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A growing consensus emphasizes the e�cacy of user-centered and personalized

approaches within the field of explainable artificial intelligence (XAI). The

proliferation of diverse explanation strategies in recent years promises to

improve the interaction between humans and explainable agents. This poses the

challenge of assessing the goodness and e�cacy of the proposed explanation,

which so far has primarily relied on indirect measures, such as the user’s task

performance. We introduce an assessment task designed to objectively and

quantitatively measure the goodness of XAI systems, specifically in terms of their

“information power.” This metric aims to evaluate the amount of information

the system provides to non-expert users during the interaction. This work has a

three-fold objective: to propose the Information Power assessment task, provide

a comparison between our proposal and other XAI goodness measures with

respect to eight characteristics, and provide detailed instructions to implement

it based on researchers’ needs.

KEYWORDS

explainable artificial intelligence, XAI objective assessment, human-in-the-loop,

information power, qualitative explanations’ quality

1 Introduction

The widespread adoption of complex machine learning (ML) models across diverse

applications has accentuated the need for explainable artificial intelligence (XAI) methods

to address the inherent opacity of these systems. As artificial intelligence (AI) technologies

continue to play pivotal roles in critical decision-making processes across multiple

domains, the demand for transparency and interpretability has become increasingly

pronounced. Consequently, there is a growing emphasis on researching and evaluating the

effectiveness and reliability of XAI methods.

Recent developments in the XAI research field have shifted the focus toward user-

centered approaches to explainability, fostering the proliferation of personalized XAI

methods with increased complexity (Williams, 2021). These user-centric approaches

find application in diverse contexts, ranging from computer applications designed for

personalized teaching (Embarak, 2022; Cohausz, 2022) to Human–Robot Interaction

(HRI) scenarios where agents maintain user-specific models to deliver tailored

explanations (Matarese et al., 2021; Stange et al., 2022). These efforts show a promising

trend: user-centered XAI positively influences the interaction between users and systems

and increases trust in AI solutions (Ali et al., 2022). This positive impact brings to higher

users’ willingness to reuse the system [e.g., with recommendations (Conati et al., 2021)],
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agents’ persuasiveness during human–agent decision-making tasks

and human–AI teams performance (Schemmer et al., 2022b).

Alongside producing personalized XAI, recent works also

aim to evaluate the goodness of the explanation produced.

However, the term “XAI goodness” remains vague, with consensus

acknowledging its dependency on the application contexts and

intended users. A main disadvantage is that existing evaluations

often rely on subjective or indirect measurements. Most assessment

approaches do not involve users directly; when they do, they usually

use indirect measures such as preference or performance. Self-

reported questionnaires are commonly employed to assess users’

explainability preferences, while more objective measurements

focus on human–AI performance or users’ ability to simulate the

AI behavior.

Miller (2019) argued that research in XAI can draw inspiration

from humanities studies. In those fields, an explanation is

considered good when it results in understanding (Lombrozo,

2016). However, the definition of understanding in response to

explanation is unclear: Buschmeier et al. (2023) propose a range

from shallow to deep comprehension and enabledness. While there

are many approaches to assessing understanding, they underline

that understanding serves specific tasks and depends on the

purpose and goal of explanations. In essence, the challenge is not

only in providing explanations that result in understanding but

also in tailoring the level and type of understanding to the user’s

needs and the context of the task at hand. This aligns with the

broader notion that the effectiveness of an explanation depends on

its relevance to the user’s goals and the specific requirements of the

situation (Booshehri et al., 2024).

In the field of human–AI collaboration, assessments of XAI

systems’ goodness have often been based on indirect measures, such

as team performance, system persuasiveness, or users’ predictive

abilities regarding AI decisions (Vilone and Longo, 2021). This

emphasizes the lack of objective and quantitative measures to gauge

the inherent quality of XAI systems to compare across different

contexts. This gap contributes to the difficulty of rigorously

comparing different XAI strategies—and also comparing them

across contexts—, as the results of existing studies are deeply tied

to the application under consideration. The contextual dependence

of XAI models may contribute to inconsistent findings in the field

(Islam et al., 2022).

FollowingHoffman et al. (2018), we assume that the accuracy of

the users’ mental models about an AI system’s functioning reflects

the goodness of the explanations received. Therefore, when dealing

with expert AI systems, users’ mental models regarding the task at

hand can be considered reflective of the quality of the explainable

agent they interacted with. Building on these assumptions, we are

interested in introducing an objective and quantitative assessment

task that allows themeasurement of XAI systems’ goodness without

solely relying on indirect measures.

Drawing from the motivation described above, the primary

objective of XAI systems is to provide information about the

functioning of the underlying AI model. Recent surveys (Mohseni

et al., 2018) and systematic reviews (Nauta et al., 2022) have

highlighted the need for more objective and quantitative measures

to assess the goodness of XAI techniques. In this context,

we propose merging two objectives: providing information and

objectively evaluating its efficacy by defining a measure for the

goodness of XAI systems based on the information they offer

to users.

Although measuring how much information a system can

generate could be challenging, focusing on the amount of new

knowledge that the explanatory exchange creates in the users’

mental models offers a viable approach. By allowing only non-

expert users to interact with XAI systems, the acquired knowledge

can be attributed to the system interaction. If quantifiable,

this knowledge becomes a basis for objectively assessing how

informative the system is. This paper proposes an assessment task

to objectively and quantitatively measure the goodness of XAI

systems during human–AI decision-making, specifically evaluating

their informativeness to non-expert users. Our proposal includes

theoretical foundations, a mathematical model for the assessment

framework, a running example, and an implementation of the

assessment task.

2 Related works

Several works have conducted assessments of the properties

of Explainable Artificial Intelligence (XAI) systems through user

studies, with a notable focus on non-expert users who can

benefit from these technologies (Janssen et al., 2022). These

latter used tasks that require some skills to be performed

correctly. For instance, Lage et al. (2019) exploited aliens’

food preferences and clinical diagnosis, while Wang and Yin

(2021) delved into recidivism prediction and a forest cover

prediction task. Additionally, van der Waa et al. (2021) used a

diabetes self-management use-case, where naive users and the

system collaborated to find the optimal insulin doses for meals.

Furthermore, image classification tasks, such as recognizing bird

species, have been investigated by both Goyal et al. (2019) and

Wang and Vasconcelos (2020).

Most user studies in the XAI field regard decision-making

(Wang and Yin, 2021) or classification tasks (Goyal et al., 2019).

Our focus aligns with decision-making, driven by the promise of

improved performance when coupling human users with expert AI

systems (Wang and Yin, 2022).While this promise is generally kept,

some studies show decreased team performance when using certain

forms of XAI (Schemmer et al., 2022b). Notably, issues arise from

people’s difficulty ignoring incorrect AI advice (Schemmer et al.,

2022a; Ferreira and Monteiro, 2021; Janssen et al., 2022).

To ensure that AI’s advice benefits human users, we need

to focus on rigorously assessing the quality of explanations.

Furthermore, robust assessment strategies allow researchers and

practitioners to compare different XAI strategies. Several works in

the XAI field concerning the assessment or comparison of XAI

methods tend to define their own measure of goodness (van der

Waa et al., 2021; Lage et al., 2019). A recent method proposed to

objectively measure the degree of explainability of the information

provided by an XAI system through an algorithm quantifying

the system’s ability to answer archetypical questions (Sovrano and

Vitali, 2022). They assume that the information under study is

“good” if it can address all such questions and form the basis of

the explanation provided by the XAI system. Another approach

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412341
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Matarese et al. 10.3389/fcomp.2024.1412341

introduced the System Causability Scale (Holzinger et al., 2020)

to measure the quality of the explanations based on their notion

of causability (Holzinger et al., 2019). This scale seeks to account

for the completeness of an explanation in the sense that it is

accurate on its own (Gilpin et al., 2018). Wang and Yin (2022)

adopted a different perspective, comparing various XAI types in

different contexts concerning three desiderata: to improve people’s

understanding of the AI model, help people recognize the model

uncertainty, and support people’s calibrated trust in the model.

They reveal that most current XAI methods fail to satisfy these

properties when applied to decision-making with non-expert users.

A comprehensive review by Vilone and Longo (2021)

categorizes evaluation methods for XAI into two main groups:

objective and human-centered evaluations. The first group

includes objective metrics and automated approaches to evaluate

explainability, while the second contains human-in-the-loop

strategies that exploit users’ feedback and judgments. Similar

categorizations appear in the works of Bibal and Frénay (2016) and

Preece (2018).

Chander and Srinivasan (2018) introduced the notion of

“cognitive value” of explanations to objectively describe the

effectiveness of different types of XAI within a given context.

Moreover, Sokol and Flach (2020) designed the Explainability

Fact Sheets to systematically classify explainable approaches,

facilitating the grasp of XAI methods’ capabilities and limitations.

More technical approaches have been taken in the realm

of image classification. Rio-Torto et al. (2020) proposed an

explanation assessment metric for convolution neural networks.

Their assessment, called Percentage of Meaningful Pixels Outside

the Mask (POMPOM), has been designed for image classification

and measures the number of meaningful pixels outside the

region of interest in proportion to its total number of pixels.

Moreover, Samek et al. (2017) proposed a general objective quality

methodology for explanations based on perturbation; they focused

on evaluating ordered collections of pixels, such as heatmaps.

Zhang and Zhu (2018) presented two quantitative evaluation

metrics to assess the interpretability of visual explanation methods

for neural networks, which use semantics annotated by humans

on testing images and check if the network locates the relevant

part of the same object in different images, respectively. Two

alternative metrics for visual explanations have been developed by

Yeh et al. (2019), which operate with the network’s inputs and

outputs perturbations. To evaluate textual explanations, Barratt

(2017) proposed three automated quantitative metrics. The quality

of rule-based explanations has been assessed in Ignatiev (2021)

by focusing on the input space and the percentage of invalid

or redundant rules. In addition, Laugel et al. (2019) presented

general evaluation metrics for post-hoc XAI, focusing on the risk

of generating unjustified counterfactual explanations. While these

assessment methods claim objectivity, they heavily depend on

technologies and application contexts, and deviating from our

proposal, they do not involve human input in their functioning.

In addition to the above-mentioned objective methods, Vilone

and Longo (2021) reviewed several assessment methods with

a human-in-the-loop approach. A significant number of those

works used self-reported questionnaires to collect participants’

impressions of different XAI techniques with learning systems

(Aleven and Koedinger, 2002), intelligent agents (Hepenstal and

McNeish, 2020), and neural networks (Weitz et al., 2021). Other

scholars preferred to let users interact with the system and collect

the explanations’ impact on reliability, trust, and reliance of users

(Dzindolet et al., 2003), or the system’s degree of persuasiveness

(Dragoni et al., 2020).

Similarly to our approach, several methods assess end-users’

capability to develop mental models of AI internal processes

(Harbers et al., 2010a,b; Poursabzi-Sangdeh et al., 2021) and

measuring the systems’ degree of interpretability by considering

the ease with which users replicated the AI functioning. Kaur

et al. (2020) performed a longitudinal study to investigate

how explainability methods help data scientists understand

machine learning models. They qualitatively assessed the data

scientists’ capability to describe the visualization output of those

interpretability tools accurately and discussed the implications for

researchers and tool designers.

Moreover, Sanneman and Shah (2020) measured users’

situation awareness while interacting with autonomous agents,

evaluating whether the explanations contained enough information

to allow the users to perform their tasks. Hence, the authors defined

different levels to classify users’ situation awareness. In particular,

Level 1 regards “what an AI system did,” Level 2 answers “why an

AI system acted in a certain way,” and Level 3 addresses “what an AI

system will do next or in similar scenarios.” Although this proposal

is solidly grounded in human factors literature, it does not account

for fine-grained measurements and comparisons within different

explainability approaches since it provides a method to classify XAI

techniques rather than measuring their goodness with respect to

each other.

In addition to the methods mentioned above, in the following

sections, we present a novel perspective on assessing explanations’

goodness through an objective and quantitative task: XAI

Information Power (IP). IP refers to the amount of information

an XAI system provides about the general functioning underlying

the AI model, the reasons behind a particular model’s choice, or

the system’s potential actions in different circumstances. The broad

definition of IP accommodates different scenarios, emphasizing

not just the quantity but also the correctness and timing of the

information provided.

3 Methods

3.1 Measuring explanations’ quality via
information power

The evaluation of an XAI model’s Information Power (IP)

necessitates the interaction between non-expert users and the

system. First, the experimenter needs to design an environment

governed by rules and a task that is used during the assessment (for

details about the task, see Section 4.1 and subsequent).

During this assessment, the users aim to learn as many system

rules as possible. Thus, we need to collect measures for each rule

and combine them to obtain the model’s information power. The

general assessment steps are the following:
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1. Quantify the number of rules related to the task (e.g., each

feature) and define a method for measuring the number of

learned rules.

2. Quantify the informative weight of each rule. For simplicity, we

can assume equal weights ( 1
k
, where k is the number of rules).

The informative weights must satisfy the following constraint

∀j ∈ {1, ..., k},
∑

j γj = 1. This weight describes the difficulty of

understanding the rules regarding different aspects of the task.

3. Measure the model’s IP for each user during a training phase,

where non-expert users aim to learn the task with the help

of the (X)AI system. Further, a set of secondary descriptive

measures (e.g., users’ satisfaction and their perception about the

explanations’ usefulness and intrusiveness) could be collected as

well.

4. Assess the non-expert users’ performance and behavior in a

post-training phase without assistance from the (X)AI system.

5. Evaluate non-expert users’ knowledge about the task using a set

of tests.

6. Average these measures to obtain the final results. Secondary

descriptive measures may also hold valuable insights.

Hence, if k ∈ N is the number of the environment’s features,

γj ∈ [0, 1] is the informative weight of the feature j, nrj ∈ N

is the number of rules regarding the feature j, n
lr(i)
j ∈ N is the

number of rules regarding the feature j learned by the user i. We

also included the AI model’s accuracy to consider the goodness of

the AI suggestions during the IP measurement: i.e., better models

cause higher IP. Thus, am ∈ [0, 1] represents the accuracy of the AI

model m, then the informative power of the model m for the user i

is computed as follows:

IPi(m) = am

k
∑

j=1

γj





n
lr(i)
j

nrj



 ∈ [0, 1]. (1)

If np is the number of users who took part in the assessment,

the IP of the modelm is

IP(m) =
1

np

np
∑

i=1

IPi(m) ∈ [0, 1]. (2)

Apart from the number of rules regarding each feature, a

delicate aspect of the assessment regards the definition of the

information weights. It may be the case that some rules are explicit

and easy to learn, while others are more hidden and hard to

get. In such cases, it may be relevant to mathematically consider

the difficulty of learning those and reach a more precise measure

of informativeness of the system by weighing more the features

referring to the implicit rules than those referring to explicit ones.

We suggest at least two ways to set them: making them equal

or defining the weights using experimental data. The former is

more straightforward, and we followed this approach in our task

(Section 4.1). Alternatively, features’ information weight can be set

by normalizing the number of user interactions with the system

to understand those features. To this end, an a priori method

is needed to understand which features each user interaction

referred to. For example, if the interaction between users and the

system stopped at their suggestion request, one can assume that

such an interaction regarded the feature affecting the suggestion.

Alternatively, suppose such an interaction continued with a user

request for an explanation. In that case, one can assume the

interaction regarded the feature mentioned in the explanation.

3.1.1 Experimental measures
During the third step of the assessment, several quantitative

measures need to be performed to compute the model’s

information power:

• Performance measures, such as the users’ final score.

• Rules understanding measures, such as the number of task

rules learned, the number of requests and interactions users

needed to learn such rules, and the number of correct answers

to the post-experiment test.

• Generalization measures, such as the number of correct

answers to what-if questions about the agent’s decisions in

particular environment states.

The first two measures relate to the particular rules explained

by the XAI system and their effects on users’ ability to perform the

task. Higher scores in these measures correspond to higher levels

of IP. In contrast, the third measure regards the users’ ability to

generalize the system’s behavior to different situations, answering

whether interacting with the explainable agent enabled users to

learn the task rules and apply them to unmet situations or similar

contexts.

Subjective measures that may also be collected are:

• Satisfaction measures, such as users’ satisfaction level with the

explanations and the interaction.

• AI perception measures, such as users’ feelings toward the

system and perception of it.

The first indicates users’ willingness to reuse the system and

satisfaction with the explanations received. The second regards

users’ feelings that might arise during the interaction with the

system.

4 Running example

To exemplify our method, we provide a running example and

a functioning implementation of the assessment task. The NPP

environment and models, alongside the multiple-choice test in the

appendix, represent a possible implementation of the IP assessment

method. The code that refers to its Python implementation is

available on GitLab1: research can replace the proposed AI/XAI

models with their own to test their informativeness.

4.1 The task

The assessment consists of a decision-making task where users

can interact with a control panel to perform actions in a simulated

environment (see Section 4.2). During the task, users can interact

1 https://gitlab.iit.it/mmatarese/npp-gym
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with an expert AI agent by asking what it would do, and its XAI

system by asking why it would do that. Users start the task without

knowledge about it: within a fixed time or number of steps, they

must perform actions and interact with the agent to discover the

task’s goals, rules used by the AI model for actions, and rules

governing the simulated environment.

4.1.1 Interaction modalities
The agent cannot perform actions: its role is limited to assisting

users during decision-making. The agent can not take the initiative

to give suggestions either, but it always answers users’ questions.

Thus, only the users can interact with the control panel and act in

the simulated environment.

4.1.2 Characteristics of the task
We considered non-expert users who passed through the

interaction and obtained new information. We considered only

participants without knowledge about the task and its underlying

rules. For this reason, we implemented a simulation of a nuclear

power plant (NPP) management task because it is challenging and

engaging for non-expert users, governed by relatively simple rules,

and generally, people know nothing about the functioning of NPPs.

The main objectives of the task are to generate as much

energy as possible and maintain the system in equilibrium. The

environment’s features are subject to rules and constraints, which

we can summarize as follows:

• Each action corresponds to an effect on the environment, thus

changing its features’ value.

• Specific preconditions must be satisfied to start and continue

nuclear fission and produce energy.

• Some conditions irremediably damage the plant.

• The task is divided into steps in which the users can interact

with either the agent or the control panel.

4.2 The environment

We modeled the nuclear power plant as a reinforcement

learning (RL) environment using the OpenAI GymAPI (Brockman

et al., 2016).

4.2.1 Features of the environment
The simulated power plant is composed of four continuous

features:

• Pressure in the reactor’s core.

• Temperature of the water in the reactor.

• Amount of water in the steam generator.

• Reactor’s power.

Furthermore, the power plant has four other discrete features

that regard the reactor’s rods: security rods, fuel rods, sustain rods,

and regulatory rods. The first two have two levels: up and down.

Instead, the latter two have three levels: up, medium, and down.

The reactor power linearly decreases over time for the effect

of the de-potentiation of the fuel rods. Hence, the reactor’s power

depends on the values of the environment’s features and whether

nuclear fission is taking place. Moreover, the energy produced at

each step is computed by dividing the reactor’s power by 360, which

is the power that a 1,000MW reactor without power dispersion

produces in 10 seconds (the expected time duration of a step).

4.2.2 Actions to perform on the environment
Users can perform twelve actions, including changing rod

positions, adding water to the steam generator, or skipping to

the next step. The actions alter three parameters representing the

water’s temperature in the core, the core’s pressure, and the water

level in the steam generator. The setting of the rods determines the

entity of feature updates. Such updates are performed at the end of

each step, right after the users’ action.

For example, if the safety rods are lowered in the reactor’s

core, the nuclear fission stops; thus, the temperature and pressure

decrease until they reach their initial values, and the water in

the steam generator remains still. On the other hand, if nuclear

fission occurs and the user lowers the regulatory rods, the fission

accelerates. This acceleration consumes more water in the steam

generator, raising the core’s temperature and pressuremore quickly,

but also increasing the reactor’s power and the electricity produced.

If the users do not act within the time provided for each step, the

application automatically chooses a skip action, which applies the

features’ updates based on the setting of the rods at hand.

4.3 The agent’s AI

We trained a deterministic decision tree (DT) using the

Conservative Q-Improvement (CQI) learning algorithm (Roth

et al., 2019), which allowed us to build the DT using an RL strategy.

Instead of extracting the DT from a more complex ML model

(Vasilev et al., 2020; Xiong et al., 2017), we used this learning

strategy to simplify the translation from the AI to the XAI without

losing performance. The agent uses this expert DT to choose its

action: it can perform each of the 12 actions based on the eight

environment’s features.

CQI learns a policy as a DT by splitting its current nodes only

if it represents a policy improvement. Leaf nodes correspond to

abstract states and indicate the action to be taken, while branch

nodes have two children and a splitting condition based on a feature

of the state space. Over time, their algorithm creates branches

by replacing existing leaf nodes if the final result represents an

improved policy. In this sense, the algorithm is considered additive,

while it is conservative in performing the splits (Roth et al., 2019).

Starting from its root node, the DT is queried on each of its

internal nodes - representing binary splits - to decide in which of

the two sub-trees continue the descent. Each internal node regards

a feature xi and a value for that feature vi: the left sub-tree contains

instances with values of xi ≤ vi, while the right sub-tree contains

instances with values of xi > vi (Buhrman and de Wolf, 2002).

The DT’s leaf nodes represent actions; in the implementation

of Roth et al. (2019), they are defined with an array containing the
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actions’ expected Q-values: the greater Q-value is associated with

the most valuable action. This way, the DT can be queried by users

with both what and why questions. To answer a what question,

we only need to navigate the DT using the current values of the

environment’s features and present the resulting action to the user.

4.4 The agent’s XAI

As we already saw in Section 4.1, answering why questions

regards the agent XAI. Since the AI model to explain is already

transparent (Adadi and Berrada, 2018), it also constitutes the XAI

model.We can use DTs to provide explanations simply by using one

(or more) of the feature values we encounter during the descent.

As we have seen in Section 4.3, during the DT descent, we

encounter a set of split nodes defined by a feature xi and a value

vi; the direction of the descent tells us if the current scenario has

a value of xi ≤ vi or xi > vi. Each of those inequalities can be

used to provide an explanation that can help users relate actions

with specific values of the environment’s features. In our case, an

explanation for the action “add water to the steam generator” could

be “because the water level in the steam generator is≤ 25,” which is

dangerously low.

Which of the features to use among the ones encountered

during descent is a problem called “explanation selection.” In our

case, the selection of explanations n depends on the XAI strategy

we want to test. For example, classical approaches use the most

relevant features [in terms of the Gini index, information gain, or

other well-established measures (Stoffel and Raileanu, 2001)].

The XAI strategy we provided in the code explains using only

the AI outcomes and the environment’s states. In particular, it

justifies the agent’s suggestions using the most relevant features, the

first ones in the DT’s structure (see Roth et al., 2019). The system

always tries to give different explanations by keeping track of the

DT’s nodes already used and progressively choosing the others to

decrease the level of relevance.

5 Discussion

The proposed assessment task satisfies properties unique to

the explainable artificial intelligence (XAI) research field. Firstly,

it focuses on the utility of explanations for the users. Then,

it defines the goodness of the XAI system as the amount of

information that an explainable agent can provide to them.

This allows for an objective and quantitative analysis of such

goodness, possibly making precise comparisons between different

explainability strategies.

We grounded the assessment in a decision-making setup

because it represents the most used context for human-AI

collaboration and presents a high potential for the future.

Throughout the paper, we stressed one of the fundamental

characteristics of the Information Power (IP) assessment method:

putting the human in the loop. In Section 2, we have already

seen that the XAI community has recognized it as crucial to

consider the end-user in the XAI evaluation process. However,

most proposed approaches still rely on subjective measures (self-

reported questionnaires) or consider only specific application

contexts. In contrast, our approach offers an objective assessment

that could be applied to a range of different application contexts.

The IP assessment task focuses on objective and quantitative

measures of the explanations’ goodness; however, it can be enriched

by several secondary and quantitative measures. Such secondary

measures could include users’ perception of the explanations’

usefulness and intrusiveness or their satisfaction and willingness to

reuse them (Conati et al., 2021). We can consider this flexibility

to provide for objective, subjective, quantitative, and qualitative

measurements of the explanation’s goodness, the last key element of

our proposal. This can be reached through the post-training phase,

in which users are asked to perform the task at their best and with

the final test, which may contain both multiple-choice and open-

ended questions. The training, post-training, and test phases, and

the consequent variety of measures that can be collected, give the

IP assessment task unique characteristics in the panorama of the

assessment approaches for explainable systems.

In Table 1, we first present all the requirements that were

decisive for our approach in the line “IP” and then compare

our assessment framework with those mentioned in Section 2

with respect to these requirements. We consider this summary as

important to push forward discussions about measurements and

assessment in XAI.

The following list clarifies the meaning of the eight

requirements mentioned in the table:

• Decision-making: the assessment is encapsulated in a

decision-making task, where users are asked tomake decisions

that could be correct or wrong.

• Human–AI collaboration: the assessment provides for

collaborative scenarios in which users can benefit from AI

expertise.

• (X)AI model agnostic: the assessment applies to all (or a large

majority) AI models and XAI techniques.

• Objective: the assessment includes objective variables.

• Subjective: the assessment includes subjective variables.

• Quantitative: the assessment provides quantitative measures

for the objective and subjective variables.

• Qualitative: the assessment provides qualitative measures for

the objective and subjective variables.

• Human-in-the-loop: the assessment follows a human-in-the-

loop approach, strongly relying on user studies.

Interestingly, whereas we pointed out that it is difficult to find

objective measures for quality in the XAI literature, the same is

valid for human studies concerning the understanding they gain

from an explanation. It is important to measure knowledge as an

effect of an explanation, and the discussion of what to consider

as different forms of understanding (varying from being enabled

to do something to deeply comprehending a matter) just started

(Buschmeier et al., 2023).

Concerning user interaction with an XAI, the above-presented

assessment task with those characteristics is flexible enough to

test different AI models and XAI techniques as long as they

allow interaction between the user and the system and the AI
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TABLE 1 Comparison between the IP assessment framework and other XAI goodness’ assessment methods with respect to eight requirements.

Methods Decision-making Human-AI collab. (X)AI model agnostic Objective Subjective Quantit. Qualit. Human-in-the-loop

IP X X X X X X X X

van der Waa et al. (2021) X X ✗ ✗ X X X X

Lage et al. (2019) ✗ ✗ ✗ ✗ X X ✗ X

Sovrano and Vitali (2022) X X X X ✗ X ✗ ✗

Holzinger et al. (2020) X X ✗ ✗ X ✗ X X

Chander and Srinivasan (2018) ✗ ✗ X X ✗ ✗ ✗ ✗

Rio-Torto et al. (2020) ✗ ✗ ✗ X ✗ X ✗ ✗

Samek et al. (2017) ✗ ✗ ✗ X ✗ X ✗ ✗

Zhang and Zhu (2018) ✗ ✗ ✗ X ✗ X ✗ ✗

Yeh et al. (2019) ✗ ✗ ✗ X ✗ X ✗ ✗

Barratt (2017) ✗ ✗ ✗ X ✗ X ✗ ✗

Ignatiev (2021) ✗ ✗ ✗ X ✗ X ✗ ✗

Laugel et al. (2019) ✗ ✗ X X ✗ X ✗ ✗

Sanneman and Shah (2020) ✗ ✗ X X ✗ ✗ X X

All the requirements refer to the assessment phase. The meaning of the requirement is explained in the Section 5 (e.g., “decision-making” means that the assessment method provides for a decision-making task).
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model (implicitly or explicitly) aligns with the tasks’ rules: we

assume that as long as the task and environment reflect the

characteristics presented in Section 4.1 and subsequent, and the

AI can master the task, it cannot be that the tasks’ rules are

not reflected by the AI’s actions. However, there are cases of

imprecise mapping or explanation presentation techniques that do

not explicitly take the form of rules (as in our example), e.g., using

visual elements (LIME) or features importance (SHAP). In such

cases, our framework can still be used to assess their capacity to

implicitly refer to the environment’s rules, e.g., by comparing them

with more explicit techniques. Moreover, the IP framework can be

used to objectively compare two or more HCI/HRI approaches to

test whether interactive dynamics ease the users’ understanding of

the agent’s suggestions and explanations. In particular, to reproduce

the IP assessment in a different scenario, researchers need the

following:

• A decision-making task with the same characteristics as the

one presented in Section 4.1.

• An expert AI and several non-expert users to whom

administer the assessment task.

• Two or more approaches to compare, such as XAI algorithms

or HCI/HRI dynamics.

• At least one quantitative measure about users’ understanding

of the task; if two or more, also a method to compact them into

a single measure.

• At least one quantitative measure about users’ ability to

generalize to unseen scenarios.

Therefore, the decision-making task needs to be submitted

to non-expert users, giving them the objective of learning the

functioning of the task. During the task, participants should

interact with an expert (X)AI model (under investigation) and ask

it for help during the learning. Right after the learning phase, there

should be an assessment phase in which the users must prove their

understanding of the task by performing it at their best. Finally, the

experimenter should submit participants to the test to objectively

measure their knowledge of the task. An assessment task with those

characteristics is flexible enough to test different AI models and

XAI techniques as long as they allow user and system interaction.

It has to be noted that non-expert users’ prior capabilities and

characteristics may differ and somehow bias the results. However,

such asymmetries between users can be measured before the

assessment and involved in the analysis. For example, users’ prior

knowledge about the overall functioning of NPPs and their need for

cognition [the tendency to reflect on things before acting (Cacioppo

and Petty, 1982)] may impact the final results. Those characteristics

may be measured before the task administration and considered

while computing the system’s IP, e.g., by dividing users into groups

according to their prior knowledge and need for cognition.

5.1 Limitations

The most critical requirement of our assessment task, which

both uniquely characterizes and limits its possible use cases, is

the interaction with the user. In particular, it allows the users

to query the system by asking what it would do in a specific

situation and why. Consequently, the XAI system should be

able to answer both what and why questions to exploit the

full potential of the assessment task. However, exploiting our

assessment task is impossible if such an interaction is impossible

(or very circumscribed). In these cases, we recommend using other

metrics, such as the Degree of Explainability by Sovrano and Vitali

(2022).

Moreover, the IP framework needs deterministic systems

and non-expert users: both constraints limit the application of

our assessment method. While the former constraint can be

overcome by selecting participants according to their levels of

prior knowledge about the task, it is impossible to assess non-

deterministic algorithms with the IP framework because the tasks’

rules need to be well-defined, as described in Section 4.1.

Another area for improvement of our approach is that, as a

method of quantification, it disregards the fact that in the decision-

making process, some actions might be more difficult than others.

The same is true for the features that the XAI reveals; with

some of them, users might already have experiences that yield

more understanding than others, which might be new for specific

cases. These contextual factors regarding the user’s experience and

knowledge should be considered in future research to develop

adapted or adapting measurements for the quality of XAI that is

relevant for the users. This is consistent with Miller (2019), who

points out that explanatory power depends on personal relevance.

6 Conclusions

In this work, we proposed an assessment task to objectively and

directly measure the goodness of XAI systems in terms of their

informativeness. We designed the assessment as an XAI-assisted

decision-making task with non-expert users and a final test to assess

their understanding of the task itself. Starting from no knowledge

about it, during the task users need to understand its rules and

objectives in a learning-by-doing approach. The subsequent test

aims at measuring their acquired knowledge.

In conclusion, the proposed Information Power assessment

task provides a valuable contribution to evaluating XAI systems.

Its emphasis on user utility, objectivity, and flexibility positions

it as a comprehensive and practical approach for assessing the

goodness of explanations in decision-making contexts. As the field

of XAI evolves, ongoing research and refinements of assessment

methodologies will contribute to advancing our understanding

of how AI systems can best provide meaningful and effective

explanations to users.
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