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Thiswork described a novel non-contact, wearable, real-time eye blink detection

solution based on capacitive sensing technology. A custom-built prototype

employing low-cost and low-power consumption capacitive sensors was

integrated into standard glasses, with a copper tape electrode a�xed to the

frame. The blink of an eye induces a variation in capacitance between the

electrode and the eyelid, thereby generating a distinctive capacitance-related

signal. By analyzing this signal, eye blink activity can be accurately identified. The

e�ectiveness and reliability of the proposed solution were evaluated through

five distinct scenarios involving eight participants. Utilizing a user-dependent

detection method with a customized predefined threshold value, an average

precision of 92% and a recall of 94% were achieved. Furthermore, an e�cient

user-independent model based on the two-bit precision decision tree was

further applied, yielding an average precision of 80% and an average recall of

81%. These results demonstrate the potential of the proposed technology for

real-world applications requiring precise and unobtrusive eye blink detection.

KEYWORDS

eye blink detection, non-contact, low latency, human activity recognition, capacitive

sensing, energy e�ciency

1 Introduction

The phenomenon of eye blink rate serves as a versatile indicator, offering valuable

insights into various aspects of human cognition and wellbeing. Extensive research has

highlighted its significance in gauging fatigue levels, mental workload, and overall cognitive

functioning, as described in studies (Martins and Carvalho, 2015; Faure et al., 2016;

Haq and Hasan, 2016; Jongkees and Colzato, 2016). For instance, the prevalence of

computer vision syndrome underscores the importance of monitoring eye fatigue to

mitigate its adverse effects resulting from prolonged screen exposure, as outlined by Divjak

and Bischof (2009). Leveraging the eye blink monitor technology, timely alerts can be

issued to prevent or alleviate eye strain, thus promoting healthier habits. Moreover, the

exploration of eye blink as an innovative input method in human-computer interaction

holds promise, particularly for individuals with motor impairments, providing them with

newfound opportunities to engage with digital interfaces. This interdisciplinary interest in

eye blink detection extends to emerging technologies like virtual reality and augmented

reality, where robust detection mechanisms are essential for enhancing user experiences,

as demonstrated in the works (Królak and Strumiłło, 2012; Kumar and Sharma, 2016)
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As such, understanding and harnessing the nuances of eye

blink behavior have far-reaching implications across various

domains, from healthcare and assistive technology to immersive

digital environments.

Many solutions have been proposed to address the challenges

of eye blink detection, which can be grouped into computer

vision-based and sensor-based approaches. Computer vision-

based techniques are a popular sensing method in contemporary

literature for eye gesture recognition (Al-gawwam and Benaissa,

2018; de Lima Medeiros et al., 2022; Youwei, 2023; Zeng et al.,

2023). This solution requires capturing images of the eyes to

extract the eye blink features, like markers (Kraft et al., 2022;

Youwei, 2023), which often can achieve high accuracy given high-

quality images for eye blink detection tasks with deep learning

models. However, for sustained usage in the real world, vision-

based methods are often influenced by image quality (e.g., lighting

conditions, stability), usability (e.g., requires users to photograph

their face), and private issues (esp. for automatic photo-taking

methods), besides, the power consumption caused by image

shotting and processing also prohibits its long-term usage in the

wild environment. Some disadvantages of the computer vision-

based approach can be overcome by the sensor-based methods like

acoustic (Liu et al., 2021), EEG (Electroencephalogram) (Ko et al.,

2020), radar (Zhang et al., 2023). However, the above sensor-based

solutions either lack practicality, making long-term and real-world

eye blink detection unfeasible, or robustness, leading to limitations

in various environmental conditions, like limited sensing angles

and uncomfortable configuration (skin contact).

To address the existing sensing limitations, we proposed a

non-contact sensing-based eye detection solution leveraging a

capacitive sensing technique, which is widely used in human

activity recognition scenarios (Bian et al., 2024). The capacitive

sensing solution measures the variation in capacitance, which

occurs when the distance between the electrode and an object or

the surface of the object changes. In the case of detecting eye blinks,

a copper electrode of the capacitive sensor can be placed near

the eye, and the movement of the eyelid during a blink alters the

distance between the electrode and the eyelid, leading to changes

in capacitance that can be detected. The solution was demonstrated

with a series of experiments considering both static and dynamic

body states. With the capacitive sensing unit deployed on a pair

of standard glasses, we achieved 92% detection precision and 94%

recall by a user-dependent model with a customized predefined

threshold value. In addition, an efficient user-independent model

based on the two-bit precision decision tree was further applied,

yielding an average precision of 80% and an average recall of 81

%, this part is a major extension of our previous work (Liu et al.,

2022).

Overall, we have the following contributions from this work:

1. A general concept of using capacitive sensing for eye blink

detection in a non-contact way is proposed.

2. A wearable, low-power eye blink detection system that

showcases both robustness and accuracy in five scenarios

was developed.

3. An efficient and low-latency detection method based on a

decision tree was implemented to demonstrate the efficiency of

the proposed solution for eye blink detection.

2 Related work

Existing eye blink detection approaches are mainly grouped

into computer vision-based and sensor-based solutions, as Table 1

lists. The vision solutions capture the landmarks of the face and

abstract eye blink features with a deep convolutional model. Such

a system provides high accuracy of eye blink detection and real-

time inferences benefitting from the development of hardware

resources and the feature abstracting deep neural network models,

as demonstrated in the existing studies (Soukupova and Cech,

2016; Baccour et al., 2019; Youwei, 2023). However, such systems

are constrained in practical scenarios. Firstly, environmental

conditions like light could cause a sharp drop in accuracy. Secondly,

there are a lot of cases in everyday life where a camera does

not exist when eye blink detection is needed. Thirdly, the vision

solution is not a privacy-respect approach, thus, resulting in a low

acceptance rate among users. Such disadvantages of vision-based

methods can be better addressed by sensor-based solutions. For

example, Liu et al. (2021) proposed “BlinkListener” to sense the

subtle eye blink motion using acoustic signals in a contact-free

manner and demonstrated the robustness on the Bela platform

as well as a smartphone with a median detection accuracy of

95%. Luo et al. (2020) introduced the Eslucent, an eyelid interface

for detecting eye blinking, which is built upon the fact that the

eyelid moves during the blink. By deploying an on-skin electrode

on the eyelid, the capacitance value formed by the electrode and

the eyelid will variate. The experiments show that the Eslucent

achieves an average precision of 82.6% and a recall of 70.4%.

Some other sensor-based approaches were also proposed for eye

blink detection, like the doppler sensor (Kim, 2014), EEG signals

(Ko et al., 2020), mmWaves (Shu et al., 2022), etc. However, the

proposed sensor-based solutions lack either practicability, meaning

that the long-term and in-the-wild eye blink detection is not

possible, or robustness, meaning that the dynamic environmental

conditions result in a limited number of usage scenarios. For

example, the angular sensing range of the “BlinkListener” is limited.

EEG and the “Eslucent” need special head/face preparation work

before the detection. To address the above issues, we proposed a

non-contact sensing-based eye detection solution leveraging the

capacitive sensing technique.

3 Approach

3.1 General principle

Capacitive-based proximity sensing, a technique reliant on

the fluctuations in the electric field surrounding electrodes due

to environmental factors, has emerged as a versatile method

with applications across numerous domains (Bian et al., 2024).

This method has been extensively studied and categorized into

three distinct modes based on electrode configuration (single

or paired) and signal type (varying or static): transmit mode

(Ye et al., 2018), shunt mode (Porins and Apse-Apsitis, 2019),

and load mode (Grosse-Puppendahl et al., 2013). These modes

provide a framework for perceiving proximity to surrounding

objects by precisely measuring changes in capacitance, offering
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TABLE 1 Comparison with state-of-the-art eye blink detection solutions.

References Sensor Location Performance Algorithms Advantages Limitation

Al-gawwam and Benaissa

(2018)

Camera Facing face 96.65% Precision Savitzky-Golay

Filter

High Precision High computing

load, Light

Condition

Ryan et al. (2021) Event Camera Facing face Around 90%

precision, subject

dependent

RNN High temporal

resolution

Noise from

background

de Lima Medeiros et al. (2022) Web Camera Facing face 92.63% F-Score CNN + SVM High F-score High computing

load, Light

Condition

Jordan et al. (2020) Camera Facing face 90.5% accuracy CNN Edge

implementation

Light condition

Luo et al. (2020) Capacitive sensor Eyelid 82% precision Rule-based

method

low power, wearable low long-term

detection capability

Maleki and Uchida (2018) Doppler sensor In front of eye not provided PCA Robustness low long-term

detection capability

Cardillo et al. (2021) mmWave sensor In front of

body

not provided Interferometric

algorithm

Differentiate

between body

movement and eye

blink

Very limited usage

scenarios

Agarwal and Sivakumar (2019) EEG Head mounted

EEG system

93.4% precision Automated

unsupervised

algorithm

high accuracy EEG signal

dependent

valuable insights into the spatial relationships between objects and

their environment.

In this work, we present a novel application of capacitive

sensing technology aimed at detecting eye blinking. Our capacitive

sensing unit comprises a single electrode operating in the load

mode, specifically designed for integration into a glass frame.

As depicted in Figure 1, the electrode is charged, generating

an electric field in its immediate vicinity. The activity of eye

blinking, characterized by the movement of the upper eyelid, alters

the distance between the electrode and the eyelid, consequently

disrupting the distribution of the electric field. Through continuous

monitoring of the capacitance variation, our system can effectively

detect these subtle changes, providing a reliable means of

identifying eye blinks in real-time. The inherent conductivity

of the human body presents an intriguing opportunity within

capacitive proximity sensing systems. By considering the entire

body or specific body parts as conductive intrusions, a wide array of

movement types can be accurately sensed. This capability extends

beyond traditional inertial sensor units, as highlighted in studies

(Grosse-Puppendahl et al., 2013; Ye et al., 2018; Porins and Apse-

Apsitis, 2019), ushering in a new branch of wearable motion

sensing modalities.

3.2 Hardware implementation

As the direct measurement of body-area capacitance or

its variation poses challenges compared to parameters like

voltage signals, researchers have delved into indirect measurement

solutions. Among these, two primary methods have emerged:

the charge-based approach and the frequency-based approach.

The former entails monitoring body-area capacitance by detecting

variations in charge resulting from voltage signals (Braun et al.,

2011; Bian et al., 2019). However, this method typically necessitates

preprocessing steps such as signal amplification or high-resolution

sampling to accurately capture subtle fluctuations in the raw

signal. In contrast, the frequency-based method records body-

area capacitance by measuring frequency changes induced by

variations in capacitance within an oscillating circuit, facilitated

by a frequency counter (Grosse-Puppendahl et al., 2012; Bian and

Lukowicz, 2021).

Taking into account factors such as cost-effectiveness and

simplicity, we have chosen to adopt the frequency-based solution

for eye-blink detection. In our setup, an LC tank oscillator is

employed, with frequency measurement and digitization handled

by the FDC2214 chip. This chip not only drives the LC tank to

oscillate but also offers four channels for monitoring capacitance

variations. However, for the scope of this study, we focus on

utilizing only one channel. Nevertheless, our ongoing research

endeavors will explore the potential of leveraging multiple channels

to enhance the detection of eye activities.

Within the LC tank oscillator setup, any alteration in

capacitance is reflected as a shift in the resonant frequency.

Rather than retroactively computing capacitance variation values,

our analysis directly employs frequency data for the abstraction

of eye blink activity. This streamlined approach not only

simplifies the detection process but also enhances the system’s

efficiency and accuracy in discerning eye blinks within dynamic

environmental contexts.

In addition to the sensing unit, the hardware platform

incorporates an nRF52840 microcontroller for real-time eye blink

abstraction, which also facilitates Bluetooth transmission for offline

data presentation. A compact lithium battery with a 300 mAh

capacity powers the system, providing approximately 20 hours of
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FIGURE 1

Capacitance between electrode and eye in di�erent status (as the eyelids close, the distance between the eyelid and electrodes increases, leading to

a reduction in capacitance and a subsequent rise in resonant frequency, as shown in this figure).

continuous in-the-wild eye blink detection. The electrode consists

simply of a piece of copper tape affixed to the upper frame of

a standard pair of glasses. There are no special treatments on

the copper tape, the length of the copper tape is around 3 cm.

The electrode is not a regular shape, its shape varies with the

upper frame of the glasses. The entire hardware prototype weighs

only around 18 grams, ensuring that users hardly notice it while

wearing. In practical applications, the battery and PCB board can

be strategically placed on each leg of the glasses. This design

distributes the weight evenly across the wearer’s ears, ensuring

a more comfortable wearing experience. Figure 2 illustrates the

hardware platform and its integration into the glasses.

4 Evaluation

To comprehensively evaluate the proposed eye blink detection

approach and hardware prototype, a series of five experiments

were designed, each representing different daily activities. These

experiments aimed to assess both the practicality and robustness of

the system under various conditions. As illustrated in Figure 3, the

experiments covered a spectrum of scenarios, including intentional

and involuntary blink occurrences.

Due to safety issues, the scenario involving the car cockpit

was conducted in a controlled environment, namely a parking

lot, where participants simulated driving activities. Similarly, to

simulate conversation scenarios, volunteers read random news

articles aloud in the absence of a predefined conversational topic.

These adjustments ensured a diverse range of activities were

captured, mirroring real-world situations as closely as possible.

Eight volunteers, comprising five males and three females aged

between 24 and 32, were invited to participate in the experiments.

Each scenario lasted approximately eight minutes, with data

sampled at a rate of 60Hz. To facilitate data capture and analysis,

a custom web application was developed using JavaScript. This

application is composed of four primary components: the data

receive module, plot module, video record module, and a button.

The data receive module is engineered to capture raw sensor

data from the microcontroller through the Bluetooth interface,

storing it locally on the laptop. The plot module facilitates real-

time visualization of this raw data. Meanwhile, the video record

module activates the laptop’s camera to gather eye information.

The button is used to temporarily mark instances when an eye

blink is detected. These instances are then definitively labeled

based on the video data. Thus, this application enabled real-

time data visualization, storage, and labeling of transmitted data.

Additionally, the application utilized the PC camera to record

the volunteers’ facial expressions throughout the experiments,

providing valuable ground truth data for eye blink occurrences. By

designing these experiments and employing a comprehensive data

collection and analysis approach, we aimed to thoroughly evaluate

the performance and reliability of our eye blink detection system

across a range of real-world scenarios.

The findings from the study conducted by Kwon et al. (2013)

shed light on the temporal dynamics of voluntary blinks, revealing

that the closing phase lasts approximately 100 ms, succeeded by

an opening phase of about 200 ms until 97 percent recovery of

the eye’s opening. This delineation of blink phases underscores the

significance of timing in blink detection, with capacitance variation

primarily occurring during these dynamic phases. The static closed

and open phases of the eye exhibit minimal effect on capacitance, as

the distance between the electrode and the eyelid remains constant.

4.1 Eye blink detection by user-dependent
model

To facilitate real-time blink detection, we employed a one-

second sliding window with a half-second overlap, providing a

comprehensive temporal context for analysis. Initially, a sliding

mean filtering with a window size of 5 was applied to the

raw data to mitigate inherent noise interference. Subsequent

computation of data variation involved simple subtraction of

consecutive raw data points according to the equation in line 8

from Algorithm 1, effectively isolating blink-related features and

eliminating environmental electric field drift. Figure 4 provides a

visual representation of this process, showing the raw data stream
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FIGURE 2

Hardware prototype and its deployment on the glass. Copper tape is a�xed to the glass frame, serving as the sensing electrode. The sensor board,

which includes the microcontroller, Bluetooth interface, FDC module, and battery. The FDC module is a multi-channel family of noise- and

EMI-resistant, high-resolution, high-speed capacitance-to-digital converters for implementing capacitive sensing solutions.

FIGURE 3

Five eye blink detection scenarios. [(A) intentional blink; (B) Involuntary blink while reading a book; (C) Involuntary blink while talking(replaced by

reading news with voice in some sessions); (D) Involuntary blink while walking around; (E) Involuntary blink while sitting in the car cockpit simulating

the driving activity].

alongside its corresponding variation stream, wherein each peak

denotes a blink action, with positive peaks signifying the closing

phase and negative peaks denoting the opening phase.

For blink detection, we established a predefined threshold

against which signal variation was compared, enabling the

identification of positive impulses indicative of blink events. The

full eye-blink detection procedure can be found in Algorithm 1,

which is majorly designed to detect the signal change rate caused

by eye blink. The last three square waves in the raw signal stream

indicate that the prototype also detected the duration of the eye-

closing state, which will be explored in future.

4.1.1 Intentional eye blink
To establish a baseline for subsequent involuntary experiments,

we initiated an intentional eye blink experiment. Volunteers were
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Require: Raw Signal X, Threshold Th, Label Y, True

Positive TP, False Positive FP, True Negative TN

and False Negative FN

1: Input: X, Th, Y.

2: The raw data X is processed by the Sliding Mean

Filtering with the window size of 5

3: TP← 0

4: FP← 0

5: TN ← 0

6: FN ← 0

7: for i in (range(len(X)− 1) do

8: Diff ← Xi+1 − Xi

9: if Diff > Th then

10: if Yi == 1 then

11: TP = TP + 1

12: else

13: FP = FP + 1

14: end if

15: else

16: if Yi == 0 then

17: TN = TN + 1

18: else

19: FN = FN + 1

20: end if

21: end if

22: end for

23: Recall← TP
TP+FN

24: Precision← TP
TP+FP

25: return Recall, Precision

Algorithm 1. Eye blink detection with the predefined threshold

instructed to sit in front of a laptop while wearing the provided

glasses and deliberately blinking their eyes for approximately eight

minutes. The laptop served to receive and plot the raw data stream

transmitted from the hardware prototype deployed on the glasses,

concurrently recording video to facilitate labeling of ground truth

eye blink occurrences. The average blinking frequency observed

during the intentional blinking experiment was approximately ten

times per minute.

Figure 5 shows the raw signal and its variation during

intentional blinking, alongside the ground truth and detected

blinks (highlighted in green) from one of the volunteers. The

drift observed in the raw signal is attributed to fluctuations in

capacitance between the electrode and the environment, such as

those caused by head movements. Despite these variations, the

distinctive impulses generated by eye blinks remained discernible

due to the rapidity of blink events and the significant rate of change

in capacitance associated with eye blinks.

By comparing the signal variation with a predefined threshold,

we achieved a high precision of 0.99 and a recall of 0.98 for

detecting eye blinks from the volunteer. On average, intentional

blink detection yielded a precision of 0.93 and a recall of

0.94, indicating the robustness and effectiveness of our detection

approach even in intentional blinking scenarios.

4.1.2 Involuntary eye blink
To showcase the practical applicability of the proposed

prototype in real-life scenarios, such as reading and talking, all

volunteers participated in four everyday activities encompassing

both static and dynamic body states. These activities aimed to

evaluate the prototype’s performance across practical scenarios.

A simulated driving scenario was conducted in a parking lot,

recognizing the effectiveness of involuntary eye blink monitoring

for indicating fatigue during driving, as demonstrated in previous

research (Wang et al., 2006). In the talking scenario, volunteers

engaged in conversation with the operator or read aloud from

a random news article while wearing the glasses. The reading

activity involved participants reading from a paper, book, or

smartphone in silence. For the walking scenario, volunteers donned

the glasses and walked inside the office building, moving in random

directions to assess the prototype’s robustness across different

environmental conditions.

Figure 6 shows the signals, labels, and detected blinks recorded

during the walking scenario of one volunteer. Notably, eye blink

actions remained clearly discernible in the signal variation stream,

with an impressive precision of 0.91 and recall of 0.99 achieved

using the proposed positive peak detection approach. Similar levels

of performance were observed across the other three explored daily

activities, further validating the effectiveness and reliability of our

prototype in diverse real-life scenarios.

Table 2 presents the results of eye blink detection using the

proposed prototype across the volunteers. Volunteers V1, V2,

and V6 achieved impressive precision and recall scores, averaging

over 0.95. Volunteer V6 notably achieved an average recall of

0.98, indicating that almost all blinks were successfully detected,

particularly during walking and driving activities, where the

recall reached 0.99. Volunteer V5, however, exhibited a lower

average precision of 0.86, indicating the presence of false positives,

particularly prominent during involuntary eye blink scenarios

(though achieving a precision of 0.91 during intentional blinks).

Overall, across all volunteers and activities, the average precision

and recall were 0.92 and 0.94, respectively. These results underscore

the robustness and effectiveness of our prototype in detecting eye

blinks across various real-life scenarios.

4.2 Eye blink detection by
user-independent model

While the eye-blink detection method utilizing a

predetermined threshold value demonstrated commendable

precision and recall scores, the need for user-dependent threshold

configuration poses practical inconveniences across different users.

We further implemented an energy-efficient and low-latency

user-independent solution for eye blink detection to tackle

this issue.

Figure 7 illustrates the workflow of the user-independent

solution, comprising five components: a low-pass filter, peak

detection, window selection, quantization, and decision tree

classifier. Initially, the raw signal undergoes filtration with a low-

pass 2-order Butterworth filter featuring a cutoff frequency of

10 Hz. Subsequently, peak detection identifies windows likely to
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FIGURE 4

Raw signal and signal variation between two continuous raw data (the last three square waves in the raw signal stream indicate that the prototype

also detected the duration of the eye-closing state, which will be explored in the future).

FIGURE 5

Raw signal and signal variation of the intentional blink scenario together with the ground truth and the detected blink(green).

FIGURE 6

Raw signal and signal variation of the walking scenario together with the ground truth and the detected blink (green).
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TABLE 2 Eye blink detection performance with the use of customized threshold value (precision/recall, %).

Volunteer V1 V2 V3 V4 V5 V6 V7 V8 Averaged

Intentional blink 99/99 100/98 84/93 89/89 91/94 99/98 94/94 88/90 93/94

Reading 94/98 96/97 95/100 94/94 93/95 89/95 99/97 86/86 93/95

Talking 100/97 95/97 85/98 88/93 85/96 97/98 92/89 89/88 91/95

Walking 99/97 90/92 84/85 95/94 81/86 91/99 95/98 94/98 91/94

Driving 89/90 99/94 88/93 95/99 79/92 99/99 83/83 88/96 90/93

Averaged 96/96 96/96 87/94 92/94 86/93 95/98 93/92 89/92 92/94

FIGURE 7

Data processing work flow for eye blink detection.

contain blinking behavior. Only windows containing peak signals

are forwarded to the classifier for processing, thereby reducing data

processing power consumption compared to the slide-window-

based approach, where the classifier continually processes windows.

A one-second window size was employed in this study. The Python

package scikit-learn was utilized to locate peaks using the find-peak

function. The selected windows, comprising 30 samples preceding

and following the detected peak location, are directed to the

quantization module to decrease the precision bit.

In the quantization module, selected windows undergo data

calibration and shifting processes. Given the wide range and

variance in the magnitude of raw data with 32-bit precision

across different users, a calibration step is employed to reduce

the precision bit. The calibrated data, denoted as datacalibrated, is

computed according to Equation (1). Subsequently, the required

precision bit Nbit for the data can be determined as shown in

Equation (2). In this work, a window-based calibration approach

is utilized, wherein the minimum datamin(data) of each window is

subtracted correspondingly. This method offers finer granularity,

necessitating a smaller number of precision bits compared to a

global calibration method, which involves subtracting the global

minimum value min(data) from the dataset. This choice is made

due to the potential impact of noise and data drift on the global

minimum value. The result revealed that the range of required

precision bits for all selected windows falls between 9 and 20 bits.

Given the potential benefits such as enhanced hardware

and computational efficiency associated with lower precision bit

representation, this study delved into exploring a reduced precision

bit representation of the selected windows without discernible

performance degradation. The precision bit number nbit of the

quantized windows is varied from 8 bits to 1 bit. The quantization

process of the windows is achieved through right shift operations

as illustrated in Equation (3). The parameter nbit is employed to

determine the valid data length after the right shift. For instance,

if the required precision bit of a window is 6 bits after calibration

and nbit is set to 3, then each data element in the window undergoes

a right shift of 6 − 3 = 3 bits. Following the shift, the magnitude

range of each data in the windows spans from 0 to 7.

In the classifier module, prioritizing computational efficiency

and latency considerations, a decision tree classifier was chosen

over neural networks for implementation. Decision trees offer

simplicity in implementation and are computationally less

demanding compared to neural networks. Moreover, they can

be readily translated into combinational logic circuits, resulting
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in ultra-low latency. Additionally, decision trees typically exhibit

robustness against outliers in the data, with their performance

being less affected by outliers compared to neural networks.

Given that capacitive sensing can be susceptible to environmental

influences, resulting in outliers, the decision tree was deemed

suitable for classifying the selected windows. The decision tree

employed in this study had a maximum depth of 15 and utilized

the “gini” criterion, implemented using functions from the Python

package scikit-learn.

datacalibrated = data−min(data) (1)

Nbit = ⌈log2(max(datacalibrated))⌉ (2)

dataquantized = datacalibrated >> (Nbit − nbit) (3)

To evaluate the classifier model’s performance across subjects,

the leave-one-subject-out cross-validation method was utilized in

this study. Table 3 presents the eye blink detection results obtained

using the decision tree model. It is notable that the precision score

exceeds 80% when the precision bit is greater than 2 bits, while

the recall score experiences a slight increase as the precision bit

is reduced. This phenomenon may stem from a reduction in the

number of False Negative predictions when a lower precision bit is

chosen. With low-precision bit representation, only the prominent

peak features in the windows are retained, typically associated

with eye blink activity. Furthermore, the standard deviation of

both recall and precision scores exceeds 10%, demonstrating

the performance difference of eye blink detection between the

different users. In comparison to the user-dependent solution, the

performance of the user-independent approach exhibits noticeable

degradation. This indicates that individual differences significantly

influence the capacitive sensing-based solution in this study. To

address this issue, collecting data from a larger pool of participants

or exploring alternative learning paradigms such as online learning

could be beneficial.

Overall, the decision tree based user-independent method

allows for efficient eye-blink detection in real-time scenarios,

making it a valuable approach for low-power and ultra-fast

inference in eye-blink detection scenarios.

5 Discussion

In this work, we introduced the energy-efficient, low-

latency and non-contact eye blink detection solution with

the use of capacitive sensing, which was evaluated in five

application scenarios with using of both user-dependent and

user-independent models. Instead of using the neural network

model, a decision tree classifier model requiring inexpensive

computation source with low-precision bit representation was

implemented to realize energy efficiency and low latency in this

work. While the prototype demonstrates competitive performance

in blink detection, several limitations were observed during the

experiments. Firstly, volunteers who do not typically wear glasses

TABLE 3 Eye blink detection result by user-independent model (leave one

subject out).

Precision bit (nbit) Precision score Recall score

1 0.77± 0.12 0.82± 0.15

2 0.80± 0.10 0.81± 0.14

3 0.80± 0.10 0.78± 0.15

4 0.81± 0.11 0.79± 0.17

5 0.80± 0.10 0.78± 0.16

6 0.80± 0.11 0.79± 0.15

7 0.80± 0.11 0.78± 0.15

8 0.80± 0.11 0.79± 0.15

were provided with glasses of different sizes composed of plastic

frames. However, the blink detection performance may degrade if

the glasses do not properly fit the volunteer’s head shape, which

caused a large standard deviation of precision and recall score using

the leave-one-subject-out cross-validation method. This limitation

is reasonable considering that the proposed approach relies on

the proximity of the upper eyelid to the capacitive electrode,

with better sensitivity achieved with a closer distance between

the eyelid and electrode. However, this constraint can be more

effectively mitigated through the utilization of user-customized

glass in real-world applications. Secondly, as each volunteer’s blink

signal variation scale differs, using a fixed threshold with a user-

dependent solution for eye-blink detection across volunteers is

not ideal. Although the user-independent model can overcome

this issue, the performance of the user-independent model has

an obvious degradation compared to the user-dependent solution,

because factors such as eye shape and the distance between the

eye and electrode can influence this variability of peak signal.

Therefore, an online learning solution that adjusts alongside the

user could be studied to remove this limitation in the future.

Thirdly, during intensive body movements such as running, the

glasses may vibrate relative to the head, resulting in a signal that

may overshadow the signal caused by blinks. While this study

did not explore blink detection in scenarios with such strenuous

intensity, it presents a promising avenue for future research.

Addressing these limitations would enhance the robustness and

applicability of the blink detection approach in various real-life

situations. Lastly, the signal quality of eye blink activity is intricately

linked to the distribution of the electric field surrounding the

eyelid. This electric field is susceptible to influence from electrode

factors such as location, shape, and size. However, these electrode

characteristics have not been investigated in this study, leaving

room for optimization to enhance performance.

In addition to the five potential application scenarios discussed

in this paper, our proposed lightweight and non-contact eye blink

detection solution could be seamlessly integrated into VR devices.

This integration aims to enhance the human-computer interface’s

performance by utilizing eye blink data. While current methods

for extracting eye information, such as eye blink detection and

eye tracking, offer highly precise inputs—exemplified by the Apple

Vision Pro’s sophisticated system of LEDs and infrared cameras
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that project invisible light patterns onto the eyes to detect blinks

and track movement—these multifunctional solutions typically

necessitate more complex, heavier hardware systems and greater

computational resources. In this work, we have focused solely on

demonstrating the efficacy of eye blink detection. Future research

will explore eye tracking using multiple sensing electrodes to

overcome the limitations mentioned above.

6 Conclusion

In conclusion, this work presents a pioneering non-contact,

wearable, real-time eye blink detection solution leveraging

capacitive sensing technology. The custom-built prototype,

featuring low-cost and low-power consumption capacitive

sensors integrated into standard glasses with a copper tape

electrode attached to the frame, detects eye blinks by recognizing

variations in capacitance between the electrode and the eyelid,

thereby generating distinctive capacitance-related signals.

Through evaluation across five different scenarios involving eight

participants, the effectiveness and reliability of the proposed

solution were confirmed. Employing a user-dependent detection

method with a customized predefined threshold value, the

prototype achieved an average precision of 92% and a recall of

94%, underscoring its feasibility and robustness. Additionally, the

application of an efficient and low-latency user-independent model

based on the two-bit precision decision tree yielded an average

precision of 80% and an average recall of 81 %. These findings

highlight the potential of the proposed technology for real-world

applications requiring precise and unobtrusive eye blink detection.
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