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A matter of annotation: an
empirical study on in situ and
self-recall activity annotations
from wearable sensors

Alexander Hoelzemann* and Kristof Van Laerhoven

Ubiquitous Computing, University of Siegen, Siegen, Germany

Research into the detection of human activities fromwearable sensors is a highly

active field, benefiting numerous applications, from ambulatory monitoring of

healthcare patients via fitness coaching to streamlining manual work processes.

We present an empirical study that evaluates and contrasts four commonly

employed annotation methods in user studies focused on in-the-wild data

collection. For both the user-driven, in situ annotations, where participants

annotate their activities during the actual recording process, and the recall

methods, where participants retrospectively annotate their data at the end of

each day, the participants had the flexibility to select their own set of activity

classes and corresponding labels. Our study illustrates that di�erent labeling

methodologies directly impact the annotations’ quality, as well as the capabilities

of a deep learning classifier trained with the data. We noticed that in situmethods

produce less but more precise labels than recall methods. Furthermore, we

combined an activity diary with a visualization tool that enables the participant to

inspect and label their activity data. Due to the introduction of such a tool were

able to decrease missing annotations and increase the annotation consistency,

and therefore the F1-Score of the deep learning model by up to 8% (ranging

between 82.1 and 90.4% F1-Score). Furthermore, we discuss the advantages and

disadvantages of the methods compared in our study, the biases they could

introduce, and the consequences of their usage on human activity recognition

studies as well as possible solutions.
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1 Introduction

Sensor-based activity recognition is one of the research fields of Pervasive Computing

developed with enormous speed and success by industry and science and influencing

medicine, sports, industry, and therefore the daily lives of many people. However, current

available smart devices are mostly capable of detecting periodic activities like simple

locomotions. In order to recognize more complex activities a multimodal sensor input,

such as Roggen et al. (2010), and more complex recognition models are needed. Many of

the published datasets are made in controlled laboratory environments. Such data does

not have the same characteristics and patterns as data recorded in-the-wild. Data that

belongs to similar classes but is recorded in an uncontrolled vs. controlled environment

can differ significantly since it contains more contextual information (Mekruksavanich

and Jitpattanakul, 2021). Furthermore, study participants tend to control their movements

more while being monitored (Friesen et al., 2020). The recording of long-term and real-

world data is a tedious, time-consuming, and therefore a non-trivial task. Researchers have
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various motivations to record such datasets but the technical

hurdles are still high and problems during the annotation process

occur regularly. InHumanActivity Recognition research, capturing

long-term datasets presents a challenge: balancing precise labeling

with minimal participant burden. Sole reliance on self-recall

methods, like activity diaries (e.g., Zhao et al., 2013), often leads

to imprecise time indications that may not accurately reflect

actual activity duration. Such incorrectly or noisy labeled data

later on leads to a trained model that is less capable of detecting

activities reliably (Natarajan et al., 2013), due to unwanted temporal

dependencies learned by wrongly annotated patterns (Bock et al.,

2022).

The field of HAR is witnessing a growing emphasis on real-

world and long-term activity recognition. This focus stems from the

need to address current limitations and achieve reliable recognition

of complex daily activities. Existing long-term datasets often rely

heavily on self-recall methods or additional tracking apps. These

apps can set labels either automatically (Akbari et al., 2021) or

require manual selection (Cleland et al., 2014). However, such

approaches present challenges, leading many researchers to favor

controlled environments for data collection. As a consequence,

the number of publicly available “in-the-wild" datasets

remains limited.

1.1 Contribution

Our study focuses on the evaluation of 4 different annotation

methods for labeling data in-the-wild: 1© In situ (lat. on site

or in position) with a button on a smartwatch, 2© in situ with

the app Strava1 (an app that is available for iOS and Android

smartphones), 3© pure self-recall (writing an activity diary at the

end of the day), and 4© time-series assisted self-recall with the

MAD-GUI (Ollenschläger et al., 2022), which displays the sensor

data visually and allows to annotate it interactively. Our study was

conducted with 11 participants, 10 males, and one female, over 2

weeks. Participants wore a Bangle.js Version 12 smartwatch on their

preferred hand, used Strava, and completed self-recall annotations

every evening. In the first week, the participants were asked to

write an activity diary at the end of the day without any helping

material and additionally using two user-initiated methods (in situ

button and in situ app) to manually set labels at the start and

beginning of each activity. In the second week, the participants

were given an additional visualization of the sensor data with an

adapted version of the MAD-GUI annotation tool. With the help

of this, participants then were instructed to label their data in

hindsight with the activity diary as a mnemonic aid. Given labels

from both weeks were compared to each other regarding the quality

through visual inspection and statistical analysis with regard to the

consistency and quantity of missing annotations across labeling

methods. The participants in this study were given the freedom

to self-report their activity classes based on the diverse range of

pursuits encompassed within their daily lives. Consequently, the

resulting dataset exhibits a heterogeneous composition, comprising

1 https://www.strava.com/

2 https://www.espruino.com/banglejs

both commonplace, routine activities such as walking, driving,

and eating, as well as more specialized and niche activities like

badminton, yoga, horse_riding, and gardening. Furthermore, we

used a Shallow-DeepConv(LSTM) architecture (see Ordóñez and

Roggen, 2016; Bock et al., 2021), and trained models with a Leave-

One-Day-Out cross-validation method of six previously selected

subjects and each annotation method.

1.2 Impact

Annotating data, especially in real-world environments, is still

very difficult and tedious. Labeling such data is always a trade-

off between accuracy and workload for the study participants or

annotators. We raise awareness among researchers to put more

effort into exploring new annotation methods to overcome this

issue. Our study shows that different labeling methodologies have

a direct impact on the quality of annotations. With the deep

learning analysis, we prove that this impacts the model capabilities

directly. Therefore, we consider the evaluation of frequently used

annotation methods for real-world and long-term studies to be

crucial to give decision-makers of future studies a better base on

which they can choose the annotation methodology for their study

in a targeted way.

2 Related work

A very limited number of datasets are currently publicly

available which were recorded in the wild (e.g. Berlin and

Van Laerhoven, 2012; Thomaz et al., 2015; Sztyler and

Stuckenschmidt, 2016; Gjoreski et al., 2018; Vaizman et al.,

2018). Sztyler and Stuckenschmidt (2016) and Gjoreski et al. (2018)

were captured in naturalistic settings, but the participants were

equipped with multiple sensors on various body locations and were

filmed by a third party during the exercises. Such visible equipment

and the presence of an observer could potentially introduce a

behavior bias (Yordanova et al., 2018) in the data, as it may alter

participants’ movement patterns due to the constant reminder that

they are participating in a study (Friesen et al., 2020). Furthermore,

multimodal datasets recorded with multiple body-worn sensors,

rather than a single Inertial Measurement Unit (IMU), have faced

the challenge of proper inter-sensor synchronization (Hoelzemann

et al., 2019). A comprehensive dataset encompassing a diverse

range of classes, accurate annotations, and recorded by a single

device that is nearly unnoticeable to the participant (and therefore

unlikely to influence their behavior or movement patterns), is

not yet publicly available due to the aforementioned obstacles.

According to Stikic et al. (2011) and later Cleland et al. (2014), we

distinguish between 6 or 7, respectively, different methods and two

environments (online/offline) of labeling data, the methods are (1)

Indirect Observation, (2) Self-Recall, (3) Experience Sampling, (4)

Video/Audio Recordings, (5) Time Diary, (6) Human Observer,

(7) Prompted Labeling. Cruz-Sandoval et al. (2019) uses 4 different

categories to classify data labeling approaches, these are (1)

temporal (when)—is the label conducted during or after the

activity, (2) annotator (who)—is the label given by the individual

itself or by an observer, (3) scenario (where)—is the activity labeled
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in a controlled (e.g laboratory) or uncontrolled (in-the-wild)

environment, and (4) annotation mechanism (how)—is the activity

labeled manually, semi-automatically or fully-automatically. All

labeling methods have their own benefits, and costs and come with

a trade-off between required time and label accuracy. However, not

every method is suitable for long-term and in-the-wild recording

data. Reining et al. (2020), evaluated the annotation performance

between six different human annotators of a MoCap (Motion

Capturing) and IMU HAR Dataset for industrial deployment.

They came to the conclusion that annotations were moderately

consistent when subjects labeled the data for the first time.

However, annotation quality improved after a revision by a domain

expert. In the following, we would like to go into more detail on

what we consider to be the most important labeling methods for

the specific field of activity recognition.

2.1 Annotation methods in activity
recognition

2.1.1 Self-recall
Self-recall methodologies are generally called methods in which

study participants have to remember an event in the past. This

methodology is used, for instance, in the medical field [e.g. in the

diagnosis of injuries (Valuri et al., 2005)], but also frequently in

studies in the field of long-term activity recognition. Van Laerhoven

et al. (2008) used this method during a study in which participants

were asked to label their personal daily data at the end of the

day. They noticed that the label quality depends heavily on the

participant’s recall and can therefore be very coarse. During a study

conducted by Tapia et al. (2004), every 15 min a questionnaire was

triggered in which participants needed the answer multiple choice

questions about which of 35 predefined activities were recently

performed.

2.1.2 App assisted labeling
Cleland et al. (2014) presented in 2014 the so called Prompted

labeling. An approach that is already used by commercial

smartwatches like the AppleWatch3. In this study user’s were asked

to set a label for a time period which has been detected as an activity

right after the activity stops. Akbari et al. (2021) leverages freely

available Bluetooth Low Energy (BLE) information broadcasted by

other nearby devices and combines this with wearable sensor data

in order to detect context and direction changes. The participant is

asked to set a new label whenever a change in the signal is detected.

Gjoreski et al. (2017) published the SHL dataset which contains

versatile labeled multimodal sensor data that has been labeled using

an Android application that asked the user to set a label whenever

they detected a position change via GPS. Tonkin et al. (2018)

presented a smartphone app that was used in their experimental

smart home environment with which study participants were able

to either use voice-based labeling, select a label from a list of

activities ordered by the corresponding location or scan NFC

tags that were installed at locations in the smart house. Similar

3 https://www.apple.com/watch/

to Tonkin et al. (2018) and Vaizman et al. (2018) developed an

open-source mobile app for recording sensor measurements in

combination with a self-reported behavioral context (e.g. driving,

eating, in class, showering). Sixty subjects participated in their

study. The study found that most of the participants preferred to fill

out their past behavior through a daily journal. Only some people

preferred to set a label for an activity that they are about to do.

Schröder et al. (2016) developed a web-based GUI which can either

be used on a smartphone, tablet, or a PC to label data recorded in

a smart home environment. However, it is important to mention

that, According to Cleland et al. (2014), the process of continually

labeling data becomes laborious for participants and can result in a

feeling of discomfort.

2.1.3 Unsupervised labeling
Unsupervised labeling is a methodology that uses clustering

algorithms to first categorize new samples without deciding yet to

which class a sample belongs. Leonardis et al. (2002) presented the

concept of findingmultiple subsets of eigenspaces where, according

to Huynh (2008), each of them corresponds to an individual

activity. Huynh uses this knowledge to develop the eigenspace

growing algorithm, whereby, growing refers to an increasing set of

samples as well as to increasing the so-called effective dimension

of a corresponding eigenspace. Based on the reconstruction error

(when a new sample is projected to an eigenspace), the algorithm

tries to find the best-fitting representation of a sample withminimal

redundancy. Hassan et al. (2021) recently published a methodology

that uses the Pearson Correlation Coefficient to map very specific

labels of a variety of datasets to 4 meta labels (inactive, active,

walking, and driving) of the ExtraSensory Dataset (Vaizman et al.,

2018).

2.1.4 Human-in-the-Loop (Labeling)
Human-in-the-Loop (Labeling) is a collective term for

methodologies that integrates human knowledge into their learning

or labeling process. Besides of being applied in HAR research,

such techniques are often used in Natural Language Processing

(NLP) and according to Wu et al. (2022) the NLP community

distinguishes between entity extraction (Gentile et al., 2019; Zhang

et al., 2019), entity linking (Klie et al., 2020), Q&A tasks (Wallace

et al., 2019), and reading comprehension tasks (Bartolo et al., 2020).

2.1.5 Active learning
Active learning is a machine learning strategy that currently

receives a lot of attention in the HAR community. Such strategies

involves a Human-in-the-Loop for labeling purposes. In the

first step the learning algorithm automatically identifies relevant

samples of a dataset which are posteriorly queued to be annotated

by an expert. Incorporating a human guarantees high quality labels

which directly leads to a better performing classifier. Whether

a sample is determined to be relevant, and as well the decision

to whom it may get presented for annotation purposes are the

main focus of research in this field. Bota et al. (2019) presents a

technique that relies on specific criteria defined by three different

uncertainty-based selection functions to select samples that will
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be presented to an expert for labeling and then be propagated

throughout the most similar samples. Adaimi and Thomaz (2019)

benchmarks the performance of different Active Learning strategies

and compared them, with regard to four different datasets with a

fully-supervised approach. The authors came to the conclusion that

Active Learning needs only 8%–12% of the data to reach similar

or even better results than a fully-supervised trained model. These

results suggest that presenting pre-selected samples to a human

for labeling purposes can reduce the amount of data needed to

train a machine learning classifier significantly due to the increased

quality of the labels. Miu et al. (2015) presented a system which

used the Online Active Learning approach published by Sculley

(2007) to bootstrap (Abney, 2002) a machine learning classifier.

The publication presented a smartphone app that asked the user

right after finishing an activity, which activity has been performed.

Afterwards a small subset of the labeled data was used to bootstrap

a personalized machine learning classifier.

3 Methodology

Our study is conducted with 11 participants, from which 10 are

male and one is female. The participants are between 25 and 45

years old. Out of 11 participants, six are researchers in the field of

signal processing and are used to read and work with sensor data.

Participants were selected among acquaintances and colleagues.

3.1 Study setup

The study was conducted over a period of 2 weeks, during

which participants wore an open-source smartwatch on their

chosen wrist. Throughout the two-week study period, the

participants were instructed to use four different labeling methods

in parallel, as illustrated in Figure 1. In the first week they were

asked to use the 1© in situ button, 2© in situ app, and 3© pure self-

recallmethods. At the beginning of the 2nd week, we expanded the

number of annotation methods with the 4© time-series recall. This

annotation method combines the activity diary with a graphical

visualization of the participants’ daily data.

1© The Bangle.js smartwatch has three mechanical buttons on

the right side of the case. These buttons are programmed to record

the number of consecutive button presses per minute. The button-

press annotation method captures the total number of button

presses along with their corresponding timestamps, enabling the

delineation of the beginning and end of an activity within the time-

series data. However, this approach does not inherently assign a

specific label or description to the identified activity segment. To

address this limitation, we employed an inference strategy that

leveraged the temporal alignment of the button-press data with the

annotations obtained from other methods. By identifying segments

with similar timestamps across multiple annotation modalities, we

could infer the appropriate label for the button-press annotations.

2© In addition, the participants were asked to track their

activities with the smartphone app Strava. Strava is an activity

tracker that is available for Android and iOS and freely

downloadable from the app stores. The user can choose from

a variety of predefined labels and start recording. Recording an

activity starts a timer that runs until the user stops it. The time as

well as the GPS position of the user during the activity is tracked

and saved locally.

3© The pure self-recall methods consist of writing an activity

diary on a daily basis at the end of the day. The participants were

explicitly told that they should only write down the activities that

they still remember 2 h after the measurement stopped.

4© The time-series recall method can be seen as a combination

of an activity diary and a graphical representation of the raw sensor

data. For visualization and labeling purposes, we provided the

participants with an adapted version of the MAD-GUI. The GUI

was published by Ollenschläger et al. (2022) and is a generic open-

source Python package. Therefore, it can be integrated into one’s

project. Our adaptions to the package are available for download

from a GitHub repository4. It contains changes to the data loader,

the definition of available labels, and color settings for displaying

the 3D raw data.

3.1.1 Annotation guidelines
The participants were provided with guidelines that instructed

them to document recurring daily activities, encompassing both

sports and activities of daily living, that exceeded a duration

threshold of 10 min. However, the annotation process was deferred

until ∼2 h after the cessation of the recording session. This

temporal offset was implemented to allow for a reasonable time

buffer, enabling participants to consolidate their experiences. For

instance, if a daily recording concluded at 7 pm, the participant

would typically annotate their data around 9 pm, allowing for a 2-

h interim period. Each of these annotation methods represents a

layer of annotation that is used for the visual, statistical, and deep

learning evaluation. Figure 1 illustrates the overall concept.

3.1.2 Annotation process
To capture realistic daily data reflecting participants’ natural

routines, we granted them complete autonomy in choosing their

activity classes. Participants were not restricted to a specific activity

protocol; instead, we left the decision of what to label entirely

to their judgment. During the study’s first week, participants

employed methods 1©— 3© concurrently. In the second week,

method 4© was introduced for them to utilize alongside the

existing methods. The labels provided by the participants were later

interpreted by the researchers and, when necessary, categorized

into meta-classes. However, whenever a participant was specific

about the activity performed, their label was not summed up into

a meta-class. For example, activities such as yoga, badminton, or

horse_riding were not combined under the meta-class sport.

3.2 Hardware

Participants wore the commercial open-source smartwatch

Bangle.js Version 1 with our open-source firmware5 installed. The

device comes with a Nordic 64 MHz nRF52832 ARM Cortex-M4

4 https://github.com/ahoelzemann/mad-gui-adaptions/

5 Our smartwatch firmware is made publicly available at: https://github.

com/kristofvl/BangleApps/tree/master/apps/activate.
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FIGURE 1

The study participants collected data for 14 days in total and annotated the data with 4 di�erent methods: Labeling 1© in situ with a mechanical

button, 2© in situ with an app, 3© by writing a pure self-recall diary, and 4© writing a self-recall diary assisted by visualization of their time-series data.

The upper part of the figure is an artistic representation of our study, where the colored rectangles represent arbitrary annotations and the gray bars

represent a full day of recorded activity data.

processor with Bluetooth LE, 64 kB RAM, 512 kB on-chip flash,

4MB external flash, a heart rate monitor, a 3D accelerometer, and

a 3D magnetometer. Our firmware only uses the 3D accelerometer

and provides the user with the basic functions of a smartwatch, like

displaying the time and counting steps. The data is recorded with

25 Hz, a sensitivity of ±8g and saved on the devices’ memory with

a delta compression algorithm. Therefore, we are able to save up to

8–9 h (depending on how much of the data could be compressed)

of data with the given parameters. The smartwatch stops recording

as soon as the memory is full. At the end of the day, the participants

need to upload their daily data and program the starting time for

the next day using our upload web-tool6.

4 Statistical analysis

The labels were statistically analyzed based on their consistency

using the Cohen κ score as well as the number of missing

annotations across all methods. The Cohen κ score describes the

agreement between two annotation methods, which is defined as

follows κ = (p0 − pe)/(1 − pe), (see Artstein and Poesio, 2008;

Reining et al., 2020). Where p0 is the observed agreement ratio

and pe is the expected agreement if both annotators assign labels

randomly. The score shows how uniform two different annotators

labeled the same data. For calculation purposes, an implementation

6 Our web-tool is made publicly available at: https://ubi29.informatik.uni-

siegen.de/upload/.

provided by Scikit-Learn (2022), was used. Furthermore, missing

annotations across methods are measured as the percentage of

missing or incomplete annotations. The annotations of all methods

were first compared with each other and matched based on the

given time indications. Annotations that could not be assigned

or were missing were marked accordingly and are the base for

calculating this indicator, see Section 6.2 for more information.

We used a similar representation as Brenner (1999) to visualize

the matches among labeling methods. In this study, the authors

compared genome annotations labeled by different annotators with

regard to their error scores between different annotators.

5 E�ects on deep learning
performance

The deep learning analyses are performed using the

DeepConvLSTM architecture (Ordóñez and Roggen, 2016)

which is based on a Keras implementation of Hoelzemann and

Van Laerhoven (2020). We did not perform hyperparameter tuning

because it would involve a considerable amount of additional

workload, since we trained 64 models independently during the

evaluation. We therefore decided to opt out of the architecture

with regards to efficiency rather than optimal classification

results. Additionally, we don’t expect that the actual experiment—

evaluating different annotation methods—would benefit from

hyperparameter tuning or gain any significant information

and insights. Instead, we use the default hyperparameters
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provided by the authors. These are depicted in the Figure 2.

Furthermore, we reduce the number of LSTM layers to one and

instead increase the number of hidden units of the only LSTM

layer to 512. According to Bock et al. (2021), this modification

decreases the runtime up to 48% compared to a two-layered

DeepConvLSTM while significantly increasing the overall

classification performance on 4/5 publicly available datasets:

(Roggen et al., 2010; Scholl et al., 2015; Stisen et al., 2015;

Reyes-Ortiz et al., 2016; Sztyler and Stuckenschmidt, 2016).

LSTM-Layers in general are important if the dataset contains

sporadic activities (Bock et al., 2022). However, our dataset

does not and our evaluation aims to identify long periods of

periodic activities, like walking or running. For this reason,

we can conclude that additional LSTM layers are not needed.

The implementation of Hoelzemann and Van Laerhoven (2020)

incorporates BatchNormalization layers after each Convolutional

layer, as well as MaxPooling for the transition between the final

convolutional block and the LSTM layer, and a Dropout layer

before classification. Each Convolutional layer employs a ReLU

activation function. The inclusion of the BatchNormalization

layers serves to accelerate training and mitigate the detrimental

effects of internal covariate shift, as discussed further in Ioffe and

Szegedy (2015).

5.1 Preprocessing

To prepare the data for neural network training, we perform

two preprocessing steps. First, we address minor inconsistencies

in the device’s sampling rate. The original data was collected at

a rate of 12.5 Hz. However, for optimal performance with neural

networks, a consistent and regular sampling rate is preferred. To

achieve this, we upsample the data by a factor of two, resulting in

a constant frequency of 25 Hz. This upsampling process essentially

inserts additional data points between the existing ones, effectively

increasing the resolution of the signal. The second preprocessing

step involves rescaling the accelerometer data to a range between

–1 and 1.

5.2 Leave-one-day-out cross-validation

Figure 3 illustrates the train and test setting for the deep

learning model. Instead of following the traditional Leave-One-

Subject-Out strategy, we adapted it to our needs by using one day

of the week for testing and training on the remaining days for each

study participant and week. This approach was necessitated by the

unique characteristics of our dataset. It consists of a predominant

void class and a small number of samples per activity class and

participant. To mitigate the issue of an disproportionately large

void class, we trained our model with balanced class weights.

By not limiting the participants in their choice of daily activities

and not specifying predefined activity labels, we ended up with

very unique sets of activities for each study participant. Given

these circumstances, it is unrealistic to expect a model capable of

generalizing across participants and days. The Leave-One-Day-Out

strategy aims to maintain the consistency of class labels within

each day’s data, providing a more cohesive and reliable dataset

for training and evaluation purposes. This strategy also mitigates

the potential impact of participant-specific biases or variations

in class labeling, leading to a more robust and accurate model.

Furthermore, due to the in-the-wild recording setup, the intra-class

differences (Bulling et al., 2014) for comparatively simple activities,

such as walking or running can be significant. Consequently,

the impact of different labeling methods is expected to be more

pronounced and visible in a personalized model compared to a

generalized model.

5.3 Post-processing and classification

In the classification task, we initially segmented the data into

fixed-length sliding windows of 2 s (50 samples). However, our

objective extended beyond instantaneous classifications; we aimed

to identify longer periods of recurring activities. To achieve this, we

employed a post-processing technique involving a jumping window

approach with a duration of 5 min. Within each 5-min window, a

majority vote was applied to the individual 2-s window predictions.

The activity class with the highest number of occurrences within the

5-min window was then assigned as the predominant activity for

the entire window. This approach enabled us to capture sustained

patterns of activities over extended periods, aligning with our goal

of analyzing longer-term behavioral trends.

6 Results

Our participants were asked to annotate daily activities lasting

more than 10 min. We did not limit them to a predefined

set of classes; they independently decided on labels for their

activities. After normalizing the labels (e.g., changing “going for

a walk" to “walking"), the participants assigned 26 different labels:

laying, sitting, walking, running, cycling, bus_driving, car_driving,

cleaning, vacuum_cleaning, laundry, cooking, eating, shopping,

showering, yoga, sport, playing_games, desk_work, guitar_playing,

gardening, table_tennis, badminton, horse_riding, cleaning, reading,

weightlifting, manual_work, dish_washing. Any unlabeled samples

were classified as void. However, after excluding infrequent or non-

standalone classes (e.g., shopping likely combineswalking, standing,

and sitting), we reduced the dataset to 23 labels (22 activities

plus void): laying, sitting, walking, running, cycling, bus_driving,

car_driving, vacuum_cleaning, laundry, cooking, eating, shopping,

showering, yoga, sport, playing_games, desk_work, guitar_playing,

gardening, table_tennis, badminton, horse_riding. Nevertheless, the

graphical representation of the distribution and the table in Section

6.1 include the full scope of classes.

6.1 Class distribution

The class distribution reflects a broad range of activity classes

that represent the daily lives of our participants. These classes

remain primarily participant-specific due to the absence of a

predefined annotation protocol, which allowed participants the

freedom to label activities according to their own interpretations.
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FIGURE 2

The architecture consists of an Input Layer with the kernel-size 10 (window_size) × 10 (filter_length) × 3 (channels). The data is passed into three

concatenated convolutional blocks, followed by a MaxPooling (kernel 2 × 1) where 50% of the data is filtered. The convolutional block consists of a

convolutional layer with a variable kernel size of 5 × 1 × (n*64) following a ReLU activation function and a BatchNorm-Layer. We decided to use a

single LSTM-Layer with the size of 512 units, as mentioned by Bock et al. (2021), which is followed by a Dropout-Layer that filters 30% of randomly

selected samples of the window.

FIGURE 3

Leave-One-Day-Out Cross Validation. The models are personally trained for every participant and are not intended to generalize across all study

participants. Instead, a generalization across all days of 1 week is desired.

Consequently, we decided against employing a Leave-One-Subject-

Out evaluation method, as it might introduce inconsistencies

in the dataset due to the varying class labels assigned by

different participants. The walking class is the most consistently

annotated class across participants and annotation methods,

although it may not represent the maximum amount of labeled

data points. Notably, the void class, which is not visible in

Figure 4, accounts for a substantial portion of the labeled data,

ranging from 80% to 96%, depending on the annotation method

employed.
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FIGURE 4

This figure illustrates the relative prevalence of various activity classes within the dataset, excluding the void class, see Table 1 for details. The class

labeled as void represents the predominant category within the dataset, surpassing the frequency of the second most prevalent class, desk_work, by

a substantial factor of 13. The figure illustrates a pronounced imbalance in the data distribution, both in terms of the annotation methodology

employed and the distinct week-specific patterns observed in the annotation process.

Table 1 shows that daily activities that do not require extensive

planning and are inherent to most people’s everyday lives tend to be

the most consistently annotated classes. Among these are activities

such as walking, cycling, car_driving, or cooking. On the other

hand, activities like badminton, weightlifting, manual_work, and

others are highly subject-dependent and occur only sporadically.

The observation that the desk_work class exhibits the highest

frequency is valid solely when employing the 3© diary- or the

4© GUI-methodology for data collection, suggesting a potential

limitation or bias associated with this particular approach.

The classes pertaining to physical activities such as running,

bus_driving, yoga, badminton, weightlifting, and sport exhibit a

distinct pattern of clustering within specific weeks, indicating a

temporal dependency. This observation highlights the inherent

bias introduced by the real-world recording environment in which

the dataset was collected, potentially limiting the generalizability

of the model to broader contexts. Furthermore, it is crucial to

note that the size of the void class for the recall methods 3©

and 4© is up to 16% smaller than the in situ methods 1© and

2©. While this disparity in class representation highlights the

inherent complexities and challenges associated with the data

collection and annotation procedures, it simultaneously presents

an opportunity to address real-world imbalances and biases.

By critically examining and accounting for these factors, the

resulting models can potentially enhance their generalizability

and applicability across diverse scenarios, ultimately contributing

to a deeper understanding of the underlying phenomena

under investigation.

6.2 Missing annotations and consistency
across methods

Missing Annotations and the consistency of labels set over

the course of one week varied greatly depending on the study

participant. However, tendencies with regard to specific methods

are observable. We computed missing annotations by merging

all available annotations from the various methods used (button,

app, diary, GUI) into an artificial global ground truth. We

then compared each individual annotation layer against this

consolidated ground truth to identify any missing annotations,

leveraging the collective information as a reference point. Method

1©, pressing the situ button on the smartwatch’s case, was not

consistently used by every participant. Furthermore, this method

carries the risk that either setting one of the two markers (start

or end) is forgotten. An annotation where one marker is missing

becomes therefore obsolete. The app-assisted annotation method

2©, for which we used the app Strava, is well accepted among the

participants who agreed with using third-party software. However,

4 participants, namely 74e4, 90a4, d8f2, and f30d did not use the

app continuously or refused to use it completely due to concerns

regarding their private data. Strava is a commercial app, that is

freely available for download on the app stores, but it collects

certain users’ metadata. To label a time period with Strava, the

participant needs to (1) take the smartphone, (2) open the app,

(3) start a timer, set a label, and (4) end the timer. This procedure

contains significantly more steps than other methods. Therefore,

the average value of missing annotations results in 46.40% (week
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TABLE 1 This table presents a comprehensive overview of the number of data points for each activity class, categorized according to the di�erent

annotation methods employed during two distinct weeks.

Week 1 Week 2 Instances

Button App Diary Button App Diary GUI Total

Laying 0 0 135,000 0 0 0 0 1

Sitting 0 0 292,500 0 0 607,500 264,041 13

Walking 1,409,177 1,380,112 2,462,923 1,446,000 1,168,525 2,160,712 2,228,337 245

Running 16,500 74,600 84,000 0 0 0 0 4

Cycling 573,000 574,100 647,880 616,500 330,000 610,500 784,224 92

Bus_driving 0 67,500 15,000 0 0 0 0 2

Car_driving 708,000 659,950 1,683,176 340,500 155,450 1,025,985 954,882 111

Vacuum_cleaning 49,500 66,000 67,500 0 42,000 60,000 47,955 10

Laundry 0 27,000 30,000 33,000 76,500 112,500 106,316 19

Cooking 229,500 45,632 269,132 214,500 96,000 382,500 419,848 44

Eating 0 0 5,753 0 0 75,000 92,850 5

Shopping 0 57,000 60,000 0 0 45,000 0 3

Showering 112,500 0 225,000 34,500 0 251,777 165,721 20

Yoga 0 0 0 0 0 22,500 30,680 2

Sport 39,000 46,088 45,000 0 0 0 0 3

Playing_games 0 0 648,926 0 0 45,000 100,771 6

Desk_work 36,000 0 3,646,985 0 0 4,537,832 1,137,214 21

Guitar_playing 49,500 0 172,500 111,000 67,060 217,500 234,355 24

Gardening 48,000 53,125 43,718 69,000 69,650 375,000 421,794 16

Table_tennis 0 17,875 0 190,500 108,725 105,000 171,177 29

Badminton 0 0 0 0 234,000 210,000 252,725 6

Horse_riding 0 66,000 199,500 0 519,000 495,000 502,742 18

Cleaning 70,500 100,500 240,000 48,000 40,500 502,500 215,034 25

Reading 0 0 0 0 0 45,000 0 1

Weightlifting 0 0 0 84,000 0 60,000 0 2

Manual_work 0 0 0 0 0 69,425 157,587 3

Dish_washing 0 0 0 10,500 21,000 52,500 66,246 9

Void 61,581,367 61,685,562 53,948,051 60,240,422 60,510,012 51,369,691 55,083,923 539

The columns are divided into two main sections, representing Week 1 and Week 2 of the data collection process. Within each week, the data points are further subdivided based on the

annotation method used, labeled as button, app, diary, GUI (for Week 2 only).

1) and 56.79% (week 2). One participant found the annotation

process in general very tedious and therefore dropped out of the

study. These data have been excluded from the dataset and the

evaluation. Method 3© pure self-recall, writing an activity diary,

got well accepted by every participant. As Figure 5 shows and the

results in Table 2 proof, it is overall the most complete annotation

method with an average amount of missing annotations of 4.30%

for the first and 8.14% for the second week. By introducing the

MAD-GUI, participants were able to inspect their daily data, get

insights into what patterns of specific classes look like, and label

them interactively. With an average amount of missing annotations

of 7.67%, this method became the most complete during the second

study week. Table 3 shows the resulting Cohen κ scores. Due to

the constraint that only one labeling method can be compared to

a second one and since, according to Table 2, the most consistent

annotation methods are 3© pure self-recall and 4© time-series recall,

we used these methods as our baseline and compared them with

every other method used in the study. The second column indicates

the comparison direction. The abbreviations used in this column

are defined as follows: ( 3© C/W 1©) pure self-recall compared with

in situ button, ( 3© C/W 2©) pure self-recall compared with in situ

app and ( 3© C/W 4©) pure self-recall compared with time-series

recall. The direction ( 4© C/W 3©) is not explicitly included since

Cohens κ is bidirectional and both directions result in the same

score. The score indicates how similar two annotators, or in our

study labeling methods, are to each other. The resulting score is
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a decimal value between –1.0 and 1.0, where –1.0 means that the

two annotators differ at most and 1.0means complete similarity. 0.0

denotes that the target method was not used on that specific day.

Comparing the 3© pure self-recall method with the 1© in situ

button and 2© in situ app method we can see that the final results

for weeks 1 and 2 are proximate to one another. 3© Pure self-

recall compared with the 4© time-series recall results in the highest

similarity of 0.52. The comparison between the 4© time-series recall

and the 1© in situ button as well as the 2© in situ app assisted

annotations result in higher similarity than the prior comparison

of 3© pure self-recall vs. both methods 1© and 2©. This means that

subjects rather agree to the timestamps of the in situmethods than

to a self-written activity diary as soon as they can visually inspect

the accelerometer data.

6.3 Visual time-series analysis

Figure 6 shows exemplary the time-series of the sixth day of

every participant’s second week. The four bars that are visible

above the accelerometer data are the labels set by the participants

for every layer. The order is from bottom to top: 1© in situ

button, 2© in situ app. 3© pure self-recall, and 4© time-series

recall. Examples of labels that differ with regard to the applied

labeling method are marked with red boxes. The x-axis of every

subplot represents roughly 8–9 h of data. Most of the day was

not labeled and is therefore categorized as void. However, such

long periods often contain shorter periods of other activities, like

walking. This makes it difficult to define a distinguishable void-

class, which results in false positive classifications of non-void

samples. Figure 6 visually shows that each participant labels his

or her data very subjectively. The long green-labeled periods of

participant 74e4 represent the class desk_work. The only other

participant that used this label is 90a4. Since each of the study

participants works in an office environment and thus conclusively

works at a desk, we can assume that the same class is classified

as void for all other study participants. This intra-class and inter-

participant discrepancy becomes a problem whenever a model

is trained that is supposed to generalize across individuals. To

reduce these side effects and focus on the experiment itself, we

decided to evaluate personalized models that take weekly data from

participants into account.

The in situ button annotation is empty for five participants:

eed7, 36fd, 74e4, 90a4, and d8f2. Labels are only partially set

or missing entirely for this annotation method and we therefore

assume that participants tend to forget to press the button on

the smartwatch. Both Tables 2, 3, support this assumption, as this

labeling method shows a high percentage of missing annotations as

well as a low Cohen κ score of 0.36% (week 1) and 0.39% (week

2). The pure self-recall method 3©, visible on the 2nd upper layer,

is often misaligned compared to the in situ methods as well as the

time-series recallmethod 4©. Participants tend to round up or down

the start- and stop-time in steps of 5 or 10 min. For example, the

annotations in Figure 6 given by the subjects 2b88, 834b, or f30d,

show such incorrectly annotated data. The pink color represents

the class walking. With a closer look at the corresponding time-

series data, one can see that the in situ button annotation (bottom

layer) and time-series recall annotation (top layer) belongs to the

typical periodic pattern of walking than the period labeled by pure

self-recall.

A consistent reliable performance in all labeling methods

can only be observed at the participants 4531 and fc25. Other

participants like eed7, 36fd, 74e4, or a506 are very precise in their

annotations across methods, but are missing at least one layer of

labels. The complete collection of visualizations is available in our

dataset repository7.

6.4 E�ects on classification

The results of our deep learning evaluation8 suggest that the

annotation method chosen can have a crucial impact on the

classification ability of a trained deep learning model. Depending

on the chosen methodology, the average F1-Score results differ

by up to 8%, as depicted in Figure 7. In the first week, the in

situ methodologies, button 1© and app 2©, generally perform

better than the pure self-recall diary 3©. Study participants mostly

correctly estimated the duration of an activity, but tended to

round up or down the start and end times. The in situ methods

are up to 8% better than the pure self-recall, although the

amount of annotated data available, due to missing annotations,

is significantly lower than for other methods. Although, we work

with a dataset recorded in-the-wild, the deep learning results

generally show a high F1-Score. This is untypical for such datasets

but can be explained by the fact that the majority of the daily

data are assigned to the void class. This leaves proportionally

only a few samples that are crucial for determining the

classification performance.

Even though the number of available annotations that have

been labeled by the study participants using the time-series recall

method 4© is significantly higher with 92.33%, the average F1-

Score is 1.1% lower (89.00%) than the results reached with the App

Assisted method (90.1%). To understand this result it is crucial

to look at Table 4 in detail and take meta-information about the

participants into account. The participants mostly used their diary

as a mnemonic aid for the graphical annotation method and tried

to identify the corresponding periods in the acceleration data. The

results of subjects 2b88, a506 and eed7 show that the performance

of the classifier could be increased with graphical assistance.

However, the F1-Score of 2b88 is 0.01% below the F1-Score of the

in situ app assisted annotation method 2©. These subjects have in

common that they are already trained in interpreting acceleration

data due to their prior knowledge and thus assign samples to

specific classes more precisely.

Subjects fc25, 4531, and 834b, on the other hand, do not have

prior knowledge. Apart from subject 834b, the deep learning results

show that presenting a visualization to an untrained participant

rather harmed than helped the classifier. If one looks at the

visualizations of day 1 and 6, week 2 of fc25 (see Figure 6, 8), the

7 https://doi.org/10.5281/zenodo.7654684

8 Detailed results for every participant included in our deep learning

evaluation can be accessed online on the Weights & Biases platform: https://

tinyurl.com/4vxvfaed.
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FIGURE 5

Missing annotations across all study participants and both weeks. The Y-axis shows the total number of annotations of one specific participant for

the corresponding week. The color codes are as follows: • Annotation is missing, • Annotation is partially missing (start or stop time), • Annotation is

complete. The figure is inspired by Brenner (1999), Figure 1.
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TABLE 2 Missing annotations across all labeling methods (in %) of both weeks.

Subject 2b88 36fd 74e4 90a4 834b 4531 a506 d8f2 eed7 f30d fc25 Avg.

Week 1

1© in situ button 40 70.59 79.41 52.18 36.37 50 26.32 96.15 45.46 0 26.81 40.95

2© in situ app 13.30 5.89 97.06 100 5.00 0 36.84 92.30 22.73 100 4.35 43.40

3© pure self-recall 6.67 0 0 0 4.55 0 31.58 0 4.55 0 0 4.30

Week 2

1© in situ button 23.08 73.33 92.00 82.14 8.33 76.47 0 95.33 61.11 0 27.78 49.05

2© in situ app 61.54 6.67 100 89.29 8.33 35.30 100 79.16 33.33 100 11.11 56.79

3© pure self-recall 0 0 8.57 17.88 4.17 35.30 0 12.50 5.56 0 5.56 8.14

4© time-series recall 0 0 22.88 39.29 0 0 0 16.67 0 0 5.56 7.67

The columns contain the subject-ID of all participants. The last column shows the average percentage of missing annotations across every labeling method, for all participants.

labels set by the subject with the help of the graphical interface, it

is comprehensible that this study participant tended to be rather

confused by the graphical representation and therefore labeled the

data incorrectly.

7 Discussion

In our 2-week long-term study, we recorded the acceleration

data of 11 participants using a smartwatch and analyzed it visually,

statistically, and using deep learning. The findings of the visual

and statistical analysis were confirmed by the deep learning result.

They show that the underlying annotation procedure is crucial for

the quality of the annotations and the success of the deep learning

model.

The in situ button method 1© offers accuracy but brings the

risk that the setting of a label is forgotten entirely or incompletely

set. However, this method can be combined with additional on-

device feedback or a smartphone app, so that greater accuracy

and consistency of the annotation can be achieved. This involves

a considerable implementation effort, which many scientists avoid

because such projects, although of their significant value to the

community, attract little attention in the scientific world. The

use of existing, but often commercial, software and hardware is

all too often accompanied by a loss of privacy. As our research

has shown in passing, many users therefore shy away from using

such products.

Through our investigation of the consistency of annotations

between methodologies, we were able to show that participants

in our study seem to prefer to write an activity diary (pure self-

recall method 3©). This finding corresponds to what (Vaizman

et al., 2018) already points out. However, this method has

the disadvantage that it can be imprecise, which is evident

in the visualization of the data and annotations. Similarly, the

activity diary methodology performed the least reliably among all

methodologies, which has been confirmed by the deep learning

model. Since the deep learning results using the in situ app

annotations 3© are almost similar to the results given by the time-

series recall 4©, even though the number of labeled samples is lower,

it raises the question if a smaller set of high-quality annotations is

more valuable for a classifier than a larger set of annotated data that

comes with imprecise labels. This could mean that in future works

we can reduce the amount of necessary training samples drastically

if a certain annotation quality can be assured. However, this needs

to be confirmed by further investigations.

Some participants reported that they found the support

provided by the visual representation of the data helpful. The

resulting Cohen κ scores strengthen this impression since the

F1-Scores are much higher when we compare the time-series recall

with both in situ methods vs. the pure self-recall. This indicates

that as soon as the participants received a visual inspection tool,

they tended to annotate data at similar time periods as through the

in situ methods since they can easily identify periods of activity

that roughly correspond to the execution time they remember.

Our participants reported similar preferences, which led us to the

conclusion that a digital diary that includes data visualization could

combine the benefits of both annotation methods.

However, the study also showed that participants can find it

difficult to interpret the acceleration data correctly and thus set

inaccurate annotations. As our trained models show, this also has

a strong influence on the classification result. If such a tool is to

be made available to study participants, it must be ensured that

they have the necessary knowledge and tools to be able to interpret

these data. Thus, to ensure the success of future long-term and

real-world activity recognition projects, prior training of the study

participants regarding data interpretation is of crucial importance

if a data visualization is supposed to be used.

Apart from trying to solve annotation difficulties during the

annotation phase itself, we can also partially counter wrong or

noisy classified data by using machine learning techniques like

Bootstrapping (see Miu et al., 2015) or using a loss function that

specifically tries to counteract this problem, such as Natarajan et al.

(2013) andMa et al. (2019). By using Bootstrapping, the machine or

deep learning classifier is initially trained by a small subset of high-

confident labels and further improved by using additional data.

However, this technique comes with the trade-off that whenever

wrong-labeled data is introduced as training data, the error will get

propagated into the model. An effect that sooner or later occurs as

long as the annotation methodologies themselves are not further

researched. Other machine learning techniques that can work with

noisy labels (see Song et al., 2022), are already successfully tested

for Computer Vision problems and can, in theory, be adopted for
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TABLE 3 Average similarity between annotation methods according to the Cohan κ score for both study weeks.

Week, day Direction 2b88 36fd 4531 74e4 834b 90a4 a506 d8f2 eed7 f30d fc25 Avg.

{1,2} 3© C/W 1© 0.32 0.0 0.0 0.0 0.69 0.35 0.79 0.22 0.0 0.23 0.58

3© C/W 2© 0.69 0.85 0.69 0.0 0.76 0.0 0.0 0.0 0.90 0.0 0.49

{1,2} 3© C/W 1© 0.64 0.69 0.0 0.09 0.85 0.05 0.51 0.0 0.55 0.47 0.74

3© C/W 2© 0.64 0.68 0.84 0.05 0.86 0.0 0.50 0.0 0.93 0.0 0.73

{1,3} 3© C/W 1© 0.0 0.62 −0.03 0.0 0.39 0.56 0.53 0.0 0.05 0.53 0.51

3© C/W 2© 0.86 0.0 −0.03 0.0 0.38 0.0 0.44 0.0 0.28 0.0 0.54

{1,4} 3© C/W 1© 0.38 0.30 0.91 0.08 0.63 0.03 0.80 0.0 0.66 0.80 0.0

3© C/W 2© 0.99 0.69 0.90 0.0 0.74 0.0 0.57 0.69 0.80 0.0 0.0

{1,5} 3© C/W 1© 0.33 0.33 0.0 0.04 0.39 0.32 0.93 0.0 −0.03 0.93 0.87

3© C/W 2© 0.32 0.83 0.0 0.0 0.37 0.0 0.96 0.0 −0.31 0.0 0.89

{1,6} 3© C/W 1© 0.0 0.0 0.75 0.07 0.0 0.34 0.67 0.0 0.42 0.99 0.84

3© C/W 2© −0.14 0.96 0.71 0.0 0.15 0.0 −0.07 0.41 0.52 0.0 0.84

{1,7} 3© C/W 1© 0.30 0.0 0.56 0.04 0.0 0.525 0.99 0.0 0.29 0.90 0.49

3© C/W 2© 0.78 0.15 0.69 0.0 0.10 0.0 0.43 0.0 0.42 0.0 0.77

{2,1} 3© C/W 1© 0.30 0.56 0.36 0.10 0.51 0.0 0.88 0.0 0.41 0.89 0.85

3© C/W 2© 0.45 0.77 0.37 0.0 0.57 −0.02 0.0 0.63 0.51 0.0 0.81

3© C/W 4© 0.85 0.76 0.56 0.10 0.48 0.11 0.90 0.78 0.74 0.86 0.46

4© C/W 1© 0.39 0.43 0.48 0.43 0.74 0.0 0.98 0.0 0.58 0.82 0.58

4© C/W 2© 0.53 0.61 0.45 0.0 0.70 0.18 0.0 0.71 0.57 0.0 0.55

{2,2} 3© C/W 1© 0.82 0.21 0.91 0.05 0.47 0.03 0.70 0.0 0.29 0.74 0.36

3© C/W 2© 0.84 0.75 0.93 0.0 0.90 0.0 0.0 0.87 0.59 0.0 0.81

3© C/W 4© −0.02 0.82 0.62 0.09 0.84 0.09 0.70 0.83 0.56 0.85 0.46

4© C/W 1© −0.02 0.11 0.66 0.38 0.47 0.77 1.0 0.0 0.43 0.70 0.45

4© C/W 2© −0.02 0.83 0.63 0.0 0.92 0.0 0.0 0.96 0.71 0.0 0.46

{2,3} 3© C/W 1© 0.70 0.44 0.0 0.0 0.62 0.0 0.90 0.0 0.28 0.99 0.68

3© C/W 2© 0.66 0.44 0.98 0.0 0.72 0.0 0.0 0.47 0.36 0.0 0.82

3© C/W 4© 0.68 0.54 0.62 0.91 0.49 −0.18 0.90 0.86 0.39 0.98 0.58

4© C/W 1© 0.91 0.53 0.0 0.0 0.77 0.0 1.0 0.0 0.88 0.96 0.41

4© C/W 2© 0.74 0.53 0.82 0.0 0.74 0.0 0.0 0.60 0.79 0.0 0.65

{2,4} 3© C/W 1© 0.45 0.0 0.83 0.0 −0.02 0.05 0.64 0.0 0.23 0.67 0.78

3© C/W 2© 0.14 0.85 0.83 0.0 −0.02 0.0 0.0 0.0 0.26 0.0 0.87

3© C/W 4© 0.17 0.86 0.84 0.90 −0.02 0.0 0.64 0.84 0.38 0.86 0.92

4© C/W 1© 0.71 0.0 0.86 0.0 0.80 0.47 1.0 0.0 0.68 0.66 0.76

4© C/W 2© 0.82 0.51 0.86 0.0 0.80 0.0 0.0 0.0 0.50 0.0 0.85

{2,5} 3© C/W 1© 0.59 0.0 0.0 0.0 0.28 0.09 0.60 0.0 0.0 0.73 0.95

3© C/W 2© 0.0 0.41 0.77 0.0 0.28 0.01 0.0 0.54 0.54 0.0 0.92

3© C/W 4© 0.48 0.47 0.76 0.16 0.26 0.09 0.59 0.82 0.40 0.43 0.47

4© C/W 1© 0.5 0.0 0.0 0.0 0.82 0.94 0.99 0.0 0.0 0.38 0.46

4© C/W 2© 0.0 0.34 0.89 0.0 0.83 0.60 0.0 0.49 0.70 0.0 0.44

{2,6} 3© C/W 1© 0.48 0.0 0.90 0.0 0.39 0.0 0.73 0.0 0.0 0.20 0.86

3© C/W 2© 0.0 0.85 0.96 0.0 0.39 0.02 0.0 0.55 0.83 0.0 0.87

3© C/W 4© 0.47 0.86 0.92 0.77 0.30 0.0 0.72 0.83 0.86 0.74 0.86

(Continued)
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TABLE 3 (Continued)

Week, day Direction 2b88 36fd 4531 74e4 834b 90a4 a506 d8f2 eed7 f30d fc25 Avg.

4© C/W 1© 0.98 0.0 0.95 0.0 0.47 0.0 0.99 0.0 0.0 0.46 0.83

4© C/W 2© 0.0 0.88 0.89 0.0 0.62 0.69 0.0 0.43 0.95 0.0 0.82

{2,7} 3© C/W 1© 0.0 0.0 0.0 0.0 0.30 0.0 0.73 0.40 0.43 0.91 0.86

3© C/W 2© 0.0 0.41 0.76 0.0 0.30 0.0 0.0 0.0 0.14 0.0 0.86

3© C/W 4© 0.96 0.47 0.72 0.0 0.24 −0.01 0.42 0.79 0.33 0.92 0.84

4© C/W 1© 0.0 0.0 0.0 0.0 0.79 0.0 0.67 0.46 0.71 0.94 0.78

4© C/W 2© 0.0 0.80 0.93 0.0 0.78 0.0 0.0 0.0 0.46 0.0 0.78

{Avg.Week2} 3© C/W 1© 0.48 0.17 0.43 0.02 0.36 0.02 0.74 0.0 0.23 0.73 0.76 0.39

3© C/W 2© 0.30 0.64 0.80 0.0 0.45 0.0 0.0 0.44 0.46 0.0 0.85 0.36

3© C/W 4© 0.51 0.68 0.72 0.12 0.37 0.01 0.70 0.82 0.33 0.81 0.66 0.52

4© C/W 1© 0.50 0.15 0.42 0.42 0.69 0.31 0.94 0.07 0.47 0.70 0.61 0.48

4© C/W 2© 0.30 0.64 0.78 0.0 0.78 0.21 0.0 0.46 0.67 0.0 0.65 0.41

FIGURE 6

Visualization of participants’ accelerometer data on the sixth day in the second week of the study, together with annotations set by them. The four

layers in the upper part of every participant’s daily data represent the four annotation methods. The order is from bottom to top: 1© in situ button, 2©

in situ app, 3© pure self-recall and 4© time-series recall.

Human Activity Recognition. However, earlier research has shown

that not every technique that is applicable in other fields is also

applicable to sensor-based data (Hoelzemann and Van Laerhoven,

2020).

Cause of missing annotations: We believe that specific activities

are more likely to be forgotten during the labeling process than

others. These activities are generally more spontaneous and

require less dedicated preparation time. Examples might include

classes like laying, sitting, walking, bus_driving, car_driving,

eating, or desk_work. In contrast, other classes like shopping, yoga,

playing_games, badminton, cooking, or horse_riding are often

time-intensive, physically or mentally demanding, and frequently

planned in advance or even take place at dedicated locations.

Therefore, it is likely that participants find these activities easier

to recall and label accurately. Obtaining separate annotations for

each activity through distinct and dedicated annotation processes
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FIGURE 7

The overall mean F1-Scores for the Leave-One-Day-Out Cross Validation across all participants. In the first week, the participants used methods 1© -

3©. In the second week, we introduced method 4©.

TABLE 4 In detail representation of the final F1-Scores for every annotation methodology and a week per study participant.

Subject 2b88 a506 eed7 fc25 4531 834b Average

Week 1

1© in situ button 0.91 0.92 0.89 0.89 0.91 0.91 90.4

2© in situ app 0.92 0.60 0.91 0.84 0.93 0.92 85.5

3© pure self-recall 0.78 0.76 0.83 0.86 0.86 0.89 83.0

Week 2

1© in situ button 0.88 0.92 0.90 0.92 0.86 0.72 86.8

2© in situ app 0.91 na 0.92 0.94 0.85 0.88 90.1

3© pure self-recall 0.81 0.86 0.82 0.94 0.83 0.67 82.1

4© time-series recall 0.90 0.91 0.95 0.86 0.86 0.86 89.0

The average F1-Scores are graphically visualized in Figure 7.

FIGURE 8

Visualization of the 1st day in week 2 of subject fc25. Di�erences can be seen in the upper annotation layer ( 4© time-series recall), exhibiting larger

di�erences regarding the annotated start- and stop times compared to other methods.
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would have yielded valuable insights; however, this approach was

deemed unfeasible for the participants involved in our study. The

immense time commitment and laborious efforts required from

our participants to annotate each activity individually would have

imposed an unreasonable burden, rendering such a comprehensive

annotation strategy impractical within the constraints of

our study.

7.1 Discussing di�erent annotation biases

Directly quantifying the perceived workload of subjective tasks

like data labeling is a complex challenge. This difficulty stems

from several factors. Firstly, individual differences in mental

stamina and task perception mean what one person finds laborious,

another might find manageable (Smith et al., 2019). Secondly,

memory biases can lead to under- or overestimates of effort

depending on the emotional context of the task or the participant’s

current state (Watkins, 2002). Social desirability bias can also

come into play, with participants potentially downplaying their

workload to appear competent or exaggerating it to justify breaks

(Chung and Monroe, 2003). Therefore, accurately quantifying

the workload associated with each of the four labeling methods

presents a significant challenge. While surveys, like the NASA

TLX (NASA, 1986), asking participants about perceived effort hold

some value, these results are inherently subjective and can be

heavily influenced by individual experiences and biases. While

aiming for a fully objective measure of workload is desirable, it

might require collectingmore personal data from participants. This

additional data could include details like preferred wearable devices

(e.g., smartwatches), smartphone usage patterns, or individual

memory recall capabilities or the emotional state of a participant

(Ghosh et al., 2015). While recording and quantifying this

type of personal data would have provided valuable insights, it

would have also significantly increased the workload placed on

participants. This additional workload fell outside the scope of

the current study, which prioritized collecting data through the

four predefined methods. However, we need to acknowledge that

several biases could have been introduced due to the chosen

annotation guidelines and tools. For example, the usage of in situ

annotation methods during the day can have a positive effect on

the self-recall capabilities of a participant at the end of the day.

The comparison of consistencies across methods does not confirm

that this effect indeed occurred. Every study participant showed

an almost complete overall profile of self-recall annotations,

even though the person has not used or has incomplete in situ

annotations (see Figure 5). However, deeper investigations are

needed to be able to understand such effects better.

Yordanova et al. (2018) lists the following three biases for

sensor-based human activity data: Self-Recall bias (Valuri et al.,

2005), Behavior bias (Friesen et al., 2020) and the Self-Annotation

bias (Yordanova et al., 2018). We showed that indeed a time-

deviation bias (which can be seen as a self-recall bias) has been

introduced to annotations created with the pure self-recall method

3©, and that such a bias affects the classifier negatively. However,

visualizing the sensor data can counter this effect because it was

easier for participants to detect active phases in hindsight.

A behavior bias can be neglected, because the participants

were not monitored by a person or video camera during the

day and the minimalistic setup of one wrist-worn smartwatch

does not influence one’s behavior since the wearing comfort

of such a device is generally perceived as positive (Pal et al.,

2020). A self-annotation bias, a bias that occurs if the annotator

labels their data in an isolated environment and cannot refer

to an expert to verify an annotation, did occur as well. With

the deep learning analysis, we were able to show that the

classifier was less negatively impacted by this bias than by time-

deviation bias.

A Parallel annotation bias can arise in two scenarios: when

multiple annotators independently label the same data, or when a

single annotator uses multiple labeling methods for the same data,

where the application of one method influences the subsequent

labeling decisions made with other methods. There are three main

ways this bias can manifest:

1. Anchoring bias (Lieder et al., 2018): the initial labeling method

might act as an anchor, subtly influencing the annotator’s

decisions when using subsequent methods, even if their initial

assessment might differ.

2. Confirmation bias (Klayman, 1995): the annotator might

subconsciously favor interpretations that align with labels

generated from previous methods, overlooking alternative

possibilities.

3. Method bias (Min et al., 2016): certain methods might

inherently be easier or more difficult to use for specific types of

data, potentially leading to systematic inconsistencies across the

labeled data.

The presence of parallel annotation bias in this context

suggests that the annotations might not be entirely independent

between methods, potentially impacting the overall quality of

the data. Anchoring and confirmation bias can lead to a lack

of diversity in annotations and potentially perpetuate errors.

Method bias can introduce inconsistencies that complicate data

analysis. We recognize the possibility of parallel annotation

bias in our dataset, where applying one labeling method might

influence subsequent methods used by the same participant.

However, prioritizing participant engagement, we opted

for a parallel approach. This decision ensured the workload

remained manageable and prevented participant dropout from

the study.

8 Conclusions

We argue that the annotation methodologies for benchmark

datasets in Human Activity Recognition do not yet capture the

attention it should. Data annotation is a laborious and time-

consuming task that often cannot be performed accurately and

conscientiously without the right tools. However, there is a very

limited number of tools that can be used for this purpose and often

they do not pass the prototype status.

Only a few scientific publications, such as Reining et al. (2020),

focus on annotations and their quality. However, the use of

properly annotated data drastically affects the final capacities of the

trained machine or deep learning model. Therefore, we consider

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1379788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hoelzemann and Van Laerhoven 10.3389/fcomp.2024.1379788

TABLE 5 Comparison of advantages and disadvantages of all annotation methods used in this study.

Methodology Advantages Disadvantages

1© in situ button - Easy to implement and use

- Can be improved with feedback mechanisms

- Participants tend to forget pressing a button

- Many incomplete annotations that become unusable for

the classifier

2© in situ app - Tracking apps are already widely used and accepted, therefore low

acceptance threshold

- Can be improved with feedback mechanisms or additional

smartphone functionalities

- List of possible annotations can be expanded with minimum effort

- Participants tend to set very precise annotations

- Data and privacy concerns if a commercial app is used

- Participants often forgot to set an annotation, especially when

they were unfamiliar with tracking apps

- Implementation workload may be very high

3© pure self-recall - Easy to use even without technical knowledge (a handwritten

diary)

- Most accepted method in our experiment

- Annotations are very consistent

- Can be very imprecise

- Only suitable for coarse activity labels and activities that were

performed for long periods of time, like walking or running

4© time-series recall - Visualization of data helps participants to set annotations more

accurate than using the pure self-recall method 3©

- Available tools are often in the state of a prototype and need

additional developments and adjustments and are therefore not

impromptu usable

- Participants need to be trained to be able to interpret

sensor data

our study to be important for the HAR community, as it analyzes

this topic in greater depth and thus provides important insights

that go beyond the current state of science. Table 5 summarizes the

advantages and disadvantages of every method.

High-quality annotations are crucial for accurate activity

recognition, especially in uncontrolled real-world settings where

video recordings are unavailable for ground truth verification. To

address this challenge, further research on activity data annotation

methodologies is necessary. These methodologies should empower

annotators to label data in a way that comprehensively captures

the subtleties of everyday life. The annotations must not only be

extensive but also complete and coherent, ensuring a consistent

and well-defined understanding for the AI model to learn

from. Furthermore, leveraging learning methodologies like Weakly

Supervised Learning methods, exemplified by works such as Wang

et al. (2019) and Wang et al. (2021), can potentially utilize

datasets like ours. However, a more comprehensive evaluation is

needed to determine their suitability for real-world application. The

combination of a (handwritten) diary with a correction aided by a

data visualization in hindsight shows the best results in terms of

consistency and missing annotations and provides accurate start

and end times. However, this combination results in additional

work for the study participants and therefore, remains a trade-off

between additional workload and annotation quality.

8.1 Lesson learned

During this study, we gained insights about the effects of

different annotation methods on the reliability and consistency

of annotations and finally on the classifier itself, but also about

training deep learning models on data recorded in-the-wild. In

this chapter, we would like to share these insights to help other

researchers perform their experiments more successfully. With

regards to Table 5, we are able to narrow down specific study

setups that either benefit more from self-recall or in situ annotation

methods. As part of our annotation guidelines, we allowed our

study participants to name their activities as they wished. Therefore,

we were forced to simplify certain activities. To be able to create a

real-world dataset that contains complex classes or even classes that

consist of several subclasses, more elaborated annotation methods

and tools must be developed. We believe that with the currently

available resources, the hurdle lies very high for such datasets to be

annotated accurately.

Our study includes people who cycle to work in their daily work

routine and others who commute by public transport or work in

a home office environment. Thus, each study participant has his

or her set of daily repetitive activities. Due to the nature of our

dataset as one recorded in a real-world and long-term scenario,

the number of labeled samples is rather small, and given labels

vary participant-dependent. This mix of factors creates a bias in

the dataset and we concluded that a cross-participant train-/test-

strategy is not appropriate for our study design and would not give

meaningful insights, since every study participant has their own set

of unique activities which are too different and hardly generalizable.

Therefore, for certain studies, the commonly known and accepted

Leave-One-Subject-Out Cross-Validation is not suitable.
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