
TYPE Original Research

PUBLISHED 12 June 2024

DOI 10.3389/fcomp.2024.1400750

OPEN ACCESS

EDITED BY

Ahmad Nauman Ghazi,

Blekinge Institute of Technology, Sweden

REVIEWED BY

Zainab Yousuf,

Bahria University, Pakistan

Rubia Fatima,

Emerson University Multan, Pakistan

Farzana Jabeen,

National University of Sciences and

Technology (NUST), Pakistan

Monica Rossi,

Polytechnic University of Milan, Italy

*CORRESPONDENCE

Shamaila Qayyum

shamaillla@gmail.com

RECEIVED 14 March 2024

ACCEPTED 30 May 2024

PUBLISHED 12 June 2024

CITATION

Qayyum S, Imtiaz S, Hayat Khan H,

Almadhor A and Karovic V (2024) Working

with agile and crowd: human factors

identified from the industry.

Front. Comput. Sci. 6:1400750.

doi: 10.3389/fcomp.2024.1400750

COPYRIGHT

© 2024 Qayyum, Imtiaz, Hayat Khan,

Almadhor and Karovic. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Working with agile and crowd:
human factors identified from
the industry

Shamaila Qayyum1*, Salma Imtiaz1, Huma Hayat Khan2,

Ahmad Almadhor3 and Vincent Karovic4

1Department of Software Engineering, International Islamic University, Islamabad, Pakistan,
2Department of Software Engineering, National University of Modern Languages, Islamabad, Pakistan,
3Department of Computer Engineering and Networks, College of Computer and Information

Sciences, Jouf University, Sakaka, Saudi Arabia, 4Department of Information Management and Business

Systems, Faculty of Management, Comenius University Bratislava, Bratislava, Slovakia

Introduction: Crowdsourcing software development (CSSD) is an emerging

technique in software development. It helps utilize the diversified skills of

people from across the world. Similar to all emerging techniques, CSSD has

its own benefits and challenges. Some unique challenges arise when CSSD is

used with Agile methodology. This is because many characteristics of CSSD

di�er from Agile principles. CSSD is a distributed approach where workers are

unknown to each other, whereas Agile advocates teamness and ismostly suitable

for colocated teams. Many organizations are now combining crowdsourcing

software development (CSSD) and Agile methodologies, yet there is limited

understanding on the implications of this integration. It is crucial to emphasize

the human factors at play when implementing Agile alongside CSSD. This

involves considering how teams interact, communicate, and adapt within these

frameworks. By recognizing these dynamics, organizations can better navigate

the complexities of integrating CSSD and Agile, ultimately fostering more

e�cient and collaborative development processes.

Method: This study aimed to explore the human factors involved in the

integration of CSSD with Agile, by identifying the challenges that practitioners

face when they follow Agile with CSSD and the strategies they follow. The

study contributes by providing an in-depth understanding of a new approach,

CSSD, integrated with Agile. The study also explores the challenges faced by

practitioners that are not already enlisted.

Results anddiscussion: These identified challenges are grouped into six di�erent

categories, which are trust-related challenges, coordination and communication

challenges, organizational challenges, task-related challenges, project-related

challenges, and some general challenges. Strategies for each of these categories

of challenges are also identified. The list of challenges and strategies identified in

this study can be helpful in further research on CSSD and Agile integration. The

practitioners can also follow these strategies to reduce the impact of challenges

they face while they perform CSSD along with Agile.

KEYWORDS

agile methodology, crowdsource software development, human factors, challenges,

strategies, industry practitioners

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1400750
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1400750&domain=pdf&date_stamp=2024-06-12
mailto:shamaillla@gmail.com
https://doi.org/10.3389/fcomp.2024.1400750
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1400750/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

1 Introduction

The software development industry is growing tremendously,
which results in a shift from traditional in-house development
to distributed software development (DSD) (Stol et al., 2017b).
However, software engineering is a human activity more than
a technical activity (Capretz, 2014; Siegmund, 2024). Previously,
software houses used a traditional in-house approach where
the colocated team was physically present at the site of work.
This approach offers advantages such as control, immediate
collaboration, and direct resource access (Colomo-Palacios et al.,
2014). However, scalability issues and restricted access to diverse
skill sets are its limitations. These limitations affect organizations’
ability to cope with evolving market demands and emerging
technologies (Colomo-Palacios et al., 2014). To overcome these
challenges, organizations have increasingly turned to distributed
software development methodologies, such as global software
development (GSD) (Jabangwe et al., 2016) and offshoring
(Mukherjee et al., 2023). GSD and offshoring have the benefits
such as cost-effectiveness and access to specialized resources.
Some challenges such as cultural differences, communication
barriers, and coordination complexities are among the hurdles that
organizations may face during GSD and offshoring (Mukherjee
et al., 2023). GSD is an emerging approach for software
development, where software development companies offshore or
outsource development tasks to teams located across the globe.
Some of the challenges of GSD are communication issues among
remotely located teams (Yasin et al., 2023), coordination among
teams, and team management (Shameem et al., 2015). DevOps,
a methodology designed to enhance collaboration between
development and operations teams, that emerged as the response
to these shortcomings, too has many shortcomings (Laukkanen
et al., 2017). While DevOps proves useful for collaboration and
integration challenges in distributed development, a need to
optimize the process is still realized by organizations. A 1 + 5
model has been proposed that helps realize business problems and
cooperates with IT systems, to cater to the main focus of DevOps,
which is continuous integration, delivery, and deployment (Górski,
2021a). Another great example is the node deployment packages
for blockchain systems. To achieve reliable software development,
a deployment framework for the automation of blockchain has
been introduced that also offers UML modeling support (Górski,
2021b). A pipeline approach for solving the problem of continuous
integration and continuous delivery is proposed, which helps in the
deployments of various kinds of applications (Donca et al., 2022).

Crowdsourcing software development (CSSD) has emerged as
a trending approach that leverages global skills through social
media platforms (Asiegbu Baldwin et al., 2017). Crowdsourcing
was initially defined by Howe (2006). According to him, it involves
outsourcing to an unknown group of people through an open
call (Howe, 2006). Crowdsourcing involves unknown people rather
than companies or contractual employees, which makes it different
from outsourcing (Stol et al., 2017a). There are three main
components in crowdsourcing, requester worker, and platform.
Requester makes requests through an online platform to which
workers reply and get the job after completing some task. However
Howe (2006) defines crowdsourcing as follows:

“Crowdsourcing is taking a job traditionally performed by

a designated agent (usually an employee) and outsourcing it to

an undefined, generally a large group of people in the form of an

open call.”

CSSD enables organizations to find diverse talent and expertise
for the swift development of complex problems (Ruhe andWohlin,
2014; Khan et al., 2019b), and this is enabled using online platforms
(Mao et al., 2017). CSSD is known for the development of open-
source software. Some projects such as Linux, Mozilla Firefox, and
WordPress are good examples of it (Moslehi et al., 2016).

In addition to these approaches, Agile is also widely used
in organizations. Agile has many benefits as quick delivery of
service, teamness, and adaptation to change. Agile is mostly
considered suitable for collocated teams as it emphasizes team
building and collaboration among teams. Agile is a lightweight
process and is known for its frequent delivery of services in a
flexible manner (Mao et al., 2017). The underlying benefits of
ASD include increased communication, coordination, trust, and
support among team members, self-organized teams, and face-to-
face communication (Erich et al., 2017). Interestingly, Agile is also
followed bymany software development companies that contribute
to global software development (GSD) (Agerfalk et al., 2005; Niazi
et al., 2016).

Despite having contradicting characteristics of these
approaches, Agile software development is believed to have
solved many challenges of GSD (Beecham et al., 2021). Specifically,
Scrum is beneficial for reducing GSD barriers (Alsahli et al.,
2017). In a geographically located approach, like GSD, daily
scrum meetings are very helpful in managing communication and
coordination among teams (Kausar et al., 2021), team productivity,
trust between team members (Verwijs and Russo, 2023), team
involvement, project management (Prasetio et al., 2021), and
prioritizing customers’ requirements (Khan et al., 2019a). Scrum of
Scrums can reduce coordination, temporal, and other geographical
challenges (Kausar et al., 2021).

Lately, it has been reported that various software companies
following ASD also adopt the CSSD approach to get their
projects developed from the crowd (Dwarakanath et al., 2015).
Requirements gathering via crowd is also practiced (Khan J. A.
et al., 2022). It has been developed in research that the integration
of these two approaches, CSSD and ASD, is trivial. However,
both approaches have contradicting characteristics, which makes
it challenging for practitioners to follow (Stol et al., 2017a). Stol
(Agerfalk et al., 2005) emphasized the effective integration of Agile
software development and CSSD. Literature shows that software
industries follow both ASD and CSSD; however, there is scarce
literature available on the integration of ASD and CSSD (Agerfalk
et al., 2005).

Research on the effective integration of ASD and CSSD is
still novel and scarce. CSSD being a distributed approach has
many characteristics that contradict the principles and practices of
Agile methodology. Agile advocates face-to-face communication,
contradicting the practice in CSSD, where workers do not know
each other. Because of the heterogeneous nature of CSSD, team
management and coordination also become challenging, which are
otherwise strongly recommended in Agile. Thus, it is challenging

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

for software development companies to follow crowdsourcing
while working in an Agile environment (Qayyum et al., 2020). It
is deemed important to understand the challenges that are faced
by the software industry practitioners that follow ASD and CSSD
together (Agerfalk et al., 2005). It is known that human factors play
a great role in software engineering (Lenberg et al., 2015; Siegmund,
2024). Some factors such as organizational change, communication,
and involvement in solutions are some of the challenges in software
engineering, as software development is a team activity, so the
challenges faced by the team can impact the software (Lenberg et al.,
2015). As the integration of ASD and CSSD creates some challenges
for the people involved in software development, understanding
their challenges and providing strategies for them is important for
effective software development (Qayyum et al., 2020).

Despite having scarce literature on the integration of these two
approaches, the integration of ASD in GSD is a great motivation for
researchers as ASD is believed to overcome many shortcomings of
GSD (Beecham et al., 2014). Certainly, CSSD and GSD are different
approaches, especially regarding team formation. In GSD, there
are designated teams, whereas CSSD workers are not designated
employees of the organization; rather, they are a large group
of unknown people who do not know each other (Li et al.,
2015). Agile approaches help in successful software development
by emphasizing the needs and challenges of people involved in
software development. Communication is one of the greatest
human factors in software engineering that affects the software
engineering process (Lenberg et al., 2015), and agile emphasizes the
communication and collaboration of people involved for effective
software development (Barros et al., 2024). However, if Agile
practices benefit GSD, they can be integrated and used during
CSSD for effective software development. The research intends to
find the human factors in Crowd–Agile development. These are
the challenges faced by industry practitioners who follow Agile
and CSSD. Research also aimed to find strategies to solve and
reduce these challenges. This research contributes valuable insights
to industry practitioners, researchers, and organizations in various
ways. This study contributes to the existing body of knowledge
by providing knowledge about the challenges of Crowd–Agile
development. Industry practitioners can follow this research to
learn how they can overcome the challenges to effectively develop
software. This leads to the formulation of two research questions:

RQ1: What challenges are faced by industry practitioners
working in an Agile–Crowd environment?

RQ2: What strategies are used to overcome the challenges of an
Agile–Crowd environment?

The rest of the article is structured as follows. Section
2 covers the related work. Section 3 contains the proposed
methodology. Section 4 contains survey design and execution.
Section 5 covers the survey analysis. Statistical analysis of
the survey is presented in Section 6. Research findings
are discussed in Section 7. Section 8 covers the discussion
and limitations of this research, and Section 9 concludes
the manuscript.

2 Related work

2.1 Crowdsourcing software development

Crowdsourcing software development is a kind of outsourcing
where employers assign tasks to a group of large, unknown people
through online platforms (Mao et al., 2017). Crowdsourcing helps
organizations to scale their productivity (Stol and Fitzgerald,
2014a). Many organizations have started using crowdsourcing
approaches to improve their services (Mao et al., 2017).
Crowdsourcing software development is usually carried out around
three actors. The first actor is the requester (or employer), who
posts a task and makes an open call to the crowd for a job.
A requester is the person or organization paying for the tasks
(Stol and Fitzgerald, 2014a; Mao et al., 2017). The second actor
is the crowd worker who participates in the job. A worker is
usually the person who gets paid for completing a task (Stol and
Fitzgerald, 2014a; Mao et al., 2017). In crowdsourcing software
development, crowd workers complete the portions of software
development assigned to them (Stol and Fitzgerald, 2014a). The
third actor is the online platform (or social media marketplaces),
which helps employers and crowd workers to meet (Mao et al.,
2017). These online marketplaces serve as a meet-up platform
for requesters and workers. There are many platforms used for
crowdsourcing software development such as Amazon Mechanical
Turk, Topcoder, and Stack Overflow. Topcoder is considered the
largest platform for crowdsourcing software development (Stol and
Fitzgerald, 2014a). Crowdsourcing and machine learning are also
used in RE (Ali Khan et al., 2020).

2.2 Challenges of CSSD

Crowdsourcing software development faces many challenges.
Some of the key concerns of CSSD are task decomposition
(Zhen et al., 2021), communication and coordination, planning,
scheduling, quality assurance, knowledge, motivation (Stol and
Fitzgerald, 2014b), developing a volunteer network, trust (Bhatti
et al., 2020), and team development (Hosseini et al., 2014). Many
tasks that are complex need to be broken down for assignment and
resource allocation (Stol and Fitzgerald, 2014a; Mao et al., 2017).
Effective task decomposition is a challenging task. A good task
decomposition helps in utilizing a large pool of human resources.
The difficulty in decomposing tasks with a crowd perspective
arises from assumptions, interfaces, and dependencies (Stol and
Fitzgerald, 2014a). Managing these dependencies needs proper
coordination among crowd workers and managers. Crowdsourcing
has a relatively more extensive turnover rate of workers, so
managing expertise and intellectual property becomes a challenge
(Stol and Fitzgerald, 2014a). A crowd can be any group of a
large number of anonymous people composed of experts, fresh
graduates, and inexperienced people. Crowdsourcing helps utilize
the skills of variant individuals in a single project (Beretta et al.,
2021). This is a way of getting the work done by many experienced
workers, which was previously done by few workers.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

2.3 Agile software development

Companies are widely adopting Agile software development
methodology (Li et al., 2015). Interestingly, some of the
characteristics faced as a challenge by CSSD are the benefits
achieved while following ASD. Agile keeps the team productive and
motivated and provides quality products (Alsahli et al., 2017). ASD
emphasizes face-to-face communication (Hamilton and Holler,
2023) and works in iteration with the close collaboration of the
team, project manager, and business people (Srivastava et al., 2017).
Trust development among team members is another strength of
ASD (Tyagi et al., 2022). A daily meeting is held to discuss the
progress of the project (Alsahli et al., 2017). ASD also helps
lower the project cost as there is increased communication, which
decreases the chances of rework and therefore cost overrun and
project delay (Bowes, 2015). The main problem is executing
CSSD in an Agile environment (Li et al., 2015). CSSD with ASD
is emerging, and there is scarce literature on integrating the
two. CSSD has many characteristics similar to those of GSD as
distributed teams, geographical differences, time zone differences,
and socio-economic differences. GSD is already implemented with
ASD in many organizations. To understand the integration of
CSSD and ASD, this research first explains GSD and its integration
with ASD.

2.4 Global software development

GSD focuses on developing software with distant teams. This
recent software development trend is becoming a favorite approach
of researchers and developers (Khan R. A. et al., 2022). It does
not only help in reducing overall project costs but also increases
overall performance (Ojha and Chaudhary, 2022). Carmel suggests
that one of the important reasons for following GSD is the limited
availability of expertise required for a project at a site. Cost-
effectiveness is yet another reason for developing the software
across the globe. Along with these reasons, it sometimes requires
hiring of expertise that may be locality-specific. One of the
biggest benefits that can be achieved by GSD is “round-the-clock”
development (Ilyas et al., 2024). However, developing software
globally is not an easy task and hasmany challenges and limitations.
The shortcomings of GSD are the problems of infrastructure
as the teams are located at geographically distant sites, network
connectivity among different teams, environment for different
teams, build-up testing, and change management (Al-Saqqa et al.,
2020; Yasin et al., 2023).

With the tremendous growth of dependable software and
continuous requirement volatility, software development initially
faced many challenges. In such situations, a different approach to
traditional software development proved very beneficial, known as
Agile development. Agility refers to the flexibility of continuously
addressing change (Al-Saqqa et al., 2020). Agile is a lightweight
process widely adopted by software industries (Rasnacis and
Berzisa, 2017). The Agile method offers promising advantages for
rapid changes in software development (Al-Saqqa et al., 2020).
The Agile Manifesto states that Agile prefers individuals over

processes, working software over documentation, collaboration
over contracts, and changes over following a plan (Al-Saqqa et al.,
2020).

The Agile Manifesto is based on 13 Agile principles. These
principles focus on customers’ satisfaction through frequent and
early software delivery while continuously accepting changes.
Agile also focuses on keeping the clients on-site for feedback
and discussion and having a face-to-face communication among
people. Agile prefers individual skills, trust among them, and self-
organization and emphasizes providing team members the support
they need. Agile also focuses on working software rather than
extensive design, while arguing to keep things simple (Al-Saqqa
et al., 2020).

2.5 Agile global software development

Ågerfalk (2006) argues that when agile is used in global
software development (GSD), Agile tends to minimize many
challenges of GSD. Extreme programming tends to be very
helpful when distributed Agile teams can pair themselves
while adjusting their time zones. Pair programming improves
sharing among different teams. Time-shifting patterns among
globally distributed teams also help in reducing temporal
distance (where two teams find it difficult to communicate
due to differences in their time zones). Amitoj provides a
list of eight factors that assure the applicability of Agile
in a distributed environment (Singh et al., 2015). These
factors are schedule and process management, techniques,
communication and collaboration, risk and resource management,
tools, users’ adaptability, organizational culture, and financial and
temporal aspects.

Crowdsourcing software development also involves workers
from distant locations (Howe, 2006). With crowd workers from
distant locations, following Agile practices can be challenging
for CSSD as it is in GSD. It is known that human dimensions
play a critical role in the success of software projects (Meier
and Kock, 2023). Researchers have started working on the
integration of agile and crowdsourcing (Qayyum et al., 2020). In
our previous study (Qayyum et al., 2023), we have conducted
a systematic literature review (SLR) to find out the challenges
of Agile–Crowd development. The systematic literature review
(SLR) was conducted through a series of methodical steps.
Initially, the focus was on understanding the challenges associated
with crowdsource software development (CSSD). CSSD shares
similarities with global software development (GSD) as both of
them are distributed in nature, prompting an examination of
challenges faced in Agile global software development (AGSD).
Given the inherent contradictions between Agile principles
and GSD characteristics, identifying the specific challenges of
AGSD was imperative. Subsequently, these challenges from both
CSSD and AGSD were synthesized through thematic analysis
to create a comprehensive list of potential obstacles that may
arise when practitioners adopt Agile CSSD. This list serves as a
foundational framework, which is further validated and explored
in this study.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

TABLE 1 List of possible challenges for crowd agile [taken from Kasunic

(2005)].

Challenge
category

Challenge name

Team issues Trust issues among team/crowd
Team/crowd organization Team/crowd
performance issues Motivation and
remuneration issues.

Coordination and
communication issues

Less communication within the team
Less communication with the customer
Communication process issues
Cross-team communication
Communication medium issues
Communication overhead

Organizational issues Organizational difference Legal
considerations Technological issues
Planning and scheduling issues

Project Configuration and version management
Quality assurance Costing issues

Task Task design Task assignment Task
monitoring

A list of possible challenges adapted from this SLR (Qayyum
et al., 2023) is presented in Table 1. Table 1 contains the list of
challenges obtained as a result of SLR.

3 Proposed research method

This study aimed to identify the human factors involved
in Crowd–Agile Software Development. These factors are the
challenges faced by industry practitioners working in a Crowd–
Agile setup. The study also focuses on identifying the strategies to
reduce these challenges. Survey methodology is used to conduct
this study. The survey has both open-ended and closed-ended
questions. To design the survey instrument, existing knowledge
on the possible challenges of Crowd–Agile development is used.
Researchers have previously conducted a systematic literature
review (SLR) to find a list of possible challenges in the Agile–
Crowd integration (Qayyum et al., 2023). As there is scarce
literature on the integration of Crowd–Agile, researchers have
conducted SLR by studying in detail the challenges of AGSD
and CSSD. The distributive nature of GSD is similar to that of
CSSD, with some exceptions. This motivated researchers that many
challenges faced during Agile with GSD may be faced during
Crowd–Agile development. Hence, the researchers conducted SLR
to find challenges of AGSD and CSSD. A list of possible challenges
is produced after thematic analysis and focused coding of the
challenges (Qayyum et al., 2023). It is worth mentioning that the
papers selected for the SLR are according to the merit criteria of the
IMT checklist (Yasin et al., 2022). However, this list is an outcome
of the SLR and is considered as a possible challenge only. The
authentication of these challenges is needed to be verified.

In this study, we take this opportunity to validate these
challenges and identify any new challenges that are faced by
practitioners working in a Crowd–Agile environment. The survey
questionnaire is designed based on this list. The possible challenges

from SLR are shown in Table 1. The survey is conducted to find
out what challenges from this list practitioners face when using
crowdsourcing while implementing the Agile software process
model. The survey also identifies the strategies practitioners adopt
to overcome the challenges of crowdsourcing when used with
Agile. Not only the list of challenges identified from the SLR is
verified during an industrial survey, but also the survey identifies
some other challenges, which are not identified during SLR. The
survey explores the strategies that are used by organizations
to minimize the identified challenges. The survey is exploratory

in nature.
The survey is self-administered. The targeted audience

for the survey is software development practitioners and
managers with experience in crowdsourcing and Agile
software development. Any role of software development
practitioners can fill this survey as we need to see different
perspectives of the development team. The respondents are
project managers, software developers, testers, designers,
architects, quality assurance teams, business analysts, and
system analysts.

For appropriate characterization of the targeted audience,
the guidelines of Kasunic (2005) are followed. All the software
development organizations across the world working with
crowdsourcing and the Agile approach are contacted for the
survey via email. For checking the quality and effectiveness
of the questionnaire, a pilot study is conducted. This pilot
study is conducted by representative organizations situated
in Islamabad/Rawalpindi.

The population is hard to identify as no company on their
website mentions that they follow crowdsourcing. For this reason,
the snowballing technique is used. The snowballing technique is
best used when the population is hard to find and the sample size
is unknown. Crowdsourcing is a new term, so people are usually
unaware of it too. This is another reason to use snowballing as
it needs to be explained to each candidate respondent and then
ask for their recommendations. However, there are some risks
regarding this technique. Authors are not directly connected to the
respondents and hence cannot have first-hand information from
respondents. The reference given by participants can be based on
their biasness; it is also possible that we have missed some key
respondents due to the potential biasness of respondents.

The survey starts with acquaintances working as project
managers in OSLO, UK, and Pakistan. Their company is
performing crowdsourcing software development following Agile.
They are requested to recommend some practitioners from their
company to proceed with snowballing. Initially, five waves of
snowballing were planned, but as the population is rare and there
were no more recommendations, so snowballing process stopped
at wave 3 after waiting for 2 months.

The survey questionnaire can be accessed with the following
link; however, for the integrity of results, no new responses
are accepted via this link. https://docs.google.com/forms/d/
1wbLkrnLI2mzRwq5ETCo5YJJGEZ-36BhxAsjYCFNvN9s/edit.

The data and responses of the survey are provided in
the following link: https://docs.google.com/spreadsheets/d/
1vyRngAFDXz0GY64-wg95lZnXtiMXwxR7mmz8y0QTGg0/edit?
usp$=$~sharing.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://docs.google.com/forms/d/1wbLkrnLI2mzRwq5ETCo5YJJGEZ-36BhxAsjYCFNvN9s/edit
https://docs.google.com/forms/d/1wbLkrnLI2mzRwq5ETCo5YJJGEZ-36BhxAsjYCFNvN9s/edit
https://docs.google.com/spreadsheets/d/1vyRngAFDXz0GY64-wg95lZnXtiMXwxR7mmz8y0QTGg0/edit?usp $=$~sharing
https://docs.google.com/spreadsheets/d/1vyRngAFDXz0GY64-wg95lZnXtiMXwxR7mmz8y0QTGg0/edit?usp $=$~sharing
https://docs.google.com/spreadsheets/d/1vyRngAFDXz0GY64-wg95lZnXtiMXwxR7mmz8y0QTGg0/edit?usp $=$~sharing
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

4 Survey design and execution

The purpose of this survey study is 2-fold: 1. to validate
the challenges identified by the SLR study, which are already
discussed in previous chapters and 2. to explore challenges not
mentioned in the literature but faced by practitioners. The survey
study also intends to discover the strategies practitioners follow
when facing any challenges. A few strategies to overcome these
challenges are identified from the SLR and are validated using
the survey, and some new strategies are explored. All ethical and
legal considerations are kept in mind during survey conduction.
Appropriate measures are taken in this regard. Participants are
informed in a disclaimer that the data will only be used for
research purposes, and no identities will be disclosed. No personal
information about respondents is taken during the survey. The
survey has two types of questions: open-ended and closed-ended.
The first section of the survey is about the demographics of the
respondents. This asks about the respondent’s role, experience, the
methodology they follow, and platform they work with. Later on,
this information is used to find different statistical analyses. In
the next section, respondents are asked to mention the challenges
they face. This section contains both closed-ended and open-
ended questions. In Table, all challenges are categorized into five
categories. Each question is related to one category. One question
is about “Team-related challenges.” In this category, there are four
possible challenges. A Likert scale of 1–5 is given against each
challenge. Respondents are asked to rank the challenge on a scale
of 1–5 depending on its frequency of occurrences. The “N/A”
option is also available against each challenge which means that the
challenges do not exist. At the end of these four challenges, an open-
ended question is given which asks the respondents to mention
any other challenges that they face related to the team/crowd. Next
to this question, some possible strategies for team-related issues
are given and respondents are asked to select the strategies they
use to overcome their team-related challenges. In the fourth part
of this question, another open-ended question is given to ask for
any strategies they follow which are not present in the list. Next
to team-related challenges, four parts of questions on the same
pattern are designed for communication and coordination-related
challenges. This category has five possible challenges. This pattern
is followed to design questions for other categories too, which are
organizational challenges, software project-related challenges, and
task-related challenges. At the end of the survey, two open-ended
questions are given. One question asks about any other challenges
they face, which may not link to any of the suggested categories,
and the other question asks about strategies followed to overcome
these challenges.

5 Survey analysis

The survey aims to identify the challenges faced by practitioners
who perform crowdsource software development while staying in
the Agile setup. Therefore, open-ended questions for strategies are
also part of this survey. The results of the survey are analyzed using
MS Excel, SPSS, and Python. Different statistical tests are run via
SPSS. The Panda library of Python is used for analysis. The details
are presented in this chapter.

5.1 Meta data of respondents

The survey is designed using Google Forms and is conducted
online. It was started with the project managers who were involved
in Agile–Crowd development. These project managers were from
Pakistan and Oslo. According to the snowball technique, as we
approached other participants, it was found that they were from
different geographical locations. The majority of the participants
are from the UK, a few from Norway, Pakistan, and Sweden. At
the start of the survey, the participants are asked to confirm that
they follow both Agile and CSSD. The participants who confirmed
their involvement with both techniques were given access to the
questionnaire. A total of 82 responses are received, out of which
two responses were incomplete, and hence, they are not included.
Most of these responses are received from the project manager
followed by the project developers; 34.1% of respondents are
project managers, 24.4% are software developers, 13.4% are testers,
and 9.8% are architects. The rest are designers, scrum masters,
quality engineers, system engineers, business analysts, and system
analysts. Among 82 respondents, the majority of respondents have
more than 8 years of experience; 42.7% of respondents have more
than 8 years of experience; 25.6% of respondents have 2–4 years
of experience in the industry; 22% had 5–7 years of experience;
and only 9.8% of respondents had ≤1 year of industry experience.
Table 2 shows the crosstab representing the demographics of the
survey respondents.

5.2 Frequency of occurrence of challenges

The survey respondents are asked to rank each challenge
according to its frequency of occurrence. Respondents are given
a Likert scale of 1–5 and are asked to select a scale based on
the frequency of occurrence of each challenge. In this Likert
scale, 1 means that the challenges are least occurring, whereas
5 means frequently occurring challenges. The mean frequency is
then calculated to find the average occurrence of each challenge.
While calculating frequency, only those challenges considered that
have a mean value ≥2.5 and, at the same time, their standard
deviation does not exceed 0.5. The frequency of occurrence of these
challenges for Agile–Crowdsource development can be seen in the
stacked bar chart provided in Figure 1. Legend is given the right
corner that shows the different colors of frequencies: extremely
frequent to least frequent. To make the stacked bar chart more
comprehensible, the not applicable option is excluded. The bar
chart shows that quality assurance is the most frequent challenge,
practitioners face when they follow CSSD with Agile. Followed
by quality assurance, costing issues are the second most frequent
challenge. The third most frequent challenge is the motivation
and remuneration of a crowd. According to this chart, crowd
performance is not reported to be extremely frequent.

The results show that quality assurance is the most frequently
occurring challenge. The second most frequent issue is
cross-team communication. Ignoring the least frequent and
moderately frequent challenges, costing issues and motivation and
remuneration of the crowd remain very frequent. Other highly

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

TABLE 2 Demographics of survey respondents.

Count of 2. What is your experience Column labels

Row Labels < =1 years 2–4 years 5–7 years 8+ years Grand TOTAL

Architect 2 1 5 8

Scrum 1 1 2 4

Scrum, DSDM 1 1

Scrum, Kanban 1 1

Scrum, XP 1 1

Scrum, XP, Lean, Kanban, A mix of different agile methodologies
(if yes, please mention name)

1 1

Business analyst 1 1

Scrum 1 1

Designer 1 1

A mix of different agile methodologies (if yes, please mention
name)

1 1

Manager 3 8 17 28

Kanban 1 1

Scrum 1 4 8 13

Scrum, A mix of different agile methodologies (if yes, please
mention name)

1 1 2

Scrum, Kanban 2 3 5

Scrum, Kanban, A mix of different agile methodologies (if yes,
please mention name), Scrumban

1 1

Scrum, Lean, Kanban 1 1 1 3

Scrum, Lean, Kanban, A mix of different agile methodologies (if
yes, please mention name)

1 1

Scrum, XP, Lean, Kanban 1 1

XP, Lean, Kanban, A mix of different agile methodologies (if yes,
please mention name), Scrumban

1 1

No 1 1

None 1 1

Product designer 2 2

Scrum, Lean 1 1

Scrum, Lean, Kanban, Google Design Sprints 1 1

Quality engineering lead/business analyst 1 1

Scrum 1 1

Researcher 1 1

Scrum, XP, Crystal 1 1

Scrummaster 1 1

XP 1 1

Scrummaster, test manager 1 1

Scrum 1 1

Software developer 4 8 5 3 20

A mix of different agile methodologies (if yes, please mention
name)

1 1

A mix of different agile methodologies (if yes, please mention
name), Scrum And Kanban

1 1

(Continued)

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

TABLE 2 (Continued)

Count of 2. What is your experience Column labels

Row Labels < =1 years 2–4 years 5–7 years 8+ years Grand TOTAL

Kanban 1 1

Lean 1 1

Scrum 1 5 2 1 9

Scrum, A mix of different agile methodologies (if yes, please
mention name)

1 2 3

Scrum, Kanban 1 1 2

Scrum, Kanban, A mix of different agile methodologies (if yes,
please mention name)

1 1

XP 1 1

Sr. executive—corporate performance 2 2

A mix of different agile methodologies (if yes, please mention
name)

2 2

Student 1 1

FDD, Crystal 1 1

System analyst 1 2 3

Scrum 1 1 2

Scrum, Lean 1 1

system engineer 1 1

Scrum, customized process 1 1

Test Manager 1 1

Scrum, Kanban 1 1

Tester 1 4 2 4 11

Scrum 4 1 5

Scrum, FDD 1 1 2

Scrum, Kanban 1 1 1 3

Scrum, Lean, Kanban 1 1

Grand total 8 22 18 36 84

frequent challenges are communication process and cross-team
communication. Quality assurance has a high frequency too.

The overall results show that the most occurring challenges
for the practitioners who work in an Agile setup and perform
CSSD as well are as follows: costing issues, communication process,
cross-team communication, motivation and remuneration, quality
assurance, scheduling and planning, communication with clients,
crowd performance, and trust issues among the crowd.

Frequencies of challenges are represented in a stacked bar
chart to make the findings more clearly verified. The extremely
frequent challenge chart is shown in Figure 2. According to
respondents, the majority of 9% of respondents have ranked “cross-
team communication” as a highly frequent challenge. For 8%
population, “crowd performance” is a highly frequent challenge;
7% of the population have ranked “motivation and remuneration,”
“communication process,” and “costing issues” as very frequent, as
they ranked these challenges as 3 on the ordinal scale.

The overall results show that the most occurring challenges
for the practitioners who work in an Agile setup and perform
CSSD as well are costing issues, communication process,
cross-team communication, motivation and remuneration,
quality assurance, scheduling and planning, communication
with clients, crowd performance, and trust issues among
the crowd.

The challenges discussed above are confirmed by the
respondents and are identified from the literature. There is
a possibility that practitioners face some other challenges,
which are not previously reported in the literature. To cover
this gap, the survey is designed 2-fold: confirmatory, to
confirm the challenges presented already; and exploratory,
to explore any other challenges not listed already. The
survey led to the exploration of some new challenges as well
which are faced by practitioners when they are working on
Crowd–Agile development.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

5.3 New challenges explored from the
survey

For every category of challenges, there is an open-ended
question asking whether they faced any other challenges. This is
designed to explore any new challenges that practitioners face,
which are not mentioned in the literature already. The challenges
identified by the respondents are as follows:

• Some problems related to organization are identified by
the respondents: resource provision, technological issues,
employee handbook not being taken seriously, language
barriers, and crowd productivity. The majority of respondents
reported that resource provision is one of the frequently
occurring problems when Agile is used with crowdsourcing
software development

• For challenges related to software projects, 33.3%
of respondents reported a “lack of knowledge and
understanding” as a problem when dealing with the
crowd. For 22.2% population, “unrealistic deadlines”
are a problem when working in Crowd–Agile
development. Other reported problems are unrealistic
expectations, undefined goals, responsibility chain, and
deployment issues.

• 60% of respondents reported “lack of task ownership” as a
problem related to the task, and 40% reported “requirements
gathering” as challenges related to the task.

• Some new challenges are identified by the respondents, related
to team/crowd, which are not present in the literature. These
are time management issues, crowd collaboration, crowd
attitude, upskilling crowd, team building, lack of common
vision, and monitoring and control. A total 41.7 % of
respondents reported “time management as an issue,” and the
second most reported issue is “crowd collaboration” reported
by 37.5% of respondents.

• The survey respondents identified some new challenges
related to communication and coordination; 33.3% that the
“manager and employee gap” and “communication with the
crowd” are the problems they faced; 22.2 respondents faced
the problems of “question asking” and “time difference”;
and 11.1% of respondents faced these problems: “talent not
showcased properly” and “taking of big picture by the crowd.”

• Respondents are asked to report any other challenges they
faced, which may (not) lie under any of the mentioned
categories. The problems reported are politics within the
crowd (reported by 60% of respondents), testing issues,
intellectual property issues, process issues, and requirements
change (reported by 20% of respondents).

Strategies followed to overcome these challenges: The survey
identifies the strategies that are followed by industry practitioners
to overcome the challenges faced. Some strategies are identified.
A list of strategies is explored from the survey. Table 3 shows the
strategies confirmed and explored via the survey.

During the survey, respondents were asked to identify the
strategies they followed to overcome the challenges of Crowd–
Agile development. As the challenges are grouped into five,

namely, team-related problems, communication and coordination
problems, organizational problems, software-related problems, and
task-related problems, the respondents were asked to mention
the strategies followed for each group of problems broadly. The
responses from the participants are shown in Table 2.

6 Statistical analysis

Statistical analysis was performed to understand how
challenges correlated to each other. The significance of metadata
on challenges is also identified. Correlation tests and significance
tests were conducted on the data. Correlations are found to check
how strongly each challenge is related to others, and significant
differences are found to check whether the nominal data have any
significance over the challenges identified. The survey responses
are saved as Excel files and imported to Jamovi for statistical
analysis. Jamovi is the alternative to the SPSS tool and is used for
statistical analysis.

6.1 Correlation test

Correlations are found among different challenges. As the
data are ordinal, correlations can be found. Before checking the
correlation, the possibilities of conducting tests are checked. The
correlation is found for ordinal, interval, or ratio scale data only.
As the frequency of challenges is ordinal data, correlation can be
applied only to the challenges. Correlation cannot be applied to
strategies as the data are not ordinal. Correlation cannot be applied
to the roles, and demographics of the respondents, as it is the
nominal data. For our data, Spearman’s correlation is used as the
relationship between the challenges is not linear. For monotonic
relationships of variables, Spearman’s correlation is most suitable,
and hence, non-parametric correlation is performed. The strength
of the correlation is presented according to the ranges given below;
if the value of p is closer to +- 1, it indicates a very strong
correlation (Glen, 2015):

1. 0.000–0.19 (very weak correlation)
2. 0.20–0.39 (weak correlation)
3. 0.40–0.59 (moderate correlation)
4. 0.60–0.79 (strong correlation)
5. 0.80–1.0 (very strong correlation)

Table 4 shows only strong correlations among challenges.
Correlation is calculated among the main categories of

challenges as well as the challenges. The correlations of different
categories of challenges are shown in Figure 3.

From Figure 3, it is shown that organization problems are
positively corelated to software project-related challenges.

- Organizational-related issues have a strong correlation with
software project-related issues, as the p-value is 0.75.

- Software project-related issues have a strong correlation with
task-related issues, as the p-value is 0.73.

- Configuration and version management have a strong
correlation with costing issues. P-value is 0.76.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

FIGURE 1

Extremely frequent challenge.

FIGURE 2

Frequency of occurrence of challenge.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

TABLE 3 Strategies followed by industry practitioners.

Category Strategies from SLR Percentage
response

New from survey %age

Team /Crowd Use monitoring systems that encourage collective
and individual responsibilities

53.5% Collaborating for realistic
requirements for sprint

2.5%

Rotate the staff between different roles of Agile
projects regularly

31.3% Knowledge sharing 4.9%

Promoting group chat 57.5% Simplify requirements 1.2%

Promote informal interactions 46.3% Video calls 1.2%

Promote visits among distributed sites 22.5% In-person and group meeting 1.2%

Coordination and
communication

Training on collaboration and coordination tools 51.3% Knowledge database to be shared
across teams

1.3%

Provide multiple communication modes and tools 47.4% Creating opportunities within
diverse teams

1.3%

Support to face-to-face synchronous
communication

64.1% Sign language interpreter for
hearing impaired

1.3%

Create communication protocols 41%

Deploy knowledge transfer mechanisms 53.8%

Reduce the cross-communication 16.7%

Organizational Increasing common interests such as project and
team goals and providing an organizational chart
to all teams and members

82.7% Describe value chain and
business models visually

1.3%

Letting the crowd plan among themselves without
supervision

32% A balance between mandating
work and independent team to
get there

1.3%

Let crowd plan under
supervision

1.3%

Introduce opportunities
to increase interest

1.3%

Software project r Deploy and use a configuration management
system

55.4% Describe and share high-level
goals

1.4%

Promoting group chat 44.6% Introduce virtual hierarchy 1.4%

Using documentation and standards for the
common design and goals

64.9%

Before participating, contestants must register for
a certain competition

36.5%

Peer review of the submissions by the community 44.6%

Task Providing a sufficiently detailed specification for
the task being crowdsourced

60.5

Decompose into small modules with clear
requirements

75%

Limited interdependencies between modules 42.1%

Organizes tasks as competitions 35.5%

Peer review of the submissions by the community 32.9%

Any Other Proper requirements 20%

Common communicator 20%

The common time zone of work 20%

Clear project goals 20%

Project manager with a software background 20%

Less frequent requirements change 20%

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

TABLE 4 Strong correlations among challenges.

Correlation among challenges

Very strong correlation None

Challenge 1 Challenge 2 Value

Strong correlations Communication with client Crowd performance 0.636843131

Communication process Crowd performance 0.668495597

Communication process Communication within team 0.625368

Communication medium Communication within team 0.625506

Communication process Communication with client 0.684233

Communication medium Communication with client 0.6649

Communication process Cross-team communication 0.622343

Communication medium Communication process 0.660405

Communication process legal considerations 0.614267

Quality assurance Communication process 0.65983

Task design Communication process 0.622524

Organizational difference Configuration and version management 0.700072

Organizational difference Costing issues 0.611892

Task design Legal considerations 0.611892

Configuration and version management Costing issues 0.768975

Configuration and version management Task design 0.64964

Configuration and version management Task assignment 0.673818

Task design Quality assurance 0.600327

Task Assignment Task monitoring 0.616171

Task design Task assignment 0.669559

Correlation among categories

Challenges categories Category 1 Category 2 Values

Communication and coordination-related issues Team-related Issues 0.601599

Software Project-related issues Organizational-related issues 0.753612

Task-related issues Organizational-related issues 0.694171

Task-related issues Software Project-related issues 0.734654

- Configuration and version management have a strong
correlation with organizational differences. P-value is 0.70.

6.2 Significant di�erence

A significant difference is obtained to find whether any nominal
data differ from the ordinal data. The significant difference is
measured for groups of two nominal values. All possible nominal
values are grouped to find their significant difference on any
specific challenge. For significant difference, the Mann–Whitney
test is used. The data are checked for the test applicability first.
The Mann–Whitney test is suitable when the data are in ordinal
form, and the difference between two samples is studied. The
sample or independent variable should be in nominal form. In our
case, the independent variables are the “roles” and the dependent

variables are the challenges they face. This makes the Mann–
Whitney test suitable for our data. Jamovi is used to carry out
this test. The significance test is conducted between different roles
and different sets of experiences. Significant difference between
different methodologies and platforms is not conducted because
organizations often followmore than one methodology or platform
at a time. The test is also not conducted where the mean value of
both independent values has a huge difference, so only a few sets
of tests are conducted. The groups that are excluded from the test
are as follows: Manager and System Analyst, System Analyst and

architect, System Analyst and software developer, System analyst and
tester, and experience<=1 and 8+. Significant difference and effect
size are calculated as P< 0.05, which means there is a significant

difference. The main findings of the test are as follows:

- To evaluate the difference between the frequencies of the
“Quality assurance,” the challenge faced by managers and

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

FIGURE 3

Correlation among categories.

architects is tested using the Mann–Whitney U-test. The
test revealed significant difference in the challenges faced by
managers (median = 3_, N = 28_) and architects (median =

1.5, N = 8), U= 61.0, p= 0.049, r = 0.45536.
- To evaluate the difference between the frequencies of “Task

Monitoring,” the challenge faced by managers and architects
is tested using the Mann–Whitney U-test. The test revealed
significant difference in the challenges faced by managers
(median = 2.79_, N = 28_) and architects (median = 1.71,
N= 7), U= 45.0, p= 0.026, r= 0.54082.

- To evaluate the difference between the frequencies of the
“Technological issue,” the challenge faced by architects and
software developers is tested using the Mann–Whitney U-test.
The test revealed a significant difference in the challenges faced
by architects (median= 1.8_,N= 8_) and developers (median
= 3, N= 19) U= 36.0, p= 0.031, r= 0.5263.

- To evaluate the difference between the frequencies of
“configuration and version management,” the challenge
faced by Architects and software developers is tested using
the Mann–Whitney U-test. The test revealed a significant
difference in the challenges faced by architects (median= 1.86,
N= 7) and developers (median= 2.95,N= 19) U= 29.5, p=
0.028, r= 0.5564.

- To evaluate the difference between the frequencies of the “Task
monitoring,” the challenge faced by architects and software
developers is tested using the Mann–Whitney U-test. The
test revealed significant difference in the challenges faced by
architects (median = 1.71, N = 7) and developers (median =

2.84, N= 19) U= 30, p= 0.029, r= 0.5489.
- To evaluate the difference between the frequencies of

the “Communication with client,” the challenge faced by

unexperienced (<1 year) and experienced (5–7 years)
practitioners is tested using the Mann–Whitney U-test. The
test revealed a significant difference in the challenges faced
by unexperienced (<1 year) (median = 3.5, N = 6) and
experienced (5–7 years) (median = 2.28, N = 18) U = 22, p
= 0.028, r= 0.5926.

- To evaluate the difference between the frequencies of “trust
issues among crowd,” the challenges faced by unexperienced
(<1 year) and experienced (5–7 years) practitioners are
tested using the Mann–Whitney U-test. The test revealed a
significant difference in the challenges faced by unexperienced
(<1 year) (median= 3.38,N= 8) and experienced (5–7 years)
(median= 2.5, N= 18) U= 37.5, p= 0.050, r= 0.4792.

7 Findings

This section provides a final list of challenges and strategies
for Crowd–Agile development. Some challenges and strategies are
initially identified from the SLR and validated through the survey.
The details of the survey responses are discussed in the previous
sections. The correlations and significance of these challenges are
also discussed in previous sections. Only those challenges and
strategies are included in the final list that are frequently occurring,
i.e., which have a mean value of 2.5 or more and a standard
deviation of <0.5. The challenges having a mean value of <2.5
are not included in the list. It is worth noting that these data are
gathered from the participants who are globally dispersed, so these
findings represent the opinion of a diverse group of people working
across the globe. The challenges are categorized into different
groups. A list of challenges and the strategies for each category is
as follows:

7.1 Team/crowd

This category represents the challenges and strategies related to
the team/crowd.

7.1.1 Team/crowd-related challenges
The final list of challenges related to crowds includes

the following:

• Trust issues among the crowd working on the same project,
related to their task.

• Crowd building/organization of crowd to effectively distribute
the task of the same project.

• Crowd’s attitude toward the task provided in terms of
their performance.

• Remuneration is provided to the crowd to keep
them motivated.

• Time management by the crowd for the given task (s).
• The upskilling crowd, as they are not part of the team so

managers have no authority over their upskilling.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

7.1.2 Strategies for
team/crowd-related problems

The final list of strategies for team/crowd-related problems is
as follows:

• Use monitoring systems that encourage collective and
individual responsibilities.

• Rotate the staff between different roles of Agile
projects regularly.

• Promoting group chat.
• Promote informal interactions.
• Promote visits among distributed sites.
• Knowledge sharing among the crowd.

7.2 Coordination and communication

This category represents the challenges and strategies that
are related to coordination and communication. The final list of
challenges for this category includes the following:

• Communication with team/crowd regarding a task that is
from the same project.

• Communication with the client regarding requirements and
acceptance of a task.

• Cross-team communication: when different teams of the
crowd are working on different modules of the same project,
they may need to communicate.

• The communication process among the crowd workers
is usually not defined, and they all follow the different
communication process.

• Communication medium among different crowd workers
is different.

The finalized list of strategies for communication and
coordination challenges is as follows:

• Train the crowd workers on collaboration and
coordination tools.

• Provide multiple communication modes and tools for the
crowd workers.

• Support face-to-face communication among crowd workers
and their management.

• Create communication protocols for crowdworkers whowork
on the same project.

• Deploy a knowledge transfer mechanism that provides
knowledge about the project to crowd workers.

• Reduce cross-team communication by designing low-coupled
tasks for a crowd.

7.3 Organizational

This category represents the challenges and strategies that are
related to the organization. The final list of organization-related
challenges includes the following:

• Organizational structure is different when the crowd is from
different organizations.

• Legal considerations, e.g., copyrights, and employee rights of
the requesting organizations for the crowd can differ.

• Technological issues among the requesting organization and
crowd workers.

• Planning/scheduling of tasks that are to be assigned to
crowd workers.

• Resource provision to crowd according to the project’s needs.

A final list of strategies to reduce organizational challenges
includes the following:

• Increasing common interests among the crowd such as project
and team goals.

• Providing an organizational chart to all crowd members for
their knowledge.

• Letting the crowd plan their tasks among themselves without
the supervision of a manager.

7.4 Software project

This category represents the challenges and strategies that are
related to software projects. The final list of challenges related to
software projects includes the following:

• Configuration and version management of tasks that are
performed by the crowd.

• Quality assurance of the task performed by the crowd.
• Costing of tasks that are to be assigned to crowd workers.
• Lack of knowledge/understanding of the project by a crowd
• Unrealistic deadlines are given to the crowd resulting

in delays.

The final list of strategies for software project-related problems
includes the following:

• Deploy and use a configuration management system.
• Promoting group chat among the crowd working on the same

project and the manager.
• Using documentation and standards for the common design

and goals for crowd workers.
• Before participating, contestants (crowd workers) must

register for a certain competition.
• Peer review of the submissions by the crowd worker.

7.5 Task

This category represents the challenges and strategies that are
related to the task. The final list of challenges related to tasks is
as follows:

• Task design to be assigned to crowd.
• Task assignment to crowd workers as per their skills.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

FIGURE 4

List of challenges for crowd–agile development.

• Task monitoring by a manager for task completion
and quality.

• Lack of task ownership by crowd performing the task.
• Requirements gathering from the client.

The final list of strategies related to the task includes
the following:

• Providing a sufficiently detailed specification for the task
being crowdsourced.

• Decompose tasks into smaller sub-tasks with clear
requirements and goals.

• Limited interdependencies between modules by designing
low-coupled tasks.

• Organizes tasks as competitions, i.e., the best-performed task
by the crowd is selected.

• Peer review of the submissions by the crowd community.

7.6 Others

During the survey, industry practitioners are asked to state
any other challenges they face while performing any software
development activity using crowdsourcing and Agile; 60% of
the respondents state that politics within the crowd is a major
challenge; 20% of respondents mentioned testing issues, intellectual
property rights, product issues, and change of requirements as
frequently occurring challenges at their end. Some new challenges
that are identified from the survey are as follows:

• Politics within the crowd workers.
• Testing issues for the task performed by the crowd.
• Intellectual property rights of the tasks performed by

the crowd.

• Product-related issues, like the sensitivity of the information,
and privacy.

• Change of requirements is difficult to cope with
by crowd workers.

Figure 4 shows the finalized challenges faced by practitioners
during Crowd–Agile development.

Industry practitioners are also asked to mention the strategies
they follow to reduce the challenges faced while working in Agile-
Crowdsource software development. The final list of new challenges
coming from the industrial survey is as follows:

• Proper requirements should be given to the crowd.
• Common communicator for the crowd workers working on

the same project.
• The common time zone of work among crowd workers.
• Clear project goals should be delivered to crowd workers.
• The Project Manager should from a software background to

understand the technical issues of crowd.
• Less frequent requirements change.

8 Discussion and limitations

The changing nature of software has led to different paradigms
of software development. The new paradigms come with their
pros and cons. Crowdsource software development is one such
paradigm. However, it becomes more challenging when it is
used within an Agile environment. Many software development
industries perform crowdsourcing software development while
following agile methodology. Contradicting characteristics of both
approaches make it challenging for practitioners to follow both
approaches for effective software development. This study finds the
challenges from practitioners who are involved in crowdsourcing
software development and agile. An online survey is conducted

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

FIGURE 5

Findings of the study.

for this purpose. Survey questions are designed carefully based on
SLR outcome, and data are also carefully analyzed. In particular,
the challenges faced by practitioners are related to the trust
issues among crowd members. Another main factor involved
is the coordination and collaboration among crowd workers.
As the collaboration among the crowd is challenging, it affects
the software development. Task design and assignments for a
crowd are also very challenging. Another problem faced by
crowd workers is that the knowledge about the project is not
shared openly with the crowd, which results in an inappropriate

understanding of the project. Differences in the legal considerations
of organizations also become challenging. Practitioners have shared
some strategies to reduce the impact of these challenges. They
have suggested that a communication protocol is to be used
and crowd workers should be trained for these tools. Informal
group chats and visits are encouraged. It is suggested to share
the project goals and specifications with all the crowd workers
for clarity. It is deemed important to design a task in such a way
that they are loosely coupled. Figure 5 presents the findings of
this study.

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

This is the first hand information from industry
practitioners, but the study still has many limitations. The
challenges and strategies identified by the practitioners
need to be empirically verified. Researchers can use this list
to empirically verify the list of challenges and strategies.
Another limitation of this study is the limited audience; as
the study was conducted till third wave of snowballing, it
is suggested to identify the challenges for a larger scale and
bigger projects.

The survey questionnaire is carefully designed; however,
the survey may pose some construct validity threat as some
information might have been missed. To overcome this, a survey
was pilot-tested, and the suggestions from the participants were
taken to improve survey questionnaires to remove any ambiguity.
The data are gathered from the practitioners of industry, so their
responses may be based on personal biases or preferences. The
authors have a personal suggestion of using Distributed Ledger
Technology (DLT) (Gorski and Bednarski, 2020), which is used
for sharing data storage for collaborating parties. This is in line
with the architecture of crowdsourcing software development.
This can be helpful when crowd workers are also following Agile
as suggested by the survey participants. DLT can help them
store data in a decentralized manner, and the crowd working
on the shared data can avoid the challenges they face due to
lack of shared knowledge and data. Requirement engineering by
the crowd can also be solved by gamification of requirements
(Yasin et al., 2021). Gamification is a promising strategy in
requirement gathering, leveraging game-like interfaces to engage
users more effectively. By incorporating elements of gameplay
into the process, gamification encourages greater user participation
and precision in articulating their requirements. This approach
has shown potential in mitigating communication barriers that
can impede accurate requirements gathering. Through interactive
and immersive experiences, gamification not only enhances user
engagement but also facilitates clearer and more comprehensive
communication, ultimately contributing to the accuracy and
efficacy of the requirement-gathering process. Authors have
another personal suggestion to further conduct research on how
these game-based techniques can work for the crowd.

9 Conclusion

In this study, we have identified the human factors involved
in Crowd–Agile software development. These factors involve
the challenges that practitioners face during crowdsourcing
software development while working in an agile setup. The
research produces a verified list of challenges from literature
and industry. It is shown that trust issue among the crowd is
very challenging, which hinders knowledge sharing and affects
the ultimate goal of the project. As the crowd is a group
of heterogeneous people, collaboration and coordination among
them is very difficult. Many large and complex projects require
communication and collaboration among members, the absence of
which may create issues in the project. Considering this situation
task design also becomes challenging. Some challenges vary for

different projects and organizations. Another challenge for crowd
members is not having access to project goals and knowledge.
However, practitioners also follow some strategies to reduce these
challenges, such as sharing a repository of knowledge, providing
communication protocols, encouraging informal chat, and making
chat groups. This list of validated challenges and strategies is
helpful for researchers for further research as the Agile–Crowd
is relatively a new term in the literature. This is also helpful
to other practitioners in Crowd–Agile development. Practitioners
can use this list as a guideline to reduce the challenges they
face. The challenges are grouped into categories, and strategies
are also suggested against each category. Industry practitioners
can identify the relevant category of the challenge they face.
Within the challenge category, they can find enlisted strategies,
which can help them reduce stated challenges. The research
highlights the importance of embracing a pragmatic managerial
approach in Crowd–Agile software development. It advises
software project managers to implement the suggested strategies
to address common challenges such as communication, trust, and
collaboration, thereby enhancing the likelihood of project success.
By adopting these strategies, managers can also harness innovative
software development practices while fostering a sustainable
development environment. Researchers can further use this list to
empirically verify these challenges. This research can be conducted
on a larger scale in future for a larger population. In future, we
intend to propose a model for Crowd–Agile development. We are
also working on a detailed analysis of these issues identified by
the industry.

Data availability statement

The raw data supporting the conclusions of this
article will be made available by the authors, without
undue reservation.

Ethics statement

Ethical review and approval was not required for the
study on human participants in accordance with the local
legislation and institutional requirements. Written informed
consent from the patients/participants or patients/participants’
legal guardian/next of kin was not required to participate in
this study in accordance with the national legislation and the
institutional requirements.

Author contributions

SQ: Conceptualization, Data curation, Methodology,
Validation, Visualization, Writing – original draft. SI:
Conceptualization, Methodology, Supervision, Writing – review
& editing. HH: Methodology, Supervision, Writing – review &
editing. AA: Writing – review & editing. VK: Writing – review
& editing.

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

Funding

The author (s) declare that no financial support was
received for the research, authorship, and/or publication of
this article.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships

that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ågerfalk, P. J. (2006). “Towards better understanding of agile values in global
software development,” in EMMSAD, 13–20.

Agerfalk, P. J., Fitzgerald, B., Holmstrom Olsson, H., Lings, B., Lundell, B.,
and Conchúir, E. (2005). “A framework for considering opportunities and threats
in distributed software development,” in Proceedings of the of DiSD’05 (Austrian
Computer Society), 47–61.

Ali Khan, J., Liu, L., Wen, L., and Ali, R. (2020). Conceptualising, extracting and
analysing requirements arguments in users’ forums: the CrowdRE-Arg framework. J.
Softw. Evol. Proc. 32:e2309. doi: 10.1002/smr.2309

Alsahli, A., Khan, H., and Alyahya, S. (2017). Agile development overcomes GSD
challenges: a systematic literature review. Int. J. Comput. Sci. Softw. Eng. 6:7.

Al-Saqqa, S., Sawalha, S., and AbdelNabi, H. (2020). Agile software
development: Methodologies and trends. Int. J. Int. Mob. Technol. 14:13269.
doi: 10.3991/ijim.v14i11.13269

Asiegbu Baldwin, C., Oluigbo Ikenna, V., Ajakwe Simeon, O., and Onyike Gerald,
O. (2017). Crowdsourcing software development: concept, benefits, and adoption. Int.
J. Sci. Res. Comput. Sci. Eng. 5, 7–16.

Barros, L., Tam, C., and Varajao, J. (2024). Agile software development projects–
Unveiling the human-related critical success factors. Inf. Softw. Technol. 170:107432.
doi: 10.1016/j.infsof.2024.107432

Beecham, S., Clear, T., Lal, R., and Noll, J. (2021). Do scaling agile frameworks
address global software development risks? An empirical study. J. Syst. Softw.
171:110823. doi: 10.1016/j.jss.2020.110823

Beecham, S., Noll, J., and Richardson, I. (2014). “Using agile practices to solve global
software development problems–a case study,” in 2014 IEEE International Conference
on Global Software Engineeering Workshops. IEEE, 5–10.

Beretta, M., Frederiksen, L., Wallin, M., and Kulikovskaja, V. (2021). Why and
how firms implement internal crowdsourcing platforms. IEEE Trans. Eng. Manage. 70,
3036–3049. doi: 10.1109/TEM.2020.3045118

Bhatti, S. S., Gao, X., and Chen, G. (2020). General framework, opportunities
and challenges for crowdsourcing techniques: a comprehensive survey. J. Syst. Softw.
167:110611. doi: 10.1016/j.jss.2020.110611

Bowes, J. (2015). Kanban vs Scrum vs XP-an Agile Comparison. Kanban vs
Scrum. Available online at: https://manifesto.co.uk/kanban-vs-scrum-vs-xp-an-agile-
comparison/ (accessed December, 2021).

Capretz, L. F. (2014). Bringing the human factor to software engineering. IEEE Soft.
31, 104–104. doi: 10.1109/MS.2014.30

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F.
J., and Tovar, E. (2014). Project managers in global software development teams:
a study of the effects on productivity and performance. Softw. Q. J. 22, 3–19.
doi: 10.1007/s11219-012-9191-x

Donca, I. C., Stan, O. P., Misaros, M., Gota, D., and Miclea, L. (2022). Method for
continuous integration and deployment using a pipeline generator for agile software
projects. Sensors 22:4637. doi: 10.3390/s22124637

Dwarakanath, A., Chintala, U., Shrikanth, N. C., Virdi, G., Kass, A., Chandran,
A., and Paul, S. (2015). “Crowd build: A methodology for enterprise software
development using crowdsourcing,” in 2015 IEEE/ACM 2nd International Workshop
on CrowdSourcing in Software Engineering. IEEE, 8–14.

Erich, F. M., Amrit, C., and Daneva, M. (2017). A qualitative study of DevOps usage
in practice. J. Softw. Evol. Proc. 29:e1885. doi: 10.1002/smr.1885

Glen, S. (2015). Spearman Rank Correlation (Spearman’s Rho): Definition and How
to Calculate It. Statistics How to. in StatisticsHowTo.com: Elementary Statistics for the

Rest of Us!, 2022. Available online at: https://www.statisticshowto.com/probability-
and-statistics/correlation-coefficient-formula/spearman-rank-correlation-definition-
calculate/

Górski, T. (2021a). The 1+ 5 architectural views model in designing blockchain
and IT system integration solutions. Symmetry 13:2000. doi: 10.3390/sym131
12000

Górski, T. (2021b). Towards continuous deployment for blockchain. Appl. Sci.
11:11745. doi: 10.3390/app112411745

Gorski, T., and Bednarski, J. (2020). Applying model-driven engineering
to distributed ledger deployment. IEEE Access 8, 118245–118261.
doi: 10.1109/ACCESS.2020.3005519

Hamilton, A. F. D. C., and Holler, J. (2023). Face2face: advancing the science of
social interaction. Philos. Trans. Royal Soc. B 378:20210470. doi: 10.1098/rstb.2021.0470

Hosseini, M., Phalp, K. T., Taylor, J., and Ali, R. (2014). “Towards crowdsourcing
for requirements engineering,” in Proceeding of REFSQ Co-Located Events.

Howe, J. (2006). The rise of crowdsourcing.Wired Magazine 14, 176–183.

Ilyas, M., Khan, S. U., Khan, H. U., and Rashid, N. (2024). Software integration
model: an assessment tool for global software development vendors. J. Softw. Evol. Proc.
36:2540. doi: 10.1002/smr.2540

Jabangwe, R., Šmite, D., and Hessbo, E. (2016). Distributed software development
in an offshore outsourcing project: a case study of source code evolution and quality.
Inf. Softw. Technol. 72, 125–136. doi: 10.1016/j.infsof.2015.12.005

Kasunic, M. (2005). Designing an Effective Survey. Pittsburgh, PA: Software
Engineering Institute.

Kausar, M., Ishtiaq, M., and Hussain, S. (2021). Distributed agile patterns-using
agile practices to solve offshore development issues. IEEE Access 10, 8840–8854.
doi: 10.1109/ACCESS.2021.3136923

Khan, J. A., Liu, L., Wen, L., and Ali, R. (2019a). “Crowd intelligence in
requirements engineering: Current status and future directions,” in Requirements
Engineering: Foundation for Software Quality: 25th International Working Conference,
REFSQ 2019, Essen, Germany, March 18–21, 2019, Proceedings 25. Springer
International Publishing, 245–261.

Khan, J. A., Xie, Y., Liu, L., and Wen, L. (2019b). “Analysis of requirements-related
arguments in user forums,” in 2019 IEEE 27th International Requirements Engineering
Conference (RE). IEEE, 63–74.

Khan, J. A., Yasin, A., Fatima, R., Vasan, D., Khan, A. A., and Khan, A. W.
(2022). Valuating requirements arguments in the online user’s forum for requirements
decision-making: the CrowdRE-VArg framework. Software Prac. Exp. 52, 2537–2573.
doi: 10.1002/spe.3137

Khan, R. A., Khan, S. U., Alzahrani, M., and Ilyas, M. (2022). Security assurance
model of software development for global software development vendors. IEEE Access
10, 58458–58487. doi: 10.1109/ACCESS.2022.3178301

Laukkanen, E., Itkonen, J., and Lassenius, C. (2017). Problems, causes and
solutions when adopting continuous delivery—A systematic literature review. Inf.
Softw. Technol. 82, 55–79. doi: 10.1016/j.infsof.2016.10.001

Lenberg, P., Feldt, R., and Wallgren, L. G. (2015). Human factors related challenges
in software engineering–an industrial perspective. In 2015 ieee/acm 8th international
workshop on cooperative and human aspects of software engineering (pp. 43-49). IEEE.
doi: 10.1109/CHASE.2015.13

Li, W., Tsai, W. T., and Wu, W. (2015). Crowdsourcing for large-scale
software development. Crowdsourcing: Cloud-Based Softw. Dev. 11, 3–23.
doi: 10.1007/978-3-662-47011-4_1

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://doi.org/10.1002/smr.2309
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/10.1016/j.infsof.2024.107432
https://doi.org/10.1016/j.jss.2020.110823
https://doi.org/10.1109/TEM.2020.3045118
https://doi.org/10.1016/j.jss.2020.110611
https://manifesto.co.uk/kanban-vs-scrum-vs-xp-an-agile-comparison/
https://manifesto.co.uk/kanban-vs-scrum-vs-xp-an-agile-comparison/
https://doi.org/10.1109/MS.2014.30
https://doi.org/10.1007/s11219-012-9191-x
https://doi.org/10.3390/s22124637
https://doi.org/10.1002/smr.1885
https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/spearman-rank-correlation-definition-calculate/
https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/spearman-rank-correlation-definition-calculate/
https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/spearman-rank-correlation-definition-calculate/
https://doi.org/10.3390/sym13112000
https://doi.org/10.3390/app112411745
https://doi.org/10.1109/ACCESS.2020.3005519
https://doi.org/10.1098/rstb.2021.0470
https://doi.org/10.1002/smr.2540
https://doi.org/10.1016/j.infsof.2015.12.005
https://doi.org/10.1109/ACCESS.2021.3136923
https://doi.org/10.1002/spe.3137
https://doi.org/10.1109/ACCESS.2022.3178301
https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1109/CHASE.2015.13
https://doi.org/10.1007/978-3-662-47011-4_1
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Qayyum et al. 10.3389/fcomp.2024.1400750

Mao, K., Capra, L., Harman, M., and Jia, Y. (2017). A survey of the
use of crowdsourcing in software engineering. J. Syst. Softw. 126, 57–84.
doi: 10.1016/j.jss.2016.09.015

Meier, A., and Kock, A. (2023). The human factor in agility: exploring
employee dedication in agile project organizations. Int. J. Proj. Manage. 41:102527.
doi: 10.1016/j.ijproman.2023.102527

Moslehi, P., Adams, B., and Rilling, J. (2016). “On mining crowd-based speech
documentation,” in Proceedings of the 13th International Conference onMining Software
Repositories, 259–268.

Mukherjee, D., Kumar, S., Pandey, N., and Lahiri, S. (2023). Is offshoring
dead? A multidisciplinary review and future directions. J. Int. Manage. 29:101017.
doi: 10.1016/j.intman.2023.101017

Niazi, M., Mahmood, S., Alshayeb, M., Riaz, M. R., Faisal, K., Cerpa,
N., and Richardson, I. (2016). Challenges of project management in global
software development: A client-vendor analysis. Inf. Softw. Technol. 80, 1–19.
doi: 10.1016/j.infsof.2016.08.002

Ojha, T. R., and Chaudhary, P. (2022). Enabling extreme programming (XP) in
global software development (GSD) practice. J. Advanc. Softw. Eng. Testing 5, 15–25.

Prasetio, R. T., Ramdhani, Y., and Alamsyah, D. P. (2021). “Scrum method in help-
desk ticketing and project management system,” in 2021 3rd International Conference
on Cybernetics and Intelligent System (ICORIS). IEEE, 1–6.

Qayyum, S., Imtiaz, S., and Khan, H. H. (2020). “Crowd agile model for effective
software development,” in Agile Processes in Software Engineering and Extreme
Programming–Workshops: XP 2020 Workshops, Copenhagen, Denmark, June 8–12,
2020, Revised Selected Papers 21. Cham: Springer International Publishing, 272–279.

Qayyum, S., Imtiaz, S., and Khan, H. H. (2023). Challenges of agile–crowd
software development: a systematic literature review. J. Circ. Syst. Comput. 32:2330001.
doi: 10.1142/S0218126623300015

Rasnacis, A., and Berzisa, S. (2017). Method for adaptation and implementation
of agile project management methodology. Proc. Comp. Sci. 104, 43–50.
doi: 10.1016/j.procs.2017.01.055

Ruhe, G., and Wohlin, C. (2014). Software Project Management in a Changing
World, Vol. 21. Berlin: Springer.

Shameem, M., Kumar, C., and Chandra, B. (2015). “Communication related issues
in GSD: An exploratory study,” in 2015 9th International Conference on Software,
Knowledge, Information Management and Applications (SKIMA). IEEE, 1–5.

Siegmund, J. (2024).New Perspectives on the Human Factor in Software Engineering.
Software Engineering 2024 (SE 2024). Bonn: Gesellschaft für Informatik eV, 23.

Singh, A., Singh, K., and Sharma, N. (2015). Agile in global software
engineering: an exploratory experience. Int. J. Agile Systems Manage. 8, 23–38.
doi: 10.1504/IJASM.2015.068607

Srivastava, A., Bhardwaj, S., and Saraswat, S. (2017). “SCRUM model for agile
methodology,” in 2017 International Conference on Computing, Communication and
Automation (ICCCA), 864–869.

Stol, K. J., Caglayan, B., and Fitzgerald, B. (2017a). Competition-based
crowdsourcing software development: a multi-method study from a customer
perspective. IEEE Trans. Softw. Eng. 45, 237–260. doi: 10.1109/TSE.2017.2774297

Stol, K. J., and Fitzgerald, B. (2014a). “Researching crowdsourcing software
development: perspectives and concerns,” in Proceedings of the 1st International
Workshop on CrowdSourcing in Software Engineering, 7–10.

Stol, K. J., and Fitzgerald, B. (2014b). “Two’s company, three’s a crowd: a case
study of crowdsourcing software development,” in Proceedings of the 36th International
Conference on Software Engineering, 187–198.

Stol, K. J., LaToza, T. D., and Bird, C. (2017b). Crowdsourcing for software
engineering. IEEE Softw. 34, 30–36. doi: 10.1109/MS.2017.52

Tyagi, S., Sibal, R., and Suri, B. (2022). Empirically developed framework
for building trust in distributed agile teams. Inf. Softw. Technol. 145:106828.
doi: 10.1016/j.infsof.2022.106828

Verwijs, C., and Russo, D. (2023). A theory of scrum team effectiveness.ACMTrans.
Softw. Eng. Methodology 32, 1–51. doi: 10.1145/3571849

Yasin, A., Fatima, R., Ali Khan, J., Liu, L., Ali, R., andWang, J. (2023). Counteracting
sociocultural barriers in global software engineering using group activities. J. Softw.
Evol. Proc. 36:e2587. doi: 10.1002/smr.2587

Yasin, A., Fatima, R., JiangBin, Z., Ali Khan, J., and Ali Khan, A. (2021). Gamifying
requirements: an empirical analysis of game-based technique for novices. J. Softw. Evol.
Proc. 22:e2617.

Yasin, A., Fatima, R., Liu, L., Ali Khan, J., Ali, R., and Wang, J. (2022). On the
utilization of non-quality assessed literature in software engineering research. J. Softw.
Evol. Proc. 34:e2464. doi: 10.1002/smr.2464

Zhen, Y., Khan, A., Nazir, S., Huiqi, Z., Alharbi, A., and Khan, S. (2021).
Crowdsourcing usage, task assignment methods, and crowdsourcing platforms: a
systematic literature review. J. Softw. Evol. Proc. 33:e2368. doi: 10.1002/smr.2368

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1400750
https://doi.org/10.1016/j.jss.2016.09.015
https://doi.org/10.1016/j.ijproman.2023.102527
https://doi.org/10.1016/j.intman.2023.101017
https://doi.org/10.1016/j.infsof.2016.08.002
https://doi.org/10.1142/S0218126623300015
https://doi.org/10.1016/j.procs.2017.01.055
https://doi.org/10.1504/IJASM.2015.068607
https://doi.org/10.1109/TSE.2017.2774297
https://doi.org/10.1109/MS.2017.52
https://doi.org/10.1016/j.infsof.2022.106828
https://doi.org/10.1145/3571849
https://doi.org/10.1002/smr.2587
https://doi.org/10.1002/smr.2464
https://doi.org/10.1002/smr.2368
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Working with agile and crowd: human factors identified from the industry
	1 Introduction
	2 Related work
	2.1 Crowdsourcing software development
	2.2 Challenges of CSSD
	2.3 Agile software development
	2.4 Global software development
	2.5 Agile global software development

	3 Proposed research method
	4 Survey design and execution
	5 Survey analysis
	5.1 Meta data of respondents
	5.2 Frequency of occurrence of challenges
	5.3 New challenges explored from the survey

	6 Statistical analysis
	6.1 Correlation test
	6.2 Significant difference

	7 Findings
	7.1 Team/crowd
	7.1.1 Team/crowd-related challenges
	7.1.2 Strategies for team/crowd-related problems

	7.2 Coordination and communication
	7.3 Organizational
	7.4 Software project
	7.5 Task
	7.6 Others

	8 Discussion and limitations
	9 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

