
TYPE Brief Research Report

PUBLISHED 13 June 2024

DOI 10.3389/fcomp.2024.1393723

OPEN ACCESS

EDITED BY

Simon K. S. Cheung,

Hong Kong Metropolitan University, China

REVIEWED BY

Paul Logasa Bogen,

Google, United States

James Harold Davenport,

University of Bath, United Kingdom

Hapnes Toba,

Maranatha Christian University, Indonesia

*CORRESPONDENCE

Kaushik Gopalan

kaushik.gopalan@flame.edu.in

RECEIVED 29 February 2024

ACCEPTED 27 May 2024

PUBLISHED 13 June 2024

CITATION

Gandhi N, Gopalan K and Prasad P (2024) A

Support Vector Machine based approach for

plagiarism detection in Python code

submissions in undergraduate settings.

Front. Comput. Sci. 6:1393723.

doi: 10.3389/fcomp.2024.1393723

COPYRIGHT

© 2024 Gandhi, Gopalan and Prasad. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A Support Vector Machine based
approach for plagiarism
detection in Python code
submissions in undergraduate
settings

Nandini Gandhi, Kaushik Gopalan* and Prajish Prasad

School of Computing and Data Sciences, FLAME University, Pune, Maharashtra, India

Mechanisms for plagiarism detection play a crucial role in maintaining

academic integrity, acting both to penalize wrongdoing while also serving as a

preemptive deterrent for bad behavior. This manuscript proposes a customized

plagiarism detection algorithm tailored to detect source code plagiarism in the

Python programming language. Our approach combines textual and syntactic

techniques, employing a support vector machine (SVM) to e�ectively combine

various indicators of similarity and calculate the resulting similarity scores. The

algorithmwas trained and tested using a sample of code submissions of 4 coding

problems each from 45 volunteers; 15 of these were original submissions while

the other 30 were plagiarized samples. The submissions of two of the questions

was used for training and the other two for testing-using the leave-p-out

cross-validation strategy to avoid overfitting. We compare the performance of

the proposed method with two widely used tools-MOSS and JPlag—and find

that the proposed method results in a small but significant improvement in

accuracy compared to JPlag, while significantly outperforming MOSS in flagging

plagiarized samples.

KEYWORDS

source code plagiarism detection, Python programming, textual similarity, Abstract

Syntax Trees, Support Vector Machine

1 Introduction

Code plagiarism has been an area of concern for teachers of programming courses for a

long time now. Research has estimated between 50% to 80% of all undergraduate students

have plagiarized a minimum of once during their academic years (Yeo, 2007). From an

instructor’s perspective, detecting plagiarism is difficult, particularly in large classrooms,

where manual inspection of code is impractical and time-consuming. Moreover, manually

detecting the similarity between code snippets is a difficult task. Hence, it is imperative that

instructors employ automatedmeans to detect plagiarism in source code, especially in large

classrooms.

Source Code Plagiarism takes place when a student copies the source code of another

student and submits it as their own. “A plagiarized program can be defined as a

program which has been produced from another program with a small number of routine

transformations and without a detailed understanding of the source code” (Parker and

Hamblen, 1989). Plagiarized code is changed largely at a superficial level, but its behavior

is kept very close to the original while avoiding detection in an attempt to make it

look authentic. In this manuscript, we focus on source code plagiarism in the Python

programming language. There has been a significant push in recent years to use the

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1393723
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1393723&domain=pdf&date_stamp=2024-06-13
mailto:kaushik.gopalan@flame.edu.in
https://doi.org/10.3389/fcomp.2024.1393723
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1393723/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gandhi et al. 10.3389/fcomp.2024.1393723

Python language to teach introductory programming across

universities globally (Jayal et al., 2011; Bogdanchikov et al., 2013;

Shein, 2015; Wainer and Xavier, 2018), with Python’s simplified

syntax and ease of use often cited as a rationale for its choice as

an introductory programming language.

Although there are techniques for code plagiarism detection

in general, there is a lack of specific techniques for plagiarism

detection in the Python programming language (Novak et al.,

2019). Moreover, there are several challenges in detecting

plagiarism, such as the presence of code transformations including

code obfuscation techniques and code structure alterations

(Alsmadi et al., 2014; Agrawal and Sharma, 2016).

In this manuscript, we propose a technique to combine

elements of textual similarity with syntactic methods such as

Abstract Syntax Trees to reliably detect source code plagiarism

in Python. We use Support Vector Machine (SVM) to optimally

weight different components of similarity between pairs of code

files. Further details of our data collection methodology as well as

specifics of our algorithm follow in subsequent sections.

2 Literature review

2.1 Plagiarism detection algorithms

There are two broad classes of plagiarism detection algorithms

and tools: (1) Text-based and (2) Syntax-based analysis techniques.

Text-based techniques use Python-specific features such as

its indentation syntax, white space, and comments to detect

plagiarism. Syntax-based techniques use Abstract Syntax Trees

(ASTs) which are tree-like data structures used by compilers and

interpreters to represent the syntactic structure of a program.

These techniques parse the AST to detect instances of plagiarism.

Sulistiani and Karnalim proposed a framework for detecting

code plagiarism in Python code by using Python specific textual

features and applying cosine similarity to filter out pairs with

a high likelihood of substantial overlap for further scrutiny

using the Running Karp-Rabin Greedy-String-Tiling (RKRGST)

algorithm (Sulistiani and Karnalim, 2019). The findings show that

the proposed technique improved time efficiency and enhanced

sensitivity.

Syntax-based techniques employ Abstract Syntax Trees (ASTs),

which are tree-like data structures used by compilers and

interpreters to represent the syntactic structure of a program.

Zhao et al. (2015) developed an AST-based plagiarism detection

method (AST-CC) that enhances detection accuracy through

hash value computations of syntax tree nodes. It is specifically

tailored to arithmetic operations for error minimization, thus

detecting sophisticated plagiarism patterns like block copying

and renaming identifiers. Ping et al. explored an AST-based

approach integrated with biological sequence matching algorithms,

effectively identifying plagiarism by extracting and clustering AST

feature vectors. This pinpoints “copy clusters” within programming

languages like C and Java, suggesting further refinement in AST

feature analysis and clustering methodologies (ping Zhang and

sheng Liu, 2013). Wen et al. (2019) proposed a hybrid model

combining code text and AST, where they first clean the code

by removing non-essential elements. Word segmentation, word

frequency statistics and weight calculation operations are carried

out, after which the code fingerprint is obtained by applying

Simhash and the Zhang-Shasha algorithm to compute the similarity

between ASTs. Li et al. introduced an AST-based detection method

capable of accurately identifying plagiarism even when plagiarists

alter function declarations. This addressed the limitations of

existing token-based and other syntactic plagiarism detection

methods; and emphasized the need for enhanced lexical and parser

grammars to accommodate new programming languages (Li and

Zhong, 2010). Experimental results from all the above-mentioned

studies show that these syntax-based methods are capable of

detecting several common means of plagiarism in source code.

Combinations of text-based and syntax-based analysis have

also been employed to detect similarities between code. Sharma

et al. (2015) developed “Parikshak,” using tokenization, N-Gram

representation, and the Greedy String Tiling algorithm to detect

plagiarism in source codes, catering to multiple programming

languages and integrating text and syntax analysis. Donaldson

et al. (1981) implemented algorithms that assess the sum of

differences and count of similarity between assignments by

offering a method to compare programming solutions beyond

textual similarity by considering syntactic structure to aid in the

detection process.

One aspect to consider while combining multiple features

to infer code similarity is that weighting different features in

a way that is effective can be a non-trivial problem. While

there are several ways to solve this problem, Support Vector

Machine (SVM) is quite commonly used in this context. In

fact, SVM is widely used in text plagiarism detection and has

also previously been used in code plagiarism detection. Awale

et al. (2020) employed SVM and xgboost classifiers to assess C++

programming assignments for plagiarism, focusing primarily on

string matching techniques, with particular focus on the location

of braces and the commenting style on a variety of features

including coding style and logic structure. Eppa and Murali

(2022) compared SVM with other machine learning methods for

detecting plagiarism in C programming, evaluating the efficacy

of different features like syntax and code structure in identifying

copied content. Huang et al. (2020) utilized multiple machine

learning classifiers to analyze a series of student submissions to

track code similarity between pairs of students over time, thus

incorporating both code similarity and “student behavior” (patterns

in student submissions over time) to provide improved estimates of

likely plagiarism.

In this study we combine the use of textual or stylistic elements

of the code similar to those used by Awale et al. (2020) along with

syntax-based elements such as those used by Zhao et al. (2015) with

the key difference that our technique utilizes customized Python-

specific textual and stylistic similarity measures, whereas the studies

cited previously have primarily focused on C, C++, and Java.

2.2 Plagiarism detection tools

MOSS (Measure Of Software Similarity) and JPLAG are

two well-known plagiarism detection tools widely used in the

field (Novak et al., 2019). MOSS is specifically designed for

programming assignments and can detect similarities between code

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1393723
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gandhi et al. 10.3389/fcomp.2024.1393723

submissions by comparing code structures, variable names, and

comments (Aiken, 2023). JPLAG, on the other hand, is a tool

that supports multiple programming languages and employs a

tree-based algorithm to analyze code similarities (Prechelt et al.,

2002).

Ahadi and Mathieson (2019) conducted a study to investigate

the effectiveness of using MOSS and JPlag in detecting source code

plagiarism in computer science courses. The results showed that

both tools were effective in detecting plagiarism, with MOSS being

slightlymore accurate than JPlag. However, the study also identified

several limitations of the tools, including their inability to detect

plagiarism involving minor modifications to the original code.

Additionally, a study compared nine plagiarism detection tools

and concluded that MOSS came out on top using F-measures and

precision-recall curves, while JPlag also had a high score (Heres and

Hage, 2017). For our work, we use MOSS and JPlag as benchmarks;

and adopt F1 score, precision and recall as our evaluation metrics

to measure the performance of our proposed plagiarism detector

against them.

2.3 Ethical considerations in using
plagiarism detection tools

Noynaert (2005) discusses the challenges and limitations of

plagiarism detection software, emphasizing the necessity of manual

investigation to complement these tools. While software like

Turnitin can help identify potential plagiarism, it often requires

additional manual verification by instructors to confirm instances

of plagiarism and avoid false positives. It highlights the need

for a balanced approach to plagiarism detection, combining both

automated and manual methods. Mozgovoy et al. (2010) explore

the limitations of existing automatic plagiarism detection systems

and their inability to detect sophisticated forms of plagiarism- such

as extensive paraphrasing or the use of technical tricks to evade

detection. They discuss the evolution of plagiarism due to the

accessibility of electronic texts and the challenges faced by detection

tools in adapting to new forms of plagiarism. The paper proposes

enhancing future systems with natural language processing and

information retrieval technologies to overcome these limitations.

It calls for a balance between technical and ethical considerations

in the deployment of plagiarism detection software.

Brinkman (2013) addresses the ethical concerns surrounding

the use of plagiarism detection systems, focusing on student privacy

rights. It critiques the permanent archiving of student works by

services like TurnItIn, discussing how this practice could lead

to potential harm to students in the future. The paper calls for

educators to fully inform students about the workings of plagiarism

detection services and understand the implications of archiving

student works.

3 Data collection

For this study, we selected four distinct programming questions

that are frequently used as introductory exercises in Python

programming coursework. The questions were as follows:

Question A (Fizzbuzz): A program, when given a number,

returns “Fizz” if the number is a multiple of 3, “Buzz” if the number

is a multiple of 5, and “FizzBuzz” if the number is a multiple of both

3 and 5.

Question B (Rock Paper Scissors): A program that simulates

the game of Rock, Paper, and Scissors between a player and the

computer.

Question C (Mean value): A program that calculates the mean

values of an array of integers, input by the user, until the user enters

-99, indicating the end of the array.

Question D (First n prime numbers): A program that

generates a list of the first n prime numbers.

These questions were selected due to their relative simplicity,

making them representative of the types of programming exercises

commonly found in an introductory course on Python.

The dataset for this study was collected from 45 students

recruited through convenience sampling frommultiple universities

across India. All participants were informed about the purpose of

the study; and were explicitly informed that they had the option to

opt out of the study if they did not wish to participate. To ensure

privacy, we assigned a unique identifier code to each participant,

keeping their personal information independent from the data.

Out of the 45 participants, 15 participants submitted four original

programs (one for each question), resulting in a total of 15 original

code samples per question, and 60 original code samples in total.

After collecting the original code samples, we instructed two people

to plagiarize each of these code samples, resulting in a total of 30

plagiarized code samples per question, and 120 plagiarized code

samples in total.

During the process of providing a plagiarized sample, the

participants were asked to modify samples in a manner that would

resemble a typical approach to plagiarizing code for submission in

an academic environment. They were asked to imagine a scenario

where they were pressed for time before a submission deadline

and were provided a sample original submission to imitate. We

find that many used common tactics such as changing variable

names, altering the order of statements, and adding or removing

comments, among others. Other volunteers submitted code that

was essentially identical to the original. By incorporating samples

with various degrees of obfuscation, we aim to generate a realistic

sample dataset, and one representative of a university course. This

allows us to test the effectiveness of our proposed model under

conditions that closely resemble real-world occurrences of Python

source code plagiarism.

4 Methodology

The proposed algorithm is designed to compare pairs of Python

files and identify similarities in code. As mentioned earlier, one way

that plagiarism can manifest is as similarities in the text, such as

similar comments, similar or identical variable names and similar

strings. In this study, we use a combination of both textual and

logical similarity to flag potential plagiarism. Figure 1 illustrates

the plagiarism detection methodology. Each pair of files is passed

to a model which is based on seven indicators of similarity-

Comments, Loops, Program Level Syntactic Similarity (PLS

Similarity), Variables, Functions, Strings, and Vertical Similarity,

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1393723
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gandhi et al. 10.3389/fcomp.2024.1393723

FIGURE 1

Illustration the methodology for code similarity detection using a weighted sum of several indicators with help of support vector machine model.

TABLE 1 Weights assigned to each component by SVM.

Component Weight Typical
range for
original

Typical
range for
plagiarized

Program level

syntax

5.685 0.396–0.634 0.759–1

Vertical structure 1.182 0.445–0.719 0.626–0.996

Function 1.034 0–0.480 0.120–0.909

String 0.950 0–0.414 0.189–0.959

Variable 0.680 0–0.314 0–0.678

Comment -0.624 0–0.079 0–0.539

Loop 0.376 0–0.460 0.007–0.874

that measure different characteristics of code similarity, covering

the functional, textual and structural aspects. The similarity scores

from each indicator are combined using their weighted sum, which

is given to us by the SVM. This combined score, which can then be

tweaked based on user preference, is our final similarity score. In

this section, we explain each of the indicators used before we detail

the procedure used to combine them optimally to provide a unified

similarity score.

Each pair of the code files is parsed into a pair of abstract syntax

tree (AST) objects. ASTs are hierarchical tree-like representations

of the code that captures its structure and functionality. They

are constructed by recursively breaking down the code into its

constituent parts, such as statements, expressions, and function

calls.

1. Vertical structure scoring: Vertical structure comparison is done

using the Levenshtein distance algorithm on encoded vertical

structures. We start by encoding the vertical structure of each

file into a sequence of characters. An empty line is encoded as

“0”, a comment as “#”, and all other executable lines as “1”. The

Levenshtein distance algorithm is applied to the two encoded

strings. This algorithm calculates the minimum number of

insertions, substitutions, and deletions that are required to

transform one sequence into another. This distance, normalized

by the length of the longer sequence, represents the similarity

between the structures of the code files.

2. Comments scoring: The similarity between comments of

plagiarized files is detected using a combination of techniques-

comment extraction, preprocessing and similarity calculation.

Comments are isolated from the code using regular expressions,

extracting lines that start with # or are enclosed within three

single or double quotes. These lines are compiled into separate

lists for each file. The lines are then preprocessed, which involves

converting all comments to lowercase, and removing non-

alphanumeric characters, to get a more accurate comparison.

Next, the similarity score calculation is carried out using

the Term Frequency-Inverse Document Frequency (TF-IDF)

approach to represent comments as numerical vectors. Each

word in the comment is assigned a weight according to its

frequency in that comment and its inverse frequency across

all comments. Once we have the TF-IDF vectors for each

comment, the cosine similarity metric can be used to measure

the similarity. The maximum similarity value for a comparison

between each file is recorded, and the most similar comment

in the second code for each comment in the first code file is

identified. Using this, we can calculate the average maximum

comment similarity score between every pair of code files.

3. String similarity: The content of each file is scanned to identify

strings, and regular expressions are used to extract them. Text,

excluding the comments, that are enclosed in either single or

double quotes are captured. The similarity between the two sets

of strings is then calculated using a similarity metric, and the

score is returned.

4. Variables scoring: The variables are extracted from the ASTs by

iterating over the targets of the assignment nodes and identifying

the variable names. The Jaccard similarity coefficient is then

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1393723
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gandhi et al. 10.3389/fcomp.2024.1393723

calculated by dividing the intersection of the variable sets by

their union. This coefficient gives us the overlap between the

variables of the two code files as the variable similarity score.

5. Functions scoring: The functions of every code file are compared

with the other, and the comparison is done on three different

criteria: comparison of the number of functions, function

names, function arguments and function calls. Once these are

extracted from the function, they are compared pairwise using

a similarity-matching algorithm to give each pair an overall

similarity score.

6. Loops scoring: After getting the ASTs, the loop nodes from each

code file for “FOR” and “WHILE” are extracted by filtering

relevant nodes of the AST. For each loop node found in the

first code file, a matching loop is searched for in the second

code file. By analyzing the type of loop and other relevant

characteristics, a similarity score is computed to quantify the

resemblance between the loops of both files.

7. Program level syntactic similarity scoring:. The nodes from each

AST representing different elements of the code like classes,

names, values, statements, expressions, or functions, among

others, are extracted. The nodes of the two code files are

compared using the Levenshtein distance algorithm to generate

a similarity score. This score is indicative of the structural and

syntactic similarity between the files and captures commonality

in the organization and composition of the code.

While there are several ways to combine the different indicators

of similarity to generate a single similarity score that is required to

flag potentially plagiarized pairs of submissions, it is fairly standard

and intuitive to use a linear combination of the different indicator

scores to derive a final score. However, the relative weighting of

the different components plays a significant role in determining

the efficacy of the final score in accurately designating likely

code plagiarism. In this study, we use SVM to derive optimal

coefficients for combining all the similarity indicators into a final

similarity score. The SVM aims to find an optimal hyperplane that

separates data points of different classes by maximizing the margin

between them. As mentioned previously we designate the decision

boundary between the two classes (“likely original” and “potentially

plagiarized”) to be linear and hence use the linear kernel for the

SVM. Since SVM is a supervised learning method, we use the

submissions for two of the four problems to train the SVM and

the remaining two to test the efficacy of the proposed method.

Further, to avoid model over-fitting, we employ a leave-p-out cross-

validation strategy. Out of the 15 original submissions, in every

iteration we choose combinations of five originals and samples

plagiarized from them to form the validation set and the remaining

samples to form the training sets. Thus given five originals and two

plagiarized from each, there are
(15
2

)

samples per question in the test

set, resulting in 210 (105 each for two questions) pair samples in the

test set for every iteration. This results in 1,770 remaining pairs that

form the training set. Since there are
(15
5

)

= 3,003 ways of selecting

five values from a set of 15, the model is trained 3,003 times in

the cross-validation exercise. This design ensures that none of the

participants whose submissions form the test set in any iteration

have their samples—or samples plagiarized from them—to be a part

of the training set. This prevents the model from over-fitting based

on the style of any particular participant.

Direct plagiarism comparisons involve comparing a single

plagiarized file with its corresponding original file, and indirect

plagiarism comparisons involve comparing two plagiarized files

which were plagiarized from the same source. We classified both

of these as instances of plagiarism, based on the assumption that

any form of replication, whether directly from the original file or

indirectly by a shared origin, falls under the umbrella of “potential

plagiarism”. Thus, our training set in each iteration contains 60

plagiarized pairs out of 1,770 and the test set comprises of 30

plagiarized pairs out of 210. To address this imbalance in the

different classes, we configure the SVMmodel to “balanced” mode;

i.e., weights are adjusted with a factor that is inversely proportional

to class frequencies in the input data (King and Zeng, 2001). This

ensures that the minority class (“potentially plagiarized”) receives

greater consideration, thereby enhancing the overall predictive

performance. We compare the classification results obtained from

the proposed model with standard alternatives and detail the

comparisons in the next section.

5 Results

In the previous section, we detailed a similarity detection

model that incorporates both textual and syntactic similarity. Our

algorithm was evaluated for its ability to differentiate between

original and plagiarized Python code files. The Proposedmodel was

trained to optimize the weights for seven components indicative of

code similarity: Program Level Syntax, Vertical, Function, String,

Variable, Comment, and Loop. The trained model assigned varying

levels of importance to each component, which are summarized

in Table 1. These weights are the average of the optimal weights

obtained from training the model 3,003 times, plus or minus the

standard deviation. We find that the SVM model assigned higher

weights to those components which had a wider separation between

original and plagiarized samples, which is as expected.

The weight assigned to Program Level Syntax, at 5.685, was

the highest, indicating its strong influence on the detection of

plagiarism. This suggests that structural and syntactic features

play an important role in distinguishing between original and

plagiarized code. The range of scores for original code in this

component was between 0.396 and 0.634, whereas plagiarized code

showed a higher range of 0.759–1, aligning with the expectation

that plagiarized code would have more syntactic similarities than

original work. Vertical structure comparison, which focuses on the

layout of the code, also received a high weight of 1.182. The typical

range for plagiarized code was notably higher than that for original

code, showcasing the model’s capability to discern the alteration of

code structure as an indicator of potential plagiarism. Functions

and strings within the code were also significant components, with

weights of 1.034 and 0.950, respectively. The range of scores for

functions in original code was 0–0.480, whereas in plagiarized code

it was 0.120–0.909, demonstrating a broader overlap in the use of

functions among plagiarized files. Variables and loops were given

moderate importance with weights of 0.680 and 0.376, respectively.

The overlap of variable names in plagiarized code was higher, with

scores reaching up to 0.678, compared to 0.314 in original code.

The component representing comments was assigned a

negative weight of -0.624. This finding indicates that, within the

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1393723
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gandhi et al. 10.3389/fcomp.2024.1393723

scope of our dataset and model, a higher similarity in comments

did not add significantly to the skill of the classification model and

was inversely related to the classification of code as plagiarized. This

is a consequence of the fact that the value of the “Comment scoring”

index is 0 for 95% of the samples in the original samples and in 80%

of the samples in the plagiarized samples. This large imbalance in

the distribution of values is a challenge in incorporating this feature

in the linear SVM-based classification model.

Continuing from the examination of the weights assigned to the

components of our plagiarism detection system, the performance

metrics of the proposed model were evaluated and compared with

two established plagiarism detection systems, MOSS and JPlag. The

results are presented in Figure 2, which outlines the precision and

recall for both original and plagiarized code, as well as the overall

accuracy of each algorithm.

The proposed algorithm demonstrated high precision in

identifying original code (Precision_Originals) with a value of

0.978, with similar performance as MOSS and JPlag, which scored

0.958 and 0.945, respectively. The proposed algorithm along with

JPLAG also had a high recall value for the “likely original”

class (0.991 and 0.974 respectively), while the recall for MOSS is

substantially lower at 0.790. This is also reflected in the Precision

values for the “potentially plagiarized” class, where MOSS has a

precision value of 0.387 whereas approximately 95.5% of the values

tagged by the proposed algorithm as “potentially plagiarized” are

done so correctly. JPLAG also exhibits high precision of 0.837

among the samples labeled as “potentially plagiarized”. In absolute

terms, the proposedmodel results in approximately 2 false positives

and 4 false negatives out of 210 samples averaged over each

training/validation split in the cross-validation exercise. JPLAG has

the next-best performance with 5 false positives and 10 false

negatives, followed by MOSS which has 38 false positives and 6

false negatives. Finally, we find that the proposed model achieved

an accuracy of 0.973 (204 out of 210 classified correctly), while

MOSS and JPlag recorded scores of 0.790 (166 out of 210) and 0.929

(195 out of 210) respectively.

To evaluate whether the differences observed in the

performance of the proposed model relative to MOSS and

JPLAG were statistically significant, a repeated measures Analysis

of Variance (ANOVA) followed by Tukey’s Honestly Significant

Difference (HSD) post-hoc test was conducted as seen in Table 2.

ANOVA helps in identifying whether there are any overall

differences among groups; however, it does not specify where

these differences lie. Therefore, following the ANOVA tests, we

conducted Tukey’s Honestly Significant Difference (HSD) tests.

These tests are used for pairwise comparisons between groups,

providing insights into which specific models differ from each

other.

The results from the ANOVA were highly significant at <0.001

level across all metrics, signaling substantial differences in model

performances. The F-statistics, a measure of the ratio of variance

between the groups to the variance within the groups, were also

high. For instance, the F-statistic for the Accuracy metric reached

58,712.6662, with a corresponding p-value effectively at zero. This

indicates a strong rejection of the null hypothesis, which posits

that all models perform equivalently across the tested metrics. With

the ANOVA establishing significant differences, the subsequent

Tukey’s HSD tests allowed us to examine these differences on a

model-to-model basis. This test also resulted in p-values of <

0.001 for the mean differences between the proposed model and

both JPLAG and MOSS for each of the 5 parameters that were

considered. While the improvements in the proposed model over

JPLAG in particular are generally small (with the exception of the

recall value for the plagiarized class), the statistical tests suggest that

they are statistically significant. The improvements over MOSS are

substantial for each of the parameters considered.

For the cases where the proposed algorithm misclassified

the samples—i.e., the cases where the proposed algorithm either

resulted in a false positive or a false negative- we performed a

crude error analysis to understand the reason for these model

failures. We calculated the mean values of each of the 7 model

components separately for the false positives as well as false

negatives, as shown in Table 3. For the false negatives—i.e. cases

where plagiarized samples are classified as “likely original”—the

components with low mean values are primarily responsible for

the misclassification since they cause the overall similarity score

to be low. We find that the “Comments scoring”, “Functions

scoring”, “String similarity” and “Variable scoring” parameters are

the most responsible for the false negatives. This likely reflects the

cases where the plagiarized samples contain obfuscation techniques

such as changing variable names, comments, etc. in order to

escape detection. Such obfuscation techniques would affect the

parameters specified above more than logic-based parameters

such as “Program Level Syntax” or “Loop scoring”. For the

false positives—i.e. cases where original samples are classified as

“potentially plagiarized”- the components with high mean values

are primarily responsible for the misclassification since they cause

the overall similarity score to be high. We find that “Program

Level Syntax”, “Function scoring”, “Loop scoring”, and “Vertical

structure scoring” are most responsible for false positives. These

likely reflect cases where multiple people arrive at highly similar

programming logic to solve the given exercise without colluding

with each other.

6 Discussion

The proposed Python plagiarism detection model analyzes

code similarity using a variety of similarity indicators. The model

leverages logical heuristics and an analysis of multiple code

components, including comments, loops, AST similarity, variables,

functions, strings, and vertical similarity. The results demonstrate

that the model achieves a small, but significant improvement in

performance over existing plagiarism detection tools such as JPlag

and MOSS in terms of accuracy, effectiveness and ability to detect

plagiarism. There was a notable improvement in the evaluation

metrics, with the proposedmodel classifying 204 out of 210 samples

(97%) correctly, compared to 195 (93%) for JPlag and 166 (79%) for

MOSS.

The improved performance can be explained by the design

of the proposed model, which is designed exclusively for Python,

leveraging the characteristics and features of the language. MOSS

and JPlag, on the other hand, are primarily built for other languages

such as Java and C, which might limit their effectiveness when

applied to Python code. However, it is important to identify the

limitations of this study. One limitation is the size of the dataset

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1393723
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gandhi et al. 10.3389/fcomp.2024.1393723

FIGURE 2

Comparative analysis of plagiarism detection models.

TABLE 2 ANOVA and Tukey’s HSD test results.

Metric ANOVA Tukey’s HSD test Reject
null

F-statistic P-value Comparison Mean di�. P-value

Precision_0 5,943.9049 <0.001 Proposed—JPlag 0.0333 <0.001 Yes

Proposed - MOSS 0.0203 <0.001 Yes

Recall_0 56,440.8843 <0.001 Proposed—JPlag 0.0174 <0.001 Yes

Proposed - MOSS 0.2015 <0.001 Yes

Precision_1 31,952.8752 <0.001 Proposed—JPlag 0.1178 <0.001 Yes

Proposed - MOSS 0.5679 <0.001 Yes

Recall_1 5,856.8262 <0.001 Proposed—JPlag 0.2086 <0.001 Yes

Proposed - MOSS 0.0753 <0.001 Yes

Accuracy 58,712.6662 <0.001 Proposed—JPlag 0.0447 <0.001 Yes

Proposed - MOSS 0.1835 <0.001 Yes

TABLE 3 Mean values of each feature in erroneous estimates.

Comment Vertical
structure

Function Program level
syntax

String Variable Loop

False negatives 0.08 0.67 0.17 0.65 0.15 0.06 0.45

False positives 0.02 0.58 0.64 0.71 0.20 0.30 0.67

used for training and evaluation. Validating and testing the model

on a larger and more diverse dataset would be useful to assess its

performance in different scenarios. Future research could include

the integration of deep learning algorithms to enhance the model’s

capabilities and improve its performance.

As computer science instructors, we (the 2nd and 3rd authors)

find that our instruction and assessment design are influenced by

the threat of undetected plagiarism and its influence on academic

integrity. Specifically, while autograders are widely available and

convenient to use, these generally do not possess the ability to

accurately detect plagiarism. On the other hand, manual grading

is generally reliable in detecting flagrant instances of plagiarism

but is extremely tedious and time-consuming for anything but

the smallest class sizes. This additional burden on instructor time

disincentivizes the allocation of take-home coding assignments in

favor of shorter quizzes or in-class tests. Any improvement in

source code plagiarism detection models can reduce the need for

such tradeoffs.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1393723
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gandhi et al. 10.3389/fcomp.2024.1393723

However, there are also serious implications of falsely labeling

original code as plagiarized. Hence, a more balanced approach is

needed, where findings from plagiarism tools are complemented by

instructors’ personal knowledge of individual student contexts and

careful investigation of the flagged submissions. Students should

also be instructed on the academic integrity policies of the course

beforehand, so that they are aware of the implications of their

actions.

A recent study found that existing tools for plagiarism detection

in programming assignments often fail to detect AI-generated code,

raising concerns about their effectiveness in detecting plagiarism in

the age of AI (Finnie-Ansley et al., 2022). Future work could aim to

detect AI plagiarism by incorporating advanced technologies like

Machine Learning and Natural Language Processing to effectively

identify instances of code generated by AI models such as

ChatGPT.

In conclusion, our proposed plagiarism detection model

demonstrates a high level of precision and surpasses benchmark

models in terms of accuracy and effectiveness, making it a

noteworthy addition to efforts toward preventing code plagiarism

in academic settings.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by FLAME

University IRB Committee. The studies were conducted

in accordance with the local legislation and institutional

requirements. Written informed consent for participation

was not required for this study in accordance with the national

legislation and the institutional requirements.

Author contributions

NG: Methodology, Software, Validation, Writing – original

draft, Writing – review & editing. KG: Conceptualization, Software,

Supervision, Writing – original draft, Writing – review & editing.

PP: Investigation, Software, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Agrawal, M., and Sharma, D. K. (2016). “A state of art on source code plagiarism
detection,” in 2016 2nd International Conference on Next Generation Computing
Technologies (NGCT) (Dehradun: IEEE), 236–241. doi: 10.1109/NGCT.2016.7877421

Ahadi, A., and Mathieson, L. (2019). “A comparison of three popular
source code similarity tools for detecting student plagiarism,” in Proceedings
of the Twenty-First Australasian Computing Education Conference, 112–117.
doi: 10.1145/3286960.3286974

Aiken, A. (2023). A System for Detecting Software Similarity. Available online at:
https://theory.stanford.edu/aiken/moss/ (accessed June 8, 2023).

Alsmadi, I. M., AlHami, I., and Kazakzeh, S. (2014). Issues Related to the Detection
of Source Code Plagiarism in Students Assignments. San Antonio, TX: Texas A&M
University.

Awale, N., Pandey, M., Dulal, A., and Timsina, B. (2020). Plagiarism detection in
programming assignments using machine learning. J. Artif. Intellig. Capsule Netw. 2,
177–184. doi: 10.36548/jaicn.2020.3.005

Bogdanchikov, A., Zhaparov, M., and Suliyev, R. (2013). “Python to learn
programming,” in Journal of Physics: Conference Series (Bristol: IOP Publishing),
012027.

Brinkman, B. (2013). An analysis of student privacy rights in the use of plagiarism
detection systems. Sci. Eng. Ethics 19, 1255–1266. doi: 10.1007/s11948-012-9370-y

Donaldson, J. L., Lancaster, A.-M., and Sposato, P. H. (1981). A plagiarism detection
system. SIGCSE Bull. 13, 21–25. doi: 10.1145/953049.800955

Eppa, A., and Murali, A. (2022). “Source code plagiarism detection: a machine
intelligence approach,” in 2022 IEEE Fourth International Conference on Advances in
Electronics, Computers and Communications (ICAECC) (Bengaluru: IEEE), 1–7.

Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., and Prather, J. (2022).
“The robots are coming: Exploring the implications of openai codex on introductory
programming,” in Australasian Computing Education Conference (Association for
Computing Machinery), 10–19.

Heres, D., and Hage, J. (2017). “A quantitative comparison of program plagiarism
detection tools,” in Proceedings of the 6th Computer Science Education Research
Conference, 73–82.

Huang, Q., Song, X., and Fang, G. (2020). “Code plagiarism detection method based
on code similarity and student behavior characteristics,” in 2020 IEEE International
Conference on Artificial Intelligence and Computer Applications (ICAICA) (Dalian:
IEEE), 167–172.

Jayal, A., Lauria, S., Tucker, A., and Swift, S. (2011). Python for teaching
introductory programming: a quantitative evaluation. Innovat. Teach. Learn. Informat.
Comp. Sci. 10, 86–90. doi: 10.11120/ital.2011.10010086

King, G., and Zeng, L. (2001). Logistic regression in rare events data. Polit. Analy. 9,
137–163. doi: 10.1093/oxfordjournals.pan.a004868

Li, X., and Zhong, X. J. (2010). “The source code plagiarism detection using ast,”
in 2010 International Symposium on Intelligence Information Processing and Trusted
Computing (Chiang Mai: IEEE), 406–408.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1393723
https://doi.org/10.1109/NGCT.2016.7877421
https://doi.org/10.1145/3286960.3286974
https://theory.stanford.edu/aiken/moss/
https://doi.org/10.36548/jaicn.2020.3.005
https://doi.org/10.1007/s11948-012-9370-y
https://doi.org/10.1145/953049.800955
https://doi.org/10.11120/ital.2011.10010086
https://doi.org/10.1093/oxfordjournals.pan.a004868
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gandhi et al. 10.3389/fcomp.2024.1393723

Mozgovoy, M., Kakkonen, T., and Cosma, G. (2010). Automatic student plagiarism
detection: future perspectives. J. Educ. Comp. Res. 43, 511–531. doi: 10.2190/EC.43.4.e

Novak, M., Joy, M., and Kermek, D. (2019). Source-code similarity detection and
detection tools used in academia: a systematic review. ACM Trans. Comp. Educ.
(TOCE) 19, 1–37. doi: 10.1145/3313290

Noynaert, J. E. (2005). “Plagiarism detection software,” in Midwest Instruction and
Computing Symposium.

Parker, A., and Hamblen, J. O. (1989). Computer algorithms for plagiarism
detection. IEEE Trans. Educ. 32, 94–99. doi: 10.1109/13.28038

ping Zhang, L., and sheng Liu, D. (2013). “Ast-based multi-language plagiarism
detection method,” in 2013 IEEE 4th International Conference on Software Engineering
and Service Science (Beijing: IEEE), 738–742.

Prechelt, L., Malpohl, G., Philippsen, M. (2002). Finding plagiarisms among a set of
programs with jplag. J. Univers. Comput. Sci. 8:1016. doi: 10.5445/IR/542000

Sharma, S., Sharma, C. S., and Tyagi, V. (2015). “Plagiarism detection tool
“parikshak”,” in 2015 International Conference on Communication, Information &
Computing Technology (ICCICT) (Mumbai: IEEE), 1–7.

Shein, E. (2015). Python for beginners. Commun. ACM 58, 19–21.
doi: 10.1145/2716560

Sulistiani, L., and Karnalim, O. (2019). Es-plag: efficient and sensitive source code
plagiarism detection tool for academic environment. Comp. Appl. Eng. Educ. 27,
166–182. doi: 10.1002/cae.22066

Wainer, J., and Xavier, E. C. (2018). A controlled experiment on python vs c for
an introductory programming course: Students outcomes. ACM Trans. Comp. Educ.
(TOCE) 18, 1–16. doi: 10.1145/3152894

Wen, W., Xue, X., Li, Y., Gu, P., and Xu, J. (2019). Code similarity
detection using ast and textual information. Int. J. Performab. Eng. 15:2683.
doi: 10.23940/ijpe.19.10.p14.26832691

Yeo, S. (2007). First-year university science and engineering students understanding
of plagiarism. High Educ.Res. Dev. 26:199–216. doi: 10.1080/072943607013
10813

Zhao, J., Xia, K., Fu, Y., and Cui, B. (2015). “An ast-based code plagiarism
detection algorithm,” in 2015 10th International Conference on Broadband and
Wir eless Computing, Communication and Applications (BWCCA) (Krakow: IEEE),
178–182.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1393723
https://doi.org/10.2190/EC.43.4.e
https://doi.org/10.1145/3313290
https://doi.org/10.1109/13.28038
https://doi.org/10.5445/IR/542000
https://doi.org/10.1145/2716560
https://doi.org/10.1002/cae.22066
https://doi.org/10.1145/3152894
https://doi.org/10.23940/ijpe.19.10.p14.26832691
https://doi.org/10.1080/07294360701310813
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	A Support Vector Machine based approach for plagiarism detection in Python code submissions in undergraduate settings
	1 Introduction
	2 Literature review
	2.1 Plagiarism detection algorithms
	2.2 Plagiarism detection tools
	2.3 Ethical considerations in using plagiarism detection tools

	3 Data collection
	4 Methodology
	5 Results
	6 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


