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This article reviews recent literature investigating speech variation in production 
and comprehension during spoken language communication between humans 
and devices. Human speech patterns toward voice-AI presents a test to our 
scientific understanding about speech communication and language use. First, 
work exploring how human-AI interactions are similar to, or different from, 
human-human interactions in the realm of speech variation is reviewed. In 
particular, we focus on studies examining how users adapt their speech when 
resolving linguistic misunderstandings by computers and when accommodating 
their speech toward devices. Next, we consider work that investigates how top-
down factors in the interaction can influence users’ linguistic interpretations of 
speech produced by technological agents and how the ways in which speech is 
generated (via text-to-speech synthesis, TTS) and recognized (using automatic 
speech recognition technology, ASR) has an effect on communication. 
Throughout this review, we aim to bridge both HCI frameworks and theoretical 
linguistic models accounting for variation in human speech. We also highlight 
findings in this growing area that can provide insight to the cognitive and social 
representations underlying linguistic communication more broadly. Additionally, 
we touch on the implications of this line of work for addressing major societal 
issues in speech technology.
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1 Introduction

It is a new digital era: People now regularly communicate with voice-activated artificially 
intelligent (AI) systems, such as Siri, Google Assistant, Alexa, and ChatGPT-enabled devices, 
that spontaneously and naturalistically produce interactive speech. Computers have long 
served as mediators of communication. Yet, with the rise of voice-enabled technologies, the 
amount of spoken language conversations where the interactants are devices is steadily 
growing for many individuals who use them to complete a variety of everyday tasks (e.g., 
complete a shopping list, get the weather report, compose a text message, query information) 
(De Renesse, 2017; Ammari et al., 2019), and in some cases even for social interactions (e.g., 
play a game, engage in chit chat with “socialbots”) (Ram et al., 2018; Perkins Booker et al., 
2024). Voice-enabled technologies can also be used for applications such as speech translation 
(Nakamura, 2009) and “emergency media” that are used to connect users to emergency service 
providers (Ellcessor, 2022).

Speech patterns during conversational interactions between humans and voice-AI present 
a test to our scientific understanding about speech communication and language use. The 
speech patterns people use when talking to devices can reveal the underlying mental 
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representations people use when producing and perceiving language, 
as well as the role of AI in our society, which can inform both linguistic 
theory and models of human-technology interaction. We argue that 
interpreting language patterns during human-computer interaction 
using both HCI frameworks and models accounting for variation in 
human speech can provide insight to the underlying cognitive and 
social representations used for linguistic communication more 
broadly. We also touch on the implications of this line of work for 
addressing social issues in speech technology. This review is informed 
by our stance as linguists: we believe that the research questions, tools, 
approach, and knowledge from linguistics to can be used to investigate 
language variation during HCI in order to understand how people 
behave toward machines, as well as to investigate the social and 
functional factors that govern speech communication better, 
in general.

In section 2, we  review recent literature investigating speech 
variation in production and comprehension during human-computer 
interactions. We  also summarize work exploring how human-AI 
interactions are similar to, or different from, human-human 
interactions in the realm of speech variation, focusing on resolving 
misunderstandings or when accommodating an interlocutor. 
We additionally consider how interactions with voice-AI can influence 
human language patterns, both for a single individual or potentially 
leading to change across speech communities over time. In section 3, 
we consider the machine side of human-computer spoken language 
interactions. We argue that applying a sociolinguistic approach to 
examining spoken language use with machines can shed light on 
factors shaping communicative success as well as the impact of 
human-computer interaction on user language patterns. We  also 
highlight the need to investigate and address issues of social inequality 
and bias in speech technology.

2 How do humans vary their speech 
when interacting with devices?

2.1 Theoretical setting

There is enormous variability in how a single word is pronounced 
across speakers and contexts. Much theoretical work in phonetic 
theory is concerned with accounting for the articulatory, social, and 
cognitive factors that give rise to systematic variation in speech. For 
instance, some influential models of speech production propose that 
a large amount of phonetic variation during a conversation is a result 
of the communicative demands made on the individuals in the 
interaction: speakers produce more hyper-articulated words when 
there are cues that the listener is likely to misunderstand them (e.g., 
Lindblom, 1990). Another model of speech production proposes that 
phonetic variation during conversations has social motivations; more 
specifically, that people adopt the pronunciation patterns of their 
interlocutor as a way of conveying social closeness (or, in contrast, 
diverge from them to signal social distance) [i.e., communication 
accommodation theory (Giles, 1973; Giles et al., 1973)]. Thus, there 
has been much progress in linguistics in the development of models 
for explaining and accounting for variation during spoken 
language communication.

In parallel, decades of studies in the field of human-computer 
interaction (HCI) have been aimed at understanding how humans 

approach and complete tasks that involve technology. For instance, 
much theoretical work in HCI explores users’ “mental models” for 
technology, i.e., what people know and believe about the devices they 
use (Carroll and Olson, 1988; Payne, 2007). Much like how linguists 
use language behavior to make deductions about the processes 
underlying the production and comprehension of speech, mental 
models in HCI work is also observed indirectly: theoretical constructs 
about them are built by observing, for example, differences in user 
behavior toward technology across tasks/systems, or comparisons of 
how behavior changes over time through experience with a device, or 
user patterns when given different types of information about the 
system (for review of mental models, see Staggers and Norcio, 1993; 
for recent work on mental models of conversational agents, see Grimes 
et  al., 2021). HCI research is broad in scope: topics include, e.g., 
examining user conceptualization and behavior when using computer 
software, how household devices like AC units are operated, 
interaction with others using social media, designing and testing 
optimal user interfaces, interactions between people and humanoid 
robots, etc. Yet, a subfield of HCI is focused on linguistic 
communication during interactions with “digital interlocutors 
including embodied machine communicators, virtual and artificially 
intelligent agents (e.g., spoken dialog systems), and technologically 
augmented persons, either in real or virtual and augmented 
environments” (Edwards and Edwards, 2017: 487).

Some work in this subfield examines communication in order to 
understand people’s mental model of the linguistic and social 
competence of machines (Spence, 2019). A major theoretical 
framework in this area was launched by the work of Nass who 
synthesized HCI studies with methods from social and cognitive 
psychology. Nass’ “computers as social actors” framework (also known 
as ‘CASA’) explores the extent to which users treat technological 
entities as social actors during interactions (Nass and Moon, 2000; see 
also “Media Equation Theory”; Lee, 2008). This was investigated 
across a wide range of studies. For instance, Nass et al. (1999) found 
that, after a brief tutoring session with a computer, participants were 
more likely to give higher performance evaluations of a computer-
tutor when that same computer was in the room, compared to when 
they gave the evaluation on a different computer in another room. In 
human-human interaction, people tend to be  more positive in 
describing another person when that individual is present or the one 
asking, compared to if they are asked by another individual (e.g., 
Finkel et al., 1991). The Nass et al. (1999) finding was interpreted as 
demonstrating the transfer of ‘politeness norms’ to computers. Recent 
work has replicated this effect with smartphones (Carolus et al., 2018) 
and explored use of politeness terms (e.g., using “please” and “thank 
you”) when interacting with voice-AI devices (Lopatovska and 
Williams, 2018). (See Ribino, 2023 for a review of work examining 
politeness in HCI.)

The CASA premise is that people view technological agents as 
social actors and this mediates their behavior toward them. Moreover, 
they argued that when computers use language, this provides even 
stronger cues to users that they are social beings (Nass et al., 1994). 
Indeed, media that use language via text (Clark, 1999) or voice (Nass 
and Steuer, 1993) are rated as having a strong social presence [cf. 
Social Presence Theory which explores the extent to which users 
conceptualize an intelligent social interactor when using technology 
(Biocca et al., 2003; Lee, 2004)]. Spoken language, in particular, is a 
socially rich type of modality for communication. Therefore, there is 
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much potential to extend or transform theoretical understanding of 
people’s mental models of computers by exploring speech variation 
specifically. Applying Media Equivalence theories to speech variation 
with spoken language technology, it is predicted that people will 
be  prone to use the same social-structured representations and 
patterns of behavior from human-human interactions to interactions 
with technology when machines use spoken language.

Yet, recent HCI work has noted that observations that people 
behave as if computers are social actors does not necessarily mean that 
they are deemed as socially equivalent to humans. Theoretical 
extensions of CASA, for instance, postulate that people create 
technology-specific behaviors based on the particular contexts, uses, 
and routines in which they interact with them (i.e., “Routinized” HCI 
scripts; Gambino et al., 2020; Gambino and Liu, 2022). Also, some 
have pointed out that the nature of modern human-computer 
interaction is dynamic and interactive, which can change the nature 
of communication in different ways across contexts and systems (i.e., 
Theory of Interactive Media Effects (TIME); Sundar et  al., 2015). 
These more contemporary HCI frameworks are consistent with the 
idea that people’s “mental models” for computers can be  shaped 
through the nature of the interaction, changing experience with 
technology and/or other types of knowledge users might acquire or 
be  told about how devices work (e.g., see also Pal et  al., 2023 for 
discussion of the factors of conversational agent and chatbot design 
that contribute to the perception of apparent “personality traits” in 
voice-AI agents.). A “routinized” account of HCI is also an apt 
theoretical starting point for bridging work this line of work with tools 
and methods from linguistics since much phonetic variation can 
be attributed to the particular social grounding, communicative goals, 
or experience-based knowledge/expectations speaker-listeners bring 
to a conversational interaction.

There is also recent work investigating how qualitative differences 
in experience with devices over the lifespan, as well as developmental 
factors, influence individual variation in conceptualization and 
behavior toward technology. For instance, researchers have noted 
generational shifts in behavior toward technology. Prensky (2001) 
defined “digital natives” as individuals who are exposed to and interact 
with new technologies since childhood, while “digital immigrants” are 
people raised without being immersed in technology. Some 
researchers have postulated that these developmental differences in 
exposure to technology result in qualitative differences in how users 
interact with devices (Helsper and Eynon, 2010; Kesharwani, 2020). 
For example, digital natives display “fluency” in using devices, are 
easily able to operate new technologies, as well as develop novel ways 
of using media effectively; in contrast, digital immigrants see new 
technologies as novelties and tend to utilize only learned functions 
(Dingli and Seychell, 2015). Not all digital immigrants are older: since 
not everyone is raised while being immersed in technology, there are 
many children in the world that can be classified as digital immigrants 
(Helsper and Eynon, 2010; Kincl and Štrach, 2021). Yet, beyond 
experience with devices, other developmental and cognitive factors 
might affect how people view computers as social actors. Waytz et al. 
(2010) found individual differences in the extent to which people 
anthropomorphize non-human entities, such as computers. And 
recent work has shown that children tend to anthropomorphize 
voice-AI devices more than adults (Festerling and Siraj, 2022). There 
is also work showing that children are more likely to engage socially 
during conversational interactions with voice-AI devices, by asking 

personal questions to understand and relate to the voice agent, 
compared to adults (Lovato and Piper, 2015; Lovato et  al., 2019). 
Differences across digital natives and digital immigrants in human-
computer interaction could also be expected for language use and 
communication behavior. For instance, digital natives see devices as 
tools for communication, i.e., as a means for sharing content and 
interacting with other individuals (Dingli and Seychell, 2015). 
Therefore, differences in “routinization” across digital natives and 
digital immigrants could vary, and impact speech and language 
behavior during HCI.

With this interdisciplinary theoretical landscape in mind, the rest 
of this paper reviews recent empirical work that can speak to issues at 
the intersection of phonetic variation and linguistically-mediated 
human-computer interaction. Spoken language is simultaneously 
functional and social. And, indeed, when people interact with 
technology there are both functional (e.g., complete a task) and social 
(users are projecting some amount of sociality onto computers) factors 
involved. Spoken language simultaneously conveys both functional 
(e.g., expression of lexical meanings) and social (e.g., socio-indexical 
features) properties (Labov, 2015) and they are present in linguistic 
interactions with computers, as well. Do users simply transfer their 
speech and language behavior from human-human interaction to 
communication events with technology? Or, do people develop 
technology-specific linguistic behaviors which reflect the unique 
functional and/or social roles that voice-enabled machines play in 
their lives? How does this vary with the type of device, type of task, or 
type of user? And will this change over the lifespan and across 
generations as technology (and people’s experience) evolves?

The next section reviews work that begins to touch on these 
questions. We  also argue that linguistic theory can advance by 
integrating models of phonetic variation and use with HCI 
frameworks. Interactions between humans and computers when 
spoken language is the modality introduce new avenues for 
synthesizing phonetic and HCI theories and empirical observations 
can inform both fields. We come to this new area from the perspective 
of academic linguists. Therefore, we  focus on research at the 
intersection of speech production/comprehension during spoken 
interactions between humans and technology that can speak to 
fundamental questions about the cognitive and social structures 
underlying language variation and use.

2.2 User speech variation in production 
during human-computer interaction

2.2.1 Intelligibility-motivated phonetic variation 
when talking to technology

One of a speaker’s major goals when communicating is to make 
their speech understood by a listener. Lindblom’s (1990) hyper- and 
hypo- articulation (H&H) model postulates that the speaker is 
dynamically monitoring the likelihood for communicative success of 
an interaction and adjusting their acoustic-articulatory output 
accordingly. When the conditions are deemed to be  optimal for 
intelligibility, speakers conserve articulatory effort by adjusting toward 
more hypo-articulated, reduced speech variants; yet, when speakers 
sense that a listener might have some difficulty comprehending for 
some reason, they may exert more effort to produce hyper-articulated 
speech forms. Recent extensions of H&H model, such as targeted 
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adaptation accounts (Baese-Berk and Goldrick, 2009; Schertz, 2013; 
Buz et al., 2016), propose that hyperarticulation can be focused on the 
acoustic features that enhance the source of a particular 
misunderstanding. Indeed, decades of empirical work on “clear 
speech” demonstrates that speakers produce slower speech with more 
extreme phonetic variants of words in conditions where they believe 
there is a communicative barrier for a listener (Picheny et al., 1986; 
Krause and Braida, 2004; Smiljanić and Bradlow, 2005; Uchanski, 
2005), supporting the view that speech variation is adaptive and, to a 
large extent, reflects the real-time communicative pressures at play 
during a spoken interaction between individuals.

However, recent empirical work shows that intelligibility-
motivated phonetic variation is multivariate and complex. For one, 
while greater clear speech adjustments are found for listeners who 
speakers might assume have a communicative barrier [i.e., speech 
toward hearing impaired individuals (Picheny et  al., 1986) or 
non-native listeners (Uther et  al., 2007)], there are systematic 
differences in phonetic enhancements observed in clear speech across 
real vs. imagined interlocutors (Scarborough et al., 2007; Scarborough 
and Zellou, 2013), as well across other types of imagined interlocutors 
(Aoki and Zellou, 2024). Moreover, real listener-directed clear speech 
is better perceived by human comprehenders (Scarborough and 
Zellou, 2013), suggesting that the presence of an authentic, embodied 
human affects speakers’ ability to recruit the most optimal mental 
model for the type of speech that will indeed be most intelligible in 
that context.

At the intersection of speech production and HCI, researchers 
have asked questions such as: do people have a specific device-directed 
speech register, or adapt their speech in response to communicative 
difficulty in different ways for human vs. device interlocutors? Such 
findings are revealing as to the mental models users have about the 
spoken language comprehension capabilities of machines, and, more 
broadly, how people establish and adapt their mental models for what 
speech adjustments are appropriate for different types of interlocutors. 
Several studies that have looked at acoustic adjustments made by 
speakers when talking to technology, with or without a human-
directed speech comparisons, have found that device-directed speech 
contains more hyperarticulated phonetic variants such as louder and 
slower speech (Mayo et al., 2012; Siegert and Krüger, 2021). Some 
have also found segmental hyperarticulation in technology-directed 
speech, such as more extreme vowel articulations (Burnham et al., 
2010). (See Cohn et  al., 2022 for review of device-DS findings). 
Greater articulatory effort when talking to a device indicates that 
speakers have an assumption that there is a larger communicative 
barrier to overcome in HCI, relative to with human listeners (Branigan 
et al., 2011; Cowan et al., 2015). Thus, device-directed speech patterns 
suggest that people conceptualize technology as a less communicatively 
competent spoken language comprehender than human listeners 
(Cohn and Zellou, 2021; Cohn et al., 2022).

Is this the same across all users? While exploring generational, or 
even individual, differences in clear speech is under-studied, there is 
some work by Cohn et al. (2019) comparing adults’ and school-age 
children’s device- vs. human-DS that reports even greater 
hyperarticulation by children toward Alexa. It is hypothesized that 
since kids are misunderstood by ASR at a higher rate than adults 
(Russell and D’Arcy, 2007), they have an even greater expectation of 
communicative difficulties when talking to technology and therefore 
produce even more effortful speech toward technology.

At the same time, there is evidence that the assumption of 
“communicative incompetence” that people appear to project onto 
devices is flexible and can change over the course of an interaction 
depending on the nature and amount of misunderstandings made by 
a machine. For instance, Cohn et al. (2022) compared participants’ 
production of words to Apple’s Siri digital assistant and a human 
interlocutor before and after feedback (in some trials the interlocutor 
correctly understood the target word; in others, the interlocutor 
misunderstood) across studies where there was a high and low rate of 
listener comprehension errors. They found that overall participants 
spoke slower and more loudly when speaking to Siri, compared to the 
human, consistent with prior work and an assumption of greater 
comprehension difficulty for the device. However, these acoustic 
differences mainly emerged over the course of the interaction: in 
particular, people got even louder when talking to Siri over the course 
of the experiment. Moreover, they found greater vowel 
hyperarticulation following comprehension errors by Siri in the lower 
error rate study, not in the higher error rate study. In other words, 
while prosodic-level hyperarticulation was increased for Siri in all 
cases, targeted phoneme-level hyperarticulation was greater for Siri 
after an occasional comprehension error; but equivalent when both 
Siri and the human misunderstood most of the time.

Finally, it is important to note that the assumption of 
communicative incompetence can be mediated by properties of the 
device voices, beyond simply conceptualization of the interlocutor as 
a “device” vs. “human.” In particular, stereotyping individuals as 
having certain psychological traits based on their socio-indexical 
features is ubiquitous in human-human interaction; for instance, 
women are judged to possess less communicative competence than 
men when reading identical political speeches (e.g., Aalberg and 
Jenssen, 2007). This has been shown to apply to voice-AI as well: users 
perceive male voice assistants as more competent than female voice 
assistants (Ernst and Herm-Stapelberg, 2020). Since voice-based 
stereotyping also occurs based on the racial and age-based cues 
present in talkers’ speech (e.g., Kurinec and Weaver, 2021 for race; e.g., 
Hummert et  al., 2004 for age), we  predict that similar biases in 
judgments of communicative competence vary based on apparent 
ethnicity and age of device voices [see discussion of Holliday (2023) 
and related work in section 3]. Whether these factors influence 
patterns and extent of pronunciation adjustments present in device-DS 
is a ripe question for future work.

Taken together, the work investigating device-directed speech 
variation provides evidence that speakers adapt their speech 
production in real-time in response to the assumed and real 
communicative needs of a computer interlocutor. We can use speech 
variation toward devices, across contexts and across individuals, to 
reveal fine-grained changes in the mental models about what will 
be most intelligible to a particular listener, explore how both social 
and functional factors affect speech variation, and observe how speech 
production targets are dynamically updated as an interaction unfolds.

2.3 Vocal alignment toward speech 
technology

Other approaches to speech variation seek to understand how the 
properties in an interlocutor’s speech might influence how a speaker’s 
pronunciation changes over the course of an interaction. In particular, 
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speakers have been shown to adopt the acoustic-phonetic properties 
of their interlocutor - this is known as vocal accommodation, phonetic 
imitation, or speech entrainment. Speech accommodation can 
be revealing about the nature of representations used during speech 
production: e.g., that they are dynamically updated based on the 
specific sensory information that a speaker experiences (Shockley 
et  al., 2004). Thus, phonetic imitation is often cited as evidence 
supporting exemplar-based models of speech representations, which 
are built from stored experiences during conversational interactions 
(Goldinger, 1998; Goldinger and Azuma, 2004).

What can users’ phonetic imitation of device speech contribute to 
theoretical models of speech representations? For one, the speech 
produced by devices is synthetically derived in some way. Synthetic 
speech often contains less prosodic and segmental variation compared 
to naturally produced speech (Németh et al., 2007; O’Mahony et al., 
2021; Zellou et  al., 2021) and increasing the perceived prosodic 
naturalness of synthetic speech does not always lead to increases in 
intelligibility (Cohn and Zellou, 2020). There is also evidence that 
synthetic speech is remembered less well than naturally-produced 
speech (Paris et  al., 2000). One fundamental question is whether 
people align less toward synthetic speech, compared to naturally-
produced speech. Since it contains less variation and less well 
remembered, it could be  stored with less robust memory traces. 
However, a recent study compared automatic imitation of naturally-
produced and computer-generated syllables (e.g., “ba,” “da”) and 
found equivalent imitative responses across speech types (Wilt et al., 
2022). Also, Gessinger et al. (2021) compared phonetic imitation of 
prosodic and segmental patterns across natural and synthesized 
speech during interactions with a spoken dialog system and likewise 
found similar patterns of imitation across these conditions.

Moreover, speech imitation is a highly socially-mediated behavior. 
Communication Accommodation Theory (CAT), for instance, views 
people’s motivation to accommodate toward their interlocutor’s 
linguistic patterns as a function of socio-affective outcomes (Giles, 
1973; Giles et al., 1973). For instance, there is much work showing that 
speakers align toward the speech patterns of social groups that they 
identify with (e.g., jocks vs. burnouts in Eckert, 1989; ethnic/
nationalist identity in Mendoza-Denton, 1997). And, in conversational 
interactions, speakers often adopt the speech patterns of the 
interlocutors that they evaluate as more attractive (Babel, 2012), or 
who they feel a closer affinity toward (Pardo et al., 2012), or are simply 
more alike them (Kim et al., 2011).

Several recent studies have asked what predictions might 
Communication Accommodation Theory make for accommodation 
during human-computer interaction. For instance, Cohn et al. (2019) 
compared patterns of phonetic imitation by young adults shadowing 
words produced by Apple’s Siri voices and human speakers, while also 
viewing images corresponding to these interlocutor types. They found 
overall less imitation toward the Siri voices than toward the human 
voices, consistent with the hypothesis that people will align to a lesser 
extent toward devices since they are less socially alike. Yet, there were 
similar socially-mediated patterns across voice types: people imitated 
male voices (both human and Siri) more than female voices. Such 
interlocutor gender-mediated behavior across human and computer 
talkers is found in prior work, too: male voiced-computers are rated 
as more knowledgeable on topics such as technology, whereas female 
voiced-computers are rated as more knowledgeable on topics such as 
love and relationships (Nass et al., 1997). Thus, even though there is 

less alignment toward device interlocutors, suggesting that device 
interlocutors are viewed as socially distinct from humans, people still 
apply gender stereotypes to technological agents based on the 
properties of the voice alone. More recent work finds similar biases in 
evaluation of robots, smart speakers, and voice assistants based on 
social-indexical properties of the voices (Ernst and Herm-Stapelberg, 
2020; Holliday, 2023; and see Sutton et al., 2019 for discussion of 
biases and speech-based attitudes and discrimination as relevant for 
voice-AI design). The question of how such biases play out in vocal 
alignment behavior toward voice-AI is an open question for 
future work.

Another study found that the apparent age of the voice was an 
additional social variable that mediated people’s alignment toward 
device interlocutors. Zellou et al. (2021) compared younger adults’ 
(aged 19–39 years old) older adults’ (aged 53–81) vocal alignment 
toward Siri and human voices and found that participants showed the 
largest alignment toward voices that sounded closest to them in age: 
older adults aligned most toward the voice rated as the oldest-
sounding, which happened to be the female Siri voice; meanwhile, 
younger adults aligned most toward the youngest-rated voice - the 
male human talker. The interpretation of these cross-generational 
differences in alignment is that they reflect age-based socially 
mediated accommodation across voices: individuals of different 
age-identities align more strongly toward model talkers of similar 
apparent ages, in human-human interaction, there is even evidence of 
under-accommodation by older adults away from younger adult 
interlocutors (Giles et al., 1992) which supports socially-mediated 
accommodation theories. Moreover, several studies compared 
accommodation toward a variety of different TTS voices showing that 
people’s rated affinity and positive attitudes of individual voices 
correlates with stronger degree of vocal alignment toward those voices 
(Cohn et al., 2023; Dodd et al., 2023). Taken together, the differential 
patterns of imitation across both TTS and human voices in these 
studies suggest that there is socially-mediated accommodation of 
device interlocutors based on the apparent social properties in 
their speech.

As soon as people interact with a device that generates spoken 
language, this presents an opportunity for technology to influence the 
speech production of the user. But, speech variation is highly socially-
structured. Vocal alignment toward devices is pro-social: when the 
voice-AI system displays human-based social characteristics, human 
shadowers apply the similar patterns of phonetic imitation from 
human-human interaction, using decreases in acoustic distance to 
signal social closeness. In other words, spoken interactions with 
voice-AI influence human speech patterns in socially-meaningful 
ways. This derives from social properties apparent from the voice 
(gender, age, likeability). Indeed, people do display distinct social 
attitudes and affinities for technology, and that has been shown to 
influence accommodative behavior. Moreover, users’ social 
characteristics (their age, gender, experience) also shape their attitudes 
and accommodative behavior toward machines. This supports the 
proposal that mental models for technology include complex, human-
based social structures.

Yet, HCI frameworks propose that people develop distinct 
routines for behavior during interactions with technology (Gambino 
et al., 2020). This perspective opens avenues for future research. For 
instance, people most often use voice-AI technology in functional 
ways, such as to make a shopping list, set a timer, operate 
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internet-of-things devices, or request information. Does vocal 
alignment behavior differ when people are interacting with technology 
while performing the most common types of tasks for these systems 
(cf. Zellou et  al., 2021)? As voice-AI technological advancements 
introduce more diverse voices and socially-relevant contexts in which 
we use devices, will people align more toward these systems?

3 Listener perception of speech during 
human-computer interaction

3.1 Factors related to speech generation 
and TTS variation

Having addressed issues related to how humans produce language 
when interacting with non-human interlocutors, we now turn to how 
humans perceive language as produced by such technological actors. 
The speech produced by modern voice-AI is typically generated via a 
process known as text-to-speech (TTS). The speech, while derived 
from voice actors’ productions of lots of recorded utterances, is 
artificially machine-synthesized following one of several waveform 
generation methods (see Kaur and Singh, 2023 for an in-depth review 
of TTS generation and methods). One waveform generation method 
is concatenation whereby individual acoustic chunks are selected from 
a database and re-stitched together via unit selection, in addition to 
application of prosodic-smoothing algorithms (like, pitch synchronous 
overlap add; PSOLA) to increase the prosodic cohesion and 
naturalness of a concatenated utterance. The original Siri and Alexa 
voices are generated via unit selection. Another speech generation 
method is statistical parametric speech synthesis which extracts 
acoustic parameters from a database and builds waveforms using a 
generative model (Zen et al., 2009). Parametric speech synthesis using 
autoregressive deep learning models trained on speaker datasets to 
synthesize high fidelity and highly naturalistic speech (van den Oord 
et al., 2016). Such neural TTS approaches are rapidly being adopted 
industry-wide.

Recent studies on speech synthesis have focused on questions 
related to how TTS generation methods affect the perceived 
naturalness and intelligibility of the waveform. Parametric speech 
synthesis methods generate speech that is evaluated as more 
naturalistic and human-sounding than concatenative TTS (van den 
Oord et al., 2016). Yet, recent work has shown that, while neural TTS 
is more natural sounding, it is less intelligible in a speech-in-noise 
transcription task than concatenative speech generated from the same 
speaker datasets (Cohn and Zellou, 2020). This is potentially due to 
the presence of more phonetic reduction and acoustic overlap present 
in neural TTS; while increasing phonetic reduction has the effect of 
creating more naturalistic sounding speech, it can also make the 
acoustic cues to lexical contrast less distinctive. However, with the 
development of more advanced techniques integrated into neural TTS 
methods, the loss to intelligibility can be ameliorated. New methods 
have been introduced that can be used to generate different types of 
speech variation, such as emotional prosody (Yamagishi et al., 2004), 
style shifting like newscaster and bedtime story register (Wood and 
Merritt, 2018), and even accented speech (Liu and Mak, 2020) that is 
not present in the original speaker dataset. For instance, the 
“newscaster” speech style introduced by Amazon in 2018, generated 
by augmented existing style-neutral TTS voices using a separate data 

set of newscaster-style recordings, is more intelligible than the original 
default neural TTS speech (Aoki et  al., 2022). Moreover, the 
introduction of emotionally expressive interjections into TTS leads to 
higher social ratings of socialbot conversations by users (Cohn 
et al., 2019).

Speech technology firms are consistently expanding the types of 
voices offered in TTS systems, at least in part as a response to user 
demand for more diverse voices. For example, Apple’s Siri Voice 
Assistant has expanded from offering only one American English 
voice option in 2010, to offering five as of Fall 2023. In a press release 
in February 2022, Apple stated: “We’re excited to introduce a new Siri 
voice for English speakers, giving users more options to choose a voice 
that speaks to them” (Axon, 2022). Of particular interest is the fact 
that the new voices introduced by Apple expanded in their range of 
both perceived and espoused social identities. After 2010’s original 
“American English female” Siri, the second voice to debut was 
“American English male,” in 2013. In Spring 2021, Apple released two 
additional voices and revamped the original two. While the 2021 
voices were in beta testing, online users began to speculate about the 
voices’ “races” and “genders” (Waddell, 2021). Holliday (2023) found 
that indeed, the four Siri voices released in 2021 were evaluated 
differently from one another in terms of gender, age, race, and regional 
background, demonstrating that listeners did have differing social 
perceptions of them. In 2022, Apple expanded upon this pattern of 
introducing new, more diverse voices when it added a fifth Siri voice, 
“Voice 5″, also known publicly as “Quinn” (Porter, 2022). This voice 
represented a major shift in Apple’s marketing of TTS voices, which 
had previously never been identified with a proper name or any 
demographic information about its voice actor. Apple named Quinn 
and publicly stated that the voice was recorded “by a member of the 
LGBTQ+ community” (ibid). In reference to the new voice, an Apple 
spokesperson said: “Millions of people around the world rely on Siri 
every day to help get things done, so we work to make the experience 
feel as personalized as possible” (Axon, 2022). Apple’s public 
statements about its expansion of the Siri voice offerings indicate that 
they believe there is demand for voices that reflect the identities of 
their users.

While companies such as Apple expand their TTS offerings to 
contain a wider array of voices with different social identities, these 
strategies are not without cause for concern. Holliday (2023) observes 
that while listeners attach different demographic traits to the different 
Siri voices, they also attach negative stereotypes about those traits. Her 
study found that Siri Voice 3, the voice most likely to be categorized 
as Black, male, and young, was also judged as less competent and less 
professional than the other voices. This evaluation mirrors well-worn 
stereotypes of Black male speakers in the United States, indicating that 
TTS systems have the potential to reinforce and potentially reproduce 
negative social biases.

3.2 Top-down factors

Spoken word comprehension is a complex process. There is much 
work demonstrating that explicit social information provides ‘top-
down’ influences on how an acoustic signal is perceived (e.g., 
Niedzielski, 1999; Hay et al., 2006; Hay and Drager, 2010). How might 
listeners’ expectations, biases, or social knowledge shape how they 
perceive speech when it is produced by a device? To address this 
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question, several recent studies have explored how people’s perceptions 
change on the basis of different top-down information that the speech 
is generated by a machine or by another person. For instance, Aoki 
et  al. (2022) compared the intelligibility of speech-in-noise when 
listeners were shown a picture of a device vs. when they saw a picture 
of a person (and were told the picture depicted the talker). They found 
that intelligibility of both TTS and naturally-produced speech 
decreased when listeners were told the speech generated by a device. 
In this case, it is possible that the expectation that machines produce 
less intelligible speech led to the decrease in accuracy, paralleling prior 
work in human-human communication that when listeners hear 
speech from a talker they think might have a foreign accent (i.e., a 
photo of an East Asian face), they show reduced comprehension 
(Rubin, 1992). Thus, when people think they will have a hard time 
understanding a speaker, they subsequently show 
worse comprehension.

At the same time, expectation that a speaker uses a non-native 
variety can improve comprehension if the speech is accented: 
McGowan (2015) had a study with a similar design as Rubin (1992), 
except the speech was produced by a Mandarin-accented talker and 
he found that an image of an Asian face improved comprehension. An 
open question is whether a similar boost for top-down knowledge that 
the speaker is a device could be found in contexts where speech is 
highly degraded (e.g., very robotic or choppy). This is an open avenue 
for future work.

Beyond intelligibility, top-down guise manipulations that the 
speaker is human vs. device have been shown to influence listeners’ 
perception of speech in other ways, too. Zellou et  al. (2023) 
investigated whether learning of a vowel shift differs if the listener 
thinks the speaker is a device or human. They exposed listeners to a 
voice that produced a ‘dialect’ of English consisting of a vowel 
lowering, e.g., ‘beb’ [bɛb] as an instance of the word bib, while given 
information that the talker was either a human or a device. After 
exposure, they tested if listeners’ vowel category boundary had shifted 
for that talker, as well as whether it generalized to new talkers either 
in the same or different guise as the exposure talker. While learning 
the shift was equivalent for device and human guises, listeners showed 
the greatest generalization of learning from a device exposure talker 
to new device talkers. In other words, people appear more likely to 
assume that different device voices share a common “accent,” than 
different human voices. This is further evidence that the mental 
models users generate about the language capabilities and patterns of 
device interlocutors are distinct from those for human interlocutors, 
and this impacts people’s linguistic behavior during human-computer 
interaction. Here, the expectation that devices will produce speech 
patterns that are more homogenous and uniform across voices 
perhaps stems from the particular experiences that people have with 
device speech - that it is less variable and contains less diversity than 
speech across human speech communities.

3.3 Automatic speech recognition factors: 
machine comprehension of speech 
variation

If speech generation systems are machines imitating the human 
faculty for speech production, then speech recognition systems are 
machines imitating the human faculty for spoken word 

comprehension. Automatic speech recognition (ASR) is the 
technology that transforms a speech signal into corresponding text via 
computational algorithms. It is a critical component of voice-enabled 
technologies that facilitates spoken human-computer communication 
(See O’Shaughnessy (2023) for an in-depth review of ASR technology 
and developments). Much HCI work examining ASR technology has 
focused on how it deals with the variation present in human speech, 
across and within users, as well as biases stemming from ASR 
architecture or training that has major societal consequences.

While ASR technology has improved exponentially over the last 
few decades, its accuracy on non-noisy speech signals in non-ideal 
acoustic conditions remains far below human comprehension ability 
(Spille et al., 2018). Recently, researchers have explored issues related 
to degraded performance of ASR systems for speakers who use 
“non-standard” varieties of English, including marginalized varieties 
of United States English as well as L2 varieties (see for review Ngueajio 
and Washington, 2022). One of the first major papers to examine this 
issue is Koenecke et al. (2020) who examined word error rates across 
systems and dialects. They found that speakers of African American 
English are misrecognized at higher rates than speakers of 
“Mainstream” American English. The authors remark that the 
asymmetry in recognition accuracies “arise primarily from a 
performance gap in the acoustic models, suggesting that the systems 
are confused by the phonological, phonetic, or prosodic characteristics 
of African American Vernacular English rather than the grammatical 
or lexical characteristics” (Koenecke et al., 2020, p. 7687). Work such 
as this highlights a major bias in the underlying ASR training methods 
used by commercial speech technology systems: they simply 
underperform for speakers of marginalized and “non-standard” 
varieties (see also Wassink et al., 2022).

Another emerging issue is that biases against speakers from 
marginalized backgrounds can be especially problematic when ASR 
systems are used to give feedback to users about their language and 
speech patterns. Holliday and Reed (2022) examine one of the first 
widely-available commercial devices designed to provide feedback 
about a user’s language practices, the Amazon Halo. The fitness tracker 
Halo was released in Summer 2020 and was designed as a health and 
wellness device. Unlike other devices in this space, the Halo contained 
a unique “tone” feature, which marketing by Amazon (Press Center) 
described in this way:

“The globally accepted definition of health includes not just 
physical but also social and emotional well-being. The innovative 
Tone feature uses machine learning to analyze energy and 
positivity in a customer’s voice so they can better understand how 
they may sound to others, helping improve their communication 
and relationships. For example, Tone results may reveal that a 
difficult work call leads to less positivity in communication with 
a customer’s family, an indication of the impact of stress on 
emotional well-being”.

In public-facing materials like this, Amazon claimed that the 
device was designed to improve the user’s communication skills, but 
this is a fraught task due to the complexity of contextual and 
interpersonal factors involved in sociopragmatic interpretation as well 
as basic issues of processing sociolinguistic variation. In short, such a 
device would likely need rich social and sociolinguistic information 
to follow through on its claims.
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In a recent study, Holliday and Reed (2022) examined how the 
Halo evaluated speakers of different races and genders, as well as how 
it responded to differences in voice quality properties. The Halo device 
can be activated to listen to specific speech samples that the user 
chooses and then to provide energy and positivity scores out of 100, 
as well as qualitative feedback in the form of an adjective list for each 
sample. Holliday and Reed found a number of concerning 
relationships between Halo’s ratings for energy and positivity, and the 
gender and race, and some voice quality features, of users. First, in a 
task where all speakers read the same passage, the Halo demonstrated 
no differences in positivity ratings between speakers, indicating that 
it is likely not evaluating speech at all but rather using a speech-to-text 
model that employs sentiment analysis. In this way, the Halo is not 
evaluating “tone of voice” at all, but rather attaching positivity scores 
to lexical items. With respect to how the Halo evaluates energy, the 
authors find that the Halo has a strong preference for less “gender 
normative” voices. That is, it penalizes voices for being “too high” in 
F0 if the user is male, and “too low” in F0 if the voice is female. It also 
gives lower scores for energy to female speakers and Black speakers, 
reproducing biases seen in other ASR systems. Overall, users relying 
on the Halo for feedback to “better understand how they sound to 
others” are likely to receive biased results if they are women or people 
of color. One major issue for devices like the Halo that would claim to 
evaluate social and communicative well-being is that there are few 
reliable mechanisms for preventing bias in training data, an issue also 
raised by Koenecke et al. (2020). The findings of Holliday and Reed 
(2022) demonstrate the potential damage if such devices are not 
trained on a diverse set of voices, and not designed to consider existing 
social biases against speakers who come from sociolinguistically 
marginalized groups.

In general, ASR systems have a number of unique difficulties 
related to their ability to manage dialect diversity as well as individual 
speaker factors. Human listeners are able to adjust their expectations 
of a speaker utilizing social information to improve their word 
recognition. For example, a number of studies (Creel, 2018; Dossey 
et  al., 2020) have found effects such that listener intelligibility of 
speakers of unfamiliar regional varieties improves with additional 
input. In theory, machine learning algorithms should be able to do the 
same, and there is evidence of training effects for a number of digital 
assistant systems as well. For example, Apple’s Siri does utilize training 
data from the phone’s user to improve recognition over time (Hu et al., 
2019). However, voice assistants and similar technology are not able 
to compensate for misunderstandings using social information 
because they do not have access to the wealth of social and contextual 
information that human listeners can utilize to disambiguate signals.

Finally, ASR systems face significant challenges at the intersection 
of social information and the quality of the speech signal itself. 
Holliday (2021) compared human perception of different intonational 
contours in an experiment where listeners were exposed to low-pass 
filtered stimuli as well as original, unmanipulated stimuli, and found 
differences between how listeners rated the ethnicity of the speakers. 
Essentially, when listeners are presented with degraded stimuli, 
human perception of sociolinguistic variation may be altered such that 
they make different judgments about a speaker’s race. Degraded 
stimuli therefore alter human ability to use social information to do 
on-line language processing. In theory then, ASR systems that rely on 
speaker recognition may be  subject to the similar issues when 
presented with degraded stimuli. This is a particular challenge because 
voice assistants designed for everyday use can be  presented with 

stimuli of varying quality, impairing a system’s ability to perform 
speaker dialect classification and/or identification. ASR systems may 
perform differently in a quiet home environment as compared to a 
loud coffee shop, or a street with significant traffic, or when a speaker 
is talking farther away from the device (Wölfel and McDonough, 
2009). So attempts to provide the systems with necessary input to 
accommodate speakers who use different dialects must also consider 
the real-world conditions in which the devices are likely to be used, 
and how noise may result in especially degraded performance for 
some groups, even if systems are trained on a variety of dialects.

3.4 Inequality, social justice implications, 
and effects on language use

In addition to concerns about how humans interact with devices, 
as well as inequality in both how TTS and ASR systems are designed 
and utilized, there are larger issues of algorithmic bias and social 
justice. In particular, researchers across fields have been increasingly 
concerned about the risk of the amplification of various types of social 
inequality due to increasing reliance on devices. These issues fall 
broadly into 3 main concerns: device accessibility, bias in access and 
evaluation and device impacts on user language, each of which are 
discussed in turn.

3.4.1 Access to devices
Perhaps the most obvious issue for a world in which speech 

technology devices are necessary for ever more daily tasks is the 
question of who has access to them in the first place. According to a 
2021 analysis by Strategy Analytics, nearly half of the world’s 
population has access to a smartphone. However, there are massive 
differences with respect to the quality of the devices, access to Wi-Fi, 
mobile, and even electricity across the world. In the United States, a 
nation with advanced wireless and cellular infrastructure, nearly 5% 
of the population has no access to broadband internet according to the 
FCC (Fourteenth Broadband Deployment Report). Even where 
broadband is available, the FCC estimates that 100 million people, or 
nearly 25% of the United States population, does not subscribe. These 
individuals are disproportionately likely to reside on tribal lands and/
or in rural areas, representing significant inequality that locks entire 
communities out of the economic benefits of new technology. These 
problems are obviously much more stark in the developing world. For 
example, the World Economic Forum reports that 50% of people in 
India, or 685 million people, have no access to the internet (Ang, 2020).

As systems are developed that require internet and device access 
for basic functions such as banking, healthcare, education, and 
transportation, disconnected individuals far even farther behind. 
There are also immense inequalities in access to technology due to the 
limitations on languages that they are designed to support. There are 
approximately 7,000 languages spoken in the world present-day, but 
there are only commercially available TTS in, generously, about 50 
languages. Users want to use technology in their home language 
(Markl and Lai, 2021). These asymmetries and gaps in language 
technology can lead to even larger economic and social inequalities 
throughout the world.

3.4.2 Bias in speech evaluation and access
There are a number of striking cases showing dramatic systematic 

biases in speech technology even for varieties spoken within the 

https://doi.org/10.3389/fcomp.2024.1384252
https://www.frontiersin.org/computer-science
https://www.frontiersin.org


Zellou and Holliday 10.3389/fcomp.2024.1384252

Frontiers in Computer Science 09 frontiersin.org

United States. In particular, devices can fail to function for speakers of 
all types of “non-standard” varieties of English, including and 
especially varieties of L2 English. So far, our discussion has focused on 
issues that have arisen for English speakers, with implications for 
speakers of all languages as speech technology spreads. However, a 
discussion of issues related to speech technology and language 
variation would not be complete without an acknowledgment of the 
fact that many of the problems discussed above are compounded for 
both multilingual individuals and multilingual societies.

A number of studies, including Wu et  al. (2020), Choe et  al. 
(2022), and Dubois et al. (2024), report that popular transcription 
systems fail at an unacceptable rate for L2 speakers of English. Using 
a corpus of formal speech created from TED (Technology, 
Entertainment, and Design) talks, Dubois et al. (2024) tested several 
videoconferencing and social media platforms and revealed that the 
error rate for L2 speakers of English is more than double that for L1 
English speakers. This represents systematic discrimination against 
such speakers, but also shows the difficulty that different types of 
automated systems have with L2-English speakers. In particular, users 
who rely on captions because they are deaf or hard of hearing are 
forced to rely on degraded output, compounding issues of accessibility 
for such users.

With respect to bilingual speakers, Cihan et al. (2022) observe that 
speakers who engage in code-switching or language mixing frequently 
report the failures of such technologies to recognize their speech. This 
generally leads to either users abandoning the technology, or being 
forced to adapt their language to the systems. As multilingualism is 
widespread across the world, these limitations affect a significant 
number of speakers. As Cihan et al. (2022) note, most humans are 
multilingual, but most voice assistants assume monolingualism. 
Technologies that cannot adapt to the ways that human beings use 
language in society are either not optimal, or they impose the 
restrictions of their designs on the users themselves. Monolingually-
biased speech technologies which are integral to the use of cars, 
appliances, and phones may reinforce a United  States-centric 
monolingual standard (Lippi-Green, 2011). Human-centric speech 
technology systems should consider code-switching and language 
mixing in the design of such systems in order for them to be both 
more fair and more functional for users across the world. Notably, 
however, advances in ASR, such as OpenAI’s Whisper, do support 
speech recognition for more than one language at a time (e.g., Lyu 
et al., 2024). So, recent developments are overcoming this limitation.

Relatedly, there are significant challenges in the area of commercial 
translation systems, which frequently do not account for linguistic 
variation or the challenges of casual speech, and thus can be extremely 
ineffective. Such systems have exploded in popularity over the last few 
decades because they are often more accessible and affordable 
alternatives to human interpreters and translators, but an overreliance 
on such systems and overconfidence in their accuracy can create 
significant challenges, especially for lesser-resourced languages. For 
example, Habash (2010) discusses the challenges of machine 
translation systems for different dialects of Arabic, and finds poorer 
performance and fewer resources for local dialects than for Modern 
Standard Arabic (MSA). This means that users with a stronger 
command of MSA would receive better translation output than ones 
who use “less standard” dialects that the system is not trained to 
recognize. When translation technology is increasingly used across 
domains such as tourism, government, and even medicine, this has 

the potential to lead to systematically worse outcomes for speakers 
who are already disenfranchised in both linguistic and 
non-linguistic domains.

3.4.3 User experience and device impacts on user 
language

Linguists have become interested in the effects of interacting with 
devices on people’s language use. For instance, during the COVID-19 
pandemic, a number of studies found that users were making 
adjustments to their speech as a result of having their conversations 
with other people mediated by devices or software such as Zoom or 
Facetime (e.g., Bleaman et al., 2022).

The extent to which using speech technology leads users to 
change their linguistic patterns will also vary greatly across contexts 
and across individuals based on the variety of a language they speak. 
This can occur due to explicit feedback from the device, e.g., in the 
case of applications like “Halo,” as described above, that give users 
feedback on their speech and language use. It also happens in 
implicit ways, based on the underlying design properties of the 
speech technologies. As outlined in several sections above, both the 
TTS and ASR systems underlying speech technology are trained on 
“standard” varieties of a language. Higher rates of comprehension 
failures occur disproportionately with speakers of “non-standard” 
varieties (Koenecke et al., 2020; Wassink et al., 2022; see also Zellou 
and Lahrouchi, 2024 for an examination of linguistic disparities in 
cross-language ASR transfer). And, in turn, this results in 
qualitatively different experiences for users who speak these 
varieties. For instance, Mengesha et al.’s (2021) diary study of Black 
users’ experiences with voice assistants found African Americans 
have to accommodate their speech in order to be better understood 
by the speech technology. Harrington et al. (2022) also report that 
Black Americans experienced frustration and pressure to code-
switch due to misunderstandings when interacting with a Google 
Home device.

In the long term, such experiences have the potential to influence 
language usage, such that speakers of “non-standard” varieties either 
implicitly or explicitly change their linguistic patterns to be understood 
by technology that was not designed to accommodate them. As a 
result, “standard” varieties of English and other languages gain 
additional social power because speech technologies that are necessary 
for everyday tasks require a command of specific varieties in order to 
function effectively. Users who do not or cannot conform to the 
speech styles that the devices were trained on may then be functionally 
excluded from new technologies.

One can also consider the role of voice-AI usage on child language 
development and use. In contrast to previous generations, many 
children are currently acquiring their language with non-zero input 
and experiences from voice-enabled technologies. What effect might 
this have on their language acquisition and use? This is an empirical 
question for future work and a ripe direction to explore what effect 
experience with voice-AI might have on language use and 
linguistic change.

4 General discussion

In this paper, we have focused on factors related both to how 
humans adjust their speech when interacting with machine 
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interlocutors, and how they perceive speech from voice-
enabled devices.

Section 2 focused on studies examining how speakers adapt their 
speech production either (1) in response to real or apparent 
communicative difficulties by a voice-AI interlocutor, (2) to adopt the 
speech patterns of the voice-AI, or (3) due to social dynamics of the 
interaction. Across studies, it was observed that speakers systematically 
change their speech during interactions with voice-AI agents. One 
broad generalization we can distill from this review is that users do 
tend to have distinct expectations and conceptualizations of the 
functional capabilities and social perceptions of machines. Though 
precisely how that affects user speech behavior varies based on the 
type and nature of the task. Exploring “machine” as a social category 
as distinct from, or similar to, humans, as well as how human-based 
social biases or norms are applied to technology is an area ripe for 
future work.

In section 3, we discussed recent issues and research related to 
how humans perceive the speech of voice-AI interlocutors. In 
particular, we  focused on research showing that humans attribute 
social identities and stereotypes to machine interlocutors, utilizing 
social information from their experience with humans to do so. 
We also examined the use of new technologies that aim to evaluate the 
speech of human interlocutors, and their potential for social bias. 
Finally, we discussed issues related to access and inequality in a world 
that increasingly relies on HCI for the completion of everyday tasks.

Our review also considered how human-computer interaction 
work can be bridged with linguistic analysis to make interdisciplinary 
theoretical advancements. An example we  highlighted is that the 
concept of mental models can be useful when applied to theoretical 
linguistic constructs. For instance, speakers have a conceptualization 
for how to adapt their speech to be best perceived by a listener, based 
on certain apparent social qualities (i.e., they are a non-native speaker 
or they have a hearing impairment) and this can be  dynamically 
updated in response to real-time feedback about whether the 
interlocutor has understood an utterance or not.

At the intersection of linguistics and human-machine interaction, 
there is growing evidence of enormous individual or group-level 
variation in behavior. But, our review revealed large gaps in studies 
examining what factors might predict differences across users in how 
they approach communication with devices. Future work exploring 
how the cognitive, social, and experiential properties of users 
influencing their speech patterns toward devices can vastly expand 
our scientific understanding of linguistic variation during human-
computer interaction.

One observation we can make from our review is that there is a 
considerable increase in research in these areas in the past several 
years alone, particularly as speech technology becomes an increasingly 
common and prevalent part of everyday lives. Another important 
aspect of HCI work based on our review is that technology is rapidly 
evolving. How people change their speech and language behavior in 
the face of different types of technology opens many empirical 
questions that can inform the questions raised here. Moreover, the 
collective experience that a society has with spoken language 
technology will change over generations. Thus, there is opportunity to 
examine real- and apparent-time differences in human-computer 
interaction which can further illuminate the nature of speech and 
language variation.

Another generalization from our review of this work is that, as 
many of the studies illustrate, speech is inherently social and humans 

use many social and contextual cues present to adapt and perceive 
language. However, speech technology systems do not have the ability 
to do this in the same way as humans. (Socio-)Linguistic analysis and 
insights have the potential to facilitate a wave of innovation and 
improvements for engineering speech technology. An open direction 
for future theoretical and applied work is to examine how speech 
technology systems can be  developed to use multi-layered social 
information to improve communication.

Finally, a major issue that underlies much of the research in this 
area is the presence of bias and inequality in many speech 
technology systems. Exploring these inequities further is a ripe 
direction for future work. For instance, the majority of HCI work 
studying user speech production patterns (reviewed in section 2) 
has largely focused on white “Mainstream” American English 
speakers. In light of the vastly different experiences that speakers of 
“mainstream” and “non-standard” varieties of a language 
experience, investigating how users of a wide range of language 
varieties adapt and change their speech when interacting with 
devices is critical for a comprehensive understanding of HCI. It is 
also necessary to ensure that new technologies do not become the 
exclusive domain of those with linguistic and other types of social 
power, as these technologies become increasingly important for 
everyday functions.

As our review demonstrates, human-computer linguistic 
communication is a rich phenomenon that provides numerous 
avenues to test theoretical questions and concerns across disciplines. 
There is enormous potential for future work examining linguistic 
variation during HCI to enrich and elaborate linguistic theory, as well 
as potential for linguists to collaborate with other researchers to 
improve both the function and fairness of these technologies.
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