
TYPE Original Research

PUBLISHED 31 May 2024

DOI 10.3389/fcomp.2024.1397805

OPEN ACCESS

EDITED BY

Lorenzo Bettini,

Universitá di Firenze, Italy

REVIEWED BY

Maria Teresa Rossi,

University of Milano-Bicocca, Italy

Tomasz Górski,

University of Gdansk, Poland

*CORRESPONDENCE

Atif Mashkoor

atif.mashkoor@jku.at

RECEIVED 08 March 2024

ACCEPTED 02 May 2024

PUBLISHED 31 May 2024

CITATION

Zafar H, Ur Rehman Khan S, Mashkoor A and

Nisa HU (2024) MOBICAT: a model-driven

engineering approach for automatic GUI code

generation for Android applications.

Front. Comput. Sci. 6:1397805.

doi: 10.3389/fcomp.2024.1397805

COPYRIGHT

© 2024 Zafar, Ur Rehman Khan, Mashkoor

and Nisa. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

MOBICAT: a model-driven
engineering approach for
automatic GUI code generation
for Android applications

Haroon Zafar1, Saif Ur Rehman Khan2, Atif Mashkoor3* and

Habib Un Nisa2

1Department of Computer Science, National University of Computer and Emerging Sciences (NUCES),

Peshawar, Pakistan, 2Department of Computing, Shifa Tameer-e-Millat University (STMU), Islamabad,

Pakistan, 3Institute for Software Systems Engineering, Johannes Kepler University, Linz, Austria

Introduction: Mobile applications have become indispensable in our daily lives.

However, mobile application development faces several challenges, including

limited resources, budget, and time to market. The current state of the practice

intends to develop the Graphical User Interface (GUI), business logic, and the

controller class separately, which is a time-consuming and error-prone process.

The generation of GUI is a significant concern in the development of mobile

applications.

Methods: This work presents a model-driven engineering approach for

automatic GUI code generation for Android applications, which intends to

address the above-mentioned challenges in mobile app development. The

proposed approach involves modeling domain-specific features of mobile

applications and capturing requirements using UML diagrams that lead to

automated GUI generation and controller class creation. We develop a Model-

Based GUI Code Generator (MOBICAT) tool to provide automation support to

the proposed approach.

Results: The e�cacy of the MOBICAT tool is evaluated by comparing it with the

baseline techniques using three open-source applications. The results indicate

that the MOBICAT tool significantly outperforms the baseline techniques by

attaining improved execution progress, e�ectively reducing development cost

and e�ort.

Discussion: The MOBICAT tool, o�ers a promising solution to challenges in

mobile app development. By automating GUI generation and controller class

creation, it streamlines development processes and enhances productivity.

KEYWORDS

graphical user interface (GUI), mobile applications, model-driven engineering, GUI

profile, code generation

1 Introduction

Nowadays, mobile applications play a vital role in our daily lives. Inspired by this,

mobile application development has attained emerging growth in the software industry

and is one of the most focused areas of software development (Jha and Mahmoud,

2019). According to Park (2018), ∼5.7 million mobile devices are registered, while

∼40,000 mobile applications are added to the Play Store per month (Pham et al., 2016).

According to recent statistics, mobile application development is rapidly increasing and

has become a billion-dollar industry (Acosta-Vargas et al., 2019). With the wide range

of mobile applications, the expectations of mobile application users are also increasing.

Compared with traditional software systems, mobile application development has limited

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1397805
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1397805&domain=pdf&date_stamp=2024-05-31
mailto:atif.mashkoor@jku.at
https://doi.org/10.3389/fcomp.2024.1397805
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1397805/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

time, resources, screen size, input methods, memory, and

processing speed (Vegendla et al., 2018). The above-mentioned

constraints cannot be ignored during the development and testing

of mobile applications. Apart from the business logic, the graphical

user interface (GUI) of mobile applications in terms of resource

consumption and time is also a significant requirement for the

mobile user.

Mobile applications are event-centric and have rich GUIs. The

GUI is vital in interacting with the mobile application and the

system. Generating a GUI remains a core part of the development

phase of a mobile application (Sabraoui et al., 2019). GUI code

implementation is a time-consuming task and prevents the mobile

application developers from giving the maximum implementation

time required for features and methods of the application under

development (Beltramelli, 2018). Moreover, manually developing

the GUI of a mobile application is regarded as a tedious and

repetitive task, especially when a change occurs in the required

feature of an activity. During the development phase, the GUI

should provide a functional interface for user interaction (UI) and

build an intuitive nature and pleasant user experience. At the same

time, mobile applications are crucial for success in a competitive

market (Nudelman, 2013; Taba et al., 2014). GUI development of

an application includes two separate activities: (i) UI designing and

(ii) UI implementation. UI designing requires a proper mechanism

for user interactions, architecture information, and visuals of the

UI. In contrast, UI implementation involves properly developing

layouts and widgets of the GUI framework (Allamanis et al., 2016).

Traditionally, mobile application development has involved

generating GUI, controller class, and business logic (Allamanis

et al., 2016). However, this approach is deemed tedious and

resource-intensive, particularly as the complexity of maintaining

changing activity requirements escalates over time (Joorabchi et

al., 2013; Heitkötter et al., 2015). Additionally, GUI development is

inherently tied to the mobile device and platform, with a significant

aesthetic component that hinders automation (Usman et al., 2017).

In the literature, several approaches based on model-driven

development (MDD) have been reported, including IFML (OMG,

2016) and LIZARD (Botturi et al., 2013; Sabraoui et al., 2013; Marin

et al., 2015); however, to the best of our knowledge, none of the

reported approaches handles all of the features related to the GUI

andmay be leveraged. This inspires us to automatically generate the

Controller class for interaction between the business logic and user

interface tiers, which existing approaches lack (Usman et al., 2017).

Consequently, an opportunity exists to innovate by automating

the generation of the Controller class, a feature lacking in existing

approaches (Usman et al., 2017). We propose a model-driven

engineering approach for automatically generating GUI code for

Android applications to tackle these challenges. Our approach

leverages unified modeling language (UML)—based GUI profiling1

to allow application designers to model domain-specific GUI

concepts during mobile application modeling. UML’s status as an

industry standard for object-oriented software system modeling

makes it an ideal choice for specifying requirements, navigation

flow, and lifecycle events of the application under development

(Allamanis et al., 2016). We adopt a minimalist approach with

1 https://github.com/xpoiledbrat/GUIModelingProfile

UML subset diagrams, including a UML use case diagram for

requirements gathering and a UML sequence diagram for modeling

mobile application behavior.

Furthermore, we introduce MOBICAT, a mobile application

GUI generation tool, to automate our proposed approach for

Android applications. We validate our approach by applying

it to three open-source Android applications across different

categories and empirically assess its practical applicability. The

major Research Contributions (RCs) of this work are as follows:

• RC1: Provides an extensive overview of the current state-

of-the-art approaches and identifies various challenges of

generating GUI in model-driven engineering.

• RC2:Develops a UML-based GUI modeling profile for mobile

applications to define domain-specific GUI characteristics.

• RC3: Implements a MOBICAT tool for automatically

generating GUI source code for Android applications.

• RC4: Empirically assess the practical applicability of the

proposed approach by applying it to three different categories

of open-source applications.

• RC5: Performs a comparative analysis between the existing

model-driven GUI development approaches and the

proposed approach.

The remaining part of the article is organized as follows: Section 2

presents the related work, while Section 3 describes the example

application. The proposed approach is discussed in Section 4.

Section 5 describes the developed MOBICAT tool that implements

the proposed approach. Section 6 evaluates the proposed approach

by employing different types of applications. Section 7 discusses

the results and discussion of the obtained results, while Section

8 mentions the threats to validity. The research implications are

described in Section 9. Finally, Section 10 provides the conclusion

and future work.

2 Related work

This section presents existing studies on developing graphical

user interface (GUI) approaches in Section 2.1 and model-driven

development approaches in Section 2.2.

2.1 Graphical user interface generation
approaches for mobile application

This section discusses GUI generation approaches for mobile

applications, an active research area in mobile application

development (Akiki et al., 2014; Núñez et al., 2020). These

approaches can automatically generate GUI code for mobile

applications and fall into different categories: modeling, static, and

dynamic analysis approaches.

Model-based approaches widely used in the industry utilize

UML diagrams and UML modeling profiles (e.g., IFML; Sabraoui

et al., 2012; Bernaschina et al., 2018 and LIZARD; Botturi et al.,

2013; Sabraoui et al., 2013; Marin et al., 2015; Planas et al., 2021)

to generate native GUIs for mobile applications. Bernaschina et al.

(2018) proposed using UML sequence and class diagrams to design

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://github.com/xpoiledbrat/GUIModelingProfile
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

the GUI. They recommend building the application from scratch to

consider the complete lifecycle.

da Silva and Brito e Abreu (2014) defined a model-driven

development (MDD) approach to generate GUIs for Android

business data systems. They used a UML class diagram for

structural modeling and integrated GUI navigation through textual

annotations. Object Constraint Language (OCL) was used to define

business rules. However, this approach is limited to the Android

platform and focuses only on creating the structural elements of

the app.

Static and dynamic analysis approaches are also used for

GUI generation (Ruiz et al., 2019). Yang et al. (2013) proposed

a technique to extract a mobile app model under development.

It statically extracts the supported events from the app’s GUI

using static analysis and exercises the model’s events through

dynamic crawling.

Min et al. (2011) proposed an approach to build Windows

mobile applications using a UML meta-model and modeling

profiles for Windows mobile platform-specific concepts. They

employ the model-view-controller (MVC) design pattern for

GUI and hardware interaction. However, their approach lacks

behavioral aspects, supports only a specific mobile platform, and

does not handle feature-based variability.

Other approaches involve deep learning, artificial intelligence,

and machine learning techniques. Chen et al. (2019) presented an

approach to generate cross-platform GUIs for different mobile app

platforms. Their framework inputs UI pages and outputs complete

GUI code for iOS or Android platforms using deep learning and

image processing classification. The framework requires no input

besides UI pages and enables large-scale code generation without

platform limitations. However, the proposed framework may face

challenges in accurately handling complex UI designs that require

specific platform-dependent features.

Franzago et al. (2014) presented a cooperative framework

for designing data-intensive mobile applications. Their approach

includes four models: data model, navigation model, user

interactionmodel, and businessmodel. Thesemodels collaborate to

produce the mobile app code for multiple platforms. However, the

detailed functioning mechanism of their framework and support

for feature-based variability are not extensively explained.

2.2 Model-driven development
approaches for mobile application

Model-driven development (MDD) approaches in mobile

application development aim to ensure quick delivery, deployment,

and time to market (Usman et al., 2014). These approaches can

be categorized into three main categories: UML-based, feature-

based, and others. Various modeling tools like Papyrus, RSA, and

MagicDraw are available to model the app’s user interface design

(Safdar et al., 2015).

UML-based approaches utilize a subset of UML and UML

profiles to capture GUI concepts. For example, PELLET is a UML-

based profile that facilitates performance testing (Usman et al.,

2020). Son et al. (2013) proposed an approach for code generation

using Meta Object Facility (MOF) and UML message sequence

diagram (MSD). Ko et al. (2012) introduced a domain-specific

language (DSL) for generating mobile applications specific to

business applications based on the MVC design pattern.

Usman et al. (2008) presented UJECTOR, a tool that generates

Java source code using UML models such as class, activity,

and sequence diagrams. It integrates behavioral and structural

aspects of object-oriented applications. Feature-based approaches

are widely used in software product line engineering applications

(Safdar et al., 2020). Tools like MOPPET (Usman et al., 2017), FMP

(Czarnecki et al., 2005), and FeatureID (Thüm et al., 2014) support

these approaches using basic or multi-objective feature models.

Other approaches employ new notations and guidelines.

AMOGA (Salihu et al., 2019) uses a crawling approach to

investigate application performance based on event lists. The

study does not extensively discuss potential scalability issues

when applying the AMOGA strategy to larger, more complex

mobile applications. Abbors et al. (2012) proposed a model-based

performance testing approach using automata to describe user

interactions andmeasure web application and service performance.

Jia and Jones (2012) introduced AXIOM, a cross-platform

MDD approach for mobile app development. It uses the Abstract

Model Tree (AMT) for model transformations and source

code generation, starting with portraying requirements using

AXIOM DSL and enhancing the models with platform-specific

components. However, adequate tool support was lacking in

creating, maintaining, and understanding complex models derived

from UML standards.

On the other hand, Qasim et al. (2020) introduced the

Model-driven Mobile HMI Framework (MMHF) to enhance

human machine interfaces (HMIs) for industrial control systems,

integrating a UML profile diagram for modeling mobile HMI

systems within industrial settings. This UML Profile includes

multiple stereotypes introducing domain-specific concepts for

mobile HMI in industrial control systems. The authors detailed

the implementation of the proposed model and validated its

effectiveness through benchmark case studies. Górski (2021)

introduced a solution for continuously delivering business

applications within distributed ledger technology (DLT) networks,

filling a research gap in this area. It implements two Jenkins-based

continuous delivery pipelines: one for preparing the application

and another for generating node deployment packages. The Smart

Contract Design Pattern is used for application development, while

UML and UML Profile for Distributed Ledger Deployment are

employed for modeling the blockchain network installation.

2.3 Analysis of current state-of-the-art in
GUI and MDD approaches

After conducting an extensive literature review on GUI

and model-driven development (MDD) approaches, it was

observed that none of the existing studies fully support all the

features of GUI and user interaction events (UIEvents). Most

approaches have limited scope, focusing on specific features in

their selected examples. While some approaches target both GUI

generation and UIEvents, they still lack in covering all aspects

(Usman et al., 2017).

In our proposed approach, we aim to combine GUI

components and model-driven engineering to leverage the benefits

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

FIGURE 1

TippyTipper case study screens. (A) Entering the amount. (B) Calculated amount. (C) SplitBill layout. (D) About info. (E) Settings.

of both paradigms. Model-driven engineering (MDE) allows

us to capture application-specific information and model the

application flow along with UIEvents. Our approach supports

GUI generation and UIEvents, specifically for the Android mobile

application platform.

3 TippyTipper application

This section describes the example Android application

on which the proposed approach is illustrated. The Android

application is named “TippyTipper” and is an open-source

simplified version of the Android application (Google, 2020a). The

application is used to calculate the tip amount for a meal. The

Android application is comprised of five screens. Figure 1 shows

the complete flow of the working application.

When the application is open, the first screen Figure 1A visible

to the user is about entering the amount of the meal through a

numeric keyboard available on the (Input) screen (Figure 1). On

the input screen, twomore buttons exist, i.e.,CLEAR andDEL. Both

buttons have UI events, e.g., onLongClick. The CLEAR button on

the long press erases all of the given data, while the DEL button only

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

FIGURE 2

A high-level view of the proposed MDE GUI approach.

erases one digit. Pressing the Calculate button navigates the user to

the next screen Figure 1B, which shows the calculated amount and

the added tip amount. The third screen Figure 1C is the SplitBill

layout, which shows the divided calculated amount among the total

number of persons having the meal. The last two screens can be

opened from either the Input screen or the total calculated amount

screen using the menu items in the action bar of the layout. The

About choice on the menu indicates the fourth screen Figure 1D,

named About, with info about the application. The Settings choice

on the menu navigates the user to the fifth screen Figure 1E.

4 Proposed approach

This section provides a detailed overview of the proposed

model-based approach for GUI code generation for mobile

applications (Android applications). The proposed code generation

approach provides ease in managing the components of the GUI

along with the appropriate event for user interaction. The proposed

approach is developed to support the GUI so that the application

designer will stipulate the components of GUI and events, and the

code will be generated for an Android application.

Figure 2 demonstrates the conceptual model of the proposed

approach. In the proposed model, we distinguish between two

key roles: the application designer and the service provider. Each

role plays a distinct yet complementary part in the development

process, contributing to the project’s overall success. The role of the

service provider primarily involves the technical implementation

of the proposed approach for Android applications. Specifically,

the service provider guides the application designer in translating

conceptual ideas into tangible GUI designs for the application

under development (AUD). Additionally, they are responsible for

creating GUI profiles using core components or widgets, along with

appropriate event associations. Collaboration with the application

designer ensures alignment with project objectives and technical

feasibility. Determining GUI features for the profile is based

on domain analysis, a foundation for identifying prevalent GUI

components relevant to the targeted application domains.

On the other hand, the application designer serves as

the architect of the user experience. They are responsible for

capturing user requirements and defining the navigation flow

within the AUD. This involves capturing user requirements

and AUD navigation flow, followed by GUI profile modeling

and mobile application layout modeling using UML diagrams.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

FIGURE 3

The conceptual model of the proposed GUI modeling profile for Android applications.

Additionally, the application designer utilizes model-driven

engineering techniques to address GUI component design.

The application designer selects use case and sequence

diagrams from the UML diagrams formobile applicationmodeling.

The UML use case diagram, in association with the mobile

application screens, captures the requirements of the mobile

application. The application designer models the UML sequence

diagram at the unit level to depict the navigation among the

application activities.

The application-specific GUI model and the UML diagrams

are utilized to generate code for the GUI of a particular mobile

application. The MOdel-Based GUI Code GenerATor (MOBICAT)

tool supports automating the process of creating the GUI. The

tool’s main inputs are the GUI profile and UML diagrams; finally,

MOBICAT provides complete GUI-related code as an output.

4.1 UML-based GUI modeling profile

This section proposes a GUI profile based on UML that allows

designers to capture domain-specific GUI components for mobile

applications. The profile definition methodology recommended by

Selic (2007) is utilized. Various GUI features are identified based on

domain analysis and open sources. The significant features defined

for service providers include Widgets (e.g., Button, ProgressBar,

Toasts, and EditText), Containers (e.g., ListView, spinner, and

GridView), and UI Event handling (e.g., UIEventListener and

UIEventHandler).

The GUI profile diagram consists of two major classes: View

and UIEventHandling as shown in Figure 3. The View package

represents stereotypes corresponding to widgets and containers,

while the UIEventHandling package comprises stereotypes for

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

TABLE 1 The description of UML-based GUI profile stereotypes.

Sr Component of
GUI

Stereotype
mapping

Class

1 Button android.widgets. Button UIWidgets

2 RadioGroup android.widgets.

RadioGroup

UIWidgets

3 RadioButton android.widgets.

RadioButton

UIWidgets

4 ImageButton android.widgets.

ImageButton

UIWidgets

5 TextView android.widgets.

TextView

UIWidgets

6 ProgressBar android.widgets.

ProgressBar

UIWidgets

7 EditText android.widgets.

EditText

UIWidgets

8 TimePicker android.leanback.

widgets.TimePicker

UIWidgets

9 DatePicker android.app. DatePicker UIWidgets

10 ImageView android.widgets.

ImageView

UIWidgets

11 ToggleButton android.widgets.

AppcompatToggleButton

UIWidgets

12 SeekBar android.widgets. SeekBar UIWidgets

13 ListView android.widgets.

ListView

Container

14 GridView android.widgets.

GridView

Container

15 Spinner android.widgets.

Absspinner

Container

16 Toast android.widgets. Toast UIWidgets

17 AlertDialogue android.app.

AlertDialogue

UIWidgets

UIEventListeners and UIEventHandlers. The Activity class is

extended with metaclasses to support the lifecycle events of

Android applications.

The View package includes 16 concepts, such as Button,

RadioGroup, ImageButton, TextView, ProgressBar, EditText,

TimePicker, DatePicker, Image-View, ToggleButton, SeekBar,

ListView, GridView, Spinner, Toast, and AlertDialogue. The

UIEventHandling package is divided into UIEventListeners and

UIEventHandlers, each containing five concepts.

Table 1 presents the components of the GUI, their stereotype

mapping, and their sources. The GUI components are categorized

into View and UIEventHandling, further divided into UI

widgets and containers. The components are sourced from

previous literature, Android Studio (the official IDE for

Android), and developers.android (official open-source website)

(Developer.Android, 2020). There are 17 components, with

three belonging to the container class (ListView, GridView, and

Spinner) and 14 to UIWidgets (Button, ProgressBar, AlertDialogue,

ImageButton, and so on). The mappings and sources vary for each

component.

FIGURE 4

OCLconstraint for ProgressBar.

The GUI profile includes enumerations for managing

component properties, such as Orientation, Visibility,

ProgressBarStyle, and Gravity. ActivityType and InputType

specify the type of activity and input for components. Duration

is an enumeration for the timespan of widgets. Figure 4 shows

an OCL constraint that specifies the ProgressBar widget using a

particular invariant attribute.

The button stereotype, obtained from previous literature on

GUI generation, is part of the UI widgets package. The Android

operating system represents the button as android.widgets.Button.

It is a crucial component of the GUI and facilitates user

interaction with the mobile application. In this work, the button

is associated with UIEvents, specifically OnClickListerner and

OnLongClickListener stereotypes, which enable interaction and

navigation between activities.

Table 2 presents OCL constraints that require

developers/modelers to specify the button’s ID and name. As

depicted in Figure 3, the ID and name are expected to be string

data types.

4.1.1 RadioGroup
The radiogroup stereotype, obtained from previous literature

and presented in Table 1, creates a mutually exclusive selection

among a set of radio buttons. When one radio button within

a radiogroup is selected, any previously selected radio

button in the same radiogroup is automatically deselected.

This stereotype belongs to the UIWidgets package. In the

Android operating system, the radiogroup is represented

as android.widgets.RadioGroup. Figure 3 illustrates that a

Radiogroup can contain two or more radiobuttons from the same

category (2..*). Table 2 includes OCL constraints that enforce

requirements for developers/modelers, such as defining the ID for

the RadioGroup stereotype and restricting the size definition.

4.2 Requirements gathering of mobile
application

Developing the use cases is the first step in gathering

the user requirements of a system. In the proposed model-

driven engineering approach, the application designer begins with

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

TABLE 2 GUI modeling profile OCL constraints.

Sr Components of GUI OCL constraints

1 Button not self.id.oclIsUndefined() or not self.name.oclIsUndefined()

2 RadioGroup not self.id.oclIsUndefined() and self→collect(id)→size() ≥ 2

3 RadioButton not self.id.oclIsUndefined()

4 ImageButton not self.id.oclIsUndefined() or not self.name.oclIsUndefined()

5 TextView not self.id.oclIsUndefined() and self.setVisibility = Visible

6 ProgressBar not self.title.oclIsUndefined() or not self.message.oclIsUndefined()

7 EditText not self.id.oclIsUndefined() and not self.inputType.oclIsUndefined() and self.setVisibility = Visible

8 TimePicker not self.id.oclIsUndefined()

9 DatePicker not self.id.oclIsUndefined()

10 ImageView not self.id.oclIsUndefined()

11 ToggleButton not self.id.oclIsUndefined()

12 SeekBar not self.id.oclIsUndefined() or not self.name.oclIsUndefined()

13 ListView not self.id.oclIsUndefined() or not self.name.oclIsUndefined()

14 GridView not self.id.oclIsUndefined() or not self.name.oclIsUndefined()

15 Spinner not self.id.oclIsUndefined() or not self.name.oclIsUndefined()

16 Toast not self.name.oclIsUndefined() or not self.text.oclIsUndefined() or not self.duration.oclIsUndefined()

17 AlertDialogue not self.settitle.oclIsUndefined() or not self.setmessage.oclIsUndefined()

designing the real use cases (Larman, 2012) that are useful in

recording and gathering the requirements (Kulak and Guiney,

2012). The real use cases explain the requirements of the mobile

application with the support of mobile application screens (user

interfaces) and the UML use case diagram. The concrete and

typical way of writing mobile applications is grounded onmodeling

the use case (Bittner and Spence, 2003). The concrete style of

writing the requirements of mobile applications includes detailed

user interfaces while describing use cases. For that reason, mobile

application screens are necessary before the modeling of use cases.

Note that these mobile application screens are only to capture the

primary activities of the application, and the information is only

needed to handle the user activities in the mobile application.

4.2.1 Mobile application screens
Mobile application screens are essential for recording and

gathering the application’s requirements and can be used as a

system prototype. Mobile application screens are mostly developed

using native development tools (Android Studio; Google, 2020b).

These development tools enable us to automatically generate the

code (.xml) for the application screens.

In the proposed model-driven engineering approach, we only

need the application screens to have the widget’s XML tag without

specifying the properties of user interface widgets. The application

designer utilizes these tools to create and automatically generate the

code for the mobile application screens.

Notice that the proposed approach focuses on the controller

class, acting as a bridge between the user interface and business

logic and specifying several properties of the GUI components of

mobile applications.

4.2.2 Modeling use cases
The UML standard is used to model the use cases. The use

cases are written using the style proposed by Larman (2012).

Figure 4 shows the UML use case diagram of the TippyTipper case

study. Figure 4 shows five use cases, including Enter bill amount,

Calculate total amount, View split bill, Setting, and About. The use

cases are designed in a highly interruptible setting where other

applications’ calls, messages, and notifications can interrupt the

current application. This property is, by default, in all the designed

use cases.

4.3 Behavior modeling of mobile
application

After gathering the requirements using the use case diagram,

the next step is to model the behavioral aspect of the mobile

application. The UML sequence diagram obtains details of the

application’s navigation and Android activity lifecycle methods.

The activities interacting with one another are considered classes

and are modeled using the sequence diagram.

The application designer models the sequence diagram to

tackle the application’s navigation and activity lifecycle events.

The designer follows the guidelines of Merino et al. (2018) to

model the UML sequence diagram. In Figure 3, the application

designer develops a UML sequence diagram for each class extracted

from the requirements modeling. The system sequence diagram of

the TippyTipper case study is shown in Figure 5. An appropriate

gesture or UIEvent is modeled in each class, and the lifecycle

methods are triggered while capturing their interaction with the

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

FIGURE 5

The UML use case diagram for the TippyTipper mobile application.

mobile application. Figure 5 shows five classes that have necessary

navigation information among the activities. The sequence diagram

modeled by the application designer should also specify the flow

of interaction and the methods used to navigate among them. The

menu options that appeared in the action bar or the activity are also

designed in Figure 5.

For the TippyTipper case study, when the user enters the bill

amount, the onCreate activity lifecycle method is triggered in the

TippyTipper class, and the appropriate application screen appears.

After Entering the bill amount, the user taps the calculate button,

the OnClick UIEvent is called, and it navigates the user to the

Total class in the application’s directory. Also, by pressing the back

button, the onResume lifecycle method is triggered, and the user is

redirected back to the main activity.

5 Proposed model based GUI code
generator (MOBICAT) tool

The MOBICAT (MOdel-Based GUI Code

GenerATor) tool is developed to generate the mobile application

GUI code automatically. The MOBICAT tool generates the GUI

and controller codes, which bridges GUI, business logic, and the

appropriate UIEvent with a particular GUI widget. To generate

the GUI code, the MOBICAT tool inputs the developed instance

model of themodeling profile and theUMLdiagrams (i.e., UML use

case diagram and UML sequence diagram) of the AUD. Notice that

the MOBICAT tool only supports Android applications but can be

extended to other mobile application platforms.

Figure 6 presents the detailed architecture of the MOBICAT

tool. The tool is developed using Eclipse IDE. The tool’s

architecture comprises three main components: (i) ModelReader,

(ii) ModelMapper, and (iii) Application GUI generator. The

ModelReader reads the UML modeling Profile and UML diagram.

However, the ModelMapper maps the data according to the

Android Platform template. Moreover, the Application GUI code

generator generates the complete code per the directory of the

mobile application.

The first component of the architecture of the MOBICAT

tool is ModelReader. This component takes three inputs: (i)

UML GUI Profile, (ii) Application Instance Model, and (iii) UML

diagrams. The Application Instance model depends on the UML

GUI profile, while the other UML diagrams are not dependent

on one another. Therefore, two independent inputs exist in the

ModelReader component, and the ModelReader reads the inputs

in parallel. The application Instance model is developed in Eclipse

IDE, which stores the Instance model in a (.xml document). The

XML document is then given as input to the ModelReader, and

the complete information is stored in a data structure for the GUI

code generation. According to Figure 7, the information is then

transferred to the next component of the tool for further processing.

The second component of theMOBICAT tool isModelMapper.

The ModelMapper takes the inputs as UML GUI Profile

Information, Sequence Diagram Information, and Use Case

Diagram Information, as shown in Figure 7. The component maps

the information using the template or standard set by the Android

platform. This component is also implemented in Eclipse IDE. The

Active activity classes are generated, and the UIWidgets belonging

to the specific class are mapped.

The third component in the MOBICAT tool is the Application

GUI code generator, which generates the code and adds it to

the appropriate directory. This component also takes two inputs:

Sequence diagram information and Application information. The

information about the sequence diagram is given as input to

handle the navigation flow and the appropriate lifecycle methods.

Figure 7 shows that the component generated the code per

the Android platform and the specific directory in the mobile

application package.

6 Evaluation

This section presents the research questions in Section 6.1,

followed by the Experimental design in Section 6.2, and a

description of example applications in Section 6.3.

6.1 Research questions

The objective of the evaluation is to investigate the effectiveness

of the proposed approach in providing automated support to GUI

generation for mobile applications. More precisely, the aim is

to evaluate whether the proposed tool can capture and manage

components of GUI, their appropriate UIEvents, limitations in the

design phase, and the automation support. The overall objective

of the research questions is to investigate the suitability and

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

FIGURE 6

The UML sequence diagram for the TippyTipper mobile application.

applicability of the proposed approach. Based on the above

objectives, the following two research questions are defined.

RQ1: How MOBICAT is effective in capturing the

GUI components?

This research question examines whether the proposed approach

captures the components of GUI and the appropriate UIEvent.

RQ2: How MOBICAT outperforms the state-of-the-art

MDE approaches?

This research question provides a comparative analysis based

on different features among the current state-of-the-art MDE

approaches and MOBICAT.

6.2 Experimental design

This section illustrates the experimental design used to validate

the effectiveness of the proposed approach. In Table 3, four

evaluation tasks (T1–T4) are designed to answer RQ1.

For RQ2, we have implemented the existing MDE approaches

in our environment and empirically evaluated them based on

different types of methods related to the GUI of the application.

Moreover, a comparative analysis is also performed based on the

features of the approaches. Rational Software Architect (RSA)2 is

used for modeling the mobile application. Using the Ecore plugin,

the proposed profile is developed in Eclipse Modeling Framework

(EMF).3 All the experimental activities are performed on a 64-bit

Microsoft Windows operating system, Intel Core i3 processor (2.40

GHz), 12 GB RAM, and 750 GBHDD. The code generated from the

proposed approach is executed in Android Studio using the virtual

device (Huawei Y9 Prime 2019) to evaluate the output.

6.3 Example applications

The TippyTipper application is used as an example throughout

the paper. This section discusses Notepad and ContactManager.

The Notepad4 mobile application belongs to the Productivity

category of the Android Play Store and is an open-source

application. The application consists of three screens. When

the application is launched, the MainActivity screen is shown

to the user. The MainActivity Screen allows the user to

2 https://www.ibm.com/products/rational-software-architect-designer

3 http://www.eclipse.org/modeling/emf/

4 https://github.com/farmerbb/Notepad

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.ibm.com/products/rational-software-architect-designer
http://www.eclipse.org/modeling/emf/
https://github.com/farmerbb/Notepad
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

FIGURE 7

The mobile application GUI generator (MOBICAT) tool architecture.

TABLE 3 Evaluation tasks and metrics.

Column 1 Column 2 Column 3

T1 Calculating the number of GUI features captured using the view

package in the proposed approach for the jth example application.

The total no. of Features in jth example application. (Fj)

T2 Calculating the number of activity methods captured using the

UIEvents package in the proposed approach for the jth example

application.

The total no. of methods in jth example application. (Mj)

T3 Calculating the total number of lines of code generated using the

proposed approach for the example application’s jth activity (a(lOC)).

Generated line of code (Total LOC=
∑n

i=1 ai (LOC))

T4 Calculating the OCL constraints applied on each component of GUI of

the activity of the example application.

The total number of OCL constraints in the jth example application. (Cj)

view an existing document and also facilitates the user in

adding a new document. By pressing the add document

button or edit doc button, the application navigates the

user to the NoteEditActivity where the user can edit the

existing or new document. The third screen or layout of

the application is the Setting activity. The ContactManager5

application belongs to the Business category and is also an open-

source Android application. The application helps manage and

manipulate the user’s contacts. The ContactManager application

consists of two activities, i.e., ContactAdder and ContactManager.

The ContactAdder activity allows the user to add a new

5 https://android.googlesource.com/platform/development/

contact to the application. In contrast, the ContactManager

activity allows users to manage and handle the application’s

existing contacts.

The proposed model-driven engineering approach for

automatic GUI generation in all the case studies (TippyTipper,

Notepad, ContactManager) uses the UML-based GUI profile

and UML diagrams. The application designer develops the

proposed Profile (Application-specific) and UML diagram,

i.e., use case diagram and sequence diagram. The Profile

contains all the widgets and UIEvents suitable for the

activity. The application-specific instance model depends on

the activity’s requirements and consists of features (widgets)

and UIEvents.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://android.googlesource.com/platform/development/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

FIGURE 8

Excerpt of one of the generated instances model from GUI profile.

TABLE 4 Mobile application GUI generated code statistics.

Application No. of activities Activities No. of methods (M_j) Line of code (LOC) Application category

TippyTipper 5 TippyTipper 18 214 Tool

Total 10 122

Split Bill 5 65

Setting 2 60

About 6 92

Notepad 3 MainActivity 12 192 Productivity

NoteEditActivity 8 102

Setting 3 62

ContactManager 2 ContactAdder 6 113 Business

ContactManager 5 99

7 Results and discussion

This section presents the results and discussion of the

evaluation and answers the research questions (RQ1 and RQ2)

discussed in Section 6.1.

7.1 Results for RQ1

This section presents the detailed results of generating

the GUI of case study applications (TippyTipper, Notepad,

and ContactManager) through the proposed model-driven

engineering approach.

Figure 8 shows the Application-specific instance model

generated using the proposed UML-based GUI profile. The Total

Activity consists of five Buttons, three TextViews, one SeekBar,

and the respective UIEvent, which is suitable and according to

the activity’s requirement. The UIEventHandling mechanism is

also handled using the Listeners and Handlers appropriate to the

widgets. The Listener contains only a single handler function and

is limited to a single feature (widget). The Application-specific

instance models show which type of UI widgets the activity

contains and which widget is associated with which UI event.

Table 4 shows the statistics of the proposed model-driven

engineering approach applied to the TippyTipper, Notepad, and

ContactManager case study applications. For the TippyTipper

android application, the proposed approach generated 41 methods,

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

TABLE 5 The statistics of the proposed GUI modeling profile.

Application Features No. of features (F_j) OCL constraints (C_j)

TippyTipper TextView, EditText, Button, Container 4 16

SeekBar, Button, TextView, Container 4 14

Button, TextView 2 8

ListView, RadioButton, TextView 3 4

Button, TextView, Container 3 4

Notepad Spinner, TextView, Button, Container, TimePicker, EditText, DatePicker 6 7

TextView, Spinner, Button, TimePicker, DatePicker 5 5

ListView, EditText, TextView, Button, Alert dialogue 5 5

ContactManager Spinner, TextView, Button, EditText, ImageView, Toast 5 11

ListView, Button, RadioGroup, RadioButton, Toast 5 5

TABLE 6 Comparison of statistics between MOBICAT and existing approaches.

Approaches UI events Lifecycle
events

Workflow model
(methods)

View model
(methods)

Generated
lines of code

LIZARD (Marin et al., 2015) TippyTipper 12 - - 13 328

Notepad 2 - - 6 121

ContactManager 5 - - 3 102

Botturi et al. (2013)

TippyTipper 6 - - 10 202

Notepad 3 - - 8 162

ContactManager 1 - - 3 129

Sabraoui et al. (2013)

TippyTipper - - - 12 173

Notepad - - - 7 103

ContactManager - - - 5 66

MOBICAT TippyTipper 38 17 16 18 553

Notepad 13 10 9 19 356

ContactManager 5 6 8 9 212

including all the lifecycle and user interaction methods. Of 41

methods, 18 are from the TippyTipper screen, 10 are from the total

screen, five are from the SplitBill screen, two are from the setting,

and six are from the About screen. The total lines of code generated

from the MOBICAT tool using the proposed approach are 553.

The proposed approach generated 23 methods for the Notepad

application, including all the lifecycle and user interactionmethods.

Of 23 methods, 12 are from the MainActivity screen, 8 are from the

NoteEditActivity screen, and 3 are from the Setting screen.

The total line of code generated from the MOBICAT tool using

the proposed approach is 356. For the ContactManager application,

the proposed approach generated 11 methods, including all the

lifecycle and user interaction methods. Six methods are from

the ContactAdder screen, and five are from the ContactManager

screen. The total line of code generated from the MOBICAT tool

using the proposed approach is 212.

The statistics of generated UML-based GUI profiles for the case

studies (TippyTipper, Notepad, and ContactManager) are shown

in Table 5. For the TippyTipper case study, 16 stereotypes are

generated using the proposed UML-based profile. Four stereotypes

belong to the TippyTipper activity, four to the total activity, two

to the SplitBill activity, three to the setting activity, and three

to the about activity. There are 46 OCL constraints generated

from the application-specific instance model. In the case of the

Notepad mobile application, 16 stereotypes are generated using

the proposed UML-based profile. Six stereotypes belong to the

Main Activity activity, five to the NoteEditActivity activity, and

five to the Setting activity. A total of 17 OCL constraints are

generated from the application-specific instance model. For the

ContactManager case study, ten stereotypes are generated using

the proposed UML-based profile. Five stereotypes belong to the

ContactAdder activity, and five are from the ContactManager

activity. A total of 16 OCL constraints are generated from the

application-specific instance model.

Table 6 compare the statistics of MOBICAT and existing

approaches based on model-driven engineering. The

results revealed that MOBICAT outperformed the other

approaches LIZARD (Botturi et al., 2013; Sabraoui et al., 2013;

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

FIGURE 9

Execution progress-based comparison between MOBICAT and

existing approaches.

Marin et al., 2015) because the proposed approach deals with

all the components and methods (ViewModel, WorkflowModel,

lifecycle, and UIEvents) related to the GUI. To evaluate the impact

of the correctness of generated code, the code is evaluated using

the available set of test scripts developed using ROBOTIUM6 to

verify the GUI components and methods.

Figure 9 reports the percentage of Execution progress of the

generated code obtained from the test script results on the

applications used in the study. The test script result shows that

MOBICAT achieved maximum execution progress of 91% on the

Tippytipper application, 82% on ContactManager, and a minimum

of 77% on the Notepad application. In contrast, the LIZARD

achieved 56, 49, and 47% execution progress on the TippyTipper

app, Notepad app, and ContactManager application, respectively.

Compared withMOBICAT and LIZARD, the approaches proposed

in Botturi et al. (2013) and Sabraoui et al. (2013) achieved <50%

execution progress. Based on the test scripts results, MOBICAT

provides a maximum percentage of execution progress when

applied to the considered case studies and outperforms the other

reported approaches by covering all the aspects (e.g., completeness,

usability, reuse, interaction, workflow events, and lifecycle events)

of GUI.

The results from the case studies show that the proposed

approach effectively generates GUI for mobile applications per the

user’s requirement. The manual development of these GUIs would

have required a substantial redundant effort.

7.2 Results for RQ2

After observing the proposed model-driven engineering

approach’s practicality, we have compared it to the existing

approaches reported in the literature. While this comparison

provides valuable insights into our approach’s efficacy, it may not

encompass all GUI generation methodologies documented in the

vast body of literature.

The decision to focus on a subset of existing solutions

was made to facilitate a manageable and focused validation

6 https://github.com/RobotiumTech/robotium

process. Attempting to include every possible approach would

be impractical and potentially overwhelming, detracting from the

depth and clarity of the analysis.

Table 7 presents the comparison of the proposed approach with

existing approaches that are based on model-driven architecture.

The approaches are critically evaluated using different evaluation

parameters. The approach LIZARD proposed in Marin et al. (2015)

deals with only two phases of the software development lifecycle

(SDLC), i.e., design and development phases. The approach

depends on the meta-model, but no formal language is used

to deal with the constraints of the metamodel. The proposed

approach supports five features (widgets) related to the GUI.

LIZARD only provides a single UIEvent, such as onClick, and lacks

support for the lifecycle events of the Android activity, as shown

in Table 7. Android and Windows phones are targeted, and the

subsequent language is generated using the proposed approach of

each platform, respectively.

However, in Botturi et al. (2013), the reported approach

supports the requirement phase, design phase, and development

phase of the SDLC. Their proposed approach (Botturi et al.,

2013) also depends on model-driven engineering and provides a

meta-model; however, no formal language is used to deal with

the constraints. Moreover, the approach supports seven features

(widgets) related to the GUI. The approach deals with only single

UIEvents and provides the code for Android andWindows phones.

In contrast, in Sabraoui et al. (2013), the approach handles the

design and development phase and provides no mechanism for

handling Android lifecycle events. The approach is also based

on model-driven engineering but lacks formal support for the

constraints and cardinalities of their proposed meta-model.

The approach supports six features (widgets) related to

the GUI. No support exists for user interaction events in the

presented model. The approach supports both the Android and

Blackberry mobile application platforms. The MOBICAT supports

the requirements, design, and development phases of SDLC.

Moreover, MOBICAT is based on a metamodel that handles all

aspects of generating GUI for Android applications. Notice that the

proposed approach effectively handles 17 features, excluding the

UIEvents handling. In the proposed approach, we have provided

a formal language to handle each widget’s constraints related to the

GUI for Android applications.

Moreover, the proposed approach utilizes the UML models for

the requirement phase and handles the application’s navigation

flow under development. The proposed approach considers all

UIEventHandling methods and listeners and provides a concrete

mechanism for them. The language generation that supports the

GUI using the proposed approach is JAVA.7

8 Threats to validity

This section addresses the threats that may influence the

proposed approach’s performance. The four forms of threats

are external validity, internal validity, construct validity, and

conclusion validity.

7 https://github.com/Intellectual-hutt/MOBICAT

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://github.com/RobotiumTech/robotium
https://github.com/Intellectual-hutt/MOBICAT
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

T
A
B
L
E
7

C
o
m
p
a
ra
ti
v
e
a
n
a
ly
si
s
o
f
M
D
E
a
p
p
ro
a
c
h
e
s.

P
ro
c
e
ss

L
is
te
n
e
rs

H
a
n
d
le
rs

Approaches

Requirement

Analysis

Development

Testing

No.offeature
(widget(s))

Lifecycle
event(s)

Meta-
model

OCL

UMLmodel

OnClick
Listener

OnLong
Click
Listener
OnFocus
Change
Listener

OnItem
Click
Listener

OnChecked
Change
Listener

OnClick

OnLong
Click

OnFocus
Change

OnItem
Click

OnChecked
Change

Languages

Android

Windows
Phone

BlackBerry

M
ar
in

et
al
.(
20
15
)

L
IZ
A
R
D

X
X

5
X

X
X

X
M
L

&
C
#

X
X

B
o
tt
u
ri
et
al
.

(2
01
3)

X
X

7
X

X
X

X
X
M
L

X
X

Sa
b
ra
o
u
i
et
al
.

(2
01
3)

X
X

6
X

X
M
L

X
X

M
O
B
IC

A
T

X
X

X
X

17
X

X
X

X
X

X
X

X
X

X
X

X
X

X
JA
V
A

X

8.1 External validity threat

The threat to the external validity of the proposed approach

is its applicability to all the categories of the Android mobile

application. To reduce this threat, we have selected three categories

of Android mobile applications from different domains using

the Google Play store, i.e., TippyTipper from the tool category,

Notepad from the productivity category, and ContactManager

from the Business category of mobile applications. This permits

us to validate our approach to three massively different mobile

applications. We do not claim that the obtained results are

generalizable for all categories of mobile applications; however, this

is a common threat among all the empirical studies.

8.2 Internal validity threat

The chances of the experiment’s internal validity threat are

related to the instrumentation during the execution of the

experiment. To minimize the possibility of this threat, we evaluated

the instrumented source code using the available set of test scripts

to verify the GUI components and methods.

8.3 Construct validity threat

The relationship between theory and observation may threaten

the experiment’s construct validity. To mitigate this threat, we

will have several sessions with the domain experts during the

evaluation procedure.

8.4 Conclusion validity threat

The threat to the conclusion’s validity is related to the

challenges that affect the ability to draw an accurate conclusion.

To reduce this threat, a comparative analysis is performed between

the existing model-driven GUI development approaches and the

proposed approach.

9 Research implications

Section 9.1 presents the research implications of the proposed

approach to the software engineering research community. Section

9.2 presents the research implications to state-of-the-practice.

9.1 State-of-the-art implications

There exist various model-based graphical user interface

modeling approaches (Botturi et al., 2013; Sabraoui et al., 2013;

Marin et al., 2015), or UI modeling languages, i.e., IFML

(OMG, 2016) for mobile applications modeling and source code

generation. Still, these approaches may be leveraged (Usman et al.,

2017). To that end, our proposed approach incorporates all the GUI

components and model-driven engineering to gain the advantage

of both theories. Moreover, the proposed approach deals with all

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

the methods related to the user interface of mobile applications and

facilitates the SE research community with these methods.

9.2 State-of-the-practice implications

For practitioners, the current industrial practice is to develop

the GUI, the controller class separately, and the business logic

(Heitkötter et al., 2015). This practice is considered tedious and

resource-consuming. Simultaneously, the complexity of sustaining

the change in the application’s requirements also exponentially

increases over time (Kang et al., 1990; Joorabchi et al., 2013).

To overcome this challenge, this study provides a model-

based approach that automatically generates the GUI per user

requirements. The results show that the proposed approach is

beneficial in reducing the overall development cost and effort.

Moreover, our proposed model-driven engineering approach,

coupled with automation tools like MOBICAT, is tailored to meet

the demand for rapid time to market, delivery, and deployment

of mobile applications. By leveraging UML-based GUI modeling

profiles, our approach streamlines the development process,

enabling quick iteration and adaptation of GUI designs. This

ensures that subsequent releases of mobile applications can be

efficiently developed and deployed, allowing consecutive releases to

be delivered with agility and speed.

10 Conclusion and future work

GUI development for mobile applications poses significant

challenges regarding resource consumption and time to market.

This paper has addressed these challenges by proposing a model-

driven approach for automatically generating graphical user

interfaces (GUIs) and controller classes for mobile applications.

By providing a GUI modeling profile tailored for Android

applications, we have enabled the specification of domain-

specific GUI concepts and streamlined the development process.

Through the use of the proposed approach and the developed

Model-Based GUI Code Generator (MOBICAT) tool, we

have successfully demonstrated the automated generation

of GUIs for various categories of Android applications,

including TippyTipper (Tool), Notepad (Productivity), and

ContactManager (Business).

The detailed results obtained from the performed experiments

demonstrate the efficacy of the proposed model-driven engineering

approach for GUI generation. For instance, the application-

specific instance models generated using our UML-based GUI

profile showcase the appropriate UI elements and event-handling

mechanisms. Moreover, the GUI-generated mobile application

statistics highlight the number of activities, methods, and lines of

code generated for each case study application. Additionally, the

statistics on the generated UML-based GUI profiles detail each

application’s features, constraints, and stereotypes. Furthermore,

our comparison with existing approaches underscores the

superiority of our approach in terms of UI events, life cycle events,

workflow models, and lines of code generated.

From a future research viewpoint, we focus on several

research pointers for further research and development. First, we

plan to extend our proposed approach to support other mobile

application platforms beyond Android, enhancing its applicability

and reach. Additionally, we intend to explore ways to integrate

additional features and functionalities into the GUI modeling

profile that could further enhance the flexibility and usability of the

proposed approach.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

HZ: Writing—original draft, Writing—review & editing.

SU: Writing—original draft, Writing—review & editing. AM:

Writing—original draft, Writing—review & editing. HN:

Writing—original draft, Writing—review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Johannes Kepler Open Access Publishing Fund

and the federal state Upper Austria.

Acknowledgments

First, we thank the Software Reliability Engineering Group

(SREG) members for their continued support and feedback

throughout this research. Secondly, we would like to thank Shaukat

Ali (Simula Research Laboratory, Norway) for providing valuable

feedback on the initial version of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

References

Abbors, F., Ahmad, T., Truscan, D., and Porres, I. (2012). “MBPeT: a model-based
performance testing tool,” in 2012 Fourth International Conference on Advances in
System Testing and Validation Lifecycle (Wilmington, NC: IARIA XPS Press), 31.

Acosta-Vargas, P., Zalakeviciute, R., Luján-Mora, S., and Hernandez, W. (2019).
“Accessibility evaluation of mobile applications for monitoring air quality,” in
International Conference on Information Technology and Systems (Cham: Springer),
638–648.

Akiki, P. A., Bandara, A. K., and Yu, Y. (2014). Adaptivemodel-driven user interface
development systems. ACM Comput. Surv. 47, 1–33. doi: 10.1145/2597999

Allamanis, M., Peng, H., and Sutton, C. (2016). “A convolutional attention network
for extreme summarization of source code,” in International Conference on Machine
Learning, 2091–2100.

Beltramelli, T. (2018). “pix2code: generating code from a graphical user interface
screenshot,” in Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (New York, NY: Association for Computing Machinery), 1–6.
doi: 10.1007/978-981-16-3802-2_12

Bernaschina, C., Comai, S., and Fraternali, P. (2018). Formal semantics of OMG’s
Interaction Flow Modeling Language (IFML) for mobile and rich-client application
model driven development. J. Syst. Softw. 137, 239–260.

Bittner, K., and Spence,I. (2003). Use Case Modeling. Boston, MA: Addison-Wesley
Professional.

Botturi, G., Ebeid, E.,Fummi, F., and Quaglia, D. (2013). “Model-driven design for
the development of multi-platform smartphone applications,” in Proceedings of the
2013 Forum on specification and Design Languages (FDL) (Paris: IEEE), 1–8.

Chen, S., Fan, L., Su, T., Ma, L., Liu, Y., and Xu, L. (2019). “Automated cross-
platform GUI code generation for mobile apps,” in 2019 IEEE 1st International
Workshop on Artificial Intelligence for Mobile (AI4Mobile) (Hangzhou: IEEE), 13–16.

Czarnecki, K., Antkiewicz, M., Kim, C. H. P., Lau, S., and Pietroszek, K. (2005).
“fmp and fmp2rsm: eclipse plug-ins for modeling features using model templates,”
in Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (New York, NY), 200–201.
doi: 10.1145/1094855.1094934

da Silva, L. P., and Brito e Abreu, F. (2014). “Model-driven gui generation and
navigation for android bis apps,” in 2014 2nd International Conference onModel-Driven
Engineering and Software Development (MODELSWARD) (Lisbon: IEEE), 400–407.

Developer.Android (2020). Android Developers. Available online at: https://
developer.android.com/ (accessed February 1, 2024).

Franzago, M., Muccini, H., and Malavolta, I. (2014). “Towards a collaborative
framework for the design and development of data-intensive mobile applications,”
in Proceedings of the 1st International Conference on Mobile Software Engineering
and Systems (New York, NY: Association for Computing Machinery), 58–61.
doi: 10.1145/2593902.2593917

Google (2020a). Tippy Tipper Application. Available online at: https://code.google.
com/archive/p/tippytipper (accessed February 1, 2024).

Google (2020b). Android Studio. Available online at: https://developer.android.
com/studio/index.html (accessed February 1, 2024).

Górski, T. (2021). Continuous delivery of blockchain distributed applications.
Sensors 22:128. doi: 10.3390/s22010128

Heitkötter, H., Kuchen, H., and Majchrzak, T. A. (2015). Extending a model-driven
cross-platform development approach for business apps. Sci. Comput. Progr. 97, 31–36.
doi: 10.1016/j.scico.2013.11.013

Jha, N., and Mahmoud, A. (2019). Mining non-functional requirements from
app store reviews. Empir. Softw. Eng. 24, 3659–3695. doi: 10.1007/s10664-019-09
716-7

Jia, X., and Jones, C. (2012). “Cross-platform application development using
AXIOM as an agile model-driven approach,” in International Conference on Software
and Data Technologies (Berlin, Heidelberg: Springer), 36–51.

Joorabchi, M. E., Mesbah, A., and Kruchten, P. (2013). “Real challenges in mobile
app development,” in 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement Baltimore, MD: IEEE.

Kang, K. C., Cohen, S., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990).
Feature-Oriented Domain Analysis (FODA) Feasibility Study. No. CMU/SEI-90-TR-21.
Pittsburgh, PA: Carnegie-Mellon University, Software Engineering Institute.

Ko, M., Seo, Y., Min, B., Kuk, S., and Kim, H. S. (2012). “Extending UML meta-
model for android application,” in 2012 IEEE/ACIS 11th International Conference on
Computer and Information Science (Shanghai: IEEE), 669–674.

Kulak, D., and Guiney. (2012). Use Cases: Requirements in Context. Boston, MA:
Addison-Wesley.

Larman, C. (2012). Applying UML and Patterns: an Introduction to Object-Oriented
Analysis and Design and Iterative Development. Pearson Education India.

Marin, I., Ortin, F., Pedrosa, G., and Rodriguez, J. (2015). Generating native user
interfaces for multiple devices by means of model transformation. Front. Inf. Technol.
Electron. Eng. 16, 995–1017. doi: 10.1631/FITEE.1500083

Merino, L., Ghafari, M., Anslow, C., and Nierstrasz, O. (2018). A systematic
literature review of software visualization evaluation. J. Syst. Softw. 144, 165–180.
doi: 10.1016/j.jss.2018.06.027

Min, B. K., Ko, M., Seo, Y., Kuk, S., and Soo Kim, H. (2011). “A UMLmetamodel for
smart device application modeling based onWindows Phone 7 platform,” in TENCON
2011-2011 IEEE Region 10 Conference (Bali: IEEE), 201–205.

Nudelman, G. (2013). Android Design Patterns: Interaction Design Solutions for
Developers. Hoboken, NJ: John Wiley & Sons.

Núñez, M., Bonhaure, D., González, M., and Cernuzzi, L. (2020). A model-driven
approach for the development of native mobile applications focusing on the data layer.
J. Syst. Softw. 161:110489. doi: 10.1016/j.jss.2019.110489

OMG (2016). The Interaction Flow Modeling Language (IFML). Available online at:
https://www.ifml.org/ (accessed October 7, 2019).

Park, D. S. (2018). Future computing with IoT and cloud computing. J.
Supercomput. 74, 6401–6407. doi: 10.1007/s11227-018-2652-7

Pham, X. L., Nguyen, T. H., Hwang, W. Y., and Chen, G. D. (2016). “Effects of
push notifications on learner engagement in a mobile learning app,” in 2016 IEEE
16th International Conference on Advanced Learning Technologies (ICALT) (Austin,
TX: IEEE), 90–94.

Planas, E., Daniel, G., Brambilla, M., and Cabot, J. (2021). Towards a model-
driven approach for multiexperience AI-based user interfaces. Softw. Syst. Model. 20,
997–1009. doi: 10.1007/s10270-021-00904-y

Qasim, I., Anwar, M. W., Azam, F., Tufail, H., Butt, W. H., and Zafar,
M. N. (2020). A model-driven mobile HMI framework (MMHF) for industrial
control systems. IEEE Access 8, 10827–10846. doi: 10.1109/ACCESS.2020.296
5259

Ruiz, J., Serral, E., and Snoeck, M. (2019). Evaluating user
interface generation approaches: model-based versus model-driven
development. Softw. Syst. Model. 18, 2753–2776. doi: 10.1007/s10270-018-0
698-x

Sabraoui, A., Abouzahra, A., Afdel, K., and Machkour, M. (2019). “MDD
approach for mobile applications based on DSL,” in 2019 International Conference
of Computer Science and Renewable Energies (ICCSRE) (Agadir: IEEE), 1–6.
doi: 10.1109/ICCSRE.2019.8807572

Sabraoui, A., Koutbi, M. E., and Khriss, I. (2012). “GUI code generation for Android
applications using an MDA approach,” in 2012 IEEE International Conference on
Complex Systems (ICCS) (Agadir: IEEE), 1–6.

Sabraoui, A., Koutbi, M. E., and Khriss, I. (2013). A MDA-based model-driven
approach to generate GUI for mobile applications. Int. Rev. Comput. Softw. J. 8,
845–852.

Safdar S. A., Iqbal M. Z., and Khan M. U. (2015). “Empirical evaluation of
UML modeling tools—a controlled experiment,” in European Conference on Modelling
Foundations and Applications (Cham: Springer), 33–44.

Safdar, S. A., Lu, H., Yue, T., Ali, S., and Nie, K. (2020). A framework for automated
multi-stage andmulti-step product configuration of cyber-physical systems. Softw. Syst.
Model 20:8. doi: 10.1007/s10270-020-00803-8

Salihu, I., Ibrahim, R., Ahmed, B. S., Zamli, K. Z., and Usman, A.
(2019). AMOGA: a static-dynamic model generation strategy for mobile
apps testing. IEEE Access 7, 17158–17173. doi: 10.1109/ACCESS.2019.289
5504

Selic, B. (2007). “A systematic approach to domain-specific language design using
UML,” in 10th IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC’07) (Santorini: IEEE), 2–9.

Son, H. S., Kim, W. Y., and Kim, C. (2013). MOF based code generation method for
android platform. Int. J. Softw. Eng. Appl. 7, 415–426. doi: 10.1016/j.scico.2018.11.002

Taba, S. E. S., Keivanloo, I., Zou, Y., Ng, J., and Ng, T. (2014). “An exploratory
study on the relation between user interface complexity and the perceived quality,” in
International Conference on Web Engineering (Cham: Springer), 370–379.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014).
FeatureIDE: an extensible framework for feature-oriented software development. Sci.
Comput. Progr. 79, 70–85. doi: 10.1016/j.scico.2012.06.002

Usman, M., Iqbal, M. Z., and Khan, M. U. (2014). “A model-driven approach to
generate mobile applications for multiple platforms,” in 2014 21st Asia-Pacific Software
Engineering Conference, vol. 1 (Jeju: IEEE), 111–118.

Usman, M., Iqbal, M. Z., and Khan, M. U. (2017). A product-line model-driven
engineering approach for generating feature-based mobile applications. J. Syst. Softw.
123, 1–32. doi: 10.1016/j.jss.2016.09.049

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://doi.org/10.1145/2597999
https://doi.org/10.1007/978-981-16-3802-2_12
https://doi.org/10.1145/1094855.1094934
https://developer.android.com/
https://developer.android.com/
https://doi.org/10.1145/2593902.2593917
https://code.google.com/archive/p/tippytipper
https://code.google.com/archive/p/tippytipper
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://doi.org/10.3390/s22010128
https://doi.org/10.1016/j.scico.2013.11.013
https://doi.org/10.1007/s10664-019-09716-7
https://doi.org/10.1631/FITEE.1500083
https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1016/j.jss.2019.110489
https://www.ifml.org/
https://doi.org/10.1007/s11227-018-2652-7
https://doi.org/10.1007/s10270-021-00904-y
https://doi.org/10.1109/ACCESS.2020.2965259
https://doi.org/10.1007/s10270-018-0698-x
https://doi.org/10.1109/ICCSRE.2019.8807572
https://doi.org/10.1007/s10270-020-00803-8
https://doi.org/10.1109/ACCESS.2019.2895504
https://doi.org/10.1016/j.scico.2018.11.002
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1016/j.jss.2016.09.049
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zafar et al. 10.3389/fcomp.2024.1397805

Usman, M., Iqbal, M. Z., and Khan, M. U. (2020). An automated model?based
approach for unit—level performance test generation of mobile applications. J. Softw.
32:e2215. doi: 10.1002/smr.2215

Usman, M., Nadeem, A., and Kim, T. (2008). “UJECTOR: a
tool for executable code generation from UML models,” in 2008
Advanced Software Engineering and Its Applications (Hainan: IEEE),
165–170.

Vegendla, A., Duc, A. N., Gao, S., and Sindre, G. (2018). A systematic mapping
study on requirements engineering in software ecosystems. J. Informat. Technol. Res.
11, 49–69. doi: 10.4018/JITR.2018010104

Yang W., Prasad M. R., and Xie T. (2013). “A grey-box approach for automated
GUI-model generation of mobile applications,” in International Conference on
Fundamental Approaches to Software Engineering (Berlin; Heidelberg: Springer), 250–
265.

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1397805
https://doi.org/10.1002/smr.2215
https://doi.org/10.4018/JITR.2018010104
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	MOBICAT: a model-driven engineering approach for automatic GUI code generation for Android applications
	1 Introduction
	2 Related work
	2.1 Graphical user interface generation approaches for mobile application
	2.2 Model-driven development approaches for mobile application
	2.3 Analysis of current state-of-the-art in GUI and MDD approaches

	3 TippyTipper application
	4 Proposed approach
	4.1 UML-based GUI modeling profile
	4.1.1 RadioGroup

	4.2 Requirements gathering of mobile application
	4.2.1 Mobile application screens
	4.2.2 Modeling use cases

	4.3 Behavior modeling of mobile application

	5 Proposed model based GUI code generator (MOBICAT) tool
	6 Evaluation
	6.1 Research questions
	6.2 Experimental design
	6.3 Example applications

	7 Results and discussion
	7.1 Results for RQ1
	7.2 Results for RQ2

	8 Threats to validity
	8.1 External validity threat
	8.2 Internal validity threat
	8.3 Construct validity threat
	8.4 Conclusion validity threat

	9 Research implications
	9.1 State-of-the-art implications
	9.2 State-of-the-practice implications

	10 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

