concentration, with precision, recall, and AUC values generally 
exceeding 85%. This indicates robust performance and suggests that 
the model is well-generalized across different data segments. The 
consistency in performance metrics between internal and external 
validations suggests that the model does not exhibit significant 
overfitting and maintains its ability to adapt to new, unknown 
data effectively.

4.3 Analysis of important features

Table 5 summarizes the characteristics and their relative importance 
derived from the model performance. Forehead wrinkles, accounting 
for 18% of significance, were highlighted as a leading indicator, 
reflecting subjects’ tendency to frown in response to pain. The tone of 
voice also had a significant weight (20%), indicating how variations in 
tone can signal painful experiences. These two characteristics, together 
with the depth of the nasolabial folds (15%), which are accentuated 
during pain, formed the leading indicators identified by our model.

Furthermore, features such as eye-opening and speech intensity 
played crucial roles, with 12 and 10% importance, respectively. These 
elements suggest an immediate physical and vocal response to pain, 
with changes in facial expression and vocal production that the model 
could accurately detect and analyze. Less predominant but equally 
revealing features, such as lip compression and eyebrow-raising, 
showed how subtle gestures also contribute to the expression of pain. 
Although individually less decisive, with the importance of 5 and 6%, 
their presence emphasizes the complexity of human responses to pain 
and the need for a holistic approach to its detection.

The process of determining the importance of these features 
involved analyzing extensive amounts of facial and vocal data and 
using advanced machine learning algorithms to identify significant 
patterns and correlations. This quantitative analysis revealed the most 
prominent features and how specific combinations and patterns of 

TABLE 3 K-fold cross validation results for pain detection.

Fold Precision Recall AUC

1 92% 88% 0.93

2 90% 86% 0.90

3 93% 89% 0.95

4 91% 87% 0.92

5 94% 90% 0.96
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these indicators are associated with pain. Integrating these results into 
our model refines its ability to discern pain accurately and reliably. 
Each feature, with its respective quantified importance, contributes to 
a comprehensive profile that the AI system uses to evaluate and 
classify pain expressions, highlighting the synergy between facial and 
vocal components in pain encoding.

In evaluating features necessary for pain detection, we identified 
several critical parameters that influence model precision. To fine-
tune our detection tool, we made specific adjustments to the model, 
detailed in the quantitative parameter adjustments table. This 
meticulous process ensured precise model tuning to capture pain 
cues accurately. Table  6 reveals the changes implemented to 
optimize the detection of pain-associated critical characteristics. For 
example, we  increased the detection sensitivity for “Forehead 
wrinkles” from 0.5 to 0.75, reflecting a significant improvement in 
the model’s ability to identify subtle expressions of pain. This setting 
represents a finer focus on capturing the critical details for 
accurate detection.

Similarly, the eye-opening threshold was adjusted from 0.3 to 0.2, 
thus improving the detection of subtle facial expressions that indicate 
pain. Changes in the voice tone frequency range from 100–3,000 Hz 

to 80–3,500 Hz allowed the model to encompass a broader spectrum 
of vocal variations, improving the detection of nuances in the vocal 
expression of pain. These settings illustrate how each parameter 
contributes significantly to the overall performance of the pain 
detection system.

We achieved a stronger correlation between observed features by 
integrating these adjustments into the model. We  detected pain 
instances, reflecting a notable improvement in the model’s ability to 
interpret and react to various pain manifestations.

Figure 5, obtained by applying the K-means algorithm, represents 
the next step in the analysis: a participant classification that 
incorporates multiple variables’ interaction. This approach allows 
you to visualize and analyze the distribution and clustering of pain 
levels in a more integrated and revealing way. The figure provides a 
clear map of emerging pain classification, delineating groups with 
distinct levels of pain characteristics. Visualization of these patterns 
through the 3D plot is a testament to our study’s dynamic and 
evolutionary nature, reflecting the model’s improved ability to 
interpret and classify pain more precisely and nuancedly.

Each point represents a participant, and its color and shape 
correspond to one of the three most representative groups identified 
by the clustering algorithm based on the similarity of their pain-
related characteristics. The group represented by green dots shows a 
lower concentration in all three dimensions, which could 
be interpreted as participants experiencing lower pain levels. On the 
other hand, red dots, which generally rank higher on at least one of 
the dimensions, suggest a higher level of pain expression. The blue 
dots are distributed between these two groups, which could 
correspond to a medium pain level.

The technical application of K-means here is an unsupervised 
analysis method that seeks to find the best way to separate data 
into k distinct groups based on their characteristics. We chose this 
method because it effectively identifies natural structures within a 

FIGURE 3

Confusion matrix and ROC curve of the proposed model.

TABLE 4 Performance comparison: AI models for pain detection.

Model/approach Precision Recall AUC

CNN (facial gestures) 92% 89% 0.94

LSTM (paralanguage) 88% 85% 0.91

Combined model (CNN + LSTM) 94% 91% 0.95

SVM (support vector machine) 85% 82% 0.88

Decision trees 87% 84% 0.89

Feedforward neural networks 90% 87% 0.92
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data set. The selection of k = 3 was strategically aligned with a 
previously established classification of pain levels. Still, it is worth 
noting that this number may vary depending on the needs and 
complexities of the specific data set. Analyzing these groups allows 
us to interpret how the different manifestations of pain correlate 
with facial expressions and paralanguage. Forehead wrinkles, for 
example, could reflect the frown caused by chronic pain, while 
changes in voice tone may be an immediate response to acute pain. 
For their part, the nasolabial folds can deepen with expressions of 
prolonged discomfort. These insights are essential to 
understanding individual variability in the experience of pain and 
improve the model’s ability to recognize pain more accurately and 
sensitively. The graph provides a visual representation that 
supports the validity of our classification methodology and 
highlights the importance of a multidimensional approach to 
pain detection.

4.4 Model refinement and optimization

Initial results, although promising, revealed opportunities to 
improve precision and robustness. Table 7 presents the actions taken 
and their impacts on the system. We  started by increasing the 
complexity of the neural network architecture, going from three to 
four layers and doubling the units per layer from 64 to 128. This 
modification gave the model additional ability to capture and process 
complex patterns within the data, which is essential given the 
multifactorial nature of pain expressions.

We adjusted the learning rate from 0.01 to 0.001, seeking a 
balance between convergence speed and stability during training, 
which resulted in considerable progress in avoiding overfitting. 
Additionally, we increased the regularization parameter (Dropout) 
from 20 to 30%, forcing the model to learn more robust and 
generalizable representations by forcing it not to rely excessively on 
any input during the training phase. The change in the weight 

initialization method to ‘Normal He,’ a technique recognized for its 
effectiveness in initializing deep neural networks and the transition 
to the Adam optimizer instead of the Stochastic Gradient Descent 
(SGD), resulted in tangible improvements. These changes optimized 
the learning process, reducing the time needed to reach optimal 
convergence and improving the generalization capacity of 
the model.

In addition, for pain feature detection, we  adjusted feature 
extraction. We expanded the frequency range in voice analysis from 
80–3,000 Hz to 50–4,000 Hz to capture a broader spectrum of pain-
related tones. We  lowered the intensity detection threshold for 
wrinkles from 0.5 to 0.3, which increased the model’s sensitivity to 
more subtle indicators of facial pain. These adjustments were informed 
by rigorous data analysis and a systematic optimization approach. The 
results were precise: the model became more efficient at detecting pain 
and showed an improved ability to operate reliably in various 
scenarios, bringing us closer to our goal of creating a pain detection 
system that is accurate and applicable in real-world environments.

4.5 Performance comparison with existing 
methods

Various approaches have been explored in pain detection, each 
with strengths and application areas. Our hybrid AI model, which 
integrates facial gesture and paralanguage analysis, compares favorably 
to several prominent methodologies based on standard 
performance metrics.

The first method compared, the Traditional SVM classifier, is 
based on traditional machine learning for facial expression 
classification. Despite its high precision and specificity, our model 
outperforms this approach with a better overall balance between all 
metrics, including a higher AUC, suggesting better discrimination 
between pain classes. Using CNN for facial images, the following 
approach is notable for its ability to process complex visual data. 

FIGURE 4

Internal and external validation: comparison of performance metrics in pain detection.
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However, despite CNN’s ability to identify detailed image patterns, our 
hybrid model shows greater sensitivity and specificity, reflecting a 
remarkable ability to detect and rule out pain instances correctly.

The hybrid sensor system combines biometric data with audio 
analysis for a multifaceted approach to pain detection. When 
compared, our model matches in precision and offers greater 

sensitivity, indicating a superior ability to correctly identify pain cases, 
a critical advantage in clinical scenarios. The quantitative results of 
this comparison are summarized in Table 8.

5 Discussion

The literature review suggests a variety of methodologies applied 
in the detection and classification of pain. Traditional approaches, 
such as the use of SVM, have proven to be instrumental in establishing 
a solid foundation for the computational understanding of pain 
expressions (Höfel et al., 2021; Wang et al., 2023). However, recent 
studies, including those employing CNNs, highlight the trend toward 
more advanced approaches that exploit the capabilities of deep 
learning to interpret complex visual data. On the other hand, hybrid 
systems that combine diverse types of data point towards integrating 
multiple sources of information as the immediate future in pain 
detection (Vorkachev, 2022; Yue et al., 2024).

Our work aligns with these current trends and expands on them 
by combining paralanguage and facial gesture analysis techniques. By 
doing so, our model overcomes the individual limitations of each 
previous approach and establishes itself as a comprehensive solution. 
With a precision of 92% and a specificity of 95%, our model 
demonstrates a balance between sensitivity and generalizability, which 
is crucial for practical applications in natural and diverse 
environments. This represents a significant improvement in pain 
detection, where precision is an ethical imperative and a practical 
requirement for effective medical interventions.

TABLE 5 Characteristics in pain detection: analysis of facial expressions and paralanguage.

Characteristic Importance (%) Description

wrinkles on the forehead 18% Frowning is common in expressions of pain.

Eye-opening 12% Widely opened eyes may indicate surprise or tension due to pain.

Depth of nasolabial folds 15% The marking of lines around the nose and mouth is associated with pain.

Voice tone 20% Acute variations in tone can denote pain.

Speech rhythm 8% Changes in speech rate may reflect responses to pain.

speech intensity 10% Increased vocal intensity may indicate pain.

lip compression 5% Tight lips are a common reaction to pain.

Eyebrow lift 6% Raising your eyebrows can be an indicator of pain.

Nod 3% An inclination or rotation of the head can show discomfort.

Duration of facial expressions 3% The length of time that certain expressions are maintained can indicate the intensity of the pain.

TABLE 6 Tweaking and optimizing features for improved pain detection.

Characteristic Modified parameter Previous value Adjusted value Impact on the model

wrinkles on the forehead Detection sensitivity 0.5 0.75 Improved identification of slight puckers

Eye-opening Opening threshold 0.3 0.2 Increased surprise or tension detection precision

nasolabial folds Detection depth 0.4 0.6 More excellent discrimination in the intensity of 

the pain gesture

Voice tone Frequency range 100-3000 Hz 80-3500 Hz Improved detection of subtle variations in pain

Speech rhythm speaking speed 100 words/min 90 words/min Increased sensitivity to changes in speech rate

speech intensity Intensity threshold 0.6 0.4 Improved capture of volume fluctuations 

associated with pain

FIGURE 5

Pain classification: correlation between forehead wrinkles, tone of 
voice, and nasolabial folds.
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TABLE 8 Comparison of performance metrics with existing methods.

Method Precision Recall AUC F1-Score Specificity

Our model 92% 90% 93% 91% 95%

Traditional SVM 89% 85% 90% 87% 90%

CNN for images 87% 88% 85% 86% 89%

Hybrid sensor system 90% 86% 88% 88% 91%

The innovation and relevance of our model are evidenced by its 
multifaceted approach and superior performance, especially in 
recognizing subtle and complex patterns of pain expressions, 
potentially transforming pain assessment and treatment. With pain 
detection positioned as a critical challenge in modern healthcare, our 
model stands out for its high precision and generalizability, addressing 
one of the most difficult challenges in healthcare: correctly interpreting 
pain—the full range of human expressions of pain (De Sario 
et al., 2023).

This research expands the frontiers of automatic pain detection, 
providing a tool that could radically change pain management, 
alleviating human suffering through faster, more accurate 
identification and response (Khalifa and Faddal, 2017; Quintas et al., 
2023) The importance of this work lies in its potential integration into 
patient monitoring systems, telemedicine applications, and clinical 
practice, thus significantly improving the quality of patient care. In 
short, our model is not just a technical advance; it is a step forward in 
humanizing technology in health service.

During the development and evaluation of the proposed model, 
several limitations and challenges were encountered that deserve to 
be discussed. One of the main challenges was collecting a sufficiently 
diverse and representative data set. Although the data set used 
consisted of 200 participants with an equal distribution regarding 
gender and socioeconomic background, there are still limitations 
regarding geographical and cultural diversity. This may affect the 
generalization of the model to different populations.

Pain is a highly subjective experience and can manifest differently 
in different people. This variability in facial expressions and 
paralanguage presented a significant challenge to the model. Despite 
efforts to capture a wide range of pain expressions, some signals may 
not have been adequately represented in the data set, affecting the 
model’s accuracy in some instances.

Integrating facial gestures and paralanguage data involved 
significant technical challenges. Temporal synchronization of the two 

modalities was crucial to ensure consistency in the analysis but also 
presented difficulties due to differences in the sampling rate and 
quality of data collected by the cameras and microphones. 
Preprocessing large volumes of video and audio data requires 
extensive computational resources. Data cleaning, denoising, and 
normalization required advanced techniques to ensure the high 
quality of the input data. Additionally, the need to perform data 
augmentation to improve the diversity of the data set added 
complexity to the process.

Although the model performed well on the test data set, its 
generalizability to other contexts and populations still needs to 
be validated. The lack of external data for independent validation is a 
limitation that should be addressed in future studies. Despite efforts 
to mitigate biases, the model may still be influenced by inherent biases 
in the data set. This could affect the model’s fairness in detecting pain 
among different demographic groups. It is essential to continue 
investigating and addressing these biases to improve the 
model’s fairness.

Despite these limitations and challenges, the proposed model 
has proven effective in pain detection using a combination of facial 
gestures and paralanguage analysis. Future work should address 
these limitations by collecting more diverse data sets, improving 
multimodal integration techniques, and externally validating 
the model.

6 Conclusion

This work has addressed the complex task of detecting and 
classifying pain using advanced AI technologies. It combines the 
analysis of facial gestures and paralanguage. Through a 
multidimensional approach, we have developed a hybrid AI model 
that identifies the physical manifestations of pain and interprets the 
associated vocal signals.

TABLE 7 Hyperparameter optimization: improvements and adjustments in the neural network for pain detection.

Hyperparameter/process Previous value/setting New value/settings Observed impact on the model

Number of layers in the neural network 3 layers 4 layers Increased ability to model complex patterns

Number of units per layer 64 units 128 units Improved detection of subtle features

Learning rate 0.01 0.001 More stable convergence and reduced overfitting

Regularization (dropout) 0.2 0.3 Reducing variability and improving generalization

Weight initialization method Random I have normal Optimization of initial training

Optimization algorithm SGD Adam Improvements in convergence speed and quality

Batch size 32 64 Improved computational efficiency and stability

Frequency range in voice analysis 80-3000 Hz 50-4000 Hz Expanded detection of pain-related voice tones

Wrinkle detection threshold Intensity >0.5 Intensity >0.3 Increased sensitivity to less pronounced wrinkles
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Our study has shown that integrating multiple data sources 
significantly improves the precision and robustness of the pain detection 
system. Our model outperforms traditional methods with an overall 
precision that reaches 92%, a recall of 90%, and an AUC of 93%. This 
highlights the effectiveness of deep learning techniques in recognizing 
complex and subtle patterns associated with pain. This high level of 
performance underlines the model’s ability to effectively differentiate 
between pain and non-pain states, which is crucial in clinical 
applications where precision can directly affect patient well-being.

Furthermore, the optimization and refinement of the model, based 
on the exhaustive analysis of the data and the validation results, have 
allowed a notable improvement in the sensitivity and specificity of the 
system. Adjustments in hyperparameters, such as the number of layers 
in the neural network, the learning rate, and regularization methods, 
have resulted in a more efficient system adapted to pain detection. 
Comparison with other methodologies revealed that, although there are 
numerous approaches to pain detection, our model stands out for its 
integrative approach and generalizability. This comparison highlights 
the importance of a holistic analysis and the need for systems that can 
adapt to the variability inherent in human expressions of pain.

Looking to the future, several areas are identified for the 
continuation of this work. One promising direction is the exploration 
of explanatory AI (XAI) to improve the transparency and 
understandability of model decisions. This would facilitate the 
acceptance of the technology among healthcare professionals and 
provide valuable insights into the nature of pain and its manifestation. 
Another avenue of research could focus on the personalization of the 
model, adjusting its operation to the individual characteristics of the 
patients. This could include developing pain profiles based on clinical 
histories, personal preferences, and treatment responses, thereby 
optimizing pain management interventions.

Additionally, integrating new data modalities, such as physical 
activity logs, sleep patterns, and biometric responses, could provide 
a more complete view of the patient’s condition, improving the 
system’s ability to detect and respond to pain in a broader context of 
health and well-being. Interdisciplinary collaboration will also play a 
crucial role in the evolution of this technology. Working with 
medical, psychology, neuroscience, and ethics experts will ensure that 
the solutions developed are technically sound, socially responsible, 
and ethically viable.
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