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Numerous studies have focused on constructing multimodal machine learning

models for estimating a person’s cognitive load. However, a prevalent limitation

is that these models are typically evaluated on data from the same scenario

they were trained on. Little attention has been given to their robustness against

data distribution shifts, which may occur during deployment. The aim of this

paper is to investigate the performance of these models when confronted with a

scenario di�erent from the one on which they were trained. For this evaluation,

we utilized a dataset encompassing two distinct scenarios: an n-Back test and a

driving simulation. We selected a variety of classic machine learning and deep

learning architectures, which were further complemented by various fusion

techniques. The models were trained on the data from the n-Back task and

tested on both scenarios to evaluate their predictive performance. However, the

predictive performance alone may not lead to a trustworthy model. Therefore,

we looked at the uncertainty estimates of these models. By leveraging these

estimates, we can reduce misclassification by resorting to alternative measures

in situations of high uncertainty. The findings indicate that late fusion produces

stable classification results across the examined models for both scenarios,

enhancing robustness compared to feature-based fusion methods. Although

a simple logistic regression tends to provide the best predictive performance

for n-Back, this is not always the case if the data distribution is shifted. Finally,

the predictive performance of individual modalities di�ers significantly between

the two scenarios. This research provides insights into the capabilities and

limitations of multimodal machine learning models in handling distribution shifts

and identifies which approaches may potentially be suitable for achieving robust

results.

KEYWORDS

cognitive load, task load, multimodal, robustness, machine learning, deep learning,

uncertainty quantification

1 Introduction

Cognitive load refers to the subjective, physiological state of mental effort that
results from the dynamic interplay between an individual’s finite cognitive resources
and the demands placed upon them by a task. Task load represents the objective
assortment of demands that a task inherently imposes on an individual. Together,
these concepts form the cornerstone of our understanding of how tasks affect
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performance and well-being. Therefore, the recognition of
cognitive overload could improve various working environments,
such as education (Antonenko et al., 2010), public transportation
(Fridman et al., 2018;Wilson et al., 2021) and situations that require
high attention (Abrantes et al., 2017). Consequently, there is a need
for robust cognitive load estimation models that perform well in
different environments.

In recent years, many studies have been conducted for cognitive
load estimation. Some studies have encompassed the data collection
of a range of scenarios, including standardized tests (Beh et al.,
2021), driving situations (Oppelt et al., 2023), and aviation
scenarios (Wilson et al., 2021). Based on these data sets, approaches
have been evaluated for their ability to infer cognitive load, utilizing
different modalities (as outlined in Table 1). This body of research
has explored classical machine learning strategies, advanced deep
learning techniques, fusion methods and the impact of varying data
processing approaches. Many of these papers primarily emphasize
predictive performance while often overlooking two equally crucial
evaluation aspects of learning systems: robustness and uncertainty

estimation.
Robustness has different definitions in the literature. In this

paper we refer to the ability of a model to maintain a relatively
stable performance in spite of changes in the data distribution
(Freiesleben and Grote, 2023). Such changes may arise from slight
variations in the scenario, such as increased movement of a person
during model deployment in comparison to training data, or
sudden corruptions of individual modalities. Despite the challenges
inherent in maintaining accuracy under these circumstances, it is
vital that the model possesses the capacity to know what it does not
know. This enables reliable predictions that can be trusted, which
can be achieved through the use of well-calibrated uncertainty
estimates. Furthermore, it opens up possibilities to extend the
functionality of cognitive load estimation systems. For example, in
instances where a prediction is deemed excessively uncertain, it can
be discarded outright, or alternatively, the user can be prompted
to input their current cognitive load level, thus enabling the system
to adapt itself accordingly. This leads to the the following research
gaps we address in this paper:

RQ1 How do machine learning, fusion, and data processing
methods influence predictive performance and uncertainty
estimation in estimating task load?

In this paper, we use data from participants exposed to tasks of
varying difficulty and use these task assignments as labels to directly
address task load estimation. Section 3.1.3 goes into more detail on
how this relates to the definition of cognitive load. As a first step,
we aim to investigate a range of classical machine learning, deep
learning and fusion methods within a standard evaluation process.
This means training and test data will come from participants who
have performed the same task, ensuring minimal distribution shift.
This will serve as the basis for comparing our methods to address
our main research question:

RQ2 How does a data distribution shift influence the
classification accuracy and uncertainty estimation in estimating
task load?

To address this question, we subject the trained models to
a different scenario where the user had to perform a different
task, and evaluate the models from RQ1 for robustness and

quality of uncertainty estimation. Consequently, we make the
following contributions in this paper. We conduct a systematic
investigation of unimodal and multimodal approaches, examining
their impact on in-distribution classification performance and
uncertainty estimates. We examine these methods in terms of
distribution shifts and demonstrate their robustness. Our general
desiderata for the task load estimation system are presented in
Figure 1. Although this study does not directly measure cognitive
load, it is important to note that task load, which we focus on,
is related to cognitive load and can potentially serve as a noisy
proxy for it. This potential is contingent upon verification, as we
discuss in Section 3.1.3. Thus, our results can indeed be relevant
to the assessment of cognitive load to a certain extent. However,
it’s crucial to underline that future research should aim to validate
these findings with more precise cognitive load labels to ensure the
applicability and accuracy of the assessment.

2 Related work

2.1 Cognitive load

Cognitive load, intricately linked to the notion of mental
workload, is a complex concept and has been defined in various
ways throughout the literature (Paas and Van Merriënboer, 1994;
Haapalainen et al., 2010; Orru and Longo, 2019; Longo et al.,
2022). At its core, cognitive load encompasses the subjective
physiological state of mental effort that emerges from the dynamic
interplay between an individual’s finite cognitive resources and
the demands placed on them by a task. This understanding
acknowledges both the subject involved and the task at hand as
fundamental components in the conceptualization of cognitive
load. Notably, Longo et al. (2022) offer a precise definition of
cognitive load, describing it as “the degree of activation of a
finite pool of resources, limited in capacity, while cognitively
processing a primary task over time, mediated by external dynamic
environmental and situational factors, as well as affected by static
definite internal characteristics of a human operator, for coping
with static task demands, by devoted effort and attention.” This
definition highlights the interaction between external factors and
an individual’s inherent capabilities. In this context, task load
represents the objective measure of task demands that directly
influence this interplay.

2.2 Cognitive load measurement

Cognitive overload can be measured using subjective and
objective approaches. Self-assessments can be used to get the
subjective measure of workload, typically using standardized
questionnaires such as the NASA Task Load Index (NASA-
TLX) (Hart and Staveland, 1988). However, self-assessment
questionnaires are limited in that they are usually completed after
a task is performed, and they rely on individual perceptions,
which can vary across people. Objective measures of cognitive
load can be obtained through performance evaluation on a task
and physiological measures. Performance-based measures can be
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TABLE 1 Overview of recent publications evaluating cognitive load estimation models.

Reference Modalities Setup Stimulus Evaluation Window size Accuracy (%)

Meteier et al.
(2021)

ECG, EDA, RESP Driving simulation (90
subjects)

Oral backward counting 10-fold CV 4 minutes 95.0

Aygun et al. (2022) EEG, EYE, BP Driving simulation (80
subjects)

Questions and braking
events

1-fold CV - 80.4

Gjoreski et al.
(2020b)

ACC, EDA, TEMP,
PPG

Lab (23 subjects) N-Back, standardized
tests

LOSO
nested-CV

30 seconds 68.2

Kumar (2022) EEG, ECG, EDA Driving simulation (33
subjects)

Driving tasks 5-fold CV 25 seconds 85.6

Beh et al. (2021) ECG, EDA, PPG
(Fingertip), PPG
(Wrist)

Lab (22 subjects) N-Back LOSO 2 mins 71.6

Kesedžić et al.
(2021)

ECG, fNIRS Lab (32 subjects) N-Back LOSO 75 seconds 84.3

Oppelt et al. (2023) ECG, EDA, EMG,
EYE, PPG, RESP,
TEMP, AU

Lab and driving
simulator (51 subjects)

N-back and
multi-tasking

10x10
nested-CV

2 min -

All results are based on a binary classification task to discriminate between low and high cognitive load. We show the best results reported in each respective publication and mark the best

performing modality bold if the information is available.

FIGURE 1

Overview of the experimental setup and desiderata of the model predictions. Data is collected from two domains: n-Back and k-Drive. The model is

trained using the n-Back data and subsequently evaluated on both domains. Our main objective is to create a model that is highly accurate within its

domain and capable of making robust predictions across other domains. It should also exhibit a high degree of uncertainty when faced with potential

misclassifications.

categorized into two types. The first is based solely on the primary
task performance, while the second considers both the primary and
a secondary task performance as an indicator of workload. The
evaluation of workload focuses on the spare mental capacity for the
secondary task given the primary task demands (Paas et al., 2003).
However, performance can also be influenced by other factors, such
as the strategy a subject uses to solve the tasks, or the duration of the
stimulus, whereby fatique causes a reduction in performance (Cain,
2007).

Another objective measure of cognitive load is physiological
signals, which can be measured using various modalities. Eye
tracking, for example, is an important indicator for detecting
cognitive overload. Pupil dilation, saccades, blinks and fixations are
the most important features that can be extracted from eye tracking

data. In particular, pupil dilation is considered a good indicator
of cognitive overload in the literature (Beatty, 1982; Palinko and
Kun, 2012; Ayres et al., 2021; Rahman et al., 2021), as the variation
can be influenced by emotional and cognitive processes (Bradley
et al., 2008). However, pupil size also changes with illumination,
which is a challenge to consider when analysing eye tracking
data (Beatty and Lucero-Wagoner, 2000). Electroencephalography
(EEG) can measure brain activity using electrodes placed on the
head. These can be used to draw conclusions about cognitive
processes. In principle, brain activity is a good indicator of cognitive
processes (Ayres et al., 2021; Zhou et al., 2022). However, it is
susceptible to noise artifacts caused by movements and the exact
placement of the electrodes influences the correct measurement of
the signals.
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Cardiovascular activities can also provide insight into
variations in cognitive overload. These include, for example,
heart rate or heart rate variability (Ayres et al., 2021).
However, there are some psychological and physical factors
that can also influence these variables, such as activity and
affective states.

2.3 Machine learning and cognitive load
estimation

As discussed in Section 2.1, cognitive load is not a simple
construct. When training machine learning models, the data must
be annotated accordingly. This is generally a challenge in the field
of affective computing when inferring psychological constructs
(Booth et al., 2018). In the case of cognitive overload, various
options can be considered for annotating the data, each with its
own challenges. On one hand, the difficulty level of designated
phases can be uniformly labeled across all individuals, regardless
of their subjective experience, which is done by many approaches
in the literature (Gjoreski et al., 2020a; Oppelt et al., 2023).
While most papers refer to cognitive load or mental load, they
are actually inferring task load. It’s important to clarify that
cognitive load can vary due to different influencing factors, even
when the difficulty of the task remains constant. Alternatively,
subjective ratings of participants can be used, such as the NASA-
TLX. Although perceived cognitive load can be depicted, the
issue lies in the fact that self-assessments are often challenging
to compare across individuals. Finally, while performance can
also serve as an indicator, its reliability can be compromised
by factors unrelated to cognitive load. These include solution
strategies, attention or fatigue. Seitz and Maedche (2022) provide
a thorough overview of many cognitive load datasets and their
respective types of annotation. There are also approaches that
combine the mentioned methods for annotation (Dolmans et al.,
2021).

Additionally, there is the question of how to formulate
the target. In most publications, classification is used. Binary
classification is the most commonly used method. A three-class
division often proves to be quite difficult, presumably because
it reflects the fuzziness of the construct (Gjoreski et al., 2020b).
Alternatively, the problem can also be formulated as regression
(Oppelt et al., 2023).

Models have been trained and evaluated for various scenarios in
the literature. Several studies have been conducted using different
modalities to infer cognitive load in the n-Back test (Beh et al.,
2021; Kesedžić et al., 2021; Oppelt et al., 2023). Machine learning
approaches have also been evaluated for application-oriented
scenarios. Wilson et al. (2021) used an aviation simulation to
induce overload through context-specific tasks. A number of papers
have conducted driving simulations under laboratory conditions
(Meteier et al., 2021; Oppelt et al., 2023) or in real-world settings
(Fridman et al., 2018). Most datasets have been recorded under
optimal conditions, making it unclear how robust models are to
factors that could influence the ability to detect cognitive load.
Albuquerque et al. (2020) used physical exercise to create an

additional factor that influences the expression of some modalities,
e.g. heart rate or skin conductance.

Table 1 provides an overview of relevant papers with important
parameters of the experimental design and their results for binary
classification. It encompasses data from EEG, electrocardiogram
(ECG), photoplethysmography (PPG), blood pressure (BP),
electromyogram (EMG), electrodermal activity (EDA), respiration
rate (RESP), eye tracker (EYE), skin temperature (TEMP),
accelaration data (ACC), and action units (AU). The selected results
all come from experiments in which subject wise splitting was used.
However, the exact evaluation protocols differ. The data splitting
ranges from a 1-fold cross validation (CV) to a leave-one-subject-
out (LOSO). It is important to note that comparing these results
in a meaningful way is challenging, as many factors can impact the
performance.

In other domains, deep learning approaches have already
replaced classical machine learning methods that require expert
features. An important prerequisite for this is having enough
data to extract generalizable features. Aygun et al. (2022)
provide a comparison of classical machine learning approaches
with Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) that extract relevant features from raw
physiological signals. In this case, methods that rely on expert
features perform better. However, since deep learning approaches
often provide good results in general time series literature, a
possible reason for the difference is the small number of data points.
Self-supervised approaches with EEG have been investigated for
cognitive load estimation in this regard (Longo, 2022).

3 Methodology

3.1 Data

3.1.1 Data description
To answer our research questions, we need a cognitive load

dataset that includes different modalities and also contains more
than one stimulus in order to investigate robustness with respect
to a data shift. Therefore, we use ADABase (Oppelt et al., 2023)
for our experiments. In this dataset, two stimuli were utilized to
induce cognitive overload: the n-Back test (Kirchner, 1958) and
the simulated driving situation k-Drive. Both scenarios begin with
baselines, in which no overload stimulus is provided. Subsequently,
the subjects have to pass through different levels of difficulty, where
they are increasingly overloaded. The n-Back test (Kirchner, 1958)
is a standardized test for measuring the working memory capacity,
where participants must remember the position of elements on
a grid n steps before. By increasing n, the load on the working
memory increases. In this dataset, participants were required to
complete the n-Back test with varying difficulty levels, ranging from
1 to 3 steps. In addition to the single-task test described above,
participants also completed a dual-task variant, as described by
Jaeggi et al. (2003). This version introduces an auditory memory
component that has to be performed concurrently with the visual
task. In this setup, consonants are spoken by a computerized voice
and have to be memorized using the n-Back approach analogous to
that used in the visual task. This variant also included three levels
of difficulty to further challenge participants. However, we do not
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use the dual-task data, as this would give us considerably more data
in which the participants are overloaded. This would lead to class
imbalance. Therefore, in the following we will only use data from
the single-task variant. For the simulated driving situation k-Drive,
the subjects had to react to various events, such as braking, in a
driving scene. In the first level, subjects had to respond to only
a few simple events during the driving scene. In levels 2 and 3,
the complexity increased and a secondary task involved creating a
playlist on a tablet. The dataset includes the following modalities:
eye tracking, ECG, PPG, EDA, EMG, respiration, skin temperature,
and action units. However, we exclude action units from the
experiments due to the low predictive performance in Oppelt et al.
(2023). The full dataset contains a total of 51 subjects. Individual
erroneous or missing modalities were found in 5 subjects. These
subjects were removed, leaving data from 46 subjects available for
the experiments. All these subjects completed both n-Back and
k-Drive.

3.1.2 Preprocessing
In the following section, we outline the preprocessing steps

applied to the raw signals to make them suitable for training
machine learning models. Initially, modality-specific preprocessing
is conducted to eliminate potential artifacts, as outlined in Oppelt
et al. (2023). This primarily involves removing outliers from the
eye tracker data and detrending the ECG signal. Subsequently, the
entire dataset is segmented into individual time frames using a
rolling window approach. For our main experiments, we opt for a
window size of 60 seconds with a stride of 10 seconds. Windows are
selected only if at least the first 80% of the windowmatches a labeled
segment, discarding windows where the label is more ambiguous.
These extracted windows serve as the fundamental input for both
the deep learning models and further feature extraction for the
classical models. For all modalities we employ the same feature set
utilized in the ADABase publication (Oppelt et al., 2023). The type
of normalization plays an important role in affective computing.
Features often have an individual-specific range, which means
that subject normalization can lead to improved performance.
This involves extracting the normalization parameters from the
subject’s data which is therefore only possible post hoc. For our
main experiments, we use a subject wise z-score normalization
using the mean and standard deviation per modality and subject.
However, we also investigate the influence of normalization on in-
domain and especially out-domain performance. For this purpose,
an ablation study is also used to apply no normalization and a global
normalization whose parameters are calculated from all training
data points.

3.1.3 Annotation
ADABase provides three types of annotations that can

potentially be used for machine learning tasks related to
cognitive load: self-assessment using the NASA-TLX questionnaire,
performance metrics, and information about the stimuli that mark
the difficulty levels.

To understand whether these annotation strategies have the
potential to be quantified, we align them with the components
outlined in the Longo et al. (2022) definition of cognitive load.

This definition states that the degree of activation of the finite pool
of cognitive resources is influenced by various factors, including
environmental and situational contexts, subject-specific internal
characteristics, task demand, and the amount of effort and attention
dedicated to a particular task. The NASA-TLX self-assessment
method has the potential to represent perceived cognitive load as
it can account for the impact of factors such as effort and task
demand. However, self-assessments may be subject to biases and
may not be consistently comparable across participants. Variations
in the performance of primary tasks, such as the n-Back task,
can be indicative of cognitive overload. Nonetheless, performance
fluctuations can also be attributed to other factors like effort or
attention, which may affect performance independently of the
actual degree of activation of the finite cognitive resources.

In this study, we use the difficulty level of each task to create
a binary classification. This allows us to operationalize the task
demand as defined in the definition, as the annotation remains
constant regardless of individual experience. Consequently, other
factors, such as “effort and attention” or “internal characteristics,”
are not taken into consideration. However, as shown in Figure 2, an
increase in task difficulty is associated with an increased perception
of cognitive load, as evidenced by the NASA-TLX self-assessments.
Since we are making a rough binary distinction between a scenario
with very little to no task demand and a demanding task, and there
is a clear trend in perceived cognitive load when distinguishing
between these two conditions, the label can be considered a noisy
proxy for cognitive load, even though it only represents the task
load component.

Next, we show the precisemethodology employed in generating
labels based on task difficulty. We differentiate between low load
and high task load by assigning each data point xi to a label yi ∈
{Low,High}. Each of the two stimuli contains different levels of
difficulty. The n-Back test includes two baselines and a total of
six difficulty levels, while the k-Drive test has three baselines and
three difficulty levels. In the first baseline in both scenarios, the
subjects are not exposed to any stimuli. The monitor is turned off
and the subject is asked to sit quietly in the chair so that a baseline
measurement of the biosignals can be made. In the n-Back, for the
second baseline measurement, the subject is now exposed to the
same visual stimulus as during the actual test and has to randomly
press buttons. They are instructed not to make any mental effort.
This ensures that the same movement patterns are present as in the
actual test, as well as the same lighting conditions. In the case of the
first baseline, you could tell whether the subject is in the baseline
or the actual test by the light-induced pupil dilation variation. This
could potentially lead to a spurious correlation in the ML models
and impair the reliability of the evaluation. In the driving scenario,
there are 2 baselines in addition to the first one. In both baselines
there is the visual stimulus as in the real driving task. In the first
baseline, the subject had to watch the driving scene and randomly
click on buttons. In the second baseline, they were asked to perform
a behavioral pattern similar to the secondary task by looking at the
tablet and clicking randomly on it to simulate creating a playlist.

For answering RQ2, we also need to evaluate the transfer
between n-Back and k-Drive. However, this is not trivial because
the stimuli differ and consequently the strength of the exposed
loads. Based on the self-assessment results presented in Figure 2,
it is evident that the median ratings for levels 2 and 3 in both
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FIGURE 2

The NASA-TLX raw ratings of unweighted mental demand for each

scenario in the ADABase dataset. (A) k-Drive. (B) n-Back.

tests are above the midpoint of the rating scale. Conversely,
level 1 has a low median rating. For the n-Back task, we
define Low as {baseline2, level1}, and High as {level2, level3}. For
k-Drive, we define Low as {baseline2, baseline3}, and High as
{level2, level3}. Since we have two usable baselines available at k-
Drive that closely resemble the actual test, we decided to use
these for Low and not include level 1 to ensure a balanced class
distribution.

3.2 Models and fusion

Below we describe the machine learning approaches used in the
experiments. In general, the methods can be divided into classical
machine learning and deep learning methods. Furthermore, the
models can be applied to different numbers of modalities. The
experiments investigate unimodal models as well as multimodal
models, for which we use different fusion approaches. These are
also described in this section.

3.2.1 Machine learning models
For our experiments, we use both classical machine

learning (ML) and deep learning (DL) architectures. Classical
machine learning refers to methods that rely on expertly
crafted features, while deep neural networks, or deep
learning, are capable of autonomously extracting features
directly from raw data. As classical ML methods we use
logistic regression, support vector machine (SVM) (Cortes
and Vapnik, 1995) and XGBoost (Chen and Guestrin,
2016).

For the classification of time series data several deep learning
architectures have been presented. These have often been evaluated
on broad benchmark datasets such as UCR/UEA archive (Dau
et al., 2019). Since the domain of affective computing differs
from many in the benchmark datasets, we do not limit our
evaluation to the architecture that has performed best on this
benchmark but examine a small selection. We use the Fully
Convolutional Network (FCN) (Wang et al., 2017), which is a
simple architecture consisting of three convolutional layers with
batch normalization. All layers have zero padding so that the
length of the time series remains the same. Global average pooling
is used to aggregate the features over the temporal dimension.
As the FCN model is relatively simple, we additionally use a
ResNet-1D adapted for time series data (Wang et al., 2017).
These two architectures contain global pooling, which may cause
a loss in temporal patterns. Therefore, we extend the ResNet-
1D by a sequence model that is applied on the latent features
instead of global pooling. Since the length of the time series is
not reduced by the architecture, we first use a max pooling with
pooling size of 1 second and stride of 0.5 seconds to reduce
the length. A Gated Recurrent Unit (GRU) (Cho et al., 2014) is
applied to this representation to aggregate the information over
the temporal dimension. In the following, this architecture is
referred to as ResNet1D-GRU. Figure 3 shows an overview of the
used architectures.

3.2.2 Fusion methods
Multimodal approaches require the integration of information

derived from individual modalities, and the choice of fusion
method can significantly influence both accuracy and robustness.
One simple approach that can be used on top of any classifier
is late fusion. This involves training models for each modality
independently and averaging the predictions from these models.
Another simple approach is the concatenation of features of
different modalities. For classical machine learningmethods, expert
features are concatenated prior to being fed into the classifier.
In deep learning approaches, the learned latent features are
concatenated. We refer to this fusion method as concat in our
experiments In addition to these simple fusion methods, multi-
modal gated units (Arevalo et al., 2020) for deep learning methods
are also being investigated, which we refer to as gated fusion.
These units use an input dependent gating mechanism that assigns
weights to individual modalities. This dynamic fusion may allow
for a more robust fusion when modalities are unreliable in a
distribution shift.
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FIGURE 3

Overview of the three deep learning architectures employed in our experiments: (A) FCN, (B) ResNet-1D, and (C) ResNet1D-GRU. For each layer, the

figure details the number of channels, the activation function used, and the application of batch normalization (BN).

3.3 Experimental setup

To conduct our experiments, we divide the data into training,
validation and test sets using a subject-wise split, which ensures
that no data points from the same subject appear in different
subsets. For models that can monitor their overfitting behavior
we use the validation set for early stopping. We use the model
parameters from the epoch with the lowest validation loss.
However, we allow the model to be trained until the end of
the predefined epochs. Given the relatively small dataset, it is
essential to use multiple splits to mitigate the possibility of an
unfavorable split leading to biased evaluation. While a leave-one-
subject-out approach is commonly used for subject-dependent
data, it is not feasible for our experiments due to the computational
complexity. Instead, we use a 4x4 nested cross-validation in the
experiments. This approach helps us identify good hyperparameter
settings and create a less biased estimate of the true error (Varma
and Simon, 2006). The test sets of four outer folds are used
for calculating the final reported results. The four inner folds
are used for the hyperparameter optimization (HPO) for each
outer fold. For the hyperparameter search we perform 25 trials
per inner fold. Finally, using the best hyperparameter setting
the model is trained ten times on the inner fold, if the model
does not have a deterministic inference. Consequently, up to
440 training runs are performed per model. We use the Tree-
structured Parzen Estimator (Bergstra et al., 2011) for the HPO
using the library Optuna (Akiba et al., 2019). Table 2 shows the
used hyperparameter search space. Figure 4 shows the overall

experimental setup. For optimizing the deep learning models, we
employ the ADAM optimizer (Kingma and Ba, 2015). Note that all
experiments are performed in Python. The deep learning models
are implemented using PyTorch (Paszke et al., 2019), while scitkit-
learn (Pedregosa et al., 2011) is used for the other classical machine
learning methods.

3.4 Evaluation metrics

In this section, we describe the metrics used to evaluate
classification performance and uncertainty estimates. Since our
goal is to investigate robustness, we can look at the change in
these performance metrics between n-Back and k-Drive. If the
performance of a model decreases significantly, we can conclude
that it lacks robustness with respect to this specific change in
the data distribution. To evaluate the classification performance
we use the F1-score because of a slight imbalance in the k-Drive
dataset. For some analyses we also use the area under the receiver
operating characteristic curve (AUROC). To assess the uncertainty
estimation, we employ two metrics. Firstly, we utilize the Expected
Calibration Error (ECE) (Guo et al., 2017). This metric provides
a measure of confidence calibration, essentially quantifying the
disparity between predicted probabilities and observed outcomes.
The ECE is calculated by dividing the predicted probabilities
into bins and contrasting them with the actual accuracy within
those bins. In turn, this error diminishes when the confidence
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TABLE 2 Default hyper-parameters and random search grids for all

algorithms.

Algorithm Hyper-
parameter

Search distribution

FCN, ResNet-1D,
Resnet1D-GRU

Learning rate RandFloat (0.0001, 0.01)

Weight decay RandFloat (0.0001, 0.03)

Dropout Choice ([0, 0.1, 0.2, 0.3, 0.5])

XGBoost Learning rate RandFloat (0.01, 1)

Number estimators Choice ([100, 150, 200, 400])

Max. depth RandInt (4, 20)

Subsample RandFloat (0.7, 1)

l1 RandFloat (0, 1)

l2 RandFloat (0, 1)

Logistic regression C 2Uniform (−5,4)

Iterations Choice ([50, 100, 150, 200])

Penality Choice ([l1, l2])

SVM C 2Uniform (−5,8)

Max. iterations Choice ([50, 100, 150, 200, 250])

Kernel Choice ([linear, poly, rbf ])

and accuracy for a specific bin come into alignment. The ECE is
calculated using Equation 1:

ECE =

M∑

i=1

Ni

N
· |acci − confi| (1)

Here, M represents the number of bins, Ni is the
number of samples in the i-th bin, N is the total number
of samples, acci denotes the accuracy of the i-th bin,
and confi signifies the confidence of the i-th bin. The
ECE is reported on a scale of 0 to 1, with 0 being the
optimal value.

However, sometimes it is not necessary for this to match
exactly. In the case of a human-in-the-loop system, for example,
where a subject can self-correct certain mispredictions, it
would be important that the misclassifications just have
a higher uncertainty than correctly classified data points.
For evaluating this, rejection curves (Malinin, 2019) can
be used. The data points are sorted in descending order
of uncertainty and sequentially replaced by ground truth
labels. If the uncertainty correlates strongly with the
misclassifications, then these misclassifications are quickly
replaced with correct labels, causing the error to drop
rapidly. If the uncertainties were absolutely uncorrelated
with the misclassifications, then the error would fall linearly
until the entire data set was replaced with ground truth
labels. Whether the curve drops quickly or slowly can be
calculated by the area under the curve. After normalizing
this value with the random curve we get ARuns. We contrast
this curve with the normalized area under the ideal curve
ARorc, where the uncertainty perfectly correlates with the

error. Our metric is the Rejection Ratio (RR) as shown in
Equation 2:

RR =
ARuns

ARorc
(2)

The metric’s range is between –1 and +1, with 1 indicating
a perfect positive correlation between missclassification and
uncertainty. If there is a negative correlation, meaning all high
uncertainty data points are correctly classified, then the value
approaches –1.

4 Results

This section presents the results of the experiments. Section 4.1
discusses the results of evaluating the unimodal and multimodal
models on the n-Back data, addressing RQ1. Section 4.2 focuses
on the evaluation of these models on the drive data, allowing us
to investigate the robustness of the models and address RQ2. For
all questions, both the classification accuracy and the quality of the
uncertainty estimates are considered.

4.1 n-Back performance

In this section, we analyze the performance of models trained
and evaluated on n-Back data. The classification performance
for the modalities is detailed in Table 3. This table shows that
eye tracking consistently achieves the highest F1-score across all
models. Skin temperature, on the other hand, tends to yield
the poorest classification results across most models. Notably,
traditional machine learning methods generally outperform deep
learning approaches, except in cases involving EMG data and skin
temperature. Logistic regression, in particular, seems to deliver the
best performance across most modalities.

The results of multimodal fusion are presented in Table 4.
Early fusion, using logistic regression, is shown to provide the best
classification performance. Feature fusion generally leads to better
classification results compared to late fusion, a trend that is also
evident in the calibration error. However, this is not the case for
the rejection rate, which varies between different models. Fusion
approaches tend to produce classification performance that is either
equal to or slightly better than the best unimodal performance
for each model. In particular, among deep learning methods,
gated fusion shows a tendency toward better classification accuracy
and rejection rate. The Supplementary material includes detailed
tables for the expected calibration error and rejection scores for
all modalities and models. Although the multimodal models did
not achieve an overall improvement in the uncertainty estimation
compared to the best performing unimodal model, they did show a
slight improvement in the rejection ratio.

4.2 k-Drive performance

In this section we present the results of training on the n-
Back data and evaluation on the k-Drive dataset. Table 5 shows
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FIGURE 4

Training and evaluation setup using 4 × 4 nested cross-validation with an inner loop for optimal hyperparameter tuning. It is trained on n-Back and

evaluated on n-Back and k-Drive test datasets.

TABLE 3 This table shows the F1-score for models trained and evaluated on n-Back.

Method ECG EDA EMG EYE PPG RESP SKIN

Logistic regression 0.70± 0.06 0.69± 0.05 0.67± 0.01 0.85± 0.04 0.66± 0.03 0.65± 0.03 0.59± 0.05

SVM 0.65± 0.04 0.62± 0.06 0.33± 0.13 0.81± 0.03 0.64± 0.04 0.59± 0.07 0.67± 0.01

XGBoost 0.68± 0.03 0.63± 0.05 0.56± 0.07 0.83± 0.04 0.64± 0.03 0.61± 0.03 0.68± 0.03

FCN 0.60± 0.09 0.59± 0.08 0.64± 0.03 0.85± 0.03 0.57± 0.06 0.62± 0.03 0.61± 0.16

ResNet1D-GRU 0.64± 0.01 0.59± 0.04 0.66± 0.04 0.85± 0.03 0.57± 0.05 0.58± 0.03 0.73± 0.04

ResNet1D 0.62± 0.04 0.57± 0.03 0.64± 0.05 0.85± 0.03 0.57± 0.01 0.59± 0.05 0.50± 0.16

the unimodal classification results of the k-Drive scenario. In
Figure 5 we combine the results of n-Back and k-Drive to show
how the performance of the unimodal models changes between
the two scenarios. Notably, the eye tracker is no longer the most
effective modality in this setting. Interestingly, the ECG and EMG
modalities show improved performance compared to the n-Back
scenario. However, there is no clear trend in the performance
of the models. While classic machine learning models tend to
outperform DL models in the n-Back, the results are now more
ambiguous. For example, the ResNet1D-GRU model outperforms
logistic regression.

Next, we examine the results of multimodal approaches in
Table 6. Figure 6 shows the comparison of the in-distribution F1-
Score with the performance on the k-Drive dataset. In contrast
to the in-distribution results, where early fusion outperforms late
fusion, now the early fusion classification is inferior. This could
be due to the changed importance of the modalities. For example,
the reduced ability of the eye tracker to discriminate between
low and high task load in k-Drive, based on n-Back training,
affects early fusion where eye tracker features are critical. In late
fusion, each modality contributes equally to the final prediction,
mitigating this problem. For DL methods, this phenomenon is less
pronounced, with late fusion slightly underperforming compared

to intermediate fusion. Consequently, in FCNmodels, intermediate
fusion achieves the best overall classification performance. It does
not deviate from the predictive performance in the n-Back test,
which makes it particularly robust. The Supplementary material
includes detailed tables on calibration errors and rejection ratios for
the models and modalities. It is important to note that multimodal
fusion improved the rejection ratio compared to the best unimodal
models within a model category.

Table 7 shows the results of an ablation study regarding
the impact of different normalization approaches on the
logistic regression fusion model with concatenated features
vectors. In the n-Back performance analysis, we observe an
incremental enhancement in logistic regression accuracy. The
performance is least effective with no normalization, improves
with global normalization, and reaches its best results using
subject normalization. This clearly demonstrates the relative
superiority of subject normalization over global normalization and
no normalization in in-domain contexts. The scenario changes
markedly in the k-Drive context. In this case, global normalization
performed significantly worse, in contrast to the no normalization
and subject normalization scenarios. Subject normalization
continues to show superior performance. Interestingly, however,
it was found that no normalization outperformed the global
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TABLE 4 n-Back fusion results.

Method Fusion F1-Score (↑) Calibration error (↓) Rejection ratio (↑)

Logistic regression Late 0.85± 0.03 24.58± 3.41 64.33± 5.63

Concat 0.86± 0.02 7.92± 2.01 58.83± 20.61

SVM Late 0.79± 0.03 22.92± 3.32 50.17± 8.18

Concat 0.84± 0.04 9.09± 2.77 65.10± 10.71

XGBoost Late 0.82± 0.01 21.12± 1.94 52.92± 7.15

Concat 0.83± 0.03 11.37± 2.17 56.20± 5.38

FCN Late 0.80± 0.02 21.31± 1.85 52.29± 5.33

GatedFusion 0.85± 0.01 10.86± 2.03 68.86± 4.98

Concat 0.84± 0.02 11.05± 2.01 63.60± 7.96

ResNet1D-GRU Late 0.82± 0.03 22.29± 1.98 51.04± 6.14

GatedFusion 0.85± 0.02 11.00± 1.59 60.88± 2.59

Concat 0.83± 0.05 10.42± 1.92 56.72± 5.83

TABLE 5 This table shows the F1-score for models trained on n-Back and evaluated on k-Drive.

Method ECG EDA EMG EYE PPG RESP SKIN

Logistic regression 0.81± 0.02 0.69± 0.03 0.86± 0.00 0.71± 0.04 0.70± 0.03 0.85± 0.05 0.65± 0.07

SVM 0.76± 0.06 0.71± 0.04 0.39± 0.17 0.68± 0.05 0.75± 0.05 0.73± 0.03 0.86± 0.01

XGBoost 0.83± 0.04 0.63± 0.03 0.65± 0.12 0.59± 0.03 0.70± 0.09 0.80± 0.06 0.77± 0.04

FCN 0.78± 0.07 0.67± 0.09 0.83± 0.04 0.73± 0.03 0.78± 0.06 0.76± 0.05 0.73± 0.19

ResNet1D-GRU 0.81± 0.02 0.72± 0.05 0.86± 0.03 0.77± 0.02 0.71± 0.04 0.69± 0.02 0.83± 0.06

ResNet1D 0.79± 0.05 0.67± 0.09 0.83± 0.07 0.79± 0.03 0.76± 0.01 0.71± 0.06 0.62± 0.22

FIGURE 5

F1-score with standard deviation of unimodal models trained on the n-Back data and evaluated on n-Back (x-axis) and k-Drive (y-axis). Points above

the bisector show better performance on the shifted dataset and performance below the bisector shows worse performance.
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TABLE 6 k-Drive fusion results.

Method Fusion F1-Score (↑) Calibration error (↓) Rejection ratio (↑)

Logistic regression Late 0.82± 0.03 29.25± 1.99 52.57± 11.33

Concat 0.76± 0.08 24.94± 6.23 30.88± 15.07

SVM Late 0.82± 0.01 24.22± 1.50 52.89± 4.83

Concat 0.74± 0.07 25.49± 6.03 36.50± 6.04

XGBoost Late 0.74± 0.05 29.36± 2.13 45.33± 8.31

Concat 0.65± 0.09 28.90± 4.72 41.33± 7.81

FCN Late 0.80± 0.07 26.45± 2.79 60.21± 10.06

GatedFusion 0.80± 0.03 21.34± 1.85 40.76± 9.13

Concat 0.84± 0.05 20.83± 3.24 37.70± 16.76

ResNet1D-GRU Late 0.77± 0.03 24.69± 2.25 51.45± 6.92

GatedFusion 0.78± 0.04 22.45± 3.76 36.68± 10.93

Concat 0.75± 0.04 23.24± 4.43 35.92± 18.20

FIGURE 6

F1-score with standard deviation of fusion models trained on the n-Back data and evaluated on n-Back (x-axis) and k-Drive (y-axis). Points above the

bisector show better performance on the shifted dataset and performance below the bisector shows worse performance.

normalization. To investigate this further, we used the AUROC
metric. This choice was made because AUROC indicates the
separability of predictions, thus revealing whether adjusting the
threshold might improve performance. In these evaluations global
normalization outperforms no normalization.

5 Discussion

Our investigation into various cognitive load estimationmodels
both trained and evaluated on n-Back has yielded interesting

insights. Notably, the eye tracker-basedmodel exhibited the highest
classification performance among all the models examined. This
aligns with previous studies where eye tracking outperformed other
modalities (Aygun et al., 2022; Oppelt et al., 2023). It is important
to emphasize that the efficacy of eye tracking can be context-
dependent. Factors like lighting conditions can significantly affect
pupil size, a crucial indicator of cognitive overload.

When considering the models, it becomes evident that classic
machine learning models tend to outperform deep learning models
for in-distribution data, especially when applied to more complex
signals like electrocardiography (ECG). A potential reason may be
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TABLE 7 Ablation study of normalization techniques on performance in di�erent scenarios for early fusion logistic regression.

Data Normalization F1-Score (↑) AUROC (↑) Calibration error (↓) Rejection ratio (↑)

n-Back No 0.58± 0.05 0.63± 0.03 0.09± 0.02 0.07± 0.13

Global 0.75± 0.03 0.83± 0.03 0.15± 0.05 0.38± 0.08

Subject 0.86± 0.02 0.93± 0.03 0.07± 0.02 0.59± 0.21

k-Drive No 0.65± 0.08 0.63± 0.04 0.25± 0.05 0.15± 0.07

Global 0.08± 0.12 0.67± 0.06 0.68± 0.06 0.25± 0.16

Subject 0.76± 0.08 0.80± 0.06 0.25± 0.06 0.31± 0.15

the limited dataset size, resulting in fewer generalizable features
being learned. This is consistent with the results of Aygun et al.
(2022), where DL models underperformed compared to classic ML
models.

In addition to unimodal models, we also trained models
employing various fusion techniques. However, none of these
models showed an improvement compared to the top performing
unimodal models. Other publications, however, demonstrate
that multimodal combinations can indeed enhance classification
performance. For instance, Oppelt et al. (2023) illustrated that
integrating eye tracking data with biosignals can further enhance
the performance of the eye tracker. The reasons for this disparate
behavior can be diverse, e.g., differences in hyperparameter
optimization. Nevertheless, within the realm of deep learning
models, it has been repeatedly demonstrated that achieving
superior performance with fusion models is non-trivial compared
to the best unimodal performance (Wilson et al., 2021). Employing
explainability methods might have provided insights into how
different features influence classification performance across the
two datasets. Such analysis could reveal not just the consistency of
feature behavior across varied scenarios, but also show the specific
contributions of each modality or feature within the intermediate
fusion models. By combining explainable AI with robustness
analysis, as demonstrated in this study, future work can focus on
findingmulti-faceted explanations (Longo et al., 2024) that enhance
system trustworthiness. This approach provides insights into both
feature interactions for classification and the reliability of those
interactions under changing scenarios.

The second research question focuses on the influence of
different modeling decisions on performance in a different
scenario. Concerning unimodal performance, we observe that
the eye tracker exhibits poorer performance across all models
compared to the n-Back scenario. This scenario lacks consistent
lighting conditions, which could be the reason for to diminished
performance. Interestingly, all other modalities perform better
than in the n-Back. One possible explanation is that this scenario
induces higher levels of cognitive overload, making the data
more separable based on physiological features. It is also possible
that another affective state, such as enjoyment of driving, has
been induced, which has similar physiological characteristics to
cognitive overload. Another explanation could be that variations
in physiological modalities arise not primarily from a mental state,
but rather from slightly increased movement due to switching
between a tablet and a steering wheel. Regarding fusion methods,
we note that late fusion tends to deliver superior classification

performance under a distribution shift. One potential explanation
is that the feature fusion models might overly focus on a specific
subset of features, particularly those derived from the eye tracker.
While fusion does not outperform the best unimodal performance,
late fusion in particular provides a valuable compromise between
in-distribution performance and robustness, as it provides good
results in both scenarios. Choosing only the best unimodal model,
i.e., an eye tracker model, would have significantly degraded
performance. Another important finding of our work is that the
ECE decreases for all models between the n-Back to the k-Drive
scenario, even if the classification performance remains stable.
While the rejection ratio also exhibits a decrease across models,
the decline is notably less severe in the late fusion approach. This
further emphasizes late fusion as an interesting fusion method to
create robust and reliable models.

Several limitations of our study should be acknowledged.
Firstly, a post-hoc calibration step for the models might have
impacted their performance. Incorporating such a step could
potentially lead to improved calibration scores. Secondly, our study
was based on a single dataset, which limits the generalizability of
our findings. Finally, it is important to acknowledge the presence
of possible confounding factors within the dataset that could have
influenced our results.

6 Conclusion and future work

In this paper, we contribute to the understanding of the
capabilities and limitations of modeling task load in real world
scenarios, especially considering the common occurrence of data
shifts. To this end, we first analyzed various machine learning
models and fusion approaches with in-distribution data in order
to subsequently observe the influence of the distribution shift on
the performance. In our investigation, we came to the conclusion
that, on the one hand, late fusion is a good compromise to provide
good classification performance and uncertainty estimation for
both in-distribution and out-of-distribution data.

Future research should aim to investigate and improve the
robustness of multimodal cognitive load estimation by exploring
diverse datasets and examining different types of shifts. The
initial study was conducted using the same hardware across
scenarios. Investigating the effects of more significant shifts,
such as those introduced by varying wearable devices, could
prove beneficial. These shifts affect not only the stimulus but
also the quality of the signal, providing insights into developing
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applications that perform reliably under real-world conditions.
Furthermore, expanding our research to include new modalities
such as EEG and utilizing other machine learning approaches
could provide valuable insights. Another important aspect for
future work is to investigate how these models can be adapted
to new scenarios in a better way. This could be achieved by
domain adaptation techniques that address how models can
be effectively adapted to new domains in a supervised or
unsupervised manner. Future research could also expand our
robustness experiments to incorporate more precise indicators of
cognitive load as described in Longo et al. (2022). For example,
this can be done integrating a diverse range of factors such as
effort and motivation through self-assessments. By combining
these with measures like the performance, researchers could
evaluate the robustness using a more precise annotation for
cognitive load.
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