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Tactile feedback can e�ectively improve the controllability of an interactive

intelligent robot, and enable users to distinguish the sizes/shapes/compliance of

grasped objects. However, it is di�cult to recognize object roughness/textures

through tactile feedback due to the surface features cannot be acquired with

equipped sensors. The purpose of this study is to investigate whether di�erent

object roughness/textures can be classified using machine vision and utilized

for human-machine haptic interaction. Based on practical application, two

classes of specialized datasets, the roughness dataset consisted of di�erent

spacing/shapes/height distributions of the surface bulges and the texture

dataset included eight types of representative surface textures, were separately

established to train the respective classification models. Four kinds of typical

deep learning models (YOLOv5l, SSD300, ResNet18, ResNet34) were employed

to verify the identification accuracies of surface features corresponding to

di�erent roughness/textures. The human fingers’ ability to objects roughness

recognition also was quantified through a psychophysical experiment with 3D-

printed test objects, as a reference benchmark. The computation results showed

that the average roughness recognition accuracies based on SSD300, ResNet18,

ResNet34 were higher than 95%, which were superior to those of the human

fingers (94% and 91% for 2 and 3 levels of object roughness, respectively).

The texture recognition accuracies with all models were higher than 84%.

Outcomes indicate that object roughness/textures can be e�ectively classified

using machine vision and exploited for human-machine haptic interaction,

providing the feasibility of functional sensory restoration of intelligent robots

equipped with visual capture and tactile stimulation devices.

KEYWORDS

human-machine interaction, roughness/texture recognition, machine vision, deep

learning model, tactile feedback

1 Introduction

Currently, there is still a wide gap between the functionality and utility of the robots
and the users’ expectations. An acceptable level of intention control function can be
obtained by translating the muscle electrical activities of peripheral limbs (Farina et al.,
2023) or the central nerve activities of the brain (Luo et al., 2023) into the commands
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of an intelligent robotic device via multi-channel neural control
interfaces (Makin et al., 2023). However, the existing interactive
robots generally have common shortcomings, such as poor
performance in interactive control, insufficient ability in human-
machine collaboration, and a lack of active sense capability (Yang
et al., 2019). Lack of tactile feedback has been regarded as one of
the major drawbacks (Jabban et al., 2022). To date, except for a few
examples with limited application (Svensson et al., 2017; Sensinger
and Dosen, 2020), no commercially available robot can provide
effective tactile feedback for its users to close the interactive control
loop (Jabban et al., 2022).

Tactile sensory feedback undertakes an unparalleled role when
humans interact with external surroundings due to its realistic
sense of presence (Sigrist et al., 2013; Svensson et al., 2017;
Sensinger andDosen, 2020). Numerous studies have confirmed that
proving tactile feedback can not only improve the controllability
(George et al., 2019; Sensinger and Dosen, 2020) and the sense
of embodiment of robotic devices (Rosén et al., 2009; Page et al.,
2018), but also promote human-machine motor coordination
(Clemente et al., 2019; Weber and Matsiko, 2023) and manual
efficiency (George et al., 2019; Chai et al., 2022). Tactile feedback
can be elicited on a human subject by selectively stimulating
his/her peripheral nervous system using non-invasive or invasive
stimulation approaches (Sensinger and Dosen, 2020; Jabban et al.,
2022). The prior closed-loop feedback studies displayed that the
sensing information of an intelligent robot (e.g., grip force or
aperture angle of a prosthetic hand, etc.) could be delivered to its
users by modulating stimulation parameters or/and changing the
active stimulation units (e.g., a set of electrode pads or vibrators)
(George et al., 2019; Chai et al., 2022). The users were able to
regulate the grip force or the grip (line/angular) displacement
of a robot device to perform delicate object manipulation or
recognize the size/compliance of the grasped objects through
the delivered tactile sensations (George et al., 2019). Hence,
it is essential to develop effective tactile feedback from an
intelligent robot to its users to improve the coordination in the
manipulation of robotic devices and increase the presence of
human-machine interaction.

It has been proven that tactile feedback enables fine grip force
control of robotic devices (George et al., 2019; Chai et al., 2022)
and users’ attention allocation (Sklar and Sarter, 1999; Makin
et al., 2023) and confers to the users the ability to recognize
object size and compliance, with or without visual feedback
(Arakeri et al., 2018; George et al., 2019; Chai et al., 2022).
However, in terms of human-machine interaction, so far, the
2 types of typical object physical properties, surface roughness
and texture, were unable to be delivered to the users through
a haptic interface due to the complexity of the surface features
(Bajcsy, 1973; Hashmi et al., 2023). A key reason is that the
current contact sensors (e.g., pressure/ displacement transducers)
cannot identify and differentiate a wide variety of features of the
surface roughness and texture. The previous related studies have
proved that providing tactile feedback for object roughness/texture
recognition has important application requirements in a variety
of fields ranging from medical rehabilitation to education and
entertainment (Samra et al., 2011; Lin and Smith, 2018), especially
roughness/texture recognition for blind/visually impaired patients
(O’Sullivan et al., 2014).

Machine vision has emerged as the most promising non-
contact technique for object detection and image classification
by combining cameras, videos, and deep-learning methods (Zhao
et al., 2019; Georgiou et al., 2020; Hashmi et al., 2023). Recent
representative studies have shown that compared to conventional
methods, machine vision-based approaches could better assess the
surface quality of machined parts by contactlessly measuring the
surface characteristics, i.e., surface roughness, waviness, flatness,
surface texture, etc. (Hashmi et al., 2023). The image calibration
algorithm based on Bayes theorem has been proved can effectively
restore the blurred images of object surface roughness (Dhanasekar
and Ramamoorthy, 2010). The image-based machine vision model
not only can solve the measurement of surface characteristics, but
also avoid the shortcomings (e.g., limited assessment area/position,
limited sensor precision, etc.) of traditional contact measurement
methods. Moreover, in contrast to the manual and traditional
machine learning methods, the deep learning model are also widely
used for pavement texture recognition (Chen et al., 2022) and
fingerprint classification (Mukoya et al., 2023) due to its powerful
training capabilities and portability. In addition, electrotactile
stimulation is extensively applied for sensory restoration of
typical intelligent robotic devices (e.g., prosthetic hands.) due to
the apparent advantages, such as, non-invasive, multi-parameter
adjustable, and compact electronics (Svensson et al., 2017;
Sensinger and Dosen, 2020). Therefore, machine vision combined
with electrotactile feedback may be a viable alternative for object
roughness/texture recognition. Whether different object roughness
and textures could be effectively discriminated with deep learning
models deserves to be investigated in depth.

The purpose of this study is to investigate the capability
of machine vision to recognize object roughness and texture.
We hypothesized that machine vision identifying object
roughness/texture could be used for human-machine haptic
interaction. To this aim, 2 classes of specialized roughness and
texture datasets were separately established to train and test
the deep learning models. We employed four types of typical
deep learning algorithm models (YOLOv5l, SSD300, ResNet18,
and ResNet34) to evaluate the identification performance of
machine vision. The human roughness recognition ability was also
quantified as the basal control. The outcomes provide important
insights into object roughness/texture recognition through tactile
feedback. Machine vision combined with electrotactile feedback
has the potential to be directly applied to human-machine haptic
interaction.

2 Materials and methods

2.1 The human-machine interaction
framework for object roughness/texture
recognition

The framework of the human-machine interaction system by
combination of machine vision and tactile feedback, used for
object roughness/texture recognition, is illustrated in Figure 1.
It consists of interactive control and image capture, object
roughness/texture classification, and tactile recognition, in terms
of the interactive function. The users could manipulate an
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FIGURE 1

Framework diagram of human-machine interaction system used for object roughness/texture recognition. The machine vision models are trained by

specialized object roughness/texture datasets. MCU is an abbreviation of microprogrammed control unit.

intelligent robot to capture the surface roughness/texture images
of targeted objects via an integrated non-contacting micro-
camera. Different object roughness/textures could be distinguished
by classifying the roughness/texture features of the acquired
images through a specialized machine vision identification model.
The classification results, transmitted in the forms of different
category labels, were adopted to trigger a (mechanical/electrical)
stimulation device to output different stimulus pulses to evoke
distinguishable tactile sensations on users (through surface
stimulation electrodes/vibrators), via an MCU with pattern-
mapped driven protocols. The users were able to recognize object
roughness/texture through tactile feedback. Since it has been
proven that users can effectively identify tactile feedback through
different encoding strategies (Achanccaray et al., 2021; Tong et al.,
2023), how to classify object roughness/texture features and train
the machine vision identification model are critical for human-
machine haptic interaction.

2.2 Deep learning models

In the current study, we adopted four typical deep learning
models, YOLOv5l (Glenn-jocher and Sergiuwaxmann, 2020),
SSD300 (Liu et al., 2016), ResNet18, and ResNet34 (He et al.,
2016), which have been widely used in the field of machine vision
(Arcos-García et al., 2018; Chen et al., 2021; Jiang et al., 2022),
to classify the features of object roughness and textures. The
feature classification capabilities of the models were trained and
tested by two constructed object roughness and texture datasets.
The initialization parameters of these models are presented in
Table 1.

TABLE 1 The initialization parameters of 4 types of deep learning models.

Models Parameters Value

YOLOv5l

image size 640× 640

Batch size 16

Learning rate 0.01

Epochs 200

SSD300

image size 300× 300

Batch size 4

Learning rate 0.0001

Iterations 400000

Weight decay 0.005

Momentum 0.9

ResNet18/34

image size 640× 363

Batch size 16

Learning 0.1

Epochs 700

2.3 Object roughness/texture datasets

In order to verify the utility of the selected machine learning
models, object surface roughness and texture datasets were
established, separately. We calculated the mean and standard
deviation of 2 datasets to achieve image equalization and
normalization. Then we used the hold-out method to randomly
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divide 2 datasets into the training set and test set with a ratio of
9:1 to test the models, respectively.

2.3.1 Surface roughness (SR) dataset
The images of the roughness dataset are acquired from the

custom-made objects for this study, as shown in Figure 2. Each
test object was composed of a square basal block (50 mm × 50
mm × 10 mm) and the part of the roughness bulges (1 mm
in the circumcircle). According to the requirements of roughness
identification, we established the image dataset by changing the
combinations of 3 characteristics of the surface bulges, i.e., the
heights, spacing, and cross-sectional shapes of the bulges. Taking
the performance of haptic interface and human tactile recognition
ability into consideration, according to the prior study, the human
tactile recognition ability of roughness peaks at a spacing of 3.2
mm or 4.5 mm between bulges and then declines for increases in
bulge spacing up to 6.2 mm or 8.8 mm, respectively, in different
directions of the scan (Connor et al., 1990). Thus, 5 levels of spacing
(i.e., SP1 = 3 mm, SP2 = 4.5 mm, SP3 = 6 mm, SP4 =7.5 mm,
SP5 = 9 mm), 5 kinds of cross-sectional shapes (circle, triangle,
square, pentagon, hexagon), and 2 types of height arrangement
modes (rows and rings-shaped of high-low heights) were adopted
to construct different surface roughness. The bulge heights were,
respectively, 10 mm and 5 mm for the high and low patterns, the
aim being to avoid contact between the digit and the basal block
between adjacent bulges.

The entire SR dataset encompassed 50 roughness categories
according to the selected combinations of three bulge
characteristics. Each category was expanded to 30 images
with different perspectives through the coordinate transformation
of image rotation, scaling, flipping, and affine transformation.
There were 1,500 roughness images of the surface roughness in the
entire SR.

2.3.2 Surface texture (ST) dataset
The ST dataset was acquired from the Describable Textures

Dataset (DTD) (Cimpoi et al., 2014). The DTD encompassed
47 texture categories, characterized by vocabulary-based texture
attributes. All images were collected from Google and Flickr’s
websites by searching for relevant attributes and terms.

Similarly, taking into account the recognition capability of the
tactile feedback interface and the utility of training models, we
selected images with eight categories of texture features (dotted,
striped, checkered, cracked, pure, swirly, honeycombed, and scaly)
from the DTD. Each category contained 120 images, and there were
960 images in the full ST dataset. This ST dataset selected texture
features that are representative in terms of haptic interactions, as
visually illustrated in Figure 3.

2.4 Human roughness recognition
experiment

This experiment aims to quantify human’s ability to
discriminate object roughness through tactile feedback, serving as

a reference benchmark for evaluating the identification capabilities
of the current deep learning models.

2.4.1 Subjects
9 healthy, able-bodied subjects (age 22-25 years, 5 females,

all right-handed) participated in the study. All experiments were
conducted in accordance with the latest version of the Declaration
of Helsinki and approved by the Ethics Committee of Human and
Animal Experiments of Ningbo Institute of Materials Technology
and Engineering, Chinese Academy of Sciences. All subjects
were informed about the experimental procedure and signed the
informed consent forms prior to participation.

2.4.2 Experimental procedure
The 3D-printed objects with preset roughness (Figure 2) were

chosen as the test objects. Since the same cross-sectional shapes
of the surface bulges cannot be distinguished by the finger’s
touch (prior test), we selected these objects with 10 categories
of object roughness (five spacing × two height arrangements ×

circular cross-sectional of surface bulges). The whole experiment
was divided into four different experimental groups according to
different recognition tasks and test objects, as shown in Table 2.
In each group, 2 or 3 objects were randomly selected from 10 test
objects as the identification targets. Every subject, whose visual
and auditory cues were isolated with a sleep mask and a pair
of noise-canceling headphones playing gray noise, was instructed
to distinguish the 2 or 3 kinds of surface roughness (objects)
with his/her right index finger, respectively. To ensure objective
quantification, every test object was provided three times in each
group in a pseudo-random order. The in-group sequences of the
test objects, inter-group order and the test timing were conducted
based on E-Prime 2.0 software on a laptop computer. In each trial,
in accordance with the pre-defined sequence, 2 or 3 target objects
were well placed in turn at a time, the experimenter signaled the
subject to begin touching (identifying) by tapping his/her shoulder,
and synchronously pressed the space key on a keyboard to record
the starting time. Once 2 or 3 kinds of object roughness could be
identified, the subject was asked to press number keys 2 or 3 on a
keyboard with his/her contralateral hand to stop tactile recognition,
and made the laptop record the recognition time. Then the subject
verbally reported the answers (roughness category and the specific
roughness levels (if 3 target objects were distinguished)) to the
experimenter. The experimenter just input the subject’s answer to
the laptop and began the next trial. The duration of the overall
experiment was about 1 hour. A break of 1-5minutes was randomly
given between different test trials or inter-groups to allow the
subjects to relax and keep good physical condition.

2.5 Statistical analysis

Statistical analysis of the data was performed using SPSS 23.0.
A paired sample T-test was employed to measure the significant
differences in recognition performances among different models
or across distinct roughness/texture categories, respectively. A
significance level of p< 0.05 was considered statistically significant.
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FIGURE 2

Object surface roughness (SR) dataset. (A) 25 categories of object roughness with di�erent combinations of cross-sectional shapes (C/H/P/S/T) and

spacing (SP1 to SP5) of surface bulges arranged in rows; (B) 25 categories of object roughness with di�erent combinations of cross-sectional shapes

(C/H/P/S/T) and spacing (SP1 to SP5) of surface bulges arranged in rings. SP1 to SP5 represent the spacing levels of surface bulges from 3 mm to 9

mm, separately. Acronyms C, H, P, S, and T signify that the cross-sectional shape of surface bulges is circle, hexagon, pentagon, square and triangle,

respectively. Rows and rings mean the surface bulges arranged in rows/rings, respectively.

FIGURE 3

Object surface texture (ST) dataset with eight categories of representative texture features.

3 Results

3.1 Identification performance of machine
vision

3.1.1 Object roughness identification
4 types of deep-learning models were trained and tested by

the proposed SR dataset. The specific identification accuracies for

single or multiple features of surface roughness are illustrated
in Figure 4 and summarized in Table 3. As shown in Table 3,
the average accuracies of the YOLOv5l, SSD300, ResNet18, and
ResNet34 models were 84.4%±3.1%, 98.6%±0.9%, 95.3%±1.9%,
and 96.7%±1.4%, respectively. The paired T-test demonstrated
that SSD300 and ResNet18/34 exhibited significantly superior
accuracies in roughness identification when compared to YOLOv5l
(p < 0.01).
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TABLE 2 Test objects used for human roughness discrimination.

Group Number of select/total objects
Characteristics of surface bulges

Height arrangement Spacing (mm) Shape

a 2/10 In rows 3/4.5/6/7.5/9 Circle

b 3/10 In rows 3/4.5/6/7.5/9 Circle

c 2/10 In rings 3/4.5/6/7.5/9 Circle

d 3/10 In rings 3/4.5/6/7.5/9 Circle

Height arrangement: the surface bulges with two (high/low) distinct heights were alternatively arranged in rows or rings; Spacing: the spacing levels of surface bulges; Shape: the cross-sectional

shape of surface bulges.

The identification capacities for 3 categories of surface bulges
are depicted in Figure 4. Overall, the four types of models
exhibited relatively higher accuracies for bulge spacing and
height arrangement discrimination than those for cross-sectional
shape. Specifically, the 4 types of models were able to identify
the bulge spacing with an average accuracy of 96.1%±1.5%,
100%±0%, 99.3%±0.6%, and 99.3%±0.6%; to identify the bulge
cross-sectional shape with an average accuracy of 87.0%±5.1%,
98.6%±0.9%, 98.0%±2.0%, and 98.0%±1.4%; to identify the bulge
height arrangement with an average accuracy of 98.7%±1.5%,
100%±0%, 98.0%±2.0%, and 99.3%±0.5%, respectively. The
statistical results revealed that no significant differences were found
among the 4 types of models in identifying the 3 categories of bulge
characteristics (p > 0.05), except for YOLOv5l for cross-sectional
shape (p < 0.01).

To compare the human fingers’ roughness recognition ability,
Table 4 presents the average identification accuracies of the 4
types of models for these objects with circular cross-sectional
bulges. For YOLOv5l, SSD300, ResNet18, and ResNet34, the
overall identification accuracies of the 4 models were 89.7%, 100%,
100%, and 96.7%, respectively. Specifically, the accuracies for bulge
spacing were 93.1%, 100%, 100%, and 96.7%, separately, while the
accuracies for height arrangement of bulges were 100% for all
models.

3.1.2 Object texture identification
The recognition outcomes of the 4 models for 8 types of

textures are presented in Figure 5, Table 5. As illustrated in Figure 5,
Four kinds of deep learning models led to similar identification
performance across the eight types of textures. Specifically, the
average identification accuracies of surface textures were 88.8% for
YOLOv5l, 86.0% for SSD300, 84.2% for ResNet18, and 86.3% for
ResNet34, respectively. No significant difference appeared between
recognition accuracies among four types of models.

3.2 Tactile recognition performance of
object roughness

The tactile recognition accuracies for surface roughness with
selected objects (Table 2) are displayed in Figure 6, Table 6. The
confusion matrices (Figure 6) displayed that the recognition
errors largely happened at adjacent roughness levels, irrespective
of 2-object (i.e., SP3/SP4 and SP4/SP5) or 3-object (i.e.,

SP2/SP3/SP4 and SP3/SP4/SP5) recognition. The recognition
accuracies (Table 6) for 2 levels of roughness were significantly
higher than those of 3 levels of roughness (p < 0.05). No significant
difference appeared between types of bulge height arrangements.

The tactile recognition time for object roughness with selected
objects (Table 2) was summarized in Table 7. For groups a,b,c, and
d, the average recognition time was 1.5s±0.8s, 2.0s±1.1s, 1.7s±0.9s,
and 2.1s±1.1s, respectively. The paired-sample T test showed
that there were significant differences between 2-level and 3-level
roughness recognition, and two types of bulge height arrangement
(p < 0.05), respectively. Notably, significant differences in tactile
recognition time were observed when recognizing between 2 or
3 objects and bulges arranged in rows or rings (p < 0.05). In
particular, the roughness recognition time with adjacent bulge
spacing was significantly longer than those with non-adjacent
spacing (p < 0.05).

4 Discussion

This study sought to demonstrate that object roughness/texture
identified via machine vision could be utilized for human-machine
haptic interaction. The results of calculating and analyzing revealed
that 4 types of models trained with specialized roughness/texture
datasets could classify the features of object roughness and
texture into the expected categories at favorable accuracies. These
outcomes suggest the feasibility of machine vision recognizing
object roughness/texture being used for human-machine tactile
recognition.

Prior studies have shown that machine vision could provide
reliable image-based solutions to inspect object roughness by
distinguishing the characteristics of the surface bulges (Dhanasekar
and Ramamoorthy, 2010; Jeyapoovan and Murugan, 2013; Hashmi
et al., 2023). In terms of bidirectional human-machine haptic
interaction, how to categorize the object roughness and translate
the classification results into effective tactile feedback (sensations)
on the users is the key to object roughness recognition (Connor
et al., 1990; Lin and Smith, 2018). Therefore, we established a
specialized SR dataset to train and test four types of typical models.
As shown in Table 3, the test results showed that 4 kinds of
deep learning models could identify the bulge characteristics with
considerable accuracies (>84.4%). Specifically, models SSD300,
RetNet18/34 had better identification performances than those
of YOLOv5l both in single and combined characteristics. It can
be interpreted that SSD300 employs a multi-scale candidate box
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FIGURE 4

Confusion matrices of object roughness identification with deep learning models YOLOv5l (A1–D1), SSD300 (A2–D2), ResNet18 (A3–D3) and

ResNet34 (A4–D4). All the acronyms and symbols are the same as those in Figure 2.

detection algorithm that can effectively improve the generalization
ability of feature recognition with different aspect ratios, achieving
a high recognition rate for intensive features (Liu et al., 2016).
ResNet adopts shortcut connections, effectively preventing the
degradation problem caused by network layers increased (He et al.,
2016), guaranteeing the classification precision. The difference
between ResNet18 and ResNet34 is the number of network
layers. By comparison, despite with relatively lower identification
accuracies, YOLOv5l might also be applied for roughness

recognition due to its fast detection speed, and it is good at object
detection on videos and camera-captured images. The calculation
results denote that different object roughness, represented by
different characteristic combinations of surface bulges, can be
effectively identified by machine vision and applied to human-
machine haptic interaction. The SSD300 may be preferred for
roughness recognition. Nevertheless, in actual functional tasks,
different algorithm models can be flexibly selected according to
different task difficulties and requirements.
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Furthermore, we quantified the human ability to object
roughness recognition using four groups of test objects with
specialized roughness characteristics (Table 2), as a benchmark
reference to the identification capability of machine vision. The
quantified results illustrated that the subjects could correctly
discriminate 2 and 3 categories of object roughness at favorable
accuracies (Table 6) and recognition time (Table 7). The variation

TABLE 3 Summary of overall identification results of SR dataset with 4

kinds of deep learning models.

Models Spacing
(%)

Shape
(%)

Arrangement
(%)

Avg.
(%)

YOLOv5l 96.1±1.5 87.0±5.1 98.7±1.5 84.4±3.1

SSD300 100.0±0.0 98.6±0.9 100.0±0.0 98.6±0.9

ResNet18 99.3±0.6 98.0±2.0 98.0±2.0 95.3±1.9

ResNet34 99.3±0.6 98.0±1.4 99.3±0.5 96.7±1.4

ranges of average recognition rate were less than 4% across 9
randomly recruited subjects. It indicates that all subjects can
effectively distinguish the current object surface roughness without
significant differences, and it was not essential to add additional
subjects in current study. The recognition rates of 2 categories
of roughness with different bulge spacings were slightly higher
than those of the three categories, and the misidentification

TABLE 4 Summary of overall identification results of object roughness

(circular cross-sectional shape) with 4 kinds of deep learning models.

Models Shape Spacing
(%)

Arrangement
(%)

Avg.
(%)

YOLOv5l Circle 93.1 100.0 89.7

SSD300 Circle 100.0 100.0 100.0

ResNet18 Circle 100.0 100.0 100.0

ResNet34 Circle 96.7 100.0 96.7

FIGURE 5

Confusion matrices of object texture identification with deep learning models YOLOv5l (A), SSD300 (B), ResNet18 (C) and ResNet34 (D).
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mainly appeared between the objects with adjacent bulge spacings
(Figure 6). This can be explained by the fact that the human
perception of surface roughness is the function of a spatial variation
code mediated by the activation of mechanoreceptor afferents,
especially the SA-I afferents (Connor et al., 1990; Johnson and
Hsiao, 1994; Chapman et al., 2002). The human psychophysical
recognition results are highly correlated with the population
discharge of SA-I afferents (Connor et al., 1990). A smaller bulge
spacing on a certain object surface could activate a higher discharge
rate and the adjacent discharge rates are likely to result in the
decline of the recognition accuracies. Meanwhile, although with
different recognition time, the subjects could recognize 2 kinds of
bulge height arrangements without significant differences (Tables 6
and 7). It may due to the two kinds of height arrangements is
not challenging enough to detect the roughness differences. More
classes of height arrangements are still necessary to further evaluate
human roughness recognition ability. Accordingly, we calculated
the overall identification accuracies of bulge characteristics of the
identical test objects using the four kinds of models (Table 4).

TABLE 5 Summary of overall identification results of ST dataset with 4

kinds of deep learning models.

Models Average accuracy(%)

YOLOv5l 88.8±4.0

SSD300 86.0±3.5

ResNet18 84.2±4.3

ResNet34 86.3±4.3

The summary results displayed that the machine vision was
not only able to distinguish different bulge spacings and height
arrangements with relatively higher accuracies (Table 4), but also
could identify the different cross-sectional shapes of the bulges
which were hard to distinguish by touch perception at excellent
accuracies (Table 3 and Figure 4). Therefore, it can be concluded
that identifying the bulge characteristics with suitable deep learning
models appears to be a viable approach for object roughness
recognition, which may be sufficient for a wide range of functional
human-machine tasks.

Humans cannot intuitively perceive the surface texture of an
object if the visual feedback is unavailable. How to transfer different
surface textures to the users through tactile feedback has important
academic and application value, such as the TACTICS (Way and
Barner, 1997), the automatic assigning of haptic texture models
(Hassan et al., 2017), and the haptic texture rendering method
based on the adaptive fractional difference (Hu and Song, 2022).
The feasibility of recognizing object surface features via machine
vision for human-machine haptic interaction was also evidenced
by the results of object texture classification and identification
(Figure 5, Table 5). The calculation results exhibited that four types
of machine learning models could identify eight categories of
representative texture features at acceptable accuracies (>84%).
This indicates that machine vision is able to be effectively exploited
to distinguish object texture. The current average accuracy was
about 15% higher than the reported results of the DTD (Cimpoi
et al., 2014). This is mainly because we only preset 8 categories
of object texture labels in the ST dataset in consideration of the
limitations of the current haptic interface performance (Svensson
et al., 2017; George et al., 2019; Sensinger and Dosen, 2020;

FIGURE 6

Results of object roughness discrimination through fingers’ tactile sensations. Confusion matrices of object roughness recognition with di�erent

combinations of bulge spacing and arrangement. (A) 2 levels of bulge spacings arranged in rows. (B) 3 levels of bulge spacings arranged in rows. (C)

2 levels of bulge spacings arranged in rings. (D) 3 levels of bulge spacings arranged in rings. All the acronyms and symbols are the same as those in

Figure 2.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1401560
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


L
in

e
t
a
l.

1
0
.3
3
8
9
/fc

o
m
p
.2
0
2
4
.1
4
0
1
5
6
0

TABLE 6 Summary of recognition accuracies of object roughness through fingers’ tactile perception.

Group∗ SP1/2(%) SP2/3(%) SP3/4(%) SP4/5(%) SP1/3(%) SP2/4(%) SP3/5(%) SP1/4(%) SP2/5(%) SP1/5(%) Avg.(%)

a 98.1±2.0 92.6±7.5 88.9±4.0 87.0±9.0 98.1±2.0 94.4±1.5 90.7±5.5 96.3±3.5 100.0±0.0 100.0±0.0 94.6±3.5

c 96.3±0.0 96.3±3.5 88.9±4.0 81.5±1.2 96.3±0.0 100.0±0.0 98.1±2.0 96.3±0.0 96.3±3.5 100.0±0.0 95.0±2.5

Group∗ SP1/2/3(%) SP2/3/4(%) SP3/4/5(%) SP1/2/4(%) SP2/3/5(%) SP1/4/5(%) SP2/4/5(%) SP1/2/5(%) SP1/3/5(%) SP1/3/4(%) Avg.(%)

b 95.1±3.2 84.0±4.6 75.3±4.3 91.4±3.3 86.4±7.5 84.0±7.5 92.6±4.3 96.3±2.0 100.0±0.0 90.1±3.2 89.5±4.0

d 93.8±1.0 87.7±5.0 81.5±2.0 96.3±2.0 91.4±2.3 92.6±7.3 91.4±2.3 96.3±2.0 96.3±2.0 96.3±2.0 92.3±2.8

∗Groups a, b, c and d are the same as those in Table 2.

TABLE 7 Summary of recognition time of object roughness through fingers’ tactile perception.

Group∗ SP1/2(s) SP2/3(s) SP3/4(s) SP4/5(s) SP1/3(s) SP2/4(s) SP3/5(s) SP1/4(s) SP2/5(s) SP1/5(s) Avg.(s)

a 1.2±0.4 1.7±0.8 2.0±0.9 2.2±1.0 1.1±0.4 1.6±0.6 1.6±0.7 1.0±0.5 1.1±0.3 1.1±0.4 1.5±0.8

c 1.8±0.8 2.0±0.7 2.0±1.3 2.0±0.9 1.5±0.7 1.4±0.4 2.0±0.9 1.6±1.1 1.5±0.6 1.3±0.7 1.7±0.9

Group∗ SP1/2/3(s) SP2/3/4(s) SP3/4/5(s) SP1/2/4(s) SP2/3/5(s) SP1/4/5(s) SP2/4/5(s) SP1/2/5(s) SP1/3/5(s) SP1/3/4(s) Avg.(s)

b 1.8±1.3 2.6±1.2 2.7±1.3 1.5±0.8 1.9±0.9 2.1±1.1 2.3±1.0 1.6±1.0 1.5±0.6 1.8±1.0 2.0±1.1

d 2.2±1.0 2.3±1.0 2.3±1.2 2.0±0.9 2.4±1.3 1.9±1.2 2.3±1.1 1.8±1.2 1.8±0.9 2.0±0.9 2.1±1.1

∗Groups a, b, c and d are the same as those in Table 2.
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Chai et al., 2022) and the exclusion of similar texture labels. It
should be noted that during the human-machine interaction, the
number of categorization labels can be flexibly adjusted to apply to
the requirements of different texture recognition tasks. However,
the actual discrimination performance should be reassessed by
retraining the optimal algorithm model (such as, YOLOv5l).

5 Implications, limitations and future
work

This article validated that the accuracies of identifying object
surface roughness and texture via machine vision are higher
than those of human tactile recognition. Object roughness and
texture recognition using machine vision enables human-machine
haptic interaction. The key significance lies in that it provides
a practicable alternative for users who are willing to recognize
object roughness or texture through tactile feedback when visual
feedback is unavailable or they cannot directly contact the target
objects. From an application perspective, the model SSD300 could
be preferably applied for feature discrimination of object roughness
or texture due to its optimal detection capability. Meanwhile, other
types of algorithms for object surface feature recognition, such as
the hybrid model of SSD and ResNet (Yang et al., 2021), can also
be adopted to test whether the classification accuracy could be
improved.

One limitation of this study is that the identification accuracies
of the current machine vision models may slightly reduce when
the roughness/texture levels or categories are increased, despite the
classification capabilities are sufficient for a wide range of human-
machine haptic interaction tasks. Therefore, in light of practical
application requirements, design of appropriate training datasets
is crucial to the performances of roughness/texture identification
models. Moreover, the actual human-machine haptic interaction
should take the object feature (roughness/texture) classification and
its tactile feedback into consideration. Therefore, in the follow-
up study, a miniature depth camera, an optimal roughness/texture
classification model, a custom-made electrical stimulator, and a
multi-electrode array will be integrated with an intelligent robotic
device for practical use. Based on this, a battery of application-
relevant object roughness/texture discrimination experiments
with varied difficulty levels (e.g., multiple roughness/ texture
categories, different manipulation time) on various scenarios (e.g.,
with/without visual feedback / virtual reality (VR) guidance)
will be designed to comprehensively investigate the benefits of
bidirectional haptic interaction.
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