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Introduction: State-of-the-art multi-modal brain tumor segmentation methods

often rely on large quantities of manually annotated data to produce acceptable

results. In settings where such labeled data may be scarce, there may be value in

exploiting cheaper or more readily available data through clinical trials, such as

Response Assessment in Neuro-Oncology (RANO).

Methods: This study demonstrates the utility of such measurements for multi-

modal brain tumor segmentation, whereby an encoder network is first trained

to regress synthetic "Pseudo-RANO" measurements using a mean squared error

loss with cosine similarity penalty to promote orthogonality of the principal

axes. Using oriented bounding-boxes to measure overlap with the ground truth,

we show that the encoder model can reliably estimate tumor principal axes

with good performance. The trained encoder was combined with a randomly

initialized decoder for fine-tuning as a U-Net architecture for whole tumor (WT)

segmentation.

Results: Our results demonstrate that weakly supervised encoder models

converge faster than those trained without pre-training and help minimize the

annotation burden when trained to perform segmentation.

Discussion: The use of cheap, low-fidelity labels in the context allows for both

faster and more stable training with fewer densely segmented ground truth

masks, which has potential uses outside this particular paradigm.

KEYWORDS

image segmentation, brain tumor, weak supervision, RANO, deep learning

1 Introduction

Gliomas are one of the most common primary brain malignancies, typically classified

by cell type, grade, and location. Low-Grade Glioma (LGG) tends to offer a better prognosis

for patients, whereas High-Grade Glioma (HGG) is characterized by their amorphous

structure and low survivability (Lefkovits et al., 2022). Extreme cases of HGG can be further

categorized as Glioblastoma (GBM) with a median survival period of 14 months. Among

this, patients experience a survival rate of 39.7% after a year, which shrinks to a rate of

5%–9% after 5 years (Villa et al., 2018; Chukwueke and Wen, 2019). Magnetic Resonance

Imaging (MRI) is widely used in the diagnosis and longitudinal assessment of gliomas,

which can be highly variable in terms of location, size, andmorphology. Quantifying tumor

burden remains a key technical and clinical challenge that has prompted the development

of automated image analysis techniques applied to clinical imaging data. Segmentation

is a critical step in many automated pipelines, whereby the tumor region is delineated

to provide area or volume estimates that aid in treatment response monitoring, surgical

planning, and prediction of overall survival.
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There is an enormous clinical impact for accurate brain tumor

segmentation; by giving clinicians access to clearly delineate tumor

boundaries, treatment is both more effective and less risky to

undergo, which improves patient survivability. However, there are

challenges posed by limited amount of well-annotated data that are

available for several reasons; for example, deep learning methods

typically require large amount of raw input data to perform

effectively, which often cannot be effectively acquired in medicine.

Convolutional neural networks (CNNs) have been widely

demonstrated as state-of-the-art for the segmentation of medical

images, where much of the focus is on large manually annotated

datasets. Increasingly, greater attention is being placed on

methods that can leverage lower fidelity annotations to train

deep networks with clinically acceptable performance. Weakly

supervised learning invokes the principle that models trained on

noisy or imprecise annotations under supervision can still learn

meaningful representations and alleviate the burden of manual

annotation. This is particularly valuable in the context of the

segmentation of complex structures in three dimensions, such as

brain tumors.

This study proposes a weakly supervised learning pre-training

task for annotating a tumor’s principal axes. To validate the

approach, we derive a pseudo-measure similar to RANO, “Pseudo-

RANO,” from the labels supplied as part of the Brain Tumor

Segmentation (BraTS) dataset (Menze et al., 2014). “Pseudo-

RANO” is defined as the bi-dimensional measure of the whole

tumor (WT), compared with classical RANO, which is applied to

the enhancing tumor (though the same principle could be applied

to any tumor region). Examples of these measures are shown in

Figure 1. We show that encoder–decoder networks trained initially

on weak labels provide an early improvement in segmentation

results following fine-tuning, specifically in terms of robustness to

outliers and overall model performance. The proposed solution

aims to offset the model time and complexity issues of large-scale

annotation by providing pre-training tasks based on more readily

available and cheap-to-produce data that are still associated with

the downstream task. The ultimate aim is to improve both the

performance and clinical viability of such models and provide a

framework that can be applied in many contexts with only minor

changes in the architectures used. Our main contributions are as

follows:

1. We derive the weak annotation, “Pseudo-RANO,” for use

as ground truth, formulated similarly to a classical RANO

annotation.

2. We produce a novel weakly supervised approach for pre-

training a tumor segmentation model using “Pseudo-RANO”

regression, promoting orthogonality through a novel dual loss

function.

3. We demonstrate how a “Pseudo-RANO” pre-trained U-Net

encoder can reduce the data requirement and time needed to

train models to convergence.

2 Related work

We discuss the application of pre-training, particularly in the

context of weak supervision for medical deep learning approaches,

so that we can gain a deeper understanding of the research area and

the novel gaps that are available. Many methods for brain tumor

segmentation provide high working results on medical images but

have the downside of requiring either a large amount of input data

to work effectively or complex or specialist annotations outside the

clinical norm.

There is an increasingly more common requirement for

computer-aided diagnosis (CAD) tools to include some form of

artificial intelligence. In these cases, deep learning is integrated

to reduce the long-term impact of time constraints, still utilizing

specialist knowledge bases with a large number of innovative

techniques and tools for brain tumor segmentation (Ranjbarzadeh

et al., 2023; Panduri and Rao, 2024), including pipelines

compromising of pre-processing, segmentation, and classification

(Bhardawaj and Jain, 2024). These systems need to be in place in

an evolving medical environment to complement clinicians as they

work (Doi, 2007) rather than be used as an alternative to them.

Implementing a pre-training phase into a deep learning-based

neural network is one of the ways that we can both offset and

reduce performance loss, which can be observed within small

data environments. In particular, we discuss using less involved

medical data such as RANO, RECIST, or tumor circularity to

support annotation, such as the study by Hu et al. (2020), which

uses DICOM metadata such as probe type and study description

as labels for adversarial training, alongside a context encoder

trained to reconstruct missing patches of an ultrasound image.

Methods have been shown to improve segmentation results and

allow the model to converge much earlier while requiring fewer

labeled examples. There is also research that has explored the

use of encoder–decoder architectures to perform segmentation,

specifically where the encoder is trained on lower fidelity labels,

such as Hu et al. (2018) independently train the encoder as an optic

disc localization network, where the weights are then frozen and

the decoder trained for optic disc segmentation.

We compile a table showing methodological outputs and their

reported evaluation measure and metric in Table 1 for the weak

learning methods referenced in this study. Though the methods

do not all uniformly improve on the quantitative results, those do

not report similar outputs with much smaller quantities of fully

annotated input data.

2.1 Weak supervision

Weakly supervised pre-training tasks for medical image

segmentation have been applied in different formats to solve

many complex problems. Research completed by Kervadec et al.

(2020) shows that global constraints and features derived from

fixed bounding-box data can be utilized as pre-training tasks

for segmentation, leveraging classical tightness as a setting and

constraint for a deep learning model which is much more potent

than standard cross-entropy. This method tested on MRI lesion

data for both the prostate and glioma, approaching complete

supervision levels and outperforming previously state-of-the-

art methods. Alternatively, research by Bontempi et al. (2020)

focuses on exploring both local and global spatial information,
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FIGURE 1

Example MRI slice from the BraTS 2018 dataset. The ground truth segmentation is shown overlaid on the image (left) alongside the extracted

“Pseudo-RANO” measurement (right). The principal axes are approximately orthogonal to one another.

TABLE 1 A comparison of our results and those reported in the literature, showing data types, input dimensions, metrics reported, methods reported

results, and the reported comparison results based on weakly supervised methods.

References Dataset type Dim Metric Method Comparison

Kervadec et al. (2020) MRI 2D DSC 0.901 0.827

Bontempi et al. (2020) MRI 3D DSC 0.960 0.945

Hatamizadeh et al. (2022) MRI 3D DSC 0.903 0.936

CT 3D DSC 0.914 0.960

Cai et al. (2018) CT 3D DSC 0.760 0.680

Qu et al. (2020) Histopathology 2D DSC 0.802 0.852

Atzeni et al. (2022) Synthetic MRI 2D DSC 0.997 0.989

Histology 2D DSC 0.999 0.935

Hu et al. (2018) Fundus 2D DSC 0.880 0.840

Yang et al. (2018) Histology 2D F1 0.945 0.964

Zhao et al. (2018) Lineage tracing 3D F1 0.892 0.904

Li et al. (2022) Fundus 2D ACC 0.771 0.706

Liu et al. (2019) MRI 3D CC 0.589 0.507

Many cases either improve on the results in scoring or reduce the data requirements of the method while showing similar results.

DSC, dice score coefficient; F1, F1 score; ACC, accuracy; CC, correlation coefficient.

implementing segmentation for out-of-the-scanner volumetric T1-

weighted data, exploiting an encoder–decoder structure with only

convolutional blocks using atlas-based segmentation algorithms

(FreeSurfer) to produce ground truth masks for the unknown data.

Similarly, others have explored the use of partial labels (i.e.,

only a subset of objects) to reduce the amount of annotated

data needed for nuclei segmentation from histopathology images

and Qu et al. (2020) extend point labels for cell nucleus into

segmentation masks through a combination of regression models,

probability maps, thresholding, and self-supervision, to train a

deep CNN for lung cancer and multi-organ dataset segmentation.

Utilizing bounding boxes to provide weak data for segmentation

tasks in both 2D and 3D has applications within medical image

processing; for example, Yang et al. (2018) produce a 2D deep

learning method for extending extreme-point tilted bounding box

annotations into rough segmentationmasks, which are then further

refined to fine masks using graph search methodologies, which

is particularly useful in cases where multiple segmentations are

present on a single image, reducing the potential for errors from

bounding box overlap. The approach discussed by Zhao et al.

(2018) provides better results in a similar amount of annotation

time applied within the 3D domain in situations where only a tiny

fraction of instances is required to have full volumetric annotations.

At the same time, the remaining data comprise of 3D bounding

boxes. This method proposes using a 3D instance segmentation

model, including a mask-RCNN, to segment all objects of interest.

Experimental results perform similarly to the best-known methods

that use complete volumetric annotation for the same problem.

A wide variety of data can be considered “weak” in this context,

such as those that use pixel-wise morphological features. The
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data leveraged in the study by Li et al. (2022) consist of gray-

scale retinography images, which provide a baseline for coarse

segmentation masks derived from gray-scale features. Several

image segmentation algorithms are described, such as vessel

segmentation and bright lesions, based on these gray-scale and

morphological features to segment four variations of the mask,

which are then applied to enhance the amount of labeled data from

previously unlabeled datasets for the segmentation in a Residual-

Attention U-Net (RAUNET). Solutions for clinical tasks outside of

segmentation also remain essential for applying weak learning, data

from the study by Liu et al. (2019), and leverage incomplete ground

truth scores as data entries, estimating multiple clinical scores from

several time points simultaneously. They define a neural network

with weighted loss that can leverage all the data, where subject data

with missing scores would previously be discarded.

In contrast to the bounding boxes previously outlined, Atzeni

et al. (2022) use information directly from the input images,

learning a single region of interest (ROI) per image, effectively

creating a dense mask from weak annotations, then applying

boundary image indices as an additional input label to improve

training scores, optimizing dice rather than a proxy. Wang et al.

(2020) present a quite different approach using pseudo-masks for

training and then interatively learning pixel affinities and labeling

information from weak, inaccurate data. This method uses energy

minimization (EM) prediction as the proposed affinity, mining the

confident regions of the generated map, where areas with a high

confidence score (<0.7) are expanded into a mask for the training

of the model of a segmentation task.

3 Experiments

Experimental methods were implemented using PyTorch-

based architectures, consisting of a multi-stage learning pipeline

and a regression-based encoder pre-training methodology. This is

followed by a full tumor segmentation method that expands upon

the previous study.

3.1 Data and pre-processing

The BraTS dataset from 2018 was used for model development

and evaluation (Menze et al., 2014; Bakas et al., 2017, 2018). The

supplied data are comprised of four MRI sequences: T1-weighted

(T1), T1 Contrast Enhanced (T1ce), T2-Fluid-attenuated inversion

recovery (T2-FLAIR), and T2-weighted (T2), each of which reveals

details of the tumor region, highlighting the edema, active tumor

region and the necrosis to differing degrees. To account for the

varying dynamic ranges of these acquisitions, zero-mean unit-

variance normalization was applied to each channel separately.

Multi-class ground truth segmentation masks (the enhancing

tumor, edema, and tumor core) were merged into a single binary

mask representing the WT. In total, 210 HGG and 75 LGG MRI

volumes were used and randomly split into 70% for training,

10% for validation, and 20% for testing. Image augmentation was

also used in the form of horizontal and vertical flips, rotation,

and scaling.

“Pseudo-RANO” measurements of WT burden were utilized in

training the encoder network, operating on individual slices such

as those shown in Figure 1. Tumor principal axes are extracted

using the approach outlined by Chang et al. (2019). For each

slice, the largest object (based on the binary ground truth mask)

was extracted, and pairwise distances were computed over all

mask boundary pixels to find the major axis. The minor axis was

then identified as the longest pairwise boundary pixel distance

approximately orthogonal to the major axis. Any empty slices

were removed from the dataset and not used in training. For any

given slice, the “Pseudo-RANO” measurement is represented by a

1× 8-dimensional vector representing the principal axes’ start and

end coordinates.

When pre-processing both the lung image database consortium

(LIDC) dataset (Armato et al., 2011) and the DeepLesion

dataset (Yan et al., 2018), each consisting of CT slices, we use

the windowing procedure discussed in the original DeepLesion

methodology by Yan et al. (2018). We rescale the houndfield units

(HU) between −1,024 and 3,071 so that the major intensity ranges

of lung, soft tissue, and bone are correctly covered.We continue the

same pre-processingmethod to then normalize the resulting images

to between 0 and 1 and ensure that the images are cropped to the

correct dimensions of 512× 512.

3.2 Model training

The model’s U-Net architecture, shown in Figure 2, displays

a symmetric encoder–decoder structure with skip connections

to transfer information from the previous layers to the latter

layers, i.e., the contracting layers to the mirrored expanding layers

(Ronneberger et al., 2015).

Image slices, sized 240 × 240 pixels, comprise of four MRI

sequences as channels. The architecture then consists of 16 hidden

layer inputs with two convolutions at each resampling layer, with

five down-sampling layers and four up-sampling layers to complete

a full segmentation. Kernel dimensions are 3×3 except for the final

(sigmoid) layer, which is 1× 1.

The encoder portion of the U-Net architecture can be trained

independently from the decoder to annotate “Pseudo-RANO”

measurements, which is shown as the dotted outline in Figure 2.

The encoder is used as a pre-training pathway before WT region

segmentation, which fully utilizes the whole encoder–decoder

architecture.

Equations 1–6 define the data structures and losses used within

this work, while Equations 7 and 8 define the performance metrics

that are leveraged to evaluate each of the experiments that we

perform. We define and expand upon the reasons for introducing

these structures and metrics. Each “Pseudo-RANO” measure is

defined as a vector v ∈ R
8, which represents the principal axes of a

tumor region,

vi = {(x1, y1)...(x4, y4) ∈ R
8} (1)

where (xi, yi) represents the coordinates of a pixel on the tumor

boundary. We formulate the “Pseudo-RANO” estimation as a

regression problem by minimizing a mean squared error (MSE)

loss and enforcing the orthogonality of the major and minor axes

through minimizing cosine (dis)similarity. MSE loss is defined as
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FIGURE 2

The proposed U-Net architecture. The region separated by the dotted line is the pre-trained encoder path of the model that is used for

“Pseudo-RANO” estimation as a regression output. This encoder is then extended into the full U-Net for segmentation.

FIGURE 3

JSC during validation for “Pseudo-RANO” regression with initial baseline training. A drop is shown from the 40th epoch where cosine loss is

reintroduced after initial training without cosine loss.

follows:

LMSE =

D∑

i=1

(vi − v̂i)
2 (2)

where D defines the total number of samples in the batch, and

(vi, v̂i) defines the prediction and ground truth data items for each i

index in the training set. We refer to the major and minor principal

axes as line segments vmaj and vmin, respectively,

v1,2, v3,4 : v
min, vmaj (3)

where ‖vmin‖ < ‖vmaj‖. The value v1,2 is equal to the two

coordinates for the first point of each axis, and v3,4 is equal to the

corresponding two coordinates for the second point of each axes. In

addition toMSE, a cosine (dis)similarity loss is computed to enforce

a degree of orthogonality between vmin and vmax,

LOrth =
vmin · vmaj

max(‖vmin‖ · 2 · ‖vmaj‖ · 2, ǫ)
(4)

where the variable ǫ, equal to 1 × 10−8, is used to avoid division

by zero. The combined loss is then calculated with a weighting ω to

balance the relative contributions of the two terms,

L = LMSE + LOrth · ω (5)

where ω is chosen as a value of 0×, 3×, or 5× penalties

to weight the regression training process toward a larger
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FIGURE 4

Qualitative examples of predicted “Pseudo-RANO” measurements with JSC calculated based on oriented bounding boxes of the same tumor slice at

varying cosine penalty levels (0×, 3×, and 5× respectively), where ground truth is shown in blue and predicted is shown in yellow.

degree of orthogonality. For segmentation, LDSC loss

is used,

LDSC(X,Y) =
2 · |X ∩ Y| + ǫ

|X| + |Y| + ǫ

(6)

where X and Y are the predicted and ground truth masks,

respectively. The variable ǫ, equal to 1 × 10−1, is used as a

smoothing operator to avoid division by zero.

3.3 Performance metrics

The “Pseudo-RANO” regression performance was evaluated

employing the Jaccard score (JSC) similarity measure,

JSC(X,Y) =
|X ∩ Y|

|X ∪ Y|
(7)

where X and Y are masks representing the oriented bounding-

boxes defined by the predicted and ground truth “Pseudo-

RANO” principal axes. For WT segmentation, the Dice-Sørensen

Coefficient (DSC) similarity measure is used as follows:

DSC(X,Y) =
2 · |X ∩ Y|

|X| + |Y|
(8)

where X and Y are the predicted and ground truth masks,

respectively. We set the learning rate to 0.0003 (3e− 4) for models

training on MRI to 0.00003 (3e− 5) for training on CT data, as the

models do not learn at the larger learning rate.

4 Results and discussion

4.1 Pseudo-RANO regression

Training and validation loss over time for “Pseudo-RANO”

regression began uniformly with no cosine penalty for all models.

The models then resumed at the varying levels of 0×, 3×, and

5× cosine weighting from the 40th epoch. The loss continues to

minimize to a similar level with little erraticism for all examples,

converging at a similar point in training time compared with the

JSC outputs shown in Figure 3 by the 100th epoch.

The utility of the additive cosine loss penalty is not directly

apparent from the regression task results, producing lower JSC

scores per increment. In many cases, however, the qualitative

improvements shown in Figure 4 indicate that the localization

of the predicted “Pseudo-RANO” measures improves with the

individual line lengths, increasing as a trade-off. We show this in

practice when comparing Figure 4 (Right) with Figure 4 (Center),

having an overall higher quantitative score than the randomly

initialized (RI) example Figure 4 (Left).

4.2 Whole tumor segmentation

Training of the segmentation task utilizing the full U-Net

model was investigated under three different schemes. In this study,

they are defined as the baseline RI scheme, the pre-trained frozen

encoder (PFE) scheme, and the pre-trained trainable encoder (PTE)

scheme. Where the encoder undergoes no pre-training (RI), the

encoder weights from the regression task are used and are not

allowed to update during segmentation training (PFE), where the

encoder weights are used and allowed to update (PTE), respectively.

Our study shows notable differences between the three

schemes, with PTE performance peaking fastest and remaining

consistently higher than the randomly initialized model.

Additionally, pre-training appears to afford more stable training

and fewer fluctuations in segmentation performance than RI.

The different behaviors of the models are further highlighted in

Figure 5, which shows the ground truth segmentation. While the

RI scheme initially over-segments, the PTE and PFE schemes

under-segment before eventually stabilizing on a shape which is

more similar to the ground truth than what RI can achieve. The

main benefit of this approach is that the PTE model produces a
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FIGURE 5

Example qualitative slice outputs for each multiple of 16 batches trained. Showing GT (A), RI (B), PFE (C), and PTE in (D). These are shown at the 50th

step and the 550th step of 16 batches, at the end of the 1st epoch, and at the end of the 36th epoch, respectively. This shows a temporal progression

of prediction quality between pre-training schemes.

localized and detailed segmentation at an earlier point than the RI

and with a higher overall DSC.

The overall behavior of the three training schemes is shown in

Figure 6. In general, we observe tighter distributions of DSC for

PTE compared with the RI and PFE schemes. Some cases show that

the PFE slightly outperforming the PTE for some examples early

on, particularly between the 200th and 300th model batch, whereas

the RI model is outperformed throughout training.

4.3 Additional segmentation experiments

We tested our approach to understand the impact of smaller

datasets, as the ideal use of the method is to supplement

segmentation data which are unavailable for smaller models or

datasets. Using 10% of the original training dataset, Figure 7 shows

large improvements in the calculated DSC per epoch of training

for the PTE model when compared with using an RI model over

all epochs. Further testing over 10 epochs included bounding box

regression as an additional pre-training task.

We showed DSC outputs for testing when using models

trained on fewer segmentation inputs (with full dataset utilized

for the regression inputs), as shown in Table 2, for the best

results over 10 epochs of training. Both bounding box regression

and “Pseudo-RANO” regression produce a large improvement

upon the randomly initialized model, with the additive cosine

penalty having minimal positive impacts on the improvement

in DSC, though it does lead to improvement in specificity

and precision. “Pseudo-RANO” regression produces higher

results than the utilization of bounding box, and although the

results are similar, RANO is much more present and easily

available within clinical contexts where bounding box data are

comparably lacking.
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FIGURE 6

DSC for the testing dataset under the three pre-training schemes for every 50th batch up to the 550th and after the 1st, 2nd, and 3rd epochs.

FIGURE 7

DSC for 10 epochs of training with 10% of the original training data.

TABLE 2 Mean and standard deviation for performance measures.

Metric RI B-Box RANO 0× Cosine RANO 3× Cosine

Dice 0.817 (0.128) 0.825 (0.111) 0.836 (0.108) 0.830 (0.116)

HD95 17.73 (24.33) 21.58 (26.64) 20.57 (25.84) 18.15 (23.84)

Precision 0.901 (0.111) 0.849 (0.130) 0.886 (0.110) 0.892 (0.099)

Recall 0.778 (0.182) 0.833 (0.159) 0.815 (0.157) 0.800 (0.171 )

Specificity 0.99917 (962e-6) 0.99835 (209e-5) 0.99908 (766e-6) 0.99909 (656e-6)

Evaluating RI model, B-Box regression model, and “Pseudo-RANO” regression models with 0× and 3× cosine weighting.

KEY: mean (SD).

The bold values are the best scoring values in any given row for these specific experiments individually for the mean value and the bracketed standard deviation values.

We further evaluate this methodology on external CT

datasets using the DeepLesion whole body dataset with RECIST

measurements for the regression pre-training path of the model

and the LIDC lung lesion dataset for segmentation training and

testing. We show these evaluation results in Figure 8, where

improvement upon the baseline remains consistent throughout

testing. The RECIST-PTE results are almost uniformly better for

DSC distribution than both the RI and the BBOX-PTE, though

a few exceptions do occur, such as Epoch 29, where the BBOX-

PTE results briefly exceed the RECIST-PTE results. This shows

methodological generalisability and robustness across tasks and

datasets.

Additionally, we evaluate the impact of noise with our approach

by adding a random value between −33% and +33% of the sum
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FIGURE 8

Segmentation results from every 5th Epoch for evaluation on LIDC using DeepLesion data for encoder pre-training.

between the length and width of the associated lesion in the CT slice

to each of the eight values that make up the RECIST measurement.

We can offset the measurement within a reasonable distance of

the lesion, making the data less representative but still realistic in

this manner. Training the regression model on this data and then

comparing it with the RI baseline and the PTE non-noisy data at

epoch 38 shows that there is still value in applying our method,

sitting in between, above the baseline but below the accurate clinical

data, as shown in Figure 9.

4.4 Discussion

In this study, we demonstrate a pre-training approach for lesion

segmentation based on the estimation of the lesion’s principal

axes. The “Pseudo-RANO” measures used in this study are

relatively cheap and straightforward to obtain and could serve

as an alternative to dense segmentation masks as training data.

We further observe that U-Net encoder pre-training appears to

facilitate the transfer of features to enable faster convergence and

modest improvements in overall segmentation performance. In

particular, we observe that a pre-trained, trainable encoder offers

optimal performance when compared with randomly initialized

models and those with a pre-trained frozen encoder. The proposed

pre-training scheme allows for both faster and more stable training

with fewer densely segmented ground truth masks.

Though bounding box implementations have been compared,

future study will also continue to evaluate the proposed pre-

training method with other weakly supervised training methods

in terms of convergence, performance, impact on early training,

and whether multi-task learning may afford further benefits.

Additionally, the generalisability of the proposed approach to other

modalities and diseases has been explored using other measures,

such as Response Evaluation Criteria In Solid Tumors (RECIST) in

the context of CT imaging.

Raw data availability without additional clinician time and

expertise is the main benefit since this data are already available.

This method of pre-training predisposes the network weights to

understand a tumor representation; in this case, we can assume that

the circularity and position of the tumor are estimated. Additional

testing in the future will be applied to variable tumor shapes, though

whole-body datasets for different organs will also be examined,

particularly considering the DeepLesion dataset, which contains

real RECIST measurements with CT input data.

5 Conclusion

Our methodology sits in a gap for weak segmentation where

measurements that are already routinely produced within clinical

practice can be used, particularly for tumor burden representation

and estimation that are created but not actively used for this

type of task. This application can have a huge impact when

we consider how difficult medical data is to obtain, where very

specialized equipment is required, particularly under specific

patient conditions, and when we consider how specialized the

annotations must be. This makes it a valuable research area for

the development of weakly supervised deep learning. However,

an approach has limitations where the length of time to train the

model may be longer, though the small size of this data compared

with high-fidelity alternatives should offset the impact of this

quality difference.

Our approach takes advantage of an approach for splitting a

model into encoder and decoder sections which are then unified

to form a segmentation model, sharing similarities with that found

in the study by Hatamizadeh et al. (2022) which uses masked CT

and MRI modeling and Hu et al. (2018) which uses optic disc

centroid estimation, where an encoder is pre-trained to solve this

specific task. This study explores the value of weakly supervised

learning on bi-dimensional measurements of tumor burden as a

pretext task for segmentation, which is inspired by the RANO

criteria and defined as a principal axis estimation for the active

tumor region (Yang, 2016). The widespread adoption of such

response evaluation measures within clinical trials (Cai et al.,

2018) could provide a large amount of data for use in deep

learning pipelines.
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FIGURE 9

Comparison of the RI baseline, PTE noise model at 33% additional noise, and RECIST PTE for epoch 38 of training.
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