
TYPE Review

PUBLISHED 05 November 2024

DOI 10.3389/fcomp.2024.1423693

OPEN ACCESS

EDITED BY

Yi-Zhe Song,

University of Surrey, United Kingdom

REVIEWED BY

Xi Wang,

The Chinese University of Hong Kong, China

Shailesh Tripathi,

University of Applied Sciences Upper Austria,

Austria

*CORRESPONDENCE

Serestina Viriri

viriris@ukzn.ac.za

RECEIVED 26 April 2024

ACCEPTED 08 October 2024

PUBLISHED 05 November 2024

CITATION

Hiraman A, Viriri S and Gwetu M (2024) Lung

tumor segmentation: a review of the state of

the art. Front. Comput. Sci. 6:1423693.

doi: 10.3389/fcomp.2024.1423693

COPYRIGHT

© 2024 Hiraman, Viriri and Gwetu. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Lung tumor segmentation: a
review of the state of the art

Anura Hiraman1, Serestina Viriri1* and Mandlenkosi Gwetu2

1School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban,

South Africa, 2Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa

Lung cancer is the leading cause of cancer deaths worldwide. It is a type

of cancer that commonly remains undetected due to unpresented symptoms

until it has progressed to later stages which motivates the requirement for

accurate methods of early detection of lung nodules. Computer-aided diagnosis

systems have adapted to aid in detecting and segmenting lung cancer, which

can increase a patient’s chance of survival. Automatic lung cancer detection

and segmentation is a challenging task in aspects of segmentation accuracy.

This study provides a comprehensive review of current methods and popular

techniques which will aid in further research in lung tumor detection and

segmentation. This study presents methods and techniques implemented to

solve the challenges associated with lung cancer detection and segmentation

and compares the approaches with each other. The methods used to evaluate

these techniques and the accuracy rates are also discussed and compared to give

insight for future research. Although several combination methods have been

proposed over the past decade, an e�ective and e�cient model still needs to be

improvised for routine use.
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1 Introduction

The leading cause of cancer death is lung cancer (Medical News Today, 2022). Cancer is

a disease caused by the uncontrolled growth and multiplication of cells in the body. Lung

cancer is the type of cancer that originates in the lungs and can be categorized into two

groups which are non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC).

These two types of cancer present and grow differently as seen under a microscope, thus

are treated differently (Centers for Disease Control and Prevention, 2022).

Approximately 80% to 85% of lung cancer is categorized as NSCLC which can be

further subgrouped as adenocarcinoma, squamous cell carcinoma, or large cell carcinoma

depending on the type of lung cells they originate in. Adenocarcinoma starts in cells

that normally secrete substances such as mucus and is most often seen in people who

currently smoke or formerly smoked. This type of lung cancer is also the most common

type of cancer seen in people who do not smoke. Younger people are more prone to

adenocarcinoma and is more seen in women than in men. This type of cancer is also

detected in outer parts of the lung and commonly found before it has spread giving patients

a better outlook than those with other types of lung cancer. Squamous cell carcinoma

originates in the squamous cells which are flat cells lining the inside of the airways in the

lungs and are often found near the main airway in the central part of the lungs. This lung

cancer type is often linked to a history of smoking. Large cell or undifferentiated carcinoma

may appear in any part of the lung and tends to progress quickly which canmake it difficult

to treat. Large cell neuroendocrine carcinoma is a type of large cell carcinoma which is a

fast-growing cancer that is similar to small cell lung cancer. Other less common types of

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1423693
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1423693&domain=pdf&date_stamp=2024-11-05
mailto:viriris@ukzn.ac.za
https://doi.org/10.3389/fcomp.2024.1423693
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1423693/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hiraman et al. 10.3389/fcomp.2024.1423693

NSCLC are adenosquamous carcinoma and sarcomatoid

carcinoma. Figure 1 shows an example of lung cancer.

SCLC makes up approximately 10% to 15% of all lung cancer

diagnosis. This type of cancer grows and spreads faster thanNSCLC

and has often spread by the time it is diagnosed in patients. Since

it is fast growing, it responds well to radiation and chemotherapy,

however; for most patients, the cancer eventually recurs. Other

types of lung cancers are lung carcinoid tumors which grow slowly,

adenoid cystic carcinomas, lymphomas, and sarcomas, as well as

benign lung tumors (American Cancer Society, 2022). Symptoms of

lung cancer may only occur at later stages of the cancer and usually

resemble symptoms of a respiratory infection. Possible symptoms

include changes to a person’s voice, frequent chest infections such

as bronchitis or pneumonia, swelling of lymph nodes in the middle

of the chest, persistent coughing or coughing blood, chest pain,

shortness of breath, and wheezing (Medical News Today, 2022).

The prognosis and treatment of lung cancer is dependent on

cancer detection and diagnosis. The quicker and more accurate the

diagnosis, the faster the prognosis which can increase the likelihood

of survival. Once symptoms of lung cancer start to present, it is

usually visible on an X-ray and appears as an abnormal mass or

nodule (WebMD, 2022). A computed tomography (CT) scan is also

used to detect lung cancer and can reveal small lesions in the lungs

that may not be detected in an X-ray. Other ways to detect lung

cancer include sputum cytology and a biopsy which is extracting a

tissue sample to confirm the diagnosis. Imaging techniques such as

CT and PET scans can determine areas where the cancer occurs and

how far it has spread (Mayo Clinic, 2022). CT is extensively utilized

by clinical radiologists for the rationale of identifying and treating

thoracic diseases.

This comprehensive survey aims to achieve the following:

• Show that deep learning techniques have allowed for

significant contributions within the field of lung cancer

detection and segmentation.

• Identify the challenges associated with the detection and

segmentation of lung cancer within lung CT/MRI scans.

• Highlight the methods and techniques existing in recent

studies that have successfully overcome identified challenges.

This study serves to review the current lung nodule

segmentation techniques for lung cancer detection. The different

strategies used to approach the problem are discussed and analyzed.

The study is organized as follows. Section 2 discusses the challenges

presented by lung nodule segmentation. In Section 3, a diverse

number of techniques are reviewed including pre-processing

methods, region of interest extraction techniques, and lung nodule

segmentation techniques. In Section 4, commonly used datasets are

highlighted, and in Section 5, evaluation methods are presented.

Section 6 includes an overall discussion, and Section 7 concludes

the review study.

2 Lung nodule segmentation
challenges

Accurate lung nodule segmentation is crucial for various lung

cancer diagnosis and treatment procedures such as screening for

early detection, diagnosis of tumor malignancy, and monitoring

tumor response to therapy. Currently, it is standard practice

to manually segment the lung nodules with the assistance of

CAD systems. However; manual segmentation and detection relies

heavily on user interaction and is subjective with high intra- and

inter-observer variability in assessing and reporting (Kadir and

Gleeson, 2018). Different radiologists may interpret the medical

images differently which also depends on the performance of the

radiologists. Manual lung nodule segmentation and detection is

also poorly reproducible and can be very time-consuming. With

manual segmentation and detection of lung cancer, there is always

room for human error. CAD systems have proved to have the ability

to detect cancer that is undetectable. Approximately 30% of lung

nodules go undetected at the initial screening stage for lung cancer

using routine manual screening where imaging modalities are used,

such as X-ray, CT, and MRI, but are interpreted by human medical

professionals (Svoboda, 2020). With the number of experienced

radiologists in comparison with the amount of CT scans needing

to be analyzed, the demand for consistent performance of these

professionals is relatively high and the work load can cause over-

stretched radiologists to make mistakes which may pose a risk to

accurate segmentation and detection of the cancer. The limitations

of the human eye make it easy for radiologists to overlook tiny

lesions or lung spots invisible to the naked eye.

Differences in imaging protocols such as scanner models,

settings, and patient positioning can lead to inconsistencies

in image quality which can influence the performance of the

segmentation model. Images can contain noise and artifacts which

can obscure nodules or create false positives, especially in low-

dose scans (Song et al., 2021). Inter- and intra-patient variability

also pose significant challenges in lung nodule segmentation. The

variability in nodule characteristics such as size, shape, and texture

between patients makes it difficult for segmentation algorithms

to consistently identify and delineate nodules. Even within the

same patient, scans taken at different times can present nodules

differently due to changes in size, shape, or density which can

add complication to the segmentation process (Gao et al., 2024).

The heterogeneity of lung tissue can also vary in appearance

due to factors such as age, disease, and smoking history which

contributes to making it difficult for the segmentation model to

distinguish nodules from other anatomical structures within the

lung (Osadebey et al., 2021).

Different types of nodules appear differently on CT scans

because each type has unique characteristics. Segmentation of large

solid nodules is not complex whereas the segmentation of small

nodules attached to the vessels or parenchymal wall and diaphragm

can be challenging. Small nodule detection plays a vital role in early

lung cancer detection and is needed to assess malignancy of lesions.

One of the challenges associated with small nodules is the partial

volume effect (PVE) where only part of the small nodule volume is

visible in the CT scan. Since these nodules are small and attached

to another tissue’s surface, they are also difficult to detect for

segmentation. Some nodules are sub-solid and are referred to have

ground-glass opacity (GGO) where the CT values are lower than

typical solid nodules making them difficult to detect as well (Pati

et al., 2022). According to growth pattern and morphology, lung

cancer presents differently depending on the sub-type of the cancer

but this can be challenging as sometimes multiple morphology
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FIGURE 1

Lung cancer.

sub-types exist across a single scan of a patient. It is common

practice to use the dominant sub-type to diagnose the patient which

may result in loss of information for other sub-types and this

analysis can be time-consuming and challenging for pathologists

(Wang et al., 2019). Table 1 summarizes the challenges of lung

cancer detection and segmentation.

Research has shown that the curability of lung cancer is 75%

if it is diagnosed early as it is easier to treat and there are fewer

risks (Mahersia et al., 2015). Therefore, the early diagnosis of lung

nodules is crucial for reducing morbidity and mortality. CAD

systems are developed for the detection and characterization of

lesions to diagnose lung cancer where the main objective is to

provide assistance to radiologists in the different steps of analysis

and offer a second opinion or support less experienced or non-

specialized clinicians in the field. The use of CAD systems also

aims to reduce variability in assessing and reporting lung nodule

segmentation and detection (Kadir and Gleeson, 2018). Recently,

many studies have been conducted where research is focused on

making such systems more automatic. However, many pulmonary

nodule detection and segmentation systems lack adequate accuracy,

and for diagnostic systems involving terminal illnesses, it is vital

that these systems are developed to reach the highest accuracy rate

of 100%.

3 Review of existing lung nodule
detection and segmentation methods

3.1 Introduction

To overcome the aforementioned challenges, authors have

proposed various methods for automatic and semi-automatic

detection and segmentation of lung nodules. Thus far, the

TABLE 1 Lung cancer detection and segmentation challenges.

Challenges Description

Manual detection

and segmentation

Manual segmentation and detection of lung cancer

relies heavily on user interaction and is subjective with

high intra- and inter-observer variability.

Radiologist demand The number of medical professionals needed in the

industry for accurate lung cancer detection is far too

less in comparison with the demand of lung cancer

screening.

Varying size and

shape

Large cancer nodules are easier to detect whereas small

nodules are not.

Partial Volume

Effect (PVE)

Small nodules attach themselves to surrounding organs

such as the diaphragm making them less visible for

detection.

Ground-Glass

Opacity (GGO)

Some nodules are not entirely solid and present as

partially opaque making the boundaries indistinct for

accurate detection.

Morphology

variability

A patient may have multiple types of cancer which

would present with different morphology in a scan

which is analyzed for cancer detection based on the

dominant type of cancer. This allows for other cancer

types to be missed easily.

Inter- and

intra-patient

Variability

Variability in nodule characteristics between patients as

well as within the same patient makes consistent

identification and delineation challenging.

Inter-image

Variability

Differences in imaging protocols lead to inconsistencies

in image quality.

proposed methods have shown great success; however, it is

important to note that machine learning methods have far

surpassed the results achieved by non-deep learning methods.

The typical phases incorporated into a lung cancer detection and

segmentation framework include pre-processing, region of interest
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extraction, lung cancer segmentation, and lastly, post-processing.

To summarize the current progress of the application of various

methods to lung cancer detection and segmentation, a survey of

recent publications was performed.

3.2 Pre-processing

Image pre-processing techniques are applied to images to

standardize the dataset that will be processed further. In medical

image processing, the datasets used are often the likes of CT or

MRI scans where the image sizes, spacing between voxels, contrast,

and quality may vary from patient to patient. Pre-processing

techniques are also explored and applied to improve the quality of

the images which can improve the segmentation accuracy. Many

pre-processing techniques exist that can be applied to these images

to prepare the dataset.

Low image quality can be an obstruction for effective feature

extraction, analysis, identification, and quantitative measurements

(Vijayaraj et al., 2021). To improve image quality, Madan et al.

(2019) used smoothing of the images. A middle outlet technique

was used by Bhaskar and Ganashree (2020) which is a non-linear

programmed channel used to remove noise from the images. The

images were then converted to grayscale. Bushra et al. (2019)

and Kamal et al. (2020) also used a simple grayscale conversion

as a pre-processing method. Halder et al. (2020), Sasikala et al.

(2019), and Akter et al. (2021) convolved the lung CT images

used median filtering to minimize the effects of the degradations

that occur during acquisition of the CT scans. Median filtering

is a technique that removes noise while keeping the edges intact.

Joon et al. (2019) converted chest X-ray images to grayscale and

applied median filtering to remove noise in a study to segment and

detect lung cancer as well. Meraj et al. (2021) applied a low pass

filter to remove noise in 2D images, called the weiner2 filter, which

uses the variance and local mean around every pixel in the image.

Kalaivani et al. (2020) employed pre-processing where resizing and

blur removal of images were done using histogram equalization.

Manoharan et al. (2020) utilized morphological operations such

as erosion and dilation to obtain a top hat result. The original

images are superimposed with the top hat, and the bottom hat is

subtracted from the image. Bushra et al. (2019) converted images to

grayscale and used the sobel operator to find the edges by finding

the gradient magnitude.

Another technique for pre-processing is cropping, rescaling, or

dividing the images to create smaller patches in the event that the

next stage in the process required the images to be a smaller size or

resolution. Liu et al. (2018) also used this technique to extract 50×

50 blocks to be fed to the stage following pre-processing. Serj et al.

(2018) rescaled the images to a smaller size. The data pre-processing

implemented by Ozdemir et al. (2019) included windowing the

image range between [–1,000, 400] HU and resampling the images

to set the voxel size to 1mm in all dimensions. Thereafter, the

images were normalized to have a mean standard voxel value of 0

and variance of 1. Normalization, a technique applied to window

pixel values within a specific range, is also a commonly used

technique for pre-processing. Bhatia et al. (2019) standardized the

dataset with normalization and zero centering, and Gunasekaran

(2023) used rescaling and normalization. Liu et al. (2018) applied

normalization where the images were windowed between [–1,024,

800] Hounsfield Units (HU) as it was found that those pixel

values were relevant to nodule detection. Bansal et al. (2020) also

transformed the pixel values to Hounsfield Units which were then

windowed between [–1,000, –320] HU to reduce the search space.

Baek et al. (2019) resampled pairs of co-registered PET-CT images

with an isotropic spacing in all dimensions, cropped the images,

and clipped the voxel intensity values to appropriate ranges to

remove outliers. Dong et al. (2020) applied resampling to the CT

images to standardize the images and then performed multi-view

patch extraction where 30 × 30 patches are extracted from the

axial, coronal, and sagittal views of the CT image. Borrelli et al.

(2022) also truncated CT images to a HU range of [–800, 800] and

the PET image to [0, 25], and then, both images were rescaled to

[–1, 1]. Thereafter, lung tumors and thoracic lymph nodes with

tumor lesion glycolysis were removed from the dataset. Kamal et al.

(2020) converted 3D volumes into 2D grayscale, 256× 256 images.

Thereafter, 8 consecutive images are concatenated to create 256

× 256 × 8 patches. As part of the pre-processing step, Riaz et al.

(2023) converted 3D images to 2D, resized, and then normalized to

improve contrast issues.

Data augmentation is a commonly known technique used

for pre-processing especially when it comes to training machine

learning models (Perez and Wang, 2017). The more data fed into

these models, the more effective the training can be therefore

making the model perform efficiently and accurately. With smaller

datasets, models suffer from the problem of over-fitting and data

augmentation allows for the alleviation of this. In the studies

done by Madan et al. (2019), Zhang et al. (2018), Ozdemir

et al. (2019), Gunasekaran (2023), and Zhang et al. (2020) all

implemented some type of data augmentation to increasing the

amount of data propagated through their respective proposed

models with the intention of improving their accuracy rates.

Zhang et al. (2018) utilized data augmentation which was used to

increase the size of the dataset using random cropping, rotation,

and flipping of the images to increase their training sample size.

Ozdemir et al. (2019) utilized data augmentation extensively.

Affine transform augmentation consisted of uniformly sampled 3D

rotations and reflections were used and smaller random scaling

from 0%–0.06% and translations from 0-1 independently in all

dimensions was used. Image transformations also included random

gamma transformations, Gaussian blur, unsharp masking, and

additive Gaussian noise. Zhang et al. (2020) also implemented data

augmentation techniques to enrich their dataset where applying

flipping, translations, scaling, and cropping operations to make

minor adjustments to the position, shape, and size. Liu et al.

(2018) also implemented data augmentation to increase their

negative samples as it was discovered that there was an imbalance

in the number of positive samples where nodules existed and

negative samples where the blocks did not include nodules so

data augmentation was used to increase the number of positive

samples by more than 20 times. Borrelli et al. (2022) employed

data augmented using rotations from –0.15 radians to 0.15 radians,

scaling from –10% to 10% and intensity shifts from –100 to 100

HU for CT images and –0.5 to 0.5 for PET images. Kamal et al.

(2020) and Riaz et al. (2023) utilized data augmentation techniques

at runtime such as random rotation, random cropping, random

global shifting, random global scaling, random noise addition,
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and multiplication, horizontal flipping and blurring have been

applied to expand the dataset. Figure 2 shows an example of

data augmentation.

Overall, there were a few different techniques that were

used such as noise reduction techniques contrast enhancement,

rescaling, and data augmentation. A summary of the pre-processing

methods and their advantages and disadvantages are presented in

Table 2. The most prevalent technique used is data augmentation

or it is used in conjunction with one of the other pre-processing

techniques as it is the most useful for training deep learning

models. Several researchers have made it evident that the use

of pre-processing techniques are key contributors to obtaining a

higher accuracy rate for lung nodule detection and segmentation

(Mahersia et al., 2015).

3.3 Lung region of interest extraction

Segmentation of the lungs from the images is usually the

second step in the process of lung cancer segmentation. This lung

extraction step aims to separate the pixels or voxels corresponding

to lung tissue and eliminate the surrounding regions which should

not be considered for further processing (Mahersia et al., 2015).

This process reduces the search space for lung nodule detection.

There are many methods proposed to achieve this as mentioned

below which aims to extract the lungs for further processing where

lung tumors can be extracted. An example of lung region of

interest extraction can be seen in Figure 3, where the first column

shows the original CT slices including lung tissue, the second

column highlights the ground truth data for the segmented lung,

the third column shows the segmented lung binary mask using a

lung segmentation technique, and the fourth column presents the

segmented lung.

Bhatia et al. (2019) implemented a series of region growing

and morphological operations to identify and extract the lungs and

nodules to aid the feature extraction. Bhaskar andGanashree (2020)

proposed a lung cancer detection method from CT images where

for their lung region extraction phase bit-plane slicing, erosion,

median filter, and dilation are applied to identify the lung area

within the CT scan. During the lung region segmentation phase,

a Fuzzy Possibility C-Mean (FPCM) which is a combination of

hybridization of Possibilistic C-Means (PCM) and Fuzzy C-Means

(FCM) is utilized with watershed transformation.

Halder et al. (2020) used amethod where the lungs are extracted

using iterative thresholding and the two largest regions, the left

and right lungs, are obtained. Morphological closing is used to

create a final lung mask which is then used to extract the lung

region of interest from the original pre-processed images. The

extracted lung regions of interest are further processed in the next

step: internal structure segmentation. Meraj et al. (2021) used the

Otsu thresholding method for segmentation of the lung region of

interest. The resulting image is binary and exposes the lungs, but

there are still unnecessary blobs present which are removed by only

extracting the largest regions in the image.

Christe et al. (2019) carried out a study aimed at evaluating the

performance of the INTACT system which is a CAD designed for

automatic classification of IPF (idiopathic pulmonary fibrosis). The

INTACT system consists of multiple stages where the first stage

segments the airways and lung parenchyma. The algorithm used

for this consists of extraction of lung airways, segmentation of lung

regions, separation of the left and right lungs, and morphological

3D smoothing. In a study for automated classification of lung

cancer sub-types using deep learning and CT scan-based radiomic

analysis by Dunn et al. (2023), the CT scans were first analyzed and

then a bounding box was used to manually select the tumor ROI. A

few slices were added above and below the bounding box as a buffer,

and these volumes were fed into the segmentation model.

In many of the recent studies carried out, this step of lung

extraction is not considered entirely. This is especially in deep

learning-basedmethods where the models are trained to search and

recognize the lung nodules or tumors directly from whole CT scan

images without reducing the search space for detection.

3.4 Lung cancer detection and
segmentation

Lung cancer radiotherapy requires accurate delineation of the

tumor to design precise patient-specific radiotherapy plans which

are based on CT images to deliver high irradiated doses to the target

volume while sparing surrounding organs as much as possible.

Therefore, accurate segmentation of the target volume is very

important for successful delivery of radiotherapy (Zhang et al.,

2020). An example of a segmented tumor in a lung CT is shown

in Figure 4. In this section, a variety of lung nodule segmentation

methods are discussed. A summary of lung cancer detection and

segmentation techniques is presented in Table 3.

3.4.1 2D methods
Kalinovsky et al. (2017) conducted a study to examine the

capabilities of deep convolution networks to automatically detect

different types of tuberculosis lesions. Two different 2D techniques

were explored in this study. The first is the sliding window

technique. For this, 2D regions of size 128 × 128 pixels were

automatically extracted and were manually divided into two classes

regions without any lesions and regions with lesions. These ROIs

were resized to 256 × 256 to fit the input size of the deep

convolutional network being used. For this technique, GoogLetNet

was trained on the training set of 2D images and demonstrated

a classification accuracy rate of 93.2%. The second technique is

a 2D slice-wise segmentation technique where for each slice its

two neighboring slices were used to construct a single RGB image

to utilize spatial information. Then, each 512 × 512 was split

into four quadrants and resized to 256 × 256 to fit the network.

For each quadrant, a corresponding label image was developed

manually dividing the image into three different regions which are

non-lesion regions, lesion regions, and “don’t care” regions which

refer to regions outside the lung regions. AlexNet was employed

for this technique and achieved an accuracy rate of 88.7% for

segmentation. The results of these techniques were also evaluated

using the receiver operating characteristic curve as the metric. The

2D-sliding window and the 2D slice-wise technique achieved a

ROC-curve equal to 0.784 and 0.785, respectively.
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FIGURE 2

Data augmentation.

TABLE 2 Summary of pre-processing techniques.

Technique Description Advantages Disadvantages

Noise reduction

(smoothing and

median filter)

Algorithms for noise reduction aim to differentiate

between noise and actual details of the image and

apply filtering operations to remove the noise

while preserving desired image features.

Noise reduction enhances the quality

and visibility of the image and preserves

fine details.

Overzealous noise reduction can result in loss of

sharpness, fine details, and overall image clarity.

Contrast

enhancement

(histogram

equalization)

Contrast enhancement techniques are used to

improve the contrast and distinguishability of

different colors or intensity between regions in an

image by adjusting the values to increase this

difference.

Contrast enhancement offers improved

visibility and image interpretation as

well as emphasis of details and image

restoration.

Aggressive contrast enhancement can result in the

amplification of noise, overemphasis of irrelevant

details, and unrealistic representation of the

original image.

Rescaling Image rescaling modifies the size, resolution, and

level of detail of an image by changing the number

of pixels through upscaling or downscaling.

Specifically, when working with larger

datasets, image rescaling allows for

faster data manipulation, analysis, and

processing. Rescaling images also reduce

computational overhead.

Rescaling images can result in the loss of details

captured in the original image and potential loss in

image quality.

Data augmentation Data augmentation is a machine learning

technique that is utilized to increase and diversify

a dataset by applying different methods such as

geometric transformations, image cropping and

padding, rotation, blurring, and zooming.

Applying data augmentation techniques

allows for increasing the variability and

diversity of the data in the dataset. This

enables the model trained on the dataset

to be more robust, improve

generalization, and reduce over-fitting.

Data augmentation can result in increased

computational time and complexity and storage

resources. Inappropriate data augmentation can

introduce biases where data are imbalanced or it

can result in over-fitting where the model has

specialized in the data and cannot generalize.

Liu et al. (2018) presented a method to approximate pulmonary

nodules on 2D slices using a Mask R-CNN to predict the nodule

position and the nodule contour size. The Mask R-CNN model

was trained on the COCO dataset and then validated using the

LUNA16 dataset. The ResNet101 was used as the Mask R-CNN

classification network and FPN as theMask R-CNN as the detection

network. Two methods to train the Mask R-CNN were used. First,

the training data were used to fine-tune all layers directly on the

pre-trained model of COCO data set. The accuracy obtained from

this model was a mean average precision of 0.733. The second

method was to train the network heads first and then fine-tune

ResNet stage 3 and above and lastly fine-tune all the layers. This

obtained a mean average precision of 0.796.

Serj et al. (2018) proposed a new deep CNN (dCNN)

architecture to diagnose lung cancer. The network consists of four

convolution layers, twomax-pooling layers, a full body convolution

layer, and one fully connected layer with two softmax units. Each

convolution layer in the network uses a ReLu layer. There are

two convolution layers at the beginning of the network in which

the first convolution layer consists of 50 feature maps with an 11

× 11 kernel and takes as input a 120 × 120 image. The second

convolution layer consists of 120 feature maps with 5 ×5 kernel,

and the last convolution layer consists of 120 feature maps with a

3 × 3 kernel. The max-pooling kernel size is 2 × 2 with a stride of

2 pixels. The fully connected layer generates 10 outputs which are

then passed to another fully connected layer containing 2 softmax

units which represent the probability of lung cancer or not. A

softmax loss function is used in this model. The model performs

forward propagation on each mini-batch and computes the output

and loss and then back-propagation is used to compute gradients

on the batch and network weights are then updated using stochastic

gradient descent. The proposed CNN is evaluated using three

metrics: sensitivity, specificity, and F1 Score. The proposed lung

cancer diagnosis method achieved a sensitivity of 0.87, specificity

of 0.991, and an F1 score of 0.95 which proves that this method

performed well and produced desirable results.

An investigation carried out by Zhang et al. (2018) included

experimenting with different deep neural networks to determine

the most accurate for the purpose of lung cancer tumor region

segmentation. After experimenting with a few models, the U-Net
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FIGURE 3

Lung ROI extraction.

FIGURE 4

Example of segmented lung tumor.

structure proved to achieve the highest accuracy which was the

chosen model for this study. Some minor modifications were made

to the U-Net structure so that it could be adapted for the purpose

of lung tumor segmentation. Each block in the architecture consists

of two convolution layers with 3 × 3 filters followed separately by

a rectified linear unit layer. Downsampling is used on the encoding

half of the structure with the use of 2 × 2 max-pooling layers with

a stride of 2, and 2 × 2 upsampling is used in the decoding half

of the structure. Feature maps are copied from each layer on the

downsampling half to the corresponding upsampling half of the

U-Net architecture. Finally, a 1 × 1 convolution is used which

followed by a sigmoid function, and dice loss is used as the loss

function. A few experiments were done to determine the efficiency

of the proposed approach which were evaluated using six metrics:

dice Coefficient, Hausdorff distance, slice-wise missing rate, false-

alarm rate, and CT scan-based accuracy. The slice-wise missing

rate is defined as the percentage of missed detection of slices with

a tumor. CT scan-based accuracy is based on the intersection-over-

union of the prediction of three consecutive slices. The experiments

were done using two threshold variations with the U-Net model

which are 0.5 and 0.0001 as threshold values. The results obtained

using the U-Net with threshold 0.5 were dice coefficient of 0.547,

mean surface distance of 12.505, 95% Hausdorff distance of 29.336,

slice-wise missing rate of 25.4%, false-alarm rate of 33.9%, and

CT scan-based accuracy of 90%, and the results obtained using

the U-Net with threshold 0.0001 were dice coefficient of 0.475,

mean surface distance of 27.014, 95% Hausdorff distance of 75.978,

slice-wise missing rate of 22.2%, false-alarm rate of 75.2%, and CT

scan-based accuracy of 95%.

Bhatia et al. (2019) proposed the use of a modified ResNet

architecture where the feature extraction is done by the ResNet-

50 imagenet11k + Places365 which is an architecture consisting of

ResNets or stacked residual units. The feature set is then fed into

classifiers like XGSBoost and Random Forest. A few experiments

were done to determine the most accurate ensemble of techniques.

First, the U-Net architecture was used for feature extraction paired

with the Random Forest classifier which achieved an accuracy of

74%. Then, the ResNet architecture was paired with the XGBoost

which achieved an accuracy rate of 76%. Finally, the ResNet was

used for feature extraction which was paired with an ensemble of
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TABLE 3 Summary of lung cancer detection and segmentation techniques.

Author Technique Results

Accuracy DSC Precision Recall Sensitivity Specificity

2D methods

Kalinovsky et al. (2017) DCNN, GoogLeNet, AlexNet 88.7%

Liu et al. (2018) Mask R-CNN, ResNet, FPN 79.6%

Serj et al. (2018) DCNN 87% 99.1%

Zhang et al. (2018) U-Net 54.7%

Bhatia et al. (2019) ResNet, XBG Boost, Random Forest 84%

Christe et al. (2019) CNN, Clustering, Fast-marching method

Madan et al. (2019) CNN 93% 89.2% 72% 98.2%

Park and Monahan (2019) Genetic encoding, CNN 97.15%

Kalaivani et al. (2020) CNN, ADABOOST 90.85%

Meraj et al. (2021) CNN

Angeline et al. (2022) VGG-16, FCN 78.87% 83.22%

Cui et al. (2022) U-Net, VGG-Net 90.1%

Salama et al. (2022) Generative model 98.91% 97.72% 98.46%

Shimazaki et al. (2022) CNN 52%

Gunasekaran (2023) YOLOv5 100% 95% 94% 90.5%

Riaz et al. (2023) MobileNetv2, U-Net 87.93% 93% 86.02%

3D methods

Baek et al. (2019) U-Net 86%

Ozdemir et al. (2019) V-Net

Sasikala et al. (2019) CNN 96% 87% 100%

Bansal et al. (2020) ResNet 96%

Kamal et al. (2020) DenseNet, U-Net 72.28%

Borrelli et al. (2022) U-Net

Kasinathan et al. (2022) Active Contour Model, CNN 97.1% 95.9% 93.9%

Dunn et al. (2023) iMRRN 95.65%

Said et al. (2023) UNETR 97.83% 96.42% 96.85% 97.12%

4D and hybrid methods

Chen et al. (2019) CNN 88% 91% 87%

Barrett et al. (2021) Automatic contouring 69%

Yan et al. (2022) CNN 87% 85%

the RandomForest andXGBoost classifiers which achieved a higher

accuracy rate of 84%.

For the study conducted by Christe et al. (2019), multiple

databases were used for the training and evaluation of the different

components of the INTACT system such as the Lung Tissue

Research Consortium Database (LTRC-DB), Multimedia Database

of Interstitial Lung Diseases (MD-ILD), and the Inselspital

Interstitial Lung Disease Database (INSEL-DB). The ground truth

data were determined by four radiology specialists, and the data

were classified into four categories: Typical UIP CT pattern,

Probably UIP CT pattern, CT pattern indeterminate for UIP, and

CT features most consistent with non-IFP diagnosis. Once the

lungs are segmented, a CNN is used for tissue characterization

in the second stage. The proposed system for pathological tissue

segmentation uses texture to detect classify and calculate the extent

of disease in tissue based on pathologies such as reticulation,

honeycombing, ground glass opacity, consolidation, micronodules,

and normal lung. The CNN takes as input a section of a 2D CT

slice and outputs a corresponding tissue pathology label map for

each pixel. The next stage is the diagnosis based on the results of the

lung tissue characterization. In this stage, the lungs are segmented

into 12 lung segments to calculate the distribution of the different
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pathological tissue types in the different segments of the lung. The

techniques used for this were a volume-based split for the upper,

middle, and lower segmentation, and k-means clustering was used

for the central and peripheral segments and the fast-marching

method. The distribution of the different tissue types estimated for

each segment was used to train multiple one-versus-all random

forest classifiers to classify the lung fibrosis for each of the 4 cases.

The proposed system was evaluated using sensitivity, accuracy,

and positive predictive values. The positive predictive values and

sensitivity were used to calculate the F-Score. The results achieved

by the INTACT system were also compared to that of 2 radiologists

who were blind to the ground truth data. The accuracy achieved

by the system for classifying the pulmonary fibrosis was 0.6 and an

average of 0.55 by the radiologists. The system achieved an F-Score

of 0.56, and the radiologists achieved an average F-Score of 0.57.

The lung cancer detection method proposed by Madan et al.

(2019) was done using a convolutional neural network (CNN)

made up of convolution and pooling layers which produced the

segmented image. This model was validated using 1623 images and

achieved a validation accuracy of 93%, a preciseness of 89.2%, recall

of 72%, and sensitivity of 98.2%.

Park and Monahan (2019) carried out an investigation using

a genetic algorithm to conduct a neural architectural search to

generate a novel CNN to detect lung cancer in chest X-rays.

The NEAT algorithm is modified to evolve a CNN’s architecture

which is named DeepNEAT-Dx. Convolution and pooling layers

with pseudo-random hyper parameters are injected into a minimal

convolutional architecture and weights are optimized through

back-propagation on the training set. Schiffman encoding which is

a direct graph encoding scheme was used which allows for easily

programmable rules for mutations. This is to ensure that mutations

do not result in illegal architectures such as convolving to negative

dimensions. Each vertex in the genome graph encoding represents a

CNN layer which stores hyper parameter information such as filter

size, stride, padding, and weight initialization method. After the

genetic algorithm produced a graph encoding of a network which

was then exported to be tested. The DeepNEAT-Dx produced an

accuracy rate of 97.15% for lung cancer detection.

In a study done by Kalaivani et al. (2020), images were fed

into a CNN where the images were classified and an output was

obtained. The algorithm used for classification is ADABOOST

where accuracy calculation is done based on sample weights of

images. To measure the accuracy of the detection and classification

of lung cancer in images using these approaches, 11 images

were used to evaluate the proposed method. The accuracy was

determined by the number true positives divided by the sum of

true positives and false positives. The results achieved were 90.85%;

however, only a small number of images were considered for the

evaluation out of a relatively large dataset.

Zhang et al. (2020) used a modified version of ResNet to

segment the tumor volumes in patients with inoperable NSCLC

where an encoder-decoder structure similar to U-Net was adopted.

The encoding path uses a ResNet34 backbone to extract deep

features, and a lightweight dense-prediction branch was applied

in the decoding path. Deep semantic features at multiple spatial

resolutions were concatenated in the channel dimensions and

then merged with shallow features to generate dense pixel

outputs. The ResNet34-based encoder is divided into five stages

where each feature map is generated at different scales. The

ResNet34 architecture employed cross-layer connection via identity

mapping. The structure of the residual learning block contained

an identity residual block and a convolutional residual block. The

convolutional residual block adds the convolutional values to the

appropriate branch of the identity map to change the dimension

of the feature map. The feature maps of stages 3, 4, and 5 were

upsampled by bilinear upsampling and convolution until they

reached ¼ of the input size. These deep semantic features including

different levels of global information were concatenated in the

channel dimension and passed through a stack of convolutional

layers to fuse the features until they reached the number of feature

maps in stage 2. Thereafter, the values are added and upsampled

until they reach the size of the input image. Finally, pixel-wise

classification is carried out using the sigmoid function andweighted

cross-entropy was used to force the loss function to more attention

to the foreground class. The size of the feature maps is reduced

until they were of size 16 × 16 and then gradually restored by the

decoding network until they reached the input image size of 512×

512. The modified ResNet architecture is depicted in Figure 5.

The proposed method achieved an average DSC of 0.73, JSC

of 0.68, TPR of 0.74, and FPR of 0.0012 which was comparable to

manual segmentation especially for larger tumors. The proposed

method also performed better than a U-net architecture where the

U-Net model achieved a DSC of 0.64, JSC of 0.52, TPR of 0.61, and

FPR of 0.0008. However, this study has its limitations where the

training set did not have many cases because of limited availability

of datasets and the segmentation results were affected by tumor

position, size, shape, and respiratory and cardiac motion. Second,

distance metrics such as Hausdorff distance were not applied

to measure the contour’s degree of spatial conformity. Third,

inter-observer and intra-observer variability was not considered

in this study, and finally, tumors that were small and attached to

the mediastinum were challenging to segment accurately as 2D

networks ignore the inter-slice relationship between slices of the

same patient.

In the study done by Ismail (2021), three different datasets were

used to evaluate the performance of deep learning methods for

lung cancer detection, namely, the cancer imaging archive (TCIA),

the lung image database consortium image collection (LIDC-IDRI),

and the Kaggle data science bowl 2017. First a U-Net CNN model

for nodule segmentation was used which gave a dice coefficient of

67.8%. A second CNN was used for reducing the false positives of

detected nodules which converged to a validation accuracy of 84.4%

at detecting a nodule as true positive or false negative. Together, the

models achieved a sensitivity of 0.75 and the average false positives

per scan was 0.06.

Meraj et al. (2021) carried out a study where the segmentation

of the lung nodules is done by a CNN model for the semantic

segmentation of candidate nodules. The lung ROI produced in the

previous stage is used as the input to the CNN and is of size 512

× 512 × 1 with zero center normalization. The next layer is a

convolution layer that performs 64 filters with a size of 3 × 3 ×

1 followed by the ReLu activation function and max-pooling of size

2× 2. This is repeated with a filter size of 3× 3× 64 convolutions.

Thereafter, a transpose layer which uses 4 × 4 × 64 convolutions
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FIGURE 5

Modified ResNet architecture proposed by Zhang et al. (2020).

with a 64 filter size is applied and is followed by 3 convolution

layers, two fully connected layers, the softmax layer calculates the

probability of the pixels being nodules, vessels, or background.

Angeline et al. (2022) conducted a study focusing on the

identification of malignancy of lung cancer using deep learning

methods. This study focused on the detection of tumor types such

as benign, unsure, or malignant, using the VGG-16 neural network

on the LIDC-IDRI dataset. The VGG-16 network has 16 neural

network layers and filters which locate the nodules in the CT scans

allowing for the detection of malignant and non-cancerous cells

which is achieved by multiple parameters and hyper-parameters

to detect benign and unsure tumors. The network consists of

five group convolutions that are shared by the subsequent sub-

networks. For the region proposal network, an image is set as

the input to a network composed of an FCN which outputs a set

of rectangular object proposals. To generate region proposals, a

small network is slid over the feature map output by the feature

extraction network. This small network uses 3× 3 spatial windows

as input into themodel. The accuracy rate achieved by the proposed

framework was 78.87% and a precision on 83.22%.

To evaluate the performance of a deep learning-based lung

nodule detection system, Cui et al. (2022) carried out an experiment

where the performance of a deep learning system was compared

to that of manual CT scan readings carried out by radiologists.

The system uses maximum intensity projection (MIP) technique

and was trained on the LIDC/IDRI dataset comprising of nodules

larger than 3mm. The system consists of four CNNs with a

U-Net architecture which are applied to predict the possible

nodule candidates. The nodule candidates produced by these four

networks are merged and passed as input to two CNNs with a

VGG-Net architecture which are used to differentiate true nodules

from false positives. The FROC curve measuring the sensitivity at

various false positive rates was used to present the performance

of the DL-CAD system. The nodule detection performance of the

system showed a sensitivity of 90.1% whereas the double reading by

the radiologists achieved a sensitivity of 76.0%. The number of false

positives found by the DL-CAD system was more than that found

by the radiologists in the double reading which included pulmonary

vessels, fibrosis, gastric mucosa, and irrelevant small nodules. It

was also found that the DL-CAD system found a large number of

nodules that were missed by the radiologists which proves that the

system improves nodule detection performance.

The study by Salama et al. (2022) introduced a framework that

employs a generativemodel to synthesize chest X-ray (CXR) images

featuring tumors of various sizes and positions. This approach helps

balance class distribution in datasets, which is crucial for training

robust classification models. The generated images were used to

train a ResNet50 model, achieving high accuracy in distinguishing

between benign and malignant tumors. The authors present a

generalized framework that utilizes two types of deep models:
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a generative model and a classification model. The generative

model captures the distribution of important features in a set of

small, class-unbalanced CXR images. This model can synthesize

any number of CXR images for each class, effectively balancing

the dataset. By creating synthetic images that mimic real lung

cancer images, including tumors of various sizes and positions,

the generative model helps overcome the challenge of limited

annotated datasets in medical imaging. The results demonstrated

high performance, with an overall detection accuracy of 98.91%, an

AUC of 98.85%, a sensitivity of 98.46%, a precision of 97.72%, and

an F1 score of 97.89%.

Shimazaki et al. (2022) proposed a CNN based on the

encoder-decoder architecture to produce a segmentation of the

tumors present and has a bottleneck structure which reduces the

resolution of the feature map. The model was trained on both

chest radiographs as well as a black and white inversion of the

radiograph which was considered to be augmentation of the data.

The deep learning model had an average sensitivity of 0.73. For

the lung tumors that overlapped with blind spots such as apices,

pulmonary hila, chest wall, heart, or sub-diaphragmatic space,

the average sensitivity achieved was 0.52, 0.64, 0.52, 0.56, and

0.50, respectively. The average DSC achieved was 0.52. For the

lesions detected by the model, the average DSC was 0.71 and

the DSC achieved for all the lesions that were overlapping the

blind spots was 0.34. The total number of false positives was

13% where 95% of the FPs overlapped with vascular shadows

and ribs and some were nodules were overlapped with normal

anatomical structures. The total number of false negatives were

27% which were also made up of lesions overlapping with normal

anatomical structures. It was difficult for the model to identify lung

cancers that overlapped with blind spots even when the tumor size

was large.

Gunasekaran (2023) conducted a study that leverages object

detection for the identification of lung cancer. The objective was to

explore the application of YOLOv5, an object detection framework,

in lung cancer detection. The cancer detection technique used is

the YOLOv5 which is a model that combines model assembly

and hyper-parameter. The model is made up of three sections:

the Backbone module consisting of Cross Stage Partial Darknet

(CSPNet) which is responsible for extracting features form the

input images, the Neck module which creates the pyramid features

for generalization using the PANet, and the Head module is used

for detection and add a bounding box with a score around the

detected cancer. The proposed method exhibited proficient results

where it was able to detect malignant areas in the chest X-rays.

This was evident in the evaluation of the method using the Kaggle

chest X-ray dataset that the method achieved a sensitivity was

94%, a specificity was 90.5%, a precision was 100%, and a recall

was 95%.

Riaz et al. (2023) developed a hybrid model that infuses the

MobileNetV2 and the U-Net models for lung tumor segmentation

from CT images. The pre-trainedMobileNetV2 was used, retaining

the convolution layers as the encoder of the U-Net architecture

and the decoder consists of upsampling and convolutional layers.

Skip connections with the ReLU activation function are established

between the encoder layers of the MobileNetV2 to the decoder

layers of the U-Net. A final convolution layer is added to

the end of the decoder part to obtain the correct number of

classes to generate probability maps which determine the tumor

and the background. The proposed model was further trained

and fine-tuned with optimized hyper-parameters to improve the

segmentation accuracy. The dataset used to train and evaluate the

model was from the TCIA dataset. The proposed model achieved

a dice score 0.8793, a recall of 0.8602, and precision of 0.93.

The result achieved by this proposed hybrid architecture proved

to have significant accuracy; however, using of a more diverse

dataset for evaluation of the model as well as the exploration of

post-processing methods could aid in possible improvements to

the outcome.

Various GAN architectures were employed in a study by Cai

et al. (2024) to perform image translation, converting original

lung images into segmented images. The GAN consists of

two main components: a generator and a discriminator. This

network is responsible for generating segmented lung images

from the input CT scans. It learns to produce realistic and

accurate segmentation by translating the original lung images

into segmented versions. This network distinguishes between real

segmented images (ground truth) and the generated segmented

images. It helps the generator improve by providing feedback on

the realism of the generated images. The GAN was trained using

a dataset of lung CT images with corresponding ground truth

segmentation. The training process involves the generator creating

segmented images, which are then evaluated by the discriminator.

The discriminator’s feedback helps the generator refine its outputs

to produce more accurate segmentation. The loss functions for

both the generator and discriminator are optimized iteratively to

improve the quality of the generated segmentation. The GAN

leverages its image translation capabilities to convert the original

lung images into segmented images. This process involves learning

the mapping from the input CT scans to the desired segmented

outputs. This approach leverages the powerful image generation

capabilities of GANs to enhance segmentation accuracy.

The research presented by Wang et al. (2024) focuses on

improving early lung cancer detection using a growth predictive

model based on the Wasserstein Generative Adversariel Network

framework. Themodel predicts the growth patterns of lung nodules

in follow CT scans using baseline scans. The model was trained on

a dataset containing pairs of nodule images taken approximately

1 year apart. The model was tested on an independent set of 450

nodules. It predicted the appearance of nodules in follow-up scans

and classified them as malignant or benign using a lung cancer risk

prediction (LCRP) model. The model achieved a test AUC (area

under the curve) of 0.827, which was comparable to the AUC of

0.862 achieved by the LCRP model using real follow-up nodule

images. This indicates that the model’s predictions were nearly as

accurate as actual follow-up scans.

3.4.2 3D methods
In the investigation to automatically detect different types

of tuberculosis lesions, Kalinovsky et al. (2017) proposed a

third technique which explored 3D segmentation where the lung

boundary segmentation and the lesion detection are conducted

in a single step using a deep convolutional network for semantic

segmentation. Since it was difficult to detect smaller lesions, for this
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FIGURE 6

Standard U-Net architecture.

experiment, only the larger lesion types were considered such as

the infiltrative and fibro-cavernous lesions. Here, a convolutional

encoder-decoder model was used which trained on the 3D images

to segment the lungs to obtain a region of interest. As input to

the network, three layers of the 3D image were applied where the

output of the network matched the 2D mask of the central layer.

The result achieved using this technique for the lung segmentation

was 0.95 of intersection of union (IoU) score. For the lesion

detection task, a lower resolution of the 3D image was used. This

technique was evaluated using the receiver operating characteristic

(ROC) curve as the metric and achieved 0.775.

Baek et al. (2019) carried out an investigation to show the

effect of deep segmentation networks have on the prediction of

survival of non-small cell lung cancer. Two independent 3D U-

Net models were trained to segment lung cancer in CT and

PET scans, respectively where both models followed the standard

encoder-decoder architecture. After evaluating each of the model’s

segmentation performance, the average DSC achieved by the U-Net

for CT was 0.861 and for PET was 0.828. The architecture of a

standard U-Net model is depicted in Figure 6.

Ozdemir et al. (2019) presented a system based entirely

on 3D CNNs for both lung nodule detection and malignancy

classification tasks on the LUNA16 dataset. The system consists

of two components where the first is a computer-aided detection

(CADe) module that detects and segments suspicious lung nodules

and the second is a computer-aided diagnosis (CADx) module

that performs both nodule detection and patient-level malignancy

classification. The CADe system takes the patient’s image as input

and produces as output the detected lung nodules. The dataset

used in this research was the LIDC-IDRI dataset with annotated

ground truth data as well as the dataset provided by the National

Cancer Institute for the 2017 Data Science Bowl on Kaggle. The

CADe system is made up of a 3D segmentation network which

produces a probability map of whether a voxel is nodule or not and

a 3D scoring network which computes refined nodule probability

estimates for full nodule candidates which are generated from the

segmentation. The nodule segmentation network is a 3D fully CNN

based on the V-Net architecture which uses three encoder-decoder

block pairs with corresponding skip connections in addition to

the input and output blocks. The encoder blocks are made up of

two downsampling convolution layers, two layers of kernel size 3

convolutions, and residual connection to the output. The decoder

blocks are the same but with two upsampling deconvolution layers.

The innermost encoder-decoder block pair includes channel-wise

dropout between the sampling convolution and the two main

convolution layers. All the blocks in the network use instance

normalization instead of batch normalization as well as RELU

non-linearities. For training the network, the LUNA16 dataset

was used. Since the CT scans are too large to train the network,

64 × 64 × 64 blocks near known nodules are extracted and

used to train the network. The network is trained with a cross-

entropy loss function that weights voxels within a nodule twice as

much as the background voxels. When the test images are passed

through the network, the images are split into 8 256 × 256 ×256

overlapping blocks and stitch the output segmentation together

appropriately which then undergo post-processing to produce the

candidate nodules.

Sasikala et al. (2019) proposed a CNN based technique to

classify the lung tumors as malignant or benign from chest CT

images. A back-propagation algorithm is used to train the Deep

CNN to detect lung tumors in CT images of size 2 × 50 × 50

which consists of two phases. In the first phase, a CNN is used to

extract valuable volumetric features from input data and the second

phase is the classifier. The CNN consists of multiple volumetric

convolution to the first phase and multiple fully connected layers

and threshold layers followed by a Softmax layer to perform the
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FIGURE 7

Recurrent 3D-DenseUNet proposed by Kamal et al. (2020).

high-level reasoning of the classification step. Once the CNN

classifies whether the volume has a cancerous tumor or not,

watershed segmentation is used to detect the cancer. The proposed

method was evaluated and achieved a specificity of 1, sensitivity of

0.875, and overall accuracy of 0.96. The proposed system was able

to detect the presence and absence of cancerous cells with a 96%

accuracy rate.

The research done by Bansal et al. (2020) proposed a novel

approach for detecting lesions using the inner structures of the

nodule voxels. For the segmentation of the lung nodules, a fully

convolutional network is used without pooling layers and is

subdivided into two halves. The left half uses “down convolution”

and performs compression, while the right half decompresses the

signal back to its original dimensions. The network includes skip

connections which go from each stage on the left half of the

network to the corresponding stage on the right half of the network.

Each stage in the architecture consists of three convolutional

layers. The skip connections do not only go from left to right but

from the first layer to the third layer within each stage on the

left half of the network. The resulting feature map is converted

into two probabilistic segments to produce a foreground and

background using a softmax filter. To determine whether the voxel

is foreground or background, a threshold of 0.4 is used. The

segmentation network is based on the dice loss function. The

input image is broken up into multiple batches of 128 x 128 x 64

voxel blocks, and the network input is a tensor of the form 16 ×

128 × 128 × 64 × 1. The output including the probabilities of

foreground and background has the same spatial dimensions as the

input. After the segmentation step, the 2D slices are extracted from

the 3D segmented results and are passed to a ResNet model for

cancer classification. This study made use of the LUNA16 dataset

where the test set consisted of 60 patients where 30 patients had

cancerous nodules and 30 did not. To highlight the accuracy of the

segmentation network, the dice coefficient metric is used where the

model achieved a dice coefficient of 0.958.

Kamal et al. (2020) presented a Recurrent 3D-DenseUNet

model for lung tumor segmentation. This model was inspired

by the DenseNet, U-Net and convolutional Recurrent Network

architectures and consists of three parts which are the encoder,

recurrent block, and the decoder. The encoder block consists of 3D

convolutional layers, a batch-normalization layer, ReLu activation

layers, and 2D max pooling where each convolution block is

designed to perform as a dense block to create a connection

between the inner and middle layers of the block. The recurrent

block is used as a transition section from the encoder to the

decoder and consists of many convolutional long short-term

memory (ConvLSTM) layers which is made up of 2D convolution

layers. The final block is the decoder takes the features from the

recurrent block, upsamples, and generates the predicted volumetric

segmentation. The dataset used consists of 300 patients from

the NSCLC-Radiomics dataset. An average of multiple prediction

results are used as the final prediction. The proposed method was

evaluated and achieved a mean dice coefficient of 0.7228 and a

median dice coefficient of 0.7556. Figure 7 depicts the Recurrent

3D-DenseUNet architecture.

Nishio et al. (2021) developed a pre-trained model for lung

cancer segmentation using an artificial dataset generated by a

GAN. This approach addresses the small dataset problem by

creating synthetic images that resemble real lung cancer images.

When fine-tuned on actual lung cancer datasets, the pre-trained

model demonstrated improved segmentation accuracy. Three

datasets were utilized: LUNA16, Decathlon lung dataset, and

NSCLC radiogenomics. The LUNA16 dataset was used to generate

the artificial dataset for segmentation with the help of the GAN

and 3D graph cut techniques. The Decathlon lung dataset was

employed to construct the main segmentation model from the

pre-trained models. The NSCLC radiogenomics dataset was used

to evaluate the performance of the main segmentation model.

The artificial dataset generated by the GAN helped overcome

the small dataset problem often encountered in medical imaging.

Pre-trained models were constructed from this artificial dataset,

and transfer learning was applied to fine-tune these models using

the Decathlon lung dataset. The main segmentation model was

then evaluated using the NSCLC radiogenomics dataset. The

results showed that the mean DSC for the NSCLC radiogenomics

dataset improved overall when using the pre-trained models,
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with a maximum increase of 0.09 compared to models

without pre-training.

Borrelli et al. (2022) used a CNN to segment lung tumors

and thoracic lymph nodes. The CNN model uses a U-Net 3D

architecture where the final convolutional layer contains 3 channels

with softmax activation, one for the background, one for the lung

tumor, and one for the thoracic lymph node. The network accepts

as separate inputs, the CT image, the PET image, and a one-hot

encoded organ mask. The organ mask aids the network with a

rough anatomical localization. It uses one channel each for bone,

liver, lung, heart, aorta, and adrenal gland. The model was trained

using patches of minimal size. The pixels were categorized into four

groups namely, background, lung tumor, thoracic lymph node, and

other abnormal uptake so the patches were chosen so that there was

good balance between the different groups. The center point of each

patch was randomly chosen. The model was trained 10,000 patches

per epoch and then retrained with 20% of the patches focusing on

incorrectly classified pixels and this step was repeated four times.

The model’s performance was evaluated using the Hazard Ratios.

The CNN achieved an HR of 1.64 which was compared to a manual

segmentation HR of 1.54.

Kasinathan et al. (2022) presented a strategy for classifying

and validating different stages of lung tumor progression where

a deep neural model and data collection using cloud system for

categorizing phases of pulmonary illness. Included as part of their

strategy, lung nodule segmentation is implemented prior to nodule

classification was done using the active contour model (ACM). In

the proposed ACM, the number of points to fit the curve is reduced

in the tumor portion which is segmented. The modified ACM is

evaluated using a gradient value which helps for edge detection.

Using the Mumford-Shah model, an expression is derived for

intensity outside and inside the curves with level set method

and energy approximation. The resulting segmented tumors are

then passed through a CNN model for classification. The effect

of the ACM segmentation on the final classification results was

evaluated. Without the use of the ACM tumor segmentation, the

proposed method achieved an accuracy of 80%, specificity of 81%,

and a sensitivity of 97% whereas with the application of the ACM

tumor segmentation the method achieved an accuracy of 97.1%, a

specificity of 93.9%, and a sensitivity of 95.9%.

A study for automated classification of lung cancer sub-types

using deep learning and CT scan-based radiomic analysis was

conducted by Dunn et al. (2023). In the study, the incremental

multiple resolution residual network (iMRRN) was used for lung

tumor segmentation. The dataset included 436 lung cancer CT

images from the TCIA dataset. The CT scans were first analyzed,

and then, a bounding box was used to manually select the tumor

ROI. These 3D volumes were passed through the iMRRN for

tumor segmentation; however, the results showed that the iMRRN

was able to accurately segment only 44.7% of the images. The

tumors in the other images were incorrectly placed outside the

manually selected bounding box. The incorrectly segmented images

were reprocessed limiting the processing to the ROI within the

bounding box. This resulted in 92.1% of the remaining images

being segmented correctly leaving a failure rate of 4.35%. The

images that the model could not segment were removed from the

dataset for further analysis in the remainder of the study. It was

evident here that limiting the search space in an ROI improves the

models performance. The model used in this study performs better

with smaller tumors which could be a result of a limitation to the

dataset and it relies on the manual delineation of the ROI.

In a study conducted by Said et al. (2023) for lung cancer

diagnosis, a deep learning system was proposed where part of

the system utilizes the UNETR architecture to segment tumors in

the lung. The UNETR is a model that consists of a combination

of U-Net and transformers to collect features from 3D images.

It uses transformers, which operate using a 1D sequence, as the

encoder to determine global multi-scale information and learn

sequence representations in the data. The encoder and decoder

are connected via skip connections in a contracting-expanding

pattern using a stack of transformers. A dataset of 96 3D image

volumes was used which were spilt into training and testing sets.

The network optimizer was experimented with to determine the

most accurate results. Using the AdamW optimizer yielded an

accuracy rate of 96.79%, whereas the Nadam optimizer achieved an

accuracy rate of 97.83%. The achieved results from this experiment

were a dice of 96.42%, a sensitivity of 96.85%, and a specificity

of 97.12% which are promising results; however, this architecture

is computationally intensive and requires a high-performance

specifications to run smoothly.

3.4.3 4D and hybrid methods
Chen et al. (2019) proposed a hybrid segmentation network

(HSN) based on CNN where the model combines a lightweight 3D

CNN and a 2D CNN to accurately segment small cell lung cancer

from CT scans. A hybrid feature fusion model (HFFM) was also

proposed to fuse the 2D and 3D features and jointly train the 2

CNNs. Figure 8 shows the structure of the hybrid model.

The 3D CNN follows the standard structure of a U-Net

architecture with encoder and decoder halves. The encoder begins

with an Spatiotemporal-separable 3D (S3D) block, which consists

of two consecutive convolutional layers where one is a 2D

convolutional layer and the other is a 1D convolution to learn

temporal features, and an multi-scale separable convolution (MSC)

block followed by a few layers of MSC blocks where regular

convolutional layers would be in a U-Net model. An MSC

block is an Inception-ResNet-like architecture consisting of S3D

convolutions to capture multi-scale 3D contextual information.

Downsampling is done via the S3D convolution. The decoder half

consists of layers of 1D convolution paired withMSC blocks and 3D

bilinear upsampling. Each layer on the encoder half is concatenated

to the corresponding layer on the decoder half. The CNN ends

with a convolution and softmax layer. The 2D CNN incorporates

the use of Dilated Unit Blocks (DUBs) which consists of two

sequentially dilated convolutions with the residual connection.

The 2D CNN starts with convolutions to produce 16 feature

maps, and this is followed by alternating DUBs and striding S3D

convolutions. Thereafter, upsampling, concatenation, and Squeeze-

and-Excitation blocks are used to combine features. The HFFM

model that is proposed to combine the features produced by the

3D and 2D CNNs, batches of adjacent slices from each CNN

result are stacked, cropped, permuted so that they are of equal

dimensions and concatenated. Thereafter, this is passed through a
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FIGURE 8

Structure of hybrid segmentation network with hybrid feature fusion model proposed by Chen et al. (2019).

convolution layer, upsampling, further convolution and a softmax

layer to produce the final segmentation. General dice loss is used

to optimize the networks proposed. Data augmentation techniques

were not utilized as focus was placed on the network structure. The

network was quantitatively evaluated using DSC, sensitivity, and

precision. The 2D CNN and 3D CNN were evaluated separately

and compared to the results of the HSN. The 2D CNN achieved

a mean DSC of 0.692, a mean sensitivity of 0.690, and mean

precision of 0.766, the 3D CNN achieved a mean DSC of 0.840,

a mean sensitivity of 0.830, and a mean precision of 0.856, and

the HSN produced improved result with a mean DSC of 0.888,

a mean sensitivity of 0.872, and a mean precision of 0.909. This

proves that the HSN outperforms the 2D and 3D networks. This

method does not include any pre-processing, ROI extraction, or

post-processing techniques which could have improved the results

achieved in this study.

In the investigation done by Barrett et al. (2021), the feasibility

of a commercially available autocontouring system’s performance

in delineation of lung GTV was compared to that of manual GTV

delineation. For this study, a unique 4DCT dataset of NSCLC

patients was used. The manual contour was delineated by a single

experienced radiation oncologist and was used as the ground

truth data. For each 4DCT, a lung window was utilized to locate

the approximate mid volume slice, and the auto contour was

generated using the Smart Segmentation function onVarian Eclipse

V15.5. Then, a user-adjusted auto contour was also generated.

This was done by duplicating the auto contour and manually

adjusting the contour which was done by an experienced radiation

therapist. Three metrics were used to quantify the accuracy of

the delineation methods, namely, DSC, shift in structure center

of mass (COM), and volume difference in cm3. The results

achieved by the autocontour method in comparison with the

manual contour were a median DSC of 0.69, a volume difference

of 3.35, and a COM offset of 0.39 and a mean DSC of 0.69,

volume difference of 11.15, and COM offset of 0.49. The results

achieved by the user-adjusted auto contour method were a median

DSC of 0.8, volume difference of 1.4, and a COM offset of

0.2 and a mean DSC of 0.77, volume difference of 8.05, and a

COM offset of 0.39. These results show that user intervention

to correct the incorrect delineation of the auto contour system

produced better results that the auto contouring system alone.

One limitation of this study was that it did not include any

node-positive cases where the target delineation is known to be

more challenging.

Yan et al. (2022) proposed a deep learning model for lung CT

image segmentation with the intention to improve the diagnosis

rate of clinical lung cancer and improve the quality of life of patients

after surgery. A hybrid segmentation model was proposed which

includes a 2D CNN and a 3D CNN was constructed where the 3D

model was used to obtain 3D information and the 2D model was

used to obtain detailed semantic information. The hybrid feature

fusion model (HFFM) was used to fuse the features effectively. The

3D model was structured similarly to the U-Net model with some

improvements where the convolutions were replaced by a multi-

scale separable convolution (MSC) module, a separable spatial 3D

(S3D) was used in place of the pooling operation to reduce the

size of the feature map, and lastly, the upsampling feature map

was cascaded with the feature map produced by the encoder and

the MSC was used to adjust the number of feature maps. The

2D model design included the adoption of the dilated convolution

structure. The input image size was 512 × 512. The image was first

decomposed into 16 feature maps using a convolution layer of 3

× 3 × 3 structure, and features were extracted using DUB with

a stride convolution iteratively until the feature map was size 32

× 32. Thereafter, the feature maps were upsampled, followed by a

cascading operation, and the Squeeze-and-Excitation and extrusion

operations were adopted to build the dependency between the

feature maps. This was followed by 2D convolutions layers, global

pooling, Leaky ReLu layer, and a sigmoid function. The HFFM was

constructed to fuse the feature maps produced by the two models.

The cascaded feature map integrates the advantages of the two

models while simultaneous training occurs. A convolution layer
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was added after fusion for optimization, and then, upsampling was

applied. Finally, a softmax layer was used to segment the image.

The accuracy of the lung cancer segmentation performed by the

proposed model was measured using dice, sensitivity, and positive

predicate value. The accuracy rate of the 2D CNN, 3D CNN and U-

Net was also evaluated to compare with the proposed model. The

dice value of the 2D CNN was 70%, the 3D CNN was 82%, the U-

Net was 80%, and the proposed model was 87%. The sensitivity

value of the 2D CNN was 70%, the 3D CNN was 82%, the U-Net

was 81%, and the proposed model was 85% and the PPV of the 2D

CNN was 78%, the 3D CNN was 83%, the U-Net was 79%, and the

proposed model was 88%.

A novel method using GANs for 3D lung tumor reconstruction

from CT images was proposed by Rezaei and Ahmadi (2023).

The method involves three stages: lung segmentation, tumor

segmentation, and 3D reconstruction. The first stage involves

segmenting the lungs from CT images using snake optimization

and Gustafson-Kessel (GK) clustering. The second stage focuses

on segmenting the tumors within the lung regions. The final

stage involves reconstructing the 3D model of the lung tumor.

A Generative Adversarial Network (GAN) is used to create 3D

shapes that closely match the ground truth. The generator produces

3D shapes from sequences of 2D images, while the discriminator

distinguishes between real and generated images to help the

generator improve. Features from the last unit of an LSTM network

are fed into the generator, which then predicts a 3D image. These

generated 3D images are compared with real 3D images by the

discriminator to ensure accuracy and realism. Based on the HD

and ED metrics, the proposed method achieves the lowest values,

specifically 3.02 and 1.06, respectively. This approach enhances the

visualization and analysis of lung tumors, aiding in better diagnosis

and treatment planning.

To overcome the previously mentioned challenges, various

image processing techniques and approaches have been explored;

however, it is vital to note the advantages of deep learning

techniques over non-deep learning techniques. Of late, deep

learning techniques have showed great progress in medical imaging

analysis and lung cancer detection (Wang et al., 2019). The success

and improvement found from machine learning is not from

improved hardware and more encompassing datasets but from

innovations into model structure. From convolutions into fully

connected layers, to the addition of dropout layers, to optimization

techniques, the approach to deep learning is constantly changing

and improving (Park and Monahan, 2019).

3.5 Post-processing

Post-processing is used to refine the segmentation results

produced by the primary segmentation techniques. Often, there

is a high number of inaccuracies which presents in the results of

the initial segmentation which is alleviated with the application

of appropriate post-processing techniques which allow for more

clear and sharp results thereby increasing the accuracy rate of

the methodology.

To reduce the number of false positives from the results

obtained from the U-Net model proposed by Zhang et al. (2018),

radiomic analysis was used where deep features of the tumor

regions were used to aid a classifier to determine whether a

segmented region is a tumor or not. Two different classification

models were used to determine which model achieves more

accurate tumor classification. Between AlexNet and ResNet-18,

ResNet-18 achieved better results in reducing the number of false

positives while maintaining the true positives. A 170× 170 window

is centered at the segmented region. The window size is based on

the size of the largest tumor in the dataset allowing it to cover all

the tumors in the dataset. Pairing their proposed U-Net using a

threshold value of 0.5 with AlexNet achieved a dice coefficient of

0.611, mean surface distance of 8.137, 95% Hausdorff distance of

18.143, slice-wise missing rate of 30.3%, false-alarm rate of 11.1%,

and CT scan-based accuracy of 85%. Pairing this U-Net with Res-

Net-18 achieved a dice coefficient of 0.592, mean surface distance

of 8.835, 95% Hausdorff distance of 21.176, slice-wise missing rate

of 26.4%, false-alarm rate of 15.6%, and CT scan-based accuracy

of 85%. Pairing their proposed U-Net using a threshold value of

0.0001 with AlexNet achieved a dice coefficient of 0.588, mean

surface distance of 9.336, 95% Hausdorff distance of 21.243, slice-

wise missing rate of 28.7%, false-alarm rate of 17.6%, and CT

scan-based accuracy of 82.5%. Pairing this U-Net with Res-Net-18

achieved a dice coefficient of 0.563, mean surface distance of 10.896,

95% Hausdorff distance of 26.052, slice-wise missing rate of 23.3%,

false-alarm rate of 24.6%, and CT scan-based accuracy of 90%. The

results show that using only the U-Net model to distinguish tumors

results in many false-alarms but when combined with the Res-Net

or AlexNet the results produced are better. It is also evident that

the combination of the U-Net and Res-Net-18 produced the most

desirable results.

Following the nodule segmentation step proposed by Ozdemir

et al. (2019), the nodule candidates are generated after undergoing

some post-processing which includes thresholding the output

voxel scores, applying the nearest neighbors binary opening

filter, and then labeling all separate regions based on a voxel

connectivity of one. For the false positive reduction, a scoring

network was developed that operates on 32 × 32 × 32 blocks

around the candidate center. The network architecture consists

of three convolution blocks followed by a fully connected layer

with PReLu, a dropout function, and lastly a fully connected

layer. Each convolution block consists of a convolutional layer

with PReLu, batch normalization, and a max pool layer. The

network was trained with an SGD optimizer with batches of 16

candidates for 2,500 epochs with true nodule candidates weighted

twice as much as false positive candidates. The CADe system

was evaluated on the LUNA16 dataset and achieved a sensitivity

of 0.921.

Meraj et al. (2021) utilized different morphological operations

on the output results such as erosion and dilation to refine the

segmentation results of the lung nodules and vessels. The results of

the segmentation were then used for further processing where the

candidate nodules were classified as benign or malignant. Kamal

et al. (2020) also incorporated post-processing in the segmentation

framework which includes thresholding of 0.7 and dilation using

a 7 × 7 circular kernel. An example of the effect of morphological

dilation as a post-processing technique is shown in Figure 9.

Post-processing methods are chosen based on what aspect of

the initial results is to be improved to improve the accuracy rate.
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FIGURE 9

Example of the e�ect of post-processing.

Simpler techniques such as morphological operations to more

complex techniques such as further deep learningmodels have been

experimented with to improve results. However, it is evident that

not many authors have employed post-processing techniques to

improve the results achieved.

4 Datasets

To train, validate, and test lung cancer detection and

segmentation methods, lung cancer datasets need to be used. The

datasets also need to have some reliable ground truth data included

for evaluation of the methods. Some of the most common datasets

used for lung cancer detection and segmentation are:

• The Cancer Imaging Archive (TCIA) is a free access

database of medical images for cancer research. The site is

funded by the National Cancer Institute Cancer Imaging

Program and is administered by University of Arkansas

for Medical Sciences (National Cancer Institute, 2024). The

archive consists of collections of cancer-related datasets across

different modalities including lung cancer CT databases.

• The Lung Image Database Consortium (LIDC) and Image

Database Resource Initiative (IDRI) collected a database of

lung cancer screening data for public availability. This dataset

is part of the TCIA database. The database includes 1018

low-dose lung CT scans for a total of 1,010 patients (Armato

et al., 2015) as well as the annotations from four experienced

thoracic radiologists. Within the dataset, 7,371 lung cancer

nodules were recorded where the main focus were nodules the

size of 3 mm or greater.

• The National Lung Screening Trial (NLST) was a controlled

trial conducted by the Lung Screening Study group (LSS)

and the American College of Radiology Imaging Network

(ACRIN). A database consists of low-dose computed

tomography (CT) with chest radiography images from over

75,000 CT screening exams. Over 1,200 pathology images

from a subset of 500 NLST lung cancer patients are available

upon request (National Cancer Institute, 2017). This dataset

is part of the TCIA image database.

• NSCLC-Radiogenomics is a collection of publicly available

data with CT images for a group of 211 patients with non-

small cell lung cancer (NSCLC). Also, NSCLC-Radiogenomics

is the only general dataset consisting of paired information

about the status of gene mutations associated with lung cancer

(Bakr et al., 2018).

• LUNA16 (Lung Node Analysis) is a dataset for lung

segmentation consisting of 1,186 lung nodes detailed in 888

CT scans (Setio et al., 2017). This dataset is a subset of the

LIDC-IDRI dataset.

• The Lung Tissue Resource Consortium (LTRC) collated a

database of volumetric high-resolution CT scans from 1,200

patients for lung cancer research.

• Data Science Bowl 2017 (DSB17) presented a dataset

consisting of 2,102 low-dose CT scans for a lung cancer

detection competition (Kaggle, 2017).

• Japanese Society of Radiological Technology (JSRT) Dataset,

which includes 154 conventional chest radiographs with

a lung nodule (100 malignant and 54 benign nodules)

and 93 radiographs without a nodule (Japanese Society of

Radiological Technology, 2024).

• ChestX-ray14 Dataset which contains over 100,000 frontal-

view X-ray images annotated for various lung diseases (NIH

Clinical Center, 2024).

• NIH Chest X-rays Dataset which is an extensive dataset

includes over 100,000 images for detecting multiple thoracic

diseases (NIH Clinical Center, 2024).

The LIDC-IDRI, LUNA16, and NLST datasets are the most

commonly used for the detection and segmentation of lung

tumors. These datasets are also the most suitable for detection and

segmentation methods where deep learning techniques are utilized

as they are large datasets with a high variability of tumors within

the datasets. Tables 4, 5 show a summary of the most commonly

used datasets.

5 Evaluation methods

The mechanism used to evaluate image segmentation

techniques is an important aspect in estimating the fitness of a

segmentation approach for its application. The evaluation of a

technique is necessary to validate the performance on the data and

allows for it to be compared to other approaches. Here are some

of the most common evaluation measures used to determine the

accuracy of a method developed for lung tumor segmentation.
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TABLE 4 Datasets used in the related literature.

Author Technique Dataset

2D methods

Kalinovsky et al.

(2017)

DCNN,

GoogLeNet,

AlexNet

Domestic dataset of 338 3D

CT scans

Liu et al. (2018) Mask R-CNN,

ResNet, FPN

LIDC-IDRI

Serj et al. (2018) DCNN DSB17

Zhang et al.

(2018)

U-Net LUNA16

Bhatia et al.

(2019)

ResNet, XBG Boost,

Random Forest

LIDC-IDRI

Christe et al.

(2019)

CNN, Clustering,

Fast-marching

method

Lung tissue research consortium

database, multimedia database of

interstitial lung diseases, INSEL-DB

Madan et al.

(2019)

CNN LIDC-IDRI

Park and

Monahan (2019)

Genetic Encoding,

CNN

X-ray dataset of 12 000 cases

Kalaivani et al.

(2020)

CNN, ADABOOST LIDC-IDRI

Meraj et al. (2021) CNN LIDC-IDRI

Angeline et al.

(2022)

VGG-16, FCN LIDC-IDRI

Cui et al. (2022) U-Net, VGG-Net NELCIN-B3 dataset

Salama et al.

(2022)

Generative Model Private X-ray dataset

Shimazaki et al.

(2022)

CNN Private dataset of 788 X-Rays

Gunasekaran

(2023)

YOLOv5 Kaggle X-ray dataset

Riaz et al. (2023) MobileNetv2,

U-Net

Medical Segmentation Decathlon

2018 Challenge dataset

Cai et al. (2024) GAN Private dataset

Wang et al. (2024) GP-WGAN NLST

3D methods

Baek et al. (2019) U-Net Private dataset of 96 PET-CT scans

Ozdemir et al.

(2019)

V-Net LIDC-IDRI, DSB17

Sasikala et al.

(2019)

CNN LIDC-IDRI

Bansal et al.

(2020)

ResNet LUNA16

Kamal et al.

(2020)

DenseNet, U-Net NSCLC-Radiomics

Nishio et al.

(2021)

GAN, Graph-Cut Decathlon lung dataset, LUNA16,

NSCLC Radiogenomics

Borrelli et al.

(2022)

U-Net Private dataset of 320 FDG PET/CT

scans

Kasinathan et al.

(2022)

Active contour

model, CNN

LIDC-IDRI

Dunn et al. (2023) iMRRN Lung-PET-CT-Dx dataset

(Continued)

TABLE 4 (Continued)

Author Technique Dataset

Said et al. (2023) UNETR Decathlon lung dataset

4D and hybrid methods

Chen et al. (2019) CNN LUNA16

Barrett et al.

(2021)

Automatic

contouring

Private dataset of serial 4DCT scans

Yan et al. (2022) CNN Private dataset of CT scans

Rezaei and

Ahmadi (2023)

GAN LUNA16, LIDC-IDRI

Accuracy is described as the amount of true positive (TP)

classified examples and true negative (TN) classified examples

relative to the total number of cases.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Recall is the number of TPs relative to all true positive cases,

including missed examples, which are called false negatives (FN).

Recall =
TP

TP + FN
(2)

Precision is defined as the number of true positives divided by

the number of true positives plus the number of false positives.

Precision =
TP

TP + FP
(3)

Sensitivity is also called the true positive rate (TPR) and is

the proportion of samples that are genuinely positive that give a

positive result.

Sensitivity =
TP

TP + FN
(4)

Specificity is also referred to as the true negative rate (TNR) and

is the proportion of samples that are genuinely negative that give a

negative result.

Specificity =
TN

TN + FP
(5)

The dice similarity coefficient measures the similarity and

overlap between the ground truth B segmentation and the

segmentation results A achieved. The performance index ranges

between zero and one with an index zero signifying no overlap

between B and A, while index one signifies a perfect overlap

between them.

DSC(A,B) =
2(A ∩ B)

A+ B
(6)
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TABLE 5 Summary of datasets used for lung cancer detection and segmentation.

Dataset No. of patients No. of CT scans/ X-rays No. of images No. of nodules

TCIA - - 21 424,099 -

LIDC -IDRI 1,010 1,018 244,527 7,371

NLST 500 1,200 - -

NSCLC-Radiogenomics 211 211 - -

LUNA16 - 888 - 1,186

LTRC 1,200 - - -

DSB17 - 2,102 - -

JSRT - 154 - 154

ChestX-ray14 Dataset - 100,000+ 100,000+ -

NIH Chest X-rays Dataset - 100,000+ 100,000+ -

6 Discussion

All categories of lung cancer detection and segmentation

approaches andmethods have their own advantages and drawbacks

and may be particularly effective for a particular case. In

this section, the advantages and limitations of the various

methods presented are discussed as well as the approaches with

significant results.

A common structure of lung segmentation frameworks is pre-

processing, region of interest extraction, lung cancer detection or

segmentation, and lastly post-processing. Each of these phases in

the process plays a role which contributes to the results achieved

by the framework. However, it is observed that many of the

works presented that implement machine learning techniques

have omitted the utilization of some of these phases such as

pre-processing, region of interest extraction, or post-processing

(Angeline et al., 2022; Serj et al., 2018; Cui et al., 2022;

Shimazaki et al., 2022; Yan et al., 2022; Ismail, 2021; Chen

et al., 2019). The drawback here is that in most cases, the

addition of these phases contributes to the improvement of

the overall accuracy of the methodology but they have not

been used.

An interesting aspect that is to be considered when using

machine learning techniques is the dataset that is used for training

and testing. Each dataset comes with its own specifications such

as the modality used to produce the image, the type of image

produced, dimensions, as well as the quality. Different datasets also

come with inter-patient and inter-image variability which affect the

training as well as the capabilities of the model that is trained. The

size of that dataset also impacts the training of a model as the larger

the dataset the more data the model has to train on allowing it

to become more accurate in its capability. The information within

the images fed to the model also plays a vital role in the model’s

ability to detect and segment the lung tumors. Another interesting

factor is the size bias within different datasets which may be due to

a selection bias during data collection (Kadir and Gleeson, 2018).

If a dataset only contains large tumors, the model will find it

challenging to detect smaller tumors or nodules and may miss

them completely. The use if limited datasets for training and testing

increases the possibility for model over-fitting. Hence, efficient

generalization of proposed algorithms cannot be demonstrated.

The application of data augmentation may alleviate this. Currently,

the amount of data available with high-quality ground truth is

not adequate. With time, data will accumulate and deep learning

models can be retrained and fine-tuned to avoid “forgetting” during

fine-tuning processes with newer data (Liu et al., 2021).

Network design is yet another consideration. Approaches

where the algorithms include a fusion of features or models aided

in overcoming the drawbacks of one feature by the advantage of

another which increased the accuracy. With increasing numbers

of layers in a deep learning network, the deep learning algorithm

becomes smarter making predictions easier and more accurate.

However, as the network complexity increases, the time taken to

train the network as well as memory consumed during the training

also increases (Liu et al., 2021).

Although certain systems lack adequate detection accuracy,

many systems have been developed with the objective to reach a

100% accuracy rate for lung cancer detection and segmentation

(Abdullah et al., 2021). An advantage of such systems and future

innovations in the field is that they can do the heavy lifting

of screening a large number of possible lung cancer patients

which aids in early diagnosis and treatment due to the increased

automation and without imposing a burden on radiologists. Apart

from the improvement of accuracy rate, the application of these AI

systems is yet another issue. Although the aforementioned studies

show promising results in the application of AI to lung cancer

detection and segmentation, real implementation of the workflow is

rare. Aspects such as user interfaces, speed of data analysis, expanse

of the programs, the infrastructure they require, and the resources

they consume are all barriers of application in the real world (Chiu

et al., 2022).

Table 6 presents the approaches that produced some of the

most significant results. It is also evident that these approaches

include some element of deep learning in their methods. The

lung cancer detection method proposed by Madan et al. (2019)

incorporated a CNN which produced the segmented image after

a smoothing filter and data augmentation was applied as pre-

processing methods. This model achieved a validation accuracy of

93%. Sasikala et al. (2019) proposed a CNN-based technique to

classify the lung tumors as malignant or benign from chest CT

images. A back-propagation algorithm is used to train the deep

CNN to detect lung tumors in two phases where in the first phase
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TABLE 6 Significant results produced in recent studies in lung cancer

segmentation.

Author Dataset Evaluation
metric

Percentage
score

Madan et al.

(2019)

LIDC-IDRI Accuracy rate 93%

Sasikala et al.

(2019)

LIDC-IDRI Accuracy rate 96%

Park and

Monahan

(2019)

Dataset of 12,000

X-rays

Accuracy rate 97.15%

Bansal et al.

(2020)

LUNA16 DSC 95.8%

Kasinathan

et al. (2022)

LIDC-IDRI Accuracy rate 97.1%

Said et al.

(2023)

Decathlon lung

dataset

Accuracy rate 97.83%

a CNN is used to extract valuable volumetric features from input

data and the second phase is the classifier. A smoothing filter was

applied as a pre-processing method prior to segmentation, and

thereafter, the CNN classifies whether the volume has a cancerous

tumor or not. Finally, watershed segmentation is used to detect the

cancer. The proposed method achieved a 96% accuracy rate. Park

and Monahan (2019) carried out an investigation using a genetic

algorithm to conduct a neural architectural search to generate

a modified evolved novel CNN named DeepNEAT-Dx to detect

lung cancer in chest X-rays. The NEAT algorithm is modified to

evolve a CNN’s architecture which is named DeepNEAT-Dx. The

state-of-the art lung cancer segmentation model, DeepNEAT-Dx,

produced an accuracy rate of 97.15%. Bansal et al. (2020) proposed

a novel approach for detecting lesions using the inner structures

of the nodule voxels. A full convolutional network is used for the

segmentation of the nodules where skip connections are included

in the network. After the segmentation step, 2D slices are extracted

from the 3D segmented results and are passed to a ResNet model

for cancer classification. The model achieved a dice coefficient of

0.958. Kasinathan et al. (2022) presented a strategy for classifying

and validating different stages of lung tumor progression where

lung nodule segmentation is implemented using the active contour

model (ACM). The effect of the ACM segmentation with a deep

learning method was evaluated which resulted in an accuracy rate

of 97.1%. Said et al. (2023) proposed an architecture that utilized

the UNETR architecture; however, during the ablation study that

was conducted, it was discovered that using the Nadam optimizer

to train their model improved their accuracy rate from 96.79% to

97.83% proving that optimizers also influence the performance of

the model used for segmentation.

Furthermore, there are some major observations that are

evident in current research:

• The incorporation of pre-processing, region of interest extract,

and post-processing within the methodology supports the

improvement of the results produced by the segmentation

phase.

• The dataset used in the research plays a vital role in choosing

the methods used to achieve the most accurate results.

• Data augmentation is the most commonly used

pre-processing technique which allows for increasing

the variability and diversity of the data in the dataset,

therefore enabling the model trained on the dataset to be

more robust, improve generalization, and reduce over-fitting.

• The use of techniques that localize the search space to detect

or segment the lung tumor has a high impact on the results

achieved by the detection or segmentation result.

• Deep learning techniques are not only used in the feature

extraction (detection and segmentation) phase in the

presented methodologies but also in the region of interest

localization and post-processing phases.

• The use of hybrid methods or a combination of different deep

learning techniques has been used in majority of the presented

methodologies. Many of the methodologies consisting of

combinations of deep learning models achieved high accuracy

rates.

Generative models can enhance training data by creating

synthetic data to augment training datasets, addressing issues of

data scarcity and imbalance. Pre-trained models on synthetic data

can be fine-tuned on real data, leading to better segmentation

performance and improved segmentation accuracy. Using

generative models for 3D reconstruction of lung tumors provides

detailed insights, aiding in precise diagnosis and treatment

planning. Generative deep learning models offer several advantages

in lung nodule segmentation, making them a valuable tool in

medical imaging. Generative models can produce high-quality,

realistic images that help in accurately identifying and segmenting

lung nodules. This leads to better detection rates and fewer

false positives. By producing synthetic data, which is especially

beneficial in medical imaging due to the scarcity of annotated

datasets, generative models help train more robust models

through data augmentation. These models can be fine-tuned for

specific tasks or adapted to new datasets with minimal additional

training, increasing their versatility across various clinical settings

(Gao et al., 2024). Generative models can minimize variability

in segmentation outcomes, ensuring consistent performance

across various datasets and imaging conditions. Once trained,

these models can be effortlessly scaled to handle large volumes

of medical images, making them ideal for widespread clinical

applications. In addition, automated segmentation with generative

models reduces the risk of human error, which is often encountered

in manual segmentation. A significant benefit of generative models

is their ability to enhance feature learning. By generating images,

these models can identify complex patterns and features that

traditional models might overlook. This deep comprehension of

the data results in more precise segmentation (Yang et al., 2016).

There are some limitations to the use of generative models such

as data dependency and computational cost. While GANs can

generate synthetic data to augment training datasets, the quality

and diversity of synthetic data may not fully capture the complexity

of real-world medical images (Nishio et al., 2021). Training

GANs, especially 3D models with attention mechanisms, requires

significant computational resources, including powerful GPUs and

large memory capacities. This can be a barrier for institutions with

limited resources. Another disadvantage of generative models is

the complexity of model architectures. In the study presented by

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1423693
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hiraman et al. 10.3389/fcomp.2024.1423693

Dabass et al. (2023), the inclusion of attention learning modules

and the 3D nature of the model add to its complexity. This can

make the model harder to interpret and debug, posing challenges

for clinical adoption. Incorporating these advanced models into

current clinical workflows can be difficult. It necessitates smooth

integration with hospital information systems and radiology

processes. In addition, securing regulatory approval for the clinical

application of AI models is a stringent process that can postpone

their implementation (XenonStack, 2023).

Different deep learning methods can perform variably

depending on the type of imaging data used for lung nodule

segmentation. CNNs are widely used for lung nodule segmentation

in CT scans due to their ability to capture spatial hierarchies

in the data. Studies have shown that models such as U-Net and

its variants perform exceptionally well, achieving high accuracy

and Dice coefficients. 3D CNN models are particularly effective

for volumetric data such as CT scans. They can capture the 3D

context of nodules, which is crucial for accurate segmentation

(Gao et al., 2024). A study by Astley et al. (2022) evaluated

several 3D CNNs for segmenting ventilated lung regions on

hyperpolarized gas MRI scans. The study found that the 3D nn-U-

Net outperformed other deep learning methods and conventional

segmentation techniques, achieving high accuracy and robust

segmentation. Hybrid models where CNNs are combined with

other techniques, such as recurrent neural networks (RNNs) or

attention mechanisms, can improve performance on MRI data

by capturing both spatial and temporal features (Thanoon et al.,

2023). CNNs are also effective for X-ray images, particularly for

detecting and classifying lung nodules. Using transfer learning

where pre-trained models on large datasets and fine-tuning them

on specific X-ray datasets can enhance performance. This approach

leverages the broad knowledge captured in the pre-trained model.

A study by Chavan et al. (2022) compared various deep learning

models, including U-Net, ResUNet, FCN, SegNet, and ResUNet++,

for lung image segmentation on chest X-rays. The study found

that CNN-based models, particularly those using transfer learning,

achieved high accuracy and outperformed traditional methods.

These findings underscore the importance of choosing the right

deep learning method based on the specific imaging modality and

the characteristics of the data.

Generalizing lung cancer detection using deep learning models

is a complex challenge, especially when dealing with instances

that differ from the training data. A study by Javed et al. (2024)

highlighted that deep learning models, particularly CNNs, can

achieve high accuracy in lung cancer detection. However, it

emphasizes the importance of diverse training data to improve

generalization. The more diverse the training dataset, the better the

model can generalize to new, unseen data. This includes variations

in patient demographics, nodule types, imaging protocols, and

disease stages.Data augmentation techniques can also help create

a more robust model by simulating a wider range of possible

scenarios which can improve the model’s ability to handle

variations not present in the original training data. Transfer

learning also enhances generalization as presented by Kumar

et al. (2024) in a study where it was shown that combining

models such as ResNet-50, EfficientNet-B3, and ResNet-101 with

transfer learning, there was an improvement of generalization.

Regularization techniques such as dropout, weight decay, and

batch normalization are widely recognized for their ability to

prevent over-fitting and improve generalization to new data

(Analytics Vidhya, 2024). Cross-validation techniques such as k-

fold and leave-one-out are also crucial techniques for assessing the

generalization capability of machine learning models. It involves

creating multiple subsets of datasets and iteratively training and

evaluating models on different training and testing datasets. This

ensures consistent performance across different data subsets (Stack

Abuse, 2023). In a study done by Ganaie et al. (2022), it was

emphasized that ensemble methods, such as bagging, boosting,

and stacking, which involves combining predictions from multiple

models can reduce the risk of errors from any single model,

leading to more robust and generalized predictions (Ganaie et al.,

2022). Despite these strategies, there are inherent limitations. Deep

learning models can struggle with out-of-distribution samples-

instances that are significantly different from the training data.

Continuous updates and retraining with new data are essential to

maintain and improve the model’s performance.

Deep learning techniques have indeed made significant

contributions to lung cancer detection and segmentation,

particularly in terms of their efficacy in identifying true positives

(TP), false positives (FP), true negatives (TN), and false negatives

(FN). DCNNs have shown high sensitivity in detecting lung

nodules, leading to a high number of true positives. Studies using

U-Net and its variants have demonstrated excellent performance

in accurately identifying cancerous nodules (Javed et al., 2024).

Particularly effective for volumetric data such as CT scans,

3D CNNs can capture the 3D context of nodules, improving

TP rates (Gayap and Akhloufi, 2024). Methods such as false

positive reduction, which involve additional filtering steps or

secondary models, help in reducing the number of false positives.

Incorporating clinical knowledge and rule-based systems can

further enhance accuracy. Ensemble methods can also reduce

the risk of false positives by averaging out errors from individual

models (UrRehman et al., 2024). Regularization techniques

can help in preventing over-fitting, ensuring that the model

correctly identifies non-cancerous cases, thus increasing the

number of true negatives (Thanoon et al., 2023). Employing

cross-validation techniques ensures that the model’s performance

is consistent across different subsets of the data, indicating better

generalization and accurate TN identification (Wang, 2022). By

artificially increasing the diversity of the training data using data

augmentation, models can become more robust and less likely to

miss cancerous nodules, thereby reducing false negatives (Gayap

and Akhloufi, 2024). Using pre-trained models on large, diverse

datasets and fine-tuning them on specific lung cancer datasets can

enhance the model’s ability to detect subtle features and therefore

reduce FN rates.

Many of these deep learning methods are available for users

through open-source platforms and research collaborations. For

instance, pre-trained models and code repositories are often

shared on platforms such as GitHub, enabling researchers and

clinicians to utilize and build upon existing study. This allows

for further research into lung nodule detection and segmentation

using techniques such as transfer learning, model adaptability,

result reproducibility, and practical monitoring. Transfer learning

leverages the knowledge obtained by pre-trained models. This can

also significantly reduce training time and improve performance
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by utilizing knowledge from large, diverse datasets. Studies have

shown that transfer learning can improve the accuracy of lung

cancer segmentation models by providing a strong initial model

that can be fine-tuned for specific tasks (Saha et al., 2024).

However, models trained on general datasets may not perform well

on specialized medical data due to domain shift (Nishio et al.,

2021). Fine-tuning and adapting models to new data is crucial for

maintaining high performance across different datasets. Models

that can adapt to new data are more robust and can be used in

a variety of clinical settings. These models are more flexible and

scalable in that they can handle different types of medical imaging

data, improving their utilization across various applications. The

challenge here is that often new data have different characteristics

compared to the training data making generalization difficult.

This also makes the integration of such models into existing

clinical workflows significantly challenging (Kumaran et al., 2024).

Fine-tuning techniques allow models to learn specific features

of the target dataset, improving their performance on specific

tasks which enables the customization of models for specific

clinical needs, making them more relevant and effective. However,

over-fitting can occur on small datasets (Davila et al., 2024).

Ensuring reproducibility of results is essential for the reliable

deployment of deep learning models in clinical settings and allows

for better validation and comparison of different models, leading

to continuous improvement. Nonetheless, difficulties regarding

variability and transparency may arise where there are differences

in data collection, pre-processing, and model training which

can lead to variability in results and lack of transparency in

model development and training processes, making reproducibility

difficult (Javed et al., 2024).

While deep learning models have shown great promise in

research settings, their deployment in clinical practice is still

in the early stages. To ensure that deep learning technologies

enhance rather than disrupt existing practices, it is crucial

to address challenges related to generalization across datasets,

interoperability, standardization, and technology adaptation. In

addition, developing models that easily integrate useful features

and apply segmentation in clinical practice highlights the evolving

landscape of lung cancer diagnosis. The convergence of deep

learning with traditional medical practices holds significant

promise but requires coordinated efforts in workflow design,

infrastructure planning, training, and policy development (Gayap

and Akhloufi, 2024). There are ongoing studies monitoring the

efficacy of these methods in practical environments. There is need

for rigorous validation of deep learning models in clinical settings

to ensure their reliability and effectiveness. Some of the current

literature has limited applicability in clinical practice because non-

medical investigators often lack experience in selecting relevant

clinical outcomes (Wang, 2022). Many deep learning techniques

have been developed by non-medical professionals with minimal

input from radiologists, who will ultimately be the end users of

these resources once they become more widely available. Clinicians

have also noted that adopting certain clinical models is challenging

because they require complex information from multiple sources.

The absence of this information hinders the practical application of

these models (Park and Lee, 2022).

Different types of techniques have been proposed over the

last decade where many included the application of machine

learning techniques such as supervised learning, unsupervised

learning, and reinforcement learning (Abdullah et al., 2021). Other

techniques such as structure-based or texture-based techniques

were used, but it was evident in the results achieved that machine

learning techniques generally outperformed other techniques with

regard to segmentation accuracy. To overcome the previously

mentioned challenges, various image processing techniques and

approaches have been explored; however, it is vital to note the

advantages of machine learning techniques over non-machine

learning techniques. Of late, machine learning techniques have

showed great progress in medical imaging analysis and lung cancer

detection (Wang et al., 2019). The success and improvement found

from machine learning is not from improved hardware and more

encompassing datasets, but from innovations into model structure.

From convolutions into fully connected layers, to the addition

of dropout layers, to optimization techniques, the approach to

deep learning is constantly changing and improving (Park and

Monahan, 2019).

7 Conclusion

This literary study provides a discussion and evaluation

of current lung nodule segmentation approaches. This analysis

provides a comprehensive overview of lung nodule segmentation

strategies to identify and extract nodules for further analysis.

Lung nodule detection and segmentation techniques have definitely

improved over the past decade. However, there is still room for

improvement. There are still issues to be resolved with respect to

developing better techniques, improving contrast enhancement as

well as selecting better criteria for evaluating the performance of

proposed frameworks.

There are a number of interesting future research areas of focus

in lung tumor segmentation:

• Although there have been various efforts toward achieving a

high accuracy in lung tumor segmentation, the results are not

quite good enough for it to be applicable in the medical field

with the existing challenges.

• Deep learning models are most often trained on a single

dataset which limits the ability of the model performance.

Training models on many datasets can be explored to produce

more accurate results.

• Studying pathological patterns in the differences of lung

tumors should be explored to be utilized to aid in the

refinement of lung tumor segmentation and classification.

• Furthermore, there have been a variety of research done on

the detection and segmentation of non-small cell lung cancer

tumors (NSCLC) but not enough done on small cell lung

cancer (SCLC) which is a far more aggressive type of cancer

which will be a research focus area with great value for the

future.

Machine learning techniques including supervised,

unsupervised, and reinforcement learning as well as combinations

of these are among the most effective techniques proposed for lung

nodule detection and segmentation and a comparative analysis

of these techniques has been presented. An understanding of the
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current approaches serves to provide a guide for choosing methods

and techniques for future research studies.
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