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Introduction: A remarkable phenomenon in perception is that the visual 
system spontaneously organizes sets of discrete elements into abstract shape 
representations. We studied perceptual performance with dot displays to discover 
what spatial relationships support shape perception.

Methods: In Experiment 1, we tested conditions that lead dot arrays to be perceived 
as smooth contours vs. having vertices. We found that the perception of a smooth 
contour vs. a vertex was influenced by spatial relations between dots beyond the 
three points that define the angle of the point in question. However, there appeared 
to be a hard boundary around 90° such that any angle 90° or less was perceived as 
a vertex regardless of the spatial relations of ancillary dots. We hypothesized that 
dot arrays whose triplets were perceived as smooth curves would be more readily 
perceived as a unitary object because they can be encoded more economically. In 
Experiment 2, we generated dot arrays with and without such “vertex triplets” and 
compared participants’ phenomenological reports of a unified shape with smooth 
curves vs. shapes with angular corners. Observers gave higher shape ratings for dot 
arrays from curvilinear shapes. In Experiment 3, we tested shape encoding using a 
mental rotation task. Participants judged whether two dot arrays were the same or 
different at five angular differences. Subjects responded reliably faster for displays 
without vertex triplets, suggesting economical encoding of smooth displays. 
We followed this up in Experiment 4 using a visual search task. Shapes with and 
without vertex triplets were embedded in arrays with 25 distractor dots. Participants 
were asked to detect which display in a 2IFC paradigm contained a shape against a 
distractor with random dots. Performance was better when the dots were sampled 
from a smooth shape than when they were sampled from a shape with vertex triplets.

Results and discussion: These results suggest that the visual system processes 
dot arrangements as coherent shapes automatically using precise smoothness 
constraints. This ability may be  a consequence of processes that extract 
curvature in defining object shape and is consistent with recent theory and 
evidence suggesting that 2D contour representations are composed of constant 
curvature primitives.
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Introduction

Among the most useful functions of the visual system is the perception and representation 
of shape. A striking and revealing example is the spontaneous perception of a unified shape 
from disconnected dot elements. Consider, for example, the array of dots presented in 
Figure 1A. Although the dots are disconnected and the shape unfamiliar, a well-defined, 
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coherent shape is spontaneously perceived. Organization into a 
configural whole does not depend on similarity in the elements’ size, 
color, or element shapes, as shown in Figures 1B–D. Unlike displays 
used in research on path integration (e.g., Field et  al., 1993; c.f., 
Kellman and Fuchser, 2023), the dot elements have no explicit 
orientation. The visual system could, in principle, interpolate any 
number of possible contours between dots in this array (c.f., 
Kanizsa, 1979).

A familiar example of observers spontaneously perceiving shape 
from separated points in space is the perception of constellations in 
the night sky (Metzger, 2009). These organizations turn out to 
be  surprisingly consistent across cultures (Kemp et  al., 2022), 
suggesting that the extraction of shapes from stars depends on basic 
processes of human perception (Kelly et al., 2024). There also seems 
to be a high degree of consistency in the shapes observers extract from 
disconnected dots sampled from novel contours.

Although these observations are commonplace, they are 
remarkable manifestations of processes of abstraction in visual 
perception. Baker and Kellman (2018) found that brief exposures of 
dot arrays to human observers produced perceptual representations 
that readily supported matching of shape across transformations of 
position, scale, and orientation. They also found that, even when 
tasked exclusively with trying to detect changes in the positions of 
dots, observers had no ability to distinguish changes in dot positions 
(across two exposures) when dots were moved along a never-shown 
virtual contour from which the first array of dots was sampled (see 
Figure 2). These findings provided evidence that perception of these 
displays produced abstract shape representations, not tied to the 
particular stimulus elements presented. Such representations are 
extracted from relations of stimulus elements, but those specific 
elements are only transiently encoded. Metzger (2009) likewise 
observed that viewers exposed to a pattern of dots will often substitute 
the shape defined by the dots in visual memory, and these observations 
are consistent with many other demonstrations about perception of 
shape by Gestalt psychologists (see Koffka, 1935 for a review).

Shape perception from dots comprises an especially valuable 
example of the abstract, relational character of visual perception 
(Baker and Kellman, 2018; c.f., Kellman and Massey, 2013). Because 
the notion of abstraction has been used in diverse ways in cognition 
and perception (e.g., Barsalou, 2003), it is reasonable to ask what 
we mean in describing a perceptual representation as abstract or a 
perceptual process as performing abstraction. Baker et  al. (2021) 
suggested that three criteria characterize abstraction in perceptual 
encoding. Perceptual representations are abstract when they are: (1) 
relational, such that the relevant information encoded, as in the case 

of shape, is defined over, but not by, constituent elements; (2) 
economical, in that they involve summary descriptions from which 
much information relating to specific stimulus elements has been 
discarded; and (3) additive, in that abstract perceptual representations 
may add information that was not strictly in the stimulus information 
given. Perception of shape from dots exhibits all of these properties. 
From the relations of dots, a shape representation is obtained that 
transfers across changes in elements, scale, orientation, etc.; the 
stimulus elements themselves are not durably encoded, and in fact, 
many different sets of elements may give rise to the same abstract 
representation; and the shape representation itself has continuity of 
contour and a unity that is not given in the stimulus. Recognizing that 
abstraction—as indicated by these properties—is pervasive in 
perception may be valuable in clarifying a number of issues in both 
classical views of perception and recent proposals (e.g., Barsalou, 
1999) about the relation between perception and cognition (Kellman 
and Massey, 2013).

Arguably, perceiving shape from contours that are not made from 
dots, i.e., that are continuous in the projection to the eyes, also involves 
all of these same characteristics. If an early level of cortical processing 
encodes the input into activations of cortical units having orientation 
sensitivity in local receptive fields, we encounter the same issues of 
how numerous local activations become organized into tokens of 
continuous contours and well-defined shape. When the stimulus itself 
has continuity, it may be  harder to realize that an abstract 
re-description of the input occurs in those cases as well. Shape from 
dots provides a unique window into these processes, both intuitively 
and experimentally, as it is easier to point to aspects of perceptual 
representations that do not exist in the stimulus.

As remarkable as it is that the visual system encodes shape 
representations from unconnected dots, not all dot arrays give rise 
to a shape percept. Why do some spatial relations among dots result 
in a configural whol while others do not? Experiments testing dot 
perception with a highly constrained number of dots have found 
that certain relations between dots result in emergent features, 
relations among groups of dots that are more salient than the sum 
of the dot’s individual properties. Pomerantz and Portillo (2011) 
studied how different spatial relations among two to four dots 
influence the perception of emergent features in a dot array. They 
found that observers are highly sensitive to orientation and 
proximity relations between pairs of dots (see also Hawkins et al., 
2016). These relations were shown to influence performance in an 
odd-one-out task even as differences between the target and 
distractor approached the minimum threshold for detection (Costa 
and Wagemans, 2021). Higher-order relations among dots resulted 

FIGURE 1

Different dot displays giving rise to the same perceived shape. Perceivers organize the elements in each of the four displays into a similar unified shape 
representation despite variations in element size, color, and shape. (A) A shape defined by uniform elements. (B) The same shape defined by elements 
with nonuniform size. (C) The same shape defined by elements with nonuniform color. (D) The same shape defined by elements with nonuniform 
shape.
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in emergent features less consistently. Dots that are collinear tended 
to be perceived configurally, but other relations of three dots, such 
as symmetry, resulted in an emergent feature only for 
certain displays.

These results provide important insight into how even the simplest 
displays are perceived configurally, but they cannot fully explain how 
shape emerges from arrays of dots. As Pomerantz and Portillo (2011) 
point out, the systematic tracking of emergent features becomes 
difficult or impossible as the number of elements in a display increases. 
Studies on the percept of shape from randomly placed dots have found 
that certain configurations are much more frequently perceived to 
have a unitary shape description than others, depending on proximity 
and good continuation between the dot elements (van den Berg, 
2006). Considerable research has been done on how the visual system 
organizes an array of dots into multiple distinct shapes, or into a single 
shape among random dot distractors. Proximity appears to play a 
major role in these computations (Van Oeffelen and Vos, 1983; 
Kubovy and Wagemans, 1995; Papari and Petkov, 2005), although 
similarity (Zucker et  al., 1983) and good continuation are also 
important cues (Smits et al., 1985; Lezama et al., 2016).

Notions of proximity and similarity are perhaps intuitive with 
respect to dot configurations, but good continuation requires some 
elaboration. Good continuation in Gestalt psychology has always been 
somewhat vague: Wertheimer (1923) said that “one knows” what it is, 
and Kanizsa said that it resists simple definition (Kanizsa, 1979). 
Other work has provided more rigorous, but highly varied, definitions 
of good continuation.

A common view is that good continuation depends on the 
degree to which dots are collinear with each other (Smits et al., 
1985; Wouterlood and Boselie, 1992; van den Berg, 2006), which 
has been shown to aid contour detection using simple segments 
(Uttal, 1973; Prinzmetal and Banks, 1977). Another definition that 
has been proposed quantifies good continuation by measuring the 
degree of symmetry between the middle and first dot and the 
middle and third dot in a triplet. Sequences of dots with more 

symmetrical triplets are considered less accidental and are therefore 
more likely to be organized together (Lezama et al., 2016). Still 
another view is that the visual system evaluates good continuation 
in quartets. According such theories, the goodness of dots’ 
continuation is quantified by the degree to which the turn angle 
between consecutive dots in a quartet remains constant (Feldman, 
1997; Kelly et al., 2024). This definition is similar to one proposed 
by Pizlo et al. (1997) which theorizes that a dot sequence has good 
continuation if it is smooth, which they define as consisting of 
successive pairs of dots whose orientations are similar to each other. 
For example, a four-dot sequence, ABCD, is considered smooth if 
the difference in orientation between AB and BC is small and the 
difference in orientation between BC and CD is small.

A theme shared among many of these theories is that good 
continuation is primarily a summation of many local computations 
(Feldman, 1997; Pizlo et al., 1997; Lezama et al., 2016; Kelly et al., 
2024). This is consistent with path integration work done using 
oriented Gabors (Field et al., 1993; Hess and Field, 1999). However, 
others have argued that good continuation is a more global 
consideration and is strengthened by monotonicity and curvature 
regularity along the extent of the dot sequence (Smits and Vos, 1986; 
Yuen et al., 1990; van den Berg, 2006).

Our goal is not to test these competing formulations of good 
continuation but to better specify how the manipulation of spatial 
relations between dots influences. Understanding this could provide 
crucial insight into how the visual system forms abstract shape 
representations. This effort is specifically relevant to understanding 
how contours are formed. Dot arrays, with no continuous contour 
physically given, may provide unique insight into underlying visual 
processes in shape representation (Baker and Kellman, 2018).

One way the visual system could form a contour representation 
from unconnected dots is by interpolating straight edges between 
adjacent boundary points (e.g., O'Callaghan, 1974). Under this view, 
dot displays with longer sequences of collinear dots would be simplest 
because a new line segment would be  required for any change in 

FIGURE 2

(A) Trial from Baker and Kellman (2018) in which dots were shifted along a shape’s virtual contour. (B) Sensitivity to dot position change. The observer’s 
task was to indicate whether any dots moved between the first and second exposures. When dot positions changed, they could either preserve or 
disrupt the virtual shape. For 30  ms exposures, there was no sensitivity to dot position changes, indicating that observers did not reliably encode 
specific dot positions, and, as earlier experiments indicated, 30  ms exposures are too short to allow formation of abstract shape representations. At 
150  ms, when dots were shifted along the virtual contour, participants showed no sensitivity to the change; however, dot position changes that 
disrupted the virtual shape were more detectable, presumably due to their effect on the overall shape representation extracted.
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orientation between sequential dot pairs. It would also be consistent, 
within a certain size range, with modest activation of large, 
orientation-sensitive units in visual cortex by pairs or sets of dots. The 
straight line interpolation process is computationally simple and 
would effectively minimize the total length of the contour connecting 
the dots.

On the other hand, we have the phenomenological experience of 
perceiving smooth curves in displays like the dots in Figure  1. 
Moreover, connecting straight edges at each point would result in a 
very jagged percept of the dot array, albeit one that is invariant to rigid 
2D transformations. Under this view, any dot between two other dots, 
A and B, would either need to be collinear with A and B or would 
be perceived as a corner in the contour representation of the display. 
Attneave (1954), in classic work, proposed that corners are the 
positions on the contour with the greatest informational content and 
are consequently more salient in our perception (Troncoso et al., 2005; 
De Winter and Wagemans, 2008). Previously, we shifted all dots in an 
array along a virtual contour, which would result in a contour 
representation with a completely different set of corners if observers 
were indeed encoding the shape with straight line interpolation. Given 
the perceptual importance of corners, such a change should be easily 
detected, but we found that humans had no sensitivity at all to the 
positional shift. This suggests that the visual system does not form 
shape representations of dot arrays by simply interpolating straight 
lines between adjacent points. Curved edges may instead 
be  interpolated across spans of dots such that shifts to any other 
position on the interpolated curve are largely undetectable.

There is other empirical evidence that the visual system does not 
always represent dots as corners in a contour. Koffka (1931) placed 
points along a circle to estimate the number of dots at which the 
virtual contour was perceived as smooth. He  estimated that this 
transition occurred at around eight evenly spaced dots (which 
produces inclusive angles of 135° for each dot triplet). Bouma (1976) 
gave a more conservative estimate that 10 dots were needed for the 
virtual contour to be perceived as smooth. Smits and Vos (1987) used 
more systematic tests to estimate this transition point and found that 
when the inclusive angle between triplets of dots was sufficiently large 
(greater than about 140°), the dots were perceived as curvilinear 
(Figure 3A). In a later study, van Assen and Vos (1999) developed a 
more objective measure of perceived curvilinearity by measuring 
participants’ bias to say whether a target dot was below or above a 
virtual contour defined by four other dots. They found that when the 
inclusive angle between the central dots was 135° to 150°, participants’ 
bias was consistent with perceiving a curved contour. Feldman (1996) 
systematically varied the inclusive angle for three dot displays and 
found that the 50% threshold for curvilinear responses vs. angular 
responses was at around 120°. He found that when a fourth dot was 
added to the configuration to create two similar angles from dot 
triplets, the threshold went down (Feldman, 1997; Figure 3B).

If forming a shape representation by encoding each dot position 
as a corner is both parsimonious and computationally simple, why 
would the visual system ever extract contour representations with 
smooth curves from dot arrays? One possibility is that the visual 
system is sensitive to curvature-specific contour segments and can 
encode curvilinear contours from a dot array as easily as straight lines 
(Smits and Vos, 1986; Yuen et al., 1990). Past research on connected 
contours has shown that perceptual tasks requiring a shape 
representation are accomplished better and more quickly with 

smooth contours than with angular contours (Bertamini et al., 2019). 
Other work has shown that visual system has special facility for 
encoding contours of constant curvature (Baker et  al., 2021). A 
perceptual corner has a first-order (tangent) discontinuity at its 
vertex, meaning there will always be a segment boundary at that 
point. On the other hand, if the contour is perceptually smooth at 
that point, the entire segment could be  represented as a single 
curvature segment. As a consequence, representing dot patterns’ 
shape with curvilinear segments may be computationally simpler 
because the shape description consists of fewer parts. Moreover, the 
presence of a corner or first-order discontinuity, in this case an 
L-junction, not only forms a boundary within a single contour or 
object representation, but under some circumstances in visual 
perception plays a key role in determining that intersecting contours 
belong to different objects (Clowes, 1971; Shipley and Kellman, 1990; 
Heitger et al., 1998; Kalar et al., 2010).

These considerations suggest that the abstract shape representation 
that is ultimately encoded by an array of dots might be stored more 
efficiently as a set of relatively few curved segments than a larger set 
of straight segments. If this is the case, we expected that it would 
be easier to encode arrangements of dots that appear to have few or 
no sharp corners as a shape than arrangements of dots with many 
perceived corners. A different framing of the question is that both 
smooth contours and first-order contour discontinuities exist in the 
world and are important to encode. Discrete dots provide sparse 
information about what structure might best represent their relations. 
Under what conditions does the visual system encode smooth 
continuation through an element vs. representing that element as a 
contour junction?

We studied information that might be used by the visual system 
to represent smooth curves vs. corners and tested its effects on shape 
encoding, using both subjective and objective measures. In 
Experiment 1, we experimentally estimated the angle at which dots in 
an array are perceived to be on corners vs. smooth curves in a virtual 
contour, both in conditions with only three points and in conditions 
where other configural aspects of the display facilitate or inhibit the 
perception of a corner. In Experiment 2, we used these estimates to 
create larger dot arrays and asked participants to judge how much 

FIGURE 3

(A) Dot triplets used by Smits and Vos (1987). (B) Comparison of a dot 
triplet and quadruplet from Feldman (1997). Feldman found that the 
addition of a fourth dot with similar turn angle increased the 
probability of a curvilinear response. Reprinted with permission from 
Perception and Vision Research, respectively.

https://doi.org/10.3389/fcomp.2024.1367534
https://www.frontiersin.org/computer-science
https://www.frontiersin.org


Baker and Kellman 10.3389/fcomp.2024.1367534

Frontiers in Computer Science 05 frontiersin.org

each dot array looked like a coherent shape. In Experiment 3, 
we showed pairs of dot arrays sampled from smooth or corner shapes 
at different orientations and measured the time it took for participants 
to judge whether the shape formed by the dots was the same or 
different. In Experiment 4, we hid dot arrays sampled from both kinds 
of shapes among randomly placed distractor dots and measured 
participants’ ability to detect the shape in both conditions.

Experiment 1

The general goals of our study were to understand the conditions 
under which arrangements of dots are perceived as smooth curves vs. 
corners and to test the consequences of curve vs. corner encoding on 
shape perception and representation. As a starting point, we  first 
needed to determine the angles at which a dot is perceived to be on a 
corner (i.e., a first order discontinuity) vs. when the dot is perceived 
to be on a smoothly changing edge (i.e., a differentiable point on the 
contour). Previous work suggests that the threshold between corners 
and smooth edges is between 120° and 150° (Koffka, 1931; Bouma, 
1976; Smits and Vos, 1987; Van Assen and Vos, 1999).

In Experiment 1, we sought to replicate these findings. Because 
the displays we intended to use in subsequent experiments involved 
many more dots than the three that define a single vertex, we also 
wished to test whether the perception of curves vs. corners depended 
only on the local geometry among dot triplets or if dots more remote 
from the potential vertex also influenced perception of corners.

Methods

Participants
Thirty (23 female, seven male, Mage = 20.5) participants from the 

University of California, Los Angeles participated in this study for 
course credit. All participants had normal or corrected-to-
normal vision.

Display and apparatus
Subjects were seated 70 cm from a 20-inch View Sonic Graphic 

Series G225f monitor. The monitor was set to a resolution of 1024 × 
768 pixels with a refresh rate of 100 hz. Except when noted otherwise, 
all aspects of the displays and apparatus in subsequent experiments 
were the same as in Experiment 1.

Stimuli
We had three stimulus categories: convex, concave-convex-

concave, and convex-convex-convex, referring to the direction of 
curvature of the second dot in a sequence of triplets. Convex vs. 
concave was defined by reference to the upward direction of visual 
field, so that dot triplets were considered convex if their central dot 
was above its flankers and concave if it was below its flankers. The 
“convex” condition had the simplest displays, with a central dot 
flanked by two lower dots on either side. (This base of three dots was 
always convex upward.) The distance between the central dot and its 
two flankers was kept constant, but the position of the flankers could 
change to manipulate the angle defined by the dot triplet with the 
central dot as a vertex. These angles were not predetermined but 
increased or decreased depending on participants’ responses.

In the “concave-convex-concave” condition, the central triplet was 
flanked by one additional dot on each side. The contour defined by the 
central dot and its two flankers on each side bent upward such that the 
central dot appeared to be the joining point between two concave 
edges (see Figure 4 for examples). The two concave edges could rotate 
around the central dot to increase or decrease the angle between the 
central dot and its two closest flankers. The convex-convex-convex 
condition was like the concave-convex-concave condition except that 
the contour defined by the central dot and its two flankers on either 
side appeared to be bending downward so that the two edges meeting 
at the join point were both convex (as viewed from above). This 
created an array of dots where the direction of curvature (as defined 
by the turning angle between dot) for the central point matched the 
direction of curvature for the two points on either side of it. The 
opposite was true for the concave-convex-concave condition, where 
the direction of curvature alternated twice. For both five-dot 
conditions, the arms on either side of the central dot were symmetrical 
and the angle centered on the second and fourth dot (from left to 
right—see Figure 4) was fixed at 135°. In the first presentation of the 
stimulus in any of these conditions, the angle between the central dot 
(the red dot in Figure 4) and the dots directly to its left and right was 
90° (Figure  4, botttom). Subsequent angles were determined by 
participants’ responses.

Dots were evenly spaced 1.8° of visual angle apart from each 
other. Each dot in the arrangement subtended 7.2 arcmin and the 
maximum total height or width of a dot arrangement was 9.6° of 
visual angle. Dots were rendered black (luma = 0) of the on a gray 
background (luma = 100).

Design
The experiment consisted of three conditions corresponding to 

the three stimulus categories (convex, concave-convex-concave, and 
convex-convex-convex). Trials were interleaved among the three 
conditions, with the aim of determining the threshold for seeing a 
corner in each. We used interleaved staircase procedures to determine 
participants’ 50% probability of responding “corner” for each of the 
three conditions, manipulating the angle between the central dot and 
its two flankers. Participants completed at least 24 trials per condition. 
If their responses converged to a 50% threshold after 24 trials, they 
ceased to see trials for that condition. If their responses had not 
converged, they continued seeing trials until we found at least three 
crossover points (Leek, 2001).

Procedure
In each trial, participants were shown a fixation cross followed 

by a single arrangement of dots in the center of their screen. The dot 
arrangement could be from any of the three stimulus categories. 
Participants were instructed that they would be shown a group of 
dots on the screen in each trial, with a central dot and 1 or 2 dots 
on either side of it. Participants’ instructions were to look at the 
display and imagine that the dots are connected in some way. They 
were then told that “Your task is to decide whether the middle dot 
appears to be a corner or not.” They were told to respond “curve” if 
the middle dot appeared to be  on a smooth, curved edge, and 
“corner” if it appeared to be a pointy feature. Based on pilot work, 
we found that the correct task could be communicated effectively 
through this combination of instructing subjects to imagine that the 
dots are connected in some way and also stressing that they should 
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indicate how the middle dot appeared. Together, these instructions 
overcame confusion that some participants had in pilot work about 
instructions to respond based on a perceived virtual contour. 
Participants were told that there was no expectation that half the 
trials should be smooth and half should be corners. If they saw the 
middle dot as the vertex of a corner in all trials, they should say so, 
and likewise if they saw the middle dot as lying on a smooth curve 
in all trials.

We used an adaptive staircase procedure, starting with a central 
angle of 90° for each of the three conditions. After participants 
responded, we adjusted the angle between the central dot and its 
flankers based on their response. For the first eight trials in each 
stimulus category, we  adjusted the angle by a larger amount, 
increasing the angle between the three central dots by 11° if 
participants reported seeing a corner or decreasing it by 11° if 
participants reported seeing a smooth curve. In the next eight trials 
for each stimulus category, the angle increased or decreased by 4.5° 
depending on participants’ responses. After participants had 
completed 16 trials in a condition, the angle increased or decreased 
by 1.2° based on participants’ responses for all remaining trials. This 
approach was used to adjust quickly early to get near to participants’ 
50% threshold, and then to make smaller changes to get a more 
precise estimation of participants’ true threshold. Staircases for each 
of the three conditions were interleaved to minimize any carryover 
effects that might occur from sequences of trials with changing 
angles in a single condition.

A condition ended when participants switched from reporting a 
curved percept to reporting a corner percept (or vice versa) three 
times or when they had completed 24 trials of the condition, 
whichever came later.

Dependent measures and data analysis
We measured the threshold at which participants reported seeing 

a corner vs. a smooth curve equally often in each of the three 
conditions. Our expectation was that the threshold for the convex 

condition (consisting of only three dots) would be between 135° and 
150°, consistent with previous findings (Koffka, 1931; Bouma, 1976; 
Smits and Vos, 1987; Van Assen and Vos, 1999). We predicted that if 
dots beyond the central three dots influence the perception of a corner 
vs. a smooth curve, then the concave-convex-concave condition 
would have a larger threshold than the convex condition because 
participants would be more likely to perceive a first order discontinuity 
at the middle point. By the same token, we predicted that the convex-
convex-convex condition would have a lower angular threshold 
because the series of vertices would be consistent with a monotonically 
curved contour.

Results

The results of Experiment 1 are shown in Figure 5. A one way 
repeated measures ANOVA confirmed a significant main effect for dot 
arrangement condition, F(2,58) = 32.99, p < 0.001, η2

partial = 0.53. The 
50% threshold for three points (the convex condition) closely matches 
earlier findings. In our experiment, participants’ mean threshold was 
140°, consistent with the 120° to 150° range reported in previous 
studies. The concave-convex-concave condition, which 
we hypothesized would induce more corner percepts, had a mean 
threshold of 148°. This threshold was not significantly different from 
the threshold estimated in the convex condition, t(29) = 0.93, p = 0.36, 
Cohen’s D = 0.17. The convex-convex-convex condition, which 
we hypothesized would induce fewer corner percepts, had a mean 
threshold of 82°. This difference did significantly differ from both the 
convex condition, t(29) = 6.18, p < 0.001, Cohen’s D = 1.13 and the 
concave-convex-concave condition, t(29) = 7.54, p < 0.001 Cohen’s 
D = 1.38.

Analysis of the skew and kurtosis of our data suggested that they 
were not normally distributed, so we applied the Box-Cox transformation 
(Box and Cox, 1964) and reanalyzed these effects. Analyses of the 
transformed data found the same general effects as were observed in the 

FIGURE 4

Sample displays from Experiment 1. Left: Convex condition. Middle: Concave-Convex-Concave condition. Right: Convex-Convex-Convex condition. 
The values of θ shown in the bottom left of each display correspond to the angle between the central dot and its nearest flanker on either side. The 
central dot is highlighted in red only for presentation purposes: it was black in the displays shown to be participants.
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untransformed data. A repeated measures ANOVA confirmed significant 
differences among the three conditions, F(2,58) = 39.35, p < 0.001, 
η2

partial = 0.58 and significant differences were found between the convex 
and convex-convex-convex conditions [t(29) = 7.18, p < 0.001, Cohens’ 
D = 1.31] but not between the convex and concave-convex-concave 
conditions [t(29) = 1.29, p = 0.21, Cohen’s D = 0.24].

Discussion

The first aim of Experiment 1 was to understand the geometric 
conditions under which a dot in a sequence of dots would 
be perceived as a corner. Our data suggest that the threshold for equal 
probability of perceiving a dot as a corner vs. lying on a smooth 
contour is around 140°, with angles smaller than that increasingly 
tending to be seen as corners. The second aim of Experiment 1 was 
to understand whether the perception of corners vs. smooth curves 
was a local computation only (i.e., it depended only on the angle 
between a central dot and the dots on either side of it in a triplet) or 
if dots outside of the triplet also played a role. Given that the displays 
we planned to use in subsequent experiments would include arrays 
of 25 dots, it was important to know whether the corner percept was 
a purely local computation among the dots defining the angle or if 
other dots could shift viewers’ judgments by changing the way the dot 
array was perceived.

We found no statistically reliable difference in participants’ 
thresholds for concave-convex-concave displays that were designed to 
facilitate the perception of a corner. In these displays, there are at least 
two ways that participants could interpolate virtual contours between 

the five presented dots. The first way involves two curvature segments 
that join at the central dot in the display (Figure  6A). This 
representation of the virtual contour will almost always result in a 
perceived corner because the tangent of the contour where the first 
curvature segment ends is very different from the tangent of the 
contour where the second curvature segment begins, resulting in a 
first-order discontinuity. The second way a contour could 
be interpolated is by organizing the central three dots into a curvature 
segment and the two flanking dots on either side into other segments 
(Figure 6B). This representation predicts no difference in threshold 
between the concave-convex-concave condition and the convex 
condition (Figure 6C) because the same three dots are encoded as 
their own chunk. Our results suggest either that participants favored 
the second organization of dots to the first, grouping the central three 
dots as one unit and the flanking pairs of dots as separate units or that 
the perception of a corner depends only on the angle between the 
vertex and the dot on either side of it.

One reason that the second grouping is preferred could have to do 
with symmetry. The central three dots in the display were always 
symmetrical over a vertical axis, while the first three and last three 
dots were symmetrical over diagonal lines in some displays (see 
Figure 4, bottom middle). Previous research has found that symmetry 
is much more likely to be an emergent feature when elements are 
symmetrical about a cardinal axis than when they are symmetrical 
about a noncardinal axis (Pomerantz and Portillo, 2011), which may 
have result in better grouping of the central three dots with each other.

By contrast, the convex-convex-convex arrangement of dots did 
have a significant influence on observers’ tendency to perceive a 
corner. Observers were significantly more likely to see the central dot 

FIGURE 5

Experiment 1 results. The box shows the interquartile range of thresholds for individual participants. The red line shows the sample median for the 50% 
threshold—the median angle at which participants were as likely to report perceiving the central dot to be on a corner as to report perceiving it on a 
smooth curve. The “whiskers” extend to the most extreme datapoint within 1.5 times the length of the interquartile range from the top or bottom edge 
of the box (covering 99.3% of the data if they are normally distributed; McGill et al., 1978; Krzywinski and Altman, 2014). Outliers are data points beyond 
the whisker and are plotted as red +‘s.
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as placed on a smooth curve when additional dots were added that 
were consistent with a virtual contour with constant curvature 
polarity. This suggests that there is an asymmetry in the way that 
additional dots influence our perception of corners. While adding dots 
to strengthen the percept of a smooth, monotonic curve does weaken 
the perception of corners, the opposite approach of placing dots so 
that the contour cannot be monotonic does not appear to have a 
strengthening effect on the perception of corners.

Gestalt cues shown to produce emergent features like proximity 
are unlikely to explain differences in the perception of corners in the 
convex-convex-convex vs. concave-convex-concave conditions. Both 
displays had identically spaced adjacent dots, but the first and fifth 
dots in the convex-convex-convex condition were closer to each other 
than in the concave-convex-concave condition. This difference in 
proximity may have resulted in a greater overall percept of configural 
structure in the convex-convex-convex condition, but it is unlikely to 
have influenced the perception of curvature at the central point. In 
fact, dots whose extreme points were moved closer together by 
reducing the angle at the central point were perceived as curvilinear 
less often than dots whose extreme point remained more distant.

The Gestalt cue likely to be playing the greatest role in observers’ 
perception of a corner vs. a smooth edge is good continuation. As 
previously discussed, however, there are many different definitions of 
good continuation in the perception literature, and those that are 
readily applicable to dots make different predictions about how the 
five-element dot arrays should be  perceived. The data from the 
convex-convex-convex condition suggest that the perception of good 
continuation is not solely determined by the local spatial relations in 
a sequence of dot triplets (e.g., Lezama et al., 2016), but depends on 
larger clusters of local dot relations (Feldman, 1997; Kelly et al., 2024), 
or on the global monotonicity of the dot sequence (Smits and Vos, 
1986; Yuen et al., 1990).

Experiment 2

In Experiment 1, we studied the tendency of a series of dots to 
be represented as a connected contour and estimated the threshold, in 
terms of angular relations, at which a dot in the series is perceived to 
contain a first order discontinuity. What do these data reflect about 
perception and representation of contours from sets of separated dots? 
Experiments 2, 3, and 4 investigated the perceptual reality and impact 
of perception of seeing a vertex or smooth continuation in sequences 

of dots. In Experiment 2 we used the thresholds estimated in 
Experiment 1 to measure the strength of a shape percept in three 
different kinds of dot displays. We created arrays of dots by sampling 
from (a) novel shapes with smooth curves; (b) novel shapes with sharp 
corners, and (c) random dot arrangements. We then asked subjects to 
rate the degree to which the dots appeared to form a coherent shape. 
Our prediction was that dots sampled from smooth contours would 
be  judged more shape-like than dots sampled from shapes with 
corners, which would in turn be judged more shape-like than random 
dot arrangements.

Methods

Participants
Twenty-five undergraduates (3 male, 22 female, Mage = 20.6) from 

the University of California, Los Angeles participated in the study for 
course credit. All participants had normal or corrected-to-
normal vision.

Stimuli
Experiment 2 included three different kinds of dot arrays: Smooth, 

Corner, and Random. “Smooth” dot arrays were created by placing 
nine control points at evenly spaced angular positions around a circle 
and then moving each control point toward or away from the circle’s 
center by a random distance, then fitting cubic splines through the 
nine control points in polar space (see Figure 7A). The control points’ 
signed displacements were sampled from a normal distribution 
centered at 0% with a standard deviation of 18%. The mean absolute 
distance of the control points’ displacement was 14.34% (SD = 11%). 
We made use of our findings from Experiment 1 to create shapes that 
we expected to generally be perceived as Smooth or Corner shapes. In 
Experiment 1, we found that when the angle between dots exceeded 
140°, the point tended be  perceived as smooth, regardless of the 
spatial relations between dots beyond the triplet determining the 
angle. In the range between 82° and 140°, the point could be made to 
appear smoother by adding additional dot triplets whose turn angle 
had the same polarity as the point in question. The displays used in 
Experiment 2 were significantly more complex than those used to 
estimate these thresholds in Experiment 1. They consisted of many 
more dots and were not symmetrical on either side of any possible 
vertex. Still, we expected that displays with dot triplets whose angle 
mostly exceeded 140° would generally be perceived as smooth and 

FIGURE 6

Two ways of interpolating contours between dots in the concave condition. (A) Two curved segments join at the middle (left). (B) Three segments join 
at the second and fourth dot (middle). (C) A curved interpolation between the three central points in (A,B) (right). The physical contours chosen to 
represent the interpolation between dots are chosen arbitrarily in this figure. The edge perceived between dots may be neither a straight edge nor a 
constant curvature segment. We used these forms of interpolating lines only to help visualize possible organizational structures of the display.
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displays that included dots triplets whose angle was less than 90° 
would generally be perceived as angular.

We did not directly manipulate the angle between dots in the 
Smooth condition, but the cubic spline fitting shape generation 
algorithm produced shapes that were always differentiable at all 
positions. With nine control points and the possible distances they 
could be displaced, the angles among dots sampled at these positions 
tended to be obtuse with an angle that exceeded 140° (Mangle = 154°, 
SD = 16°). The average minimum angle in Smooth displays was 123° 
(SD = 13°).

From each smooth shape generated as described above, we then 
sampled 25 points along the contour to get the dot array. The points 
were sampled nonuniformly by taking 25 evenly sampled points and 
moving them in a random direction along the contour. Though not 
directly relevant to this experiment, we included jittering along the 
contour to prevent participants from using local spatial relationships 
between a small set of dots rather than the overall shape of a dot array 
in subsequent experiments using objective performance methods (see 
Experiment 3 for more explanation). The amount of jitter was 
randomly sampled from the normal distribution. Dots were shifted 
along the shape’s virtual contour by a random signed distance from a 
normal distribution, with a mean distance of zero and a standard 
deviation equal to 4% of the contour’s total length. We constrained the 
display to enforce a minimum distance of 7.2 arcmin between any two 
points to prevent them from overlapping or appearing to touch each 
other (Figures 7C,D).

“Corner” dot array stimuli were created by generating a smooth 
dot array, reducing the angle between some of the dots, fitting straight 
lines between the set of dots, and then resampling from the straight 
line contour. To distinguish two closely related concepts here, we 
refer to a generating figure that consists of all straight line connections 

between dots as a “cornered figure,” and we refer to the resultant 
derived dot stimuli as “corner stimuli” used in the “Corner condition”. 
We began with a dot array generated by evenly sampling 25 dots from 
the same kind of shape from which the Smooth dots were sampled. 
We then altered between 8 and 13 dot triplets in the display 
(determined for each display by randomly sampling from a uniform 
distribution of integer values). For a given dot triplet, ABC, 
we imposed a corner percept by interpolating a line between points 
A and C, then moving point B perpendicularly away from the 
interpolated line while simultaneously moving A and C along the line 
until the vertex at B was between 78° and 90°. This range was chosen 
so that the Corner shapes would be reliably perceived to have first-
order discontinuities based on our Experiment 1 findings while also 
including some natural variability in the angle between dot triplets. 
Because the angle reduction process resulted in shapes with much 
less regular spacing than in the Smooth condition, we interpolated 
straight lines between the 25 repositioned points to get a new shape 
contour with corners (Figure 7B). From each such shape, we used the 
same nonuniform sampling procedure as for smooth dot displays to 
sample 25 new dots and generate a dot figure (Figure  7D). The 
resulting dot display had between one and two dot triplets whose 
angle was less than 90° and several more whose angle was between 
90° and 100°.

“Random” dot array stimuli also began with the smooth dot array. 
Rather than moving dots to reduce the angle between them, dots were 
moved in random directions. Each of the 25 points was moved a 
distance equal to the total length of the contour divided by 25 in a 
random direction, with the constraint that dots could not be closer 
together than 7.2 arcmin (Figure 7E). We used this method instead of 
truly random placement to prevent subjects from judging shape based 
on whether there was an open center within the dot array, a feature 

FIGURE 7

Shape stimuli used in Experiment 2. (A) A Smooth shape contour. (B) A Corner shape contour. (C) Dots sampled from the Smooth shape. (D) Dots 
sampled from the Corner shape. (E) Random dot arrays.
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that was naturally present in both the “Smooth” and “Corner” displays. 
The method we used to generate “Random” dot arrays matched the 
open center of the other two conditions without appearing to define 
a shape.

Dot arrays for each of the three conditions were matched in size, 
subtending on average 12.0° of visual field along the longer of their 
horizontal and vertical dimension, and at most 20.7° of visual field.

Design
Experiment 2 had three conditions, with 70 trials in each. In the 

Smooth condition, we showed dot arrays from smooth shapes. In the 
Corner condition, we showed dot arrays from shapes with corners. In 
the Random condition, we showed random dot arrays. Trials with all 
three conditions were randomly interleaved.

Procedure
On each trial, participants were shown one of the three stimulus 

types and asked to evaluate the degree to which the dot array seemed 
to form a shape. The dot array remained on the screen until a response 
was given. Participants were instructed to rate the display on a 6-point 
scale, ranging from “The dots look totally random” to “The dots look 
totally like a shape.” Integer responses between 1 and 3 reflect that the 
dots looked more random than like a shape to viewers, either slightly 
so (3), moderately so (2) or strongly so (1). Integer responses between 
4 and 6 reflect that the dots appeared more like a shape than a random 
set of dots and followed the same progression. We  instructed 
participants to use all 6 response options to reflect qualitative 
differences in the degree to which different dot arrays appeared to 
be  shapes. Before beginning the main experiment, participants 
completed five practice trials to familiarize themselves with the 
response buttons and to view all three stimulus types before giving 
recorded shape judgments.

Results

Figure 8 shows the primary results of this experiment. Figure 8A 
shows the mean subjective rating for each of the three stimulus types. 
There is a clear ordering in which dots sampled from Smooth contours 

were perceived as most shape-like, followed by dots sampled from 
cornered contours, followed by randomly sampled dots. This pattern 
was shown by every participant who completed the experiment. A 
one-way ANOVA confirmed a significant difference between the 
groups, F(2,48) = 681.86, p < 0.001, η2

partial = 0.97 and Bonferroni-
corrected paired sample t-tests confirmed that dots sampled from 
smooth contours were rated more shape-like than dots sampled from 
cornered contours, t(24) = 14.93, p < 0.001, Cohen’s d = 2.89 and that 
dots sampled from cornered contours were rated more shape-like than 
randomly sampled dots, t(24) = 20.64, Cohen’s d = 4.13 p < 0.001.

We also analyzed the average number of trials in which 
subjects perceived a shape at all. For this measure, we included 
any display that received a subjective rating greater than 3. The 
results are shown in Figure 8B. Paired samples t-tests confirmed 
that subjects’ perceived significantly more of the dots sampled 
from smooth contours as a shape than they did dots sampled 
from cornered contours, t(24) = 6.04, p < 0.001, Cohen’s d = 1.21 
and that dots sampled from cornered contours were perceived as 
shapes significantly more often than randomly sampled dots, 
t(24) = 13.81, p < 0.001, Cohen’s d = 2.76.

Discussion

Experiment 2 furnished evidence that dots sampled from smooth 
contours are more phenomenologically shape-like than dots sampled 
from contours with sharp corners. Every participant gave higher shape 
ratings for the smooth contour condition and reported perceiving 
more of the smooth contours as shapes than the cornered contours. 
Participants never saw the underlying contour from which the dot 
arrays were sampled. Geometrically, all the dots sampled from shapes 
with corners could be  represented with curvilinear contours, but 
participants made qualitatively different responses for Corner 
dot arrays.

One reason that participants may have given lower shape ratings 
for the Corner stimuli is that they were interpolating a curvilinear 
contour through the dots in the Corner displays, but the process was 
more difficult for dot arrays with sharper angles. Though the data 
cannot rule out this possibility, we consider it unlikely because the 

FIGURE 8

Experiment 2 results. (A) Participants rating of shape for each of the three conditions. (B) The percentage of ratings that were more shape-like (i.e., 
rating  >  3) for each condition.
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results of Experiment 1 suggest that we perceive corners at certain 
points in the Corner displays. Our phenomenological experience of 
Corner displays like the one in Figure 7D also suggest that the array 
is perceived with corners.

A more likely possibility is that Corner displays were harder 
to encode as shapes than Smooth displays because there was more 
variety in the presented angles. Corner displays were likely 
perceived as having a mix of smooth curves and corners, whereas 
the Smooth displays were likely only perceived with smooth 
curves. As a result, there would be greater perceived homogeneity 
among dot triplets in the Smooth displays than in the corner 
displays. The irregularity between smoothly bending and/or 
straight edges and edges that abruptly change direction could 
make it more difficult to resolve Corner displays into shapes.

Experiment 1 tested in simple dot arrays the relations that lead to 
perception of corners. Experiment 2 used the results of Experiment 1 
and showed that in more complex arrays, the quantitative estimate of 
what angular relation produces corner perception in simple arrays also 
predicts perception of smooth shapes in more complex ones. Both of 
these experiments, however, used only subjective measures of 
smoothness or perception of a shape. Subjective methods have a useful 
role in perception research. It is important to know what subjects 
believe they are seeing, and subjective reports shed light on this 
phenomenological question. Such reports may also, however, 
be  affected by biases or demand characteristics. If the results of 
Experiments 1 and 2 reflect perception and representation of smooth 
virtual contours and corners under various conditions, it should 
be possible to find some objective performance task in which these 
percepts or representations obtained from perception make 
participants better or worse in a situation where there is an objectively 
correct answer (c.f., Kellman et al., 2005). We assessed differences in 
the degree to which dots sampled from smooth and cornered contours 
were perceived as shapes using objective measures in Experiments 
3 and 4.

Experiment 3

One of the key functions that encoding an abstract shape 
representation serves is allowing comparison of shapes across different 
orientations (Baker and Kellman, 2018). In Experiment 3, 
we compared subjects’ ability to encode a shape representation for 
dots sampled from smooth and cornered contours by testing them on 
a shape matching mental rotation task. Inspired by Shepard and 
Metzler (1971), we simultaneously presented two differently oriented 
dot arrays and asked subjects to judge whether they defined the same 
shape. We expected that if dots sampled from smooth contours are 
more naturally perceived as shapes, subjects should have an advantage 
in the mental rotation task on trials where the shape is perceived 
as smooth.

Methods

Participants
Participants included 25 undergraduates (4 male, 21 female, 

Mage = 19.8) from the University of California, Los Angeles who 
enrolled in the study for course credit. All participants had normal or 
corrected-to-normal vision.

Stimuli
Smooth and Corner dot arrays were generated as in Experiment 

2. In Experiment 3, each array was a member of a pair with either 
the same shape or a different shape. When the shape was the same, 
we used the same virtual contour, but sampled a different set of dots 
so that local spatial relations between dots could not be used as a 
cue. When the shapes were different, we  generated the second 
member of the pair by moving one of the control points for the 
original shape a random distance between 1.93° and 4.11° of visual 
angle toward or away from the center of the shape. We  then 
randomly selected an adjacent control point to the one we  just 
moved and moved it toward or away from the center such that the 
total contour length for the new shape was the same as the total 
contour length for the original shape (see Figure 9 for an example 
pair). For Corner shapes, we then applied the same set of changes 
described in Experiment 2 to the new shape. Dot arrays also differed 
in orientation. In each trial, the second dot array could be rotated 
0°, 45°, 90°, 135°, or 180° relative to the first.

Design
The experiment consisted of 200 trials, half of which showed 

shape pairs sampled from smooth virtual contours, and half of which 
showed shape pairs sampled from cornered contours. For each of 
these two conditions, there were 20 trials at each of the five magnitudes 
of rotation, 10 of which included the same shape, and 10 of which 
included different shapes.

Procedure
On each trial, two arrays of dots were shown on the screen 

simultaneously, one centered in the left half of the monitor screen, and 
one centered in the right half. Subjects were instructed to look at both 
dot arrays and determine whether the shape defined by each array of 
dots was the same or different, irrespective of a difference in 
orientation and the local positions of dots. The two dot arrays 
remained on the screen until subjects responded. Participants were 
told that response time was being measured, but that they should 
emphasize responding correctly over responding quickly. Before 
beginning the main experiment, subjects completed 12 practice trials 
to familiarize themselves with the task. Performance in the practice 
trials was not analyzed. A sample trial for each condition is shown in 
Figure 10.

Results

Following Shepard and Metzler (1971), we analyzed the reaction 
time only for trials in which the two shapes were the same and subjects 
responded correctly. Mean response times for each magnitude of 
rotation are shown in Figure 11A. A 2 (dot array type) × 5 (magnitude 
of rotation) repeated measures ANOVA confirmed a significant main 
effect for the type of shape from which the dots were sampled, 
F(1,25) = 5.33, p = 0.03, η2

partial = 0.18 and a significant main effect for 
magnitude of rotation, F(4,100) = 4.51, p = 0.002, η2

partial = 0.15. A linear 
regression test found a significant overall effect of magnitude of 
rotation on reaction time, F(1,25) = 14.59, p < 0.001, η2

partial = 0.37. The 
slope was numerically greater for response time as a function of 
magnitude of rotation for cornered stimuli (RT = 154 * 
Degrotated + 2056 msec) than for smooth stimuli (RT = 38 * 
Degrotated + 1,262 msec), although the interaction between condition 
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and magnitude of rotation was not significant, F(4,100) = 0.98, p = 0.42, 
η2

partial = 0.04.
Superiority in performance for dots sampled from smooth 

contours was also reflected in sensitivity measures, calculated as 
the proportion of trials in which participants correctly reported 
that the shape had changed (“hits”) vs. the proportion of trials in 
which participants incorrectly reported that the shape had 
changed (“false alarms”; Figure 11B). In trials with no misses or 
no false alarms, we used the correction recommended by Wickens 
(2001) of adding half an observation of a miss or false alarm when 
none was present. A 2 (dot array type) × 5 (magnitude of rotation) 
repeated measures ANOVA confirmed that sensitivity was 
significantly higher in displays in which the dots were sampled 
from smooth contours than displays with dots sampled from 
contours with sharp corners F(1,24) = 29.36, p < 0.001, 
η2

partial = 0.55. The effect of magnitude of rotation on sensitivity 

was also significant, F(4,96) = 4.90, p = 0.001, η2
partial = 0.17, as was 

the interaction between dot array type and angle, F(4,96) = 4.51, 
p = 0.002, η2

partial = 0.16.
We also compared participants’ bias to report a shape change in 

each of the 10 conditions. We computed bias as λcenter, or the distance 
between the criterion and the midpoint between the signal and noise 
distribution. Values of λcenter less than 0 indicate a bias to respond “yes” 
to a shape change and values of λcenter greater than 0 indicate a bias to 
respond “no.” The estimates of bias for each condition are plotted in 
Figure 11C. A repeated measures ANOVA on the estimates of bias 
found a significant main effect for dot array type on participants’ bias, 
F(1,24) = 19.36, p < 0.001, η2

partial = 0.45. Participants were more biased 
to report a shape change in the smooth condition and more biased to 
report no shape change in the corner condition. There was also a 
significant main effect for magnitude of rotation on participants’ bias 
[F(4,96) = 5.89, p  < 0.001, η2

partial  = 0.20]. There was no significant 

FIGURE 9

Pairs of smooth and angular shapes used in Experiment 3. (A) A pair of different shapes from the “Smooth” condition. (B) A pair of different shapes from 
the “Corner” condition.

FIGURE 10

Sample trials from Experiment 3. (A) “Smooth” trials with the same shape. (B) “Smooth” trials with different shape. (C) “Corner” contours with the same 
shape. (D) “Corner” contours with different shape with different shape. All shapes are rotated 135°.
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interaction between dot array type and magnitude of rotation on 
observer bias, F(4,96) = 2.23, p = 0.07, η2

partial = 0.09.

Discussion

Experiment 2 found that participants rated dots sampled from 
contours with cornered contours as less shape-like than dots sampled 
from smooth curves. In Experiment 3, we  tested whether these 
subjective differences would be reflected in an objective measure of 
perceptual performance. Because they were rotated and had positions 
along the contour resampled, the target pairs of dot arrays we showed 
in Experiment 3 differed from each other both in absolute orientation 
and in terms of the specific positions of the elements with respect to 
each other. Accurate responding for the task therefore required 
forming a representation of a shape’s contour from the set of dots that 
was object-centric and invariant to orientation changes (Baker and 
Kellman, 2018). Differences in response time and/or sensitivity for the 
two kinds of dot arrays therefore presumably correspond to the ease 
with which participants encoded the array as a shape.

We found that dots sampled from shapes with smooth contours 
could be compared across orientation changes more quickly than dots 
sampled from shapes with perceived corners, which suggests that 
these dot arrays are more easily encoded and perceived as orientation-
invariant shapes than arrays sampled from shapes with corners. 
Participants were less accurate when mentally rotating dots sampled 
from smooth contours than dots sampled from cornered contours. 
Lower response times therefore cannot be  explained by a speed-
accuracy tradeoff.

One puzzling aspect of our data is that we found only a small 
effect of magnitude of orientation difference for the two shapes in each 
display on response time for either trial type. Slopes in both conditions 
were flat and explained a smaller proportion of the variance than the 
Smooth vs. Corner manipulation. The work of Shepard and Metzler 
(1971), after which we modeled our experiment, showed a strong 
linear relationship between response time and magnitude of rotation 
for shapes rotated in the picture plane. Response time has also been 
shown to vary with degree of change from a canonical orientation in 
naming tasks for familiar objects (Jolicoeur, 1985). One possibility for 
why angular difference had such a small effect in our study is that 

FIGURE 11

Response time, sensitivity, and bias for “Smooth” and “Corner” trials in the mental rotation task of Experiment 3. (A) Response time on correct trials as a 
function of orientation difference between the two displays. (B) Sensitivity to shape change. Hits were defined as correct detection of a shape change 
and false alarms were defined as reports of a shape change when none occurred. (C) Response bias in all conditions. λcenter reflects the distance 
between the criterion and the midpoint between the signal and noise distributions. Negative values indicate bias to say there was a shape change. 
Positive values indicate a bias to say there was not a shape change.
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subjects responded after a somewhat fixed period of time, even if more 
or less time was needed to make an accurate decision. This could 
explain why we  see a reduction in sensitivity as a function of 
magnitude of rotation in the sharp corner condition even though 
response time does not increase. Importantly, though, even if subjects 
are using a more fixed period of time, this amount of time is different 
for the smooth and corner conditions. Participants consistently 
required more time to decide if dot displays sampled from shapes with 
sharp corners were the same or different, even if response times did 
not increase monotonically with orientation differences in 
either condition.

Another intriguing possibility is that dot configurations represent 
a special class of stimuli whose time for recognition does not scale 
with magnitude of rotation. Past work on mental rotation has shown 
that certain kinds of stimuli with salient landmark features have much 
flatter recognition slopes than stimuli without salient landmarks 
(Hochberg and Gellman, 1977). Flat slopes have also been found for 
familiar objects when participants were informed ahead of time what 
object they would be shown (Cooper and Shepard, 1973). Why mental 
rotation of dot patterns would have flat slopes is mysterious in view of 
these findings, as they are neither familiar nor do they have salient 
local features. In fact, any salient local feature obtained from a local 
group of dots in one of the arrays would not be present in the other 
matching array, since dot positions along the contour are 
independently sampled in matched pairs. One possibility is that the 
simplicity of dot arrays gives rise to flat mental rotation slopes. 
According to Hochberg and Gellman (1977), mental rotation of 
shapes will scale with angular distance if representations must be built 
up from successive glances. Possibly, the relatively few bits of 
information in an array of 25 dots can be extracted with only one 
glance. This is partially supported by previous findings that the spatial 
positions of an array of 25 dots are registered within the first 30 ms of 
exposure (Baker and Kellman, 2018).

Experiment 4

As we have discussed, the visual system has a remarkable capacity 
to form contour representations from unconnected dots. In 
Experiment 4, we  further tested these capabilities by showing dot 
displays embedded among a field of random noise dots. The 
experimental paradigm was similar to one devised by Uttal (1973) for 
dots along a curved or straight line segment. Uttal found that for these 
simple segments, participants had significantly more trouble detecting 
the target when it deviated more from a straight line, but there seemed 
to be  little difference for angular vs. curvilinear deviations. In the 
present study, we tested participants’ ability to detect whole forms 
defined by dots.

To do this, we used a two-interval forced choice (2IFC) paradigm 
in which one stimulus contained a shape embedded in noise and the 
other stimulus contained noise alone. Participants’ task was to choose 
the interval that contained a coherent shape. In order to group 
together and detect the shape of a set of dots in noise, subjects would 
have to first use some spatial relationships between the dots in the 
array to identify which dots belonged to a shape outline and which 
were random. Typically, important cues such as proximity could 
be potentially misleading for this kind of display. Manipulating the 
kind of shape contour that the target dots were sampled from, 

we tested participants’ ability to decide which of the two intervals 
contained a shape and which consisted only of noise dots. 
We predicted that unlike simple segments, dot arrays sampled from 
whole shapes with smooth contours would be more easily detected 
than dots sampled from whole shapes with sharp corners.

Methods

Participants
Twenty-six undergraduates (6 male, 20 female, Mage = 21.6) from 

the University of California, Los Angeles participated in this study for 
course credit. All participants had normal or corrected-to-normal 
vision. One subject’s data was excluded prior to analyzing his results 
because he did not appear to understand the instructions by the time 
he had finished the practice portion of the experiment.

Stimuli
Dot arrays from smooth and cornered shape contours were 

generated as in Experiment 1. In Experiment 4, however, the dots 
sampled from contours were hidden among 25 distractor dots. 
Distractor dots were created by uniformly sampling from the 
rectangular area that contained the target dots. Each trial also included 
a dot display with no shape. Rather than placing all 50 dots in the 
other display completely randomly, we created random displays of 25 
dots as in Experiment 1, with the only difference being that we moved 
each dot twice the average distance between dots. This was to create 
displays with no shape that still had some emptiness in the middle of 
the array to prevent participants from using that as a low-level cue. 
We then added 25 dots by uniformly sampling from the encompassing 
rectangle as in the target displays. Figure 12 shows a target display 
with dots from a smooth contour, a target display with dots from a 
corner contour, and a non-target display.

Design
The experiment had two conditions, a Smooth condition, in 

which the target dots were sampled from a smooth contour, and a 
Corner condition, in which the target dots were sampled from a 
corner contour. For both conditions, the target display was shown first 
in half of the trials second in the other half. There were 120 total trials 
for each condition. Participants completed 12 practice trials before 
beginning the main experiment.

Procedure
We used a 2IFC task in which one display consisted of dots 

sampled from a smooth or cornered contour among noise dots and 
the other display consisted only of noise dots. Before beginning the 
experiment, subjects were told they would be  looking for shapes 
hidden in dots. We showed participants 20 (10 Smooth, 10 Corner) 
examples of the kind of targets they would be asked to detect in the 
main experiment. The example targets were shown without distractors.

In each trial, we first presented a fixation cross at the center of the 
screen for 600 ms, then showed the first of the two dot displays for 
800 ms. The dot display was then masked by a pattern of black and 
white dots for 500 ms, after which the second dot display was shown, 
also for 800 ms. This display was masked for 500 ms, and then subjects 
were asked to report whether a shape was hidden in the first or second 
of the two dot displays. Subjects were not cued to look for any specific 
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shape in the displays and were told to pick whichever one they thought 
had dot arrangements that contained any shape. During practice, 
subjects were given feedback telling them if they were correct or 
incorrect and showing the hidden shape highlighted in white dots. No 
feedback was given during the main experiment. A sample trial from 
the Smooth and Corner condition are shown in Figure 13.

Results

The primary results for Experiment 4 are shown in Figure 14. 
Performance was significantly better than chance both when the dots 
were sampled from a smooth contour [t(24) 17.59, p < 0.001] and 
when they were sampled from an cornered contour [t(24) = 15.69, 
p < 0.001]. Participants were significantly better at detecting the target 
shape when the dots were sampled from a smooth contour than when 
they were sampled from a corner contour [t(24) = 10.3, p < 0.001, 
Cohen’s d = 2.05].

Discussion

The results of Experiment 4 show that dot displays embedded in 
noise were more detectable as shapes when they had been sampled 
form smooth contours than from cornered ones. In turn, these 
designations (“smooth” vs. “cornered”) were derived from perceptual 
responses in Experiment 1 (and in prior work by other investigators) 
to simple dot arrays, consisting of as few as three elements. The 
superior detection of shapes in noise for the Smooth condition here 
indicates that these more elementary responses to local dot 

configurations influence perceptual performance in an objective 
performance task, and they provide evidence that smooth shapes are 
more readily encoded from sampled dots. What is required to extract 
a shape in this task? Surely, relations among elements are crucial, but 
the task is made more challenging by the fact that the dot elements 
comprising a shape were physically identical to the distractor dots. The 
local spatial relationships between small groups of target dots are also 
not different from relationships between groups of distractor dots or 
groups that are a mix of targets and distractors. We might compare 
shape or contour detection to the path detection task developed by 
Field et al. (1993), which is similar in concept. A crucial difference, 
however, is that in conventional path detection, individual oriented 
elements are used, either Gabor patches (Field et al., 1993) or line 
segments (Pettet, 1999; Baker et  al., 2021). In these cases, local 
orientation relationships described as contour relatability (Kellman 
and Shipley, 1991) or an association field (Field et al., 1993) are the 
primary drivers of path detection. Local orientation relationships 
between the dots determine whether the path is detected depending 
on the relatability of the local elements. The perceptual salience of 
paths likely depends on a contour-linking process that produces an 
intermediate representation in the process of contour interpolation 
(Kellman et al., 2016; Kellman and Fuchser, 2023).

The situation is different in our Experiment 4. Individual circular 
dots have no orientation from which relatability can be  defined. 
Unlike the targets used by Uttal (1973), the local spatial relationships 
between target dots are not consistent. Neither the spacing nor the 
turning angle is the same between nearby dot triplets in our displays. 
Detection of the target in our task must depend on more global 
relations among dots. The visual system might be considering multiple 
possible dot organizations and determining whether they configure 

FIGURE 12

Target and distractor displays for Experiment 3. The leftmost column shows a smooth target without (top) and with (bottom) distractor dots added. The 
middle column shows a cornered target without (top) and with (bottom) distractor dots added. The rightmost column shows a non-target display. In 
each trial, one of the two kinds of target display (with distractor dots) and the distractor display were presented in a randomized order.
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into a global shape. Or, somewhat more local relations among small 
sets of dots may allow discovery of an extended virtual contour that is 
perceivable as smooth all along its extent.

Participants’ good performance for target dots sampled from both 
smooth and corner contours suggests that the visual system has a quite 
robust capability to detect a variety of shapes from distractors. 
However, there is also a clear performance advantage for detection of 
shapes with smooth contours over detection of cornered shapes. If 
detection of perceptually smooth sequences of dots underlies shape 
detection, dots sampled from smooth shapes exhibit this property 
along their entire contour, whereas sets of dots perceived as cornered 
may interrupt perceptual continuity. We develop this idea more fully 
in the General discussion below.

The perceptual continuity for dots sampled from smooth shapes 
may also lead to simpler representations than sets of dots sampled 

from shapes with sharp corners. If first-order discontinuities serve to 
mark separate parts, or simply indicate important features to 
be  represented, cornered shapes may have more complex 
representations than smooth ones. Detection of potential connected 
shapes may be facilitated more by perceptually smooth relations 
among dots than dot sequences that are more representationally 
complex in terms of containing corners connecting shorter smooth 
segments. A similar effect and explanation have been given for search 
for constant curvature vs. non-constant curvature targets formed by 
oriented elements (Baker et al., 2021).

General discussion

Perception of contours and shapes from arrangements of 
separated dots or other tokens is commonplace yet remarkable. Our 
overall goal in this research was to understand how spatial relations 
among dots create perceived contours and shapes, and to connect this 
understanding to general processes of shape perception and 
representation. Perception of shape from dots offers a special window 
into abstract shape representations in general. Because no continuous 
contour is physically present in a display consisting of separated dots, 
evidence from perceptual tasks that implicates connection, continuity, 
smoothness, or shape in perceptual representations reveals 
contributions of processes not directly attributable to the 
physical stimulus.

In the experiments reported here, we first tested perception of 
smooth connections vs. corners in small arrays of dots—triplets, or 
triplets with two additional flanking dots. The results of Experiment 
1 indicated that for triplets alone and those with flanking dots that 
created concave arms, angles relating the triplet dots below 150°–160° 
more often produced “corner” responses, and “smooth” responses 

FIGURE 13

Sample trials from Experiment 4. The target shape is sampled from a smooth contour and is shown first (left). The target shape is sampled from an 
cornered contour and is shown second (right).
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Accuracy for detection of shapes in the Smooth and Corner 
conditions in Experiment 4.
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were very rare for angles less than 100°. With flanking dots that 
continued the convexity of a triplet, smoothness responses were 
preserved through a greater angular range, with parity between 
“smooth” and “corner” responses occurring at about 78°.

Based on these findings of smoothness vs. corner perception 
determined with small arrays and local angular relations, we tested in 
further experiments the impact of local relations that were smooth 
(with triplet angles averaging 154°) vs. cornered (78°–90°) in more 
complex arrays. In Experiment 2 we  compared participants’ 
perception of 25-dot arrays sampled from angular contours with dot 
arrays sampled from smooth contours. Participants’ subjective ratings 
revealed that dots sampled from smooth shapes were more often and 
more strongly perceived as coherent shapes than dots sampled from 
angular shapes. In Experiment 3, we used an objective performance 
paradigm to assess the effects of local dot relations in processing 
forms; participants judged as same or different two dot arrays that 
differed in orientation. We hypothesized that this task would be done, 
as in classic experiments, by participants mentally rotating one an 
array to match the orientation of the other, with the expectation that 
comparison of two dot arrays in this manner would be easier for dot 
arrangements that were more easily encoded as shapes. We found that 
participants judged that two dot arrays were the same more quickly 
and more accurately when they were sampled from smooth contours. 
In Experiment 4, we embedded a target arrangement of dots defining 
a virtual contour among an equal number of distractor dots. We found 
that subjects were more able to detect smooth virtual contours than 
angular virtual contours, likely because the shape representation the 
dots give rise to is simpler and therefore easier to search (see Baker 
et al., 2021 for a similar paradigm).

The results of both Experiments 3 and 4 extend previous 
research into the perception of dot arrays with a very small number 
of dots (Pomerantz and Portillo, 2011; Hawkins et al., 2016; Costa 
and Wagemans, 2021). In those experiments, the configural 
superiority effect (CSE) paradigm was used to show that an 
odd-one-out task could be facilitated by the addition of identical 
elements provided those elements resulted in different emergent 
features like orientation or proximity in the target display than the 
distractors. Though the stimuli we used consisted of many more 
elements than the CSE displays, curvilinear displays were perceived 
as more configural than displays that contained perceived corners. 
Experiments 3 and 4 also introduce two additional experimental 
paradigms, mental rotation and object detection, that can be used 
as objective indices of the strength of configural structure of dot 
arrays. The CSE task works extremely well for arrays with a small 
number of elements to test the effect of local relations between dots. 
The rotation and detection tasks we used would not work for such 
sparse displays but showed robust effects for differences in the 
perception of shape defined by a larger set of elements.

Other research into the organization of dot elements based on 
Gestalt cues may also explain the perceptual advantage for dot 
arrays perceived to be curvilinear. For example, notions of similarity 
might explain why smooth displays, whose vertices were uniformly 
perceived as curved are more easily perceived as shapes than corner 
displays, whose vertices would be inhomogeneous, consisting of 
both perceived curves and perceived corners. Note, however, that 
these descriptions of inhomogeneity, while related to certain 
stimulus properties, refer most directly to outcomes of perception 
(i.e., properties in perceptual representations). The dots in and of 

themselves are neither corners nor smooth curves. Certain theories 
of good continuation also predict that smoothness among adjacent 
pairs or triplets of dots in a sequence facilitates contour perception. 
According to these theories (e.g., Feldman, 1997; Pizlo et al., 1997; 
Lezama et al., 2016; Kelly et al., 2024), continuation would be better 
in displays with fewer extreme deviations from smooth continuation 
that comes with the addition of perceived corners, which could 
result in arrays that are more easily resolved into shapes. Definitions 
of good continuation that explicitly favor collinearity of dots (e.g., 
Uttal, 1973; van den Berg, 2006) would make the opposite 
prediction that continuation would be better in corner displays, 
which have more collinear dots.

Greater facility in encoding shapes with fewer corners and more 
curvilinear segments would also not be predicted by many other theories 
of shape and object perception. Much work in middle and high-level 
vision emphasizes the importance of junctions and non-accidental 
properties. Geons in Biederman’s (1987) work depend crucially on 
corners and junctions, for example. Under such a theory, we would 
expect the visual system to be particularly suited to the detection of 
corners. Indeed, neurophysiological work points to the importance of 
corners in early visual areas (Heitger et al., 1998) and angular cusps in 
V4 (Pasupathy and Connor, 2001). Information theoretical work on 
contour complexity also predicts that objects with straight edges will 
be perceptually simpler (Attneave, 1954; Norman et al., 2001; Feldman 
and Singh, 2005). Structural information theory makes the same 
prediction, positing straight line connections between dots are more 
economical than curvilinear arcs because arcs are a continuation of both 
length and angle, thus requiring two bits of information for every one bit 
of information required for straight line connections (Smits and Vos, 
1987, personal communication with Leeuwenberg).

Why, then, are shapes with smooth contours easier to encode than 
shapes with sharp corners? As Bertamini et al. (2019) point out, there are 
several reasons to expect angular contours would be  more easily 
processed. Angular contours are comparatively simple to compute, 
requiring only linear interpolation between salient key points of high 
curvature (Bertamini et  al., 2013). There may also be  evolutionary 
advantages to registering the shapes of angular contours quickly to assess 
danger (Bar and Neta, 2006). On the other hand, the evolutionary 
environment in which our visual system evolved likely had many fewer 
straight edges and sharp angles than the one in which we currently live. 
Even today, research on scene statistics has found that many of the 
contours people process in their daily lives are made up of smooth curves 
(Chow et al., 2002). An analysis of scene statistics can only take us so far, 
however. The visual system may have evolved to process smooth 
contours because there were more objects made from smooth contours 
in our visual environment, but we must still determine what specific 
visual mechanisms confer this advantage in perceptual processing.

One possibility is that the primitives from which the visual system 
builds abstract shape representations more easily describe a shape 
with smooth contours. Elsewhere, we have hypothesized that shape 
representations are built up from relatively few smoothly joined 
segments of constant curvature (Garrigan and Kellman, 2011; Kellman 
et al., 2013; Baker et al., 2021; Baker and Kellman, 2021). Under this 
theory, corners (first-order or tangent discontinuities) have two 
important consequences. One is that the presence of a corner would 
always require spans on either side to be  two segment primitives, 
whereas smoothly changing curvature could be captured by a single 
segment, provided that the variation in curvature was sufficiently 
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small. The other consequence is that corners need to be separately 
encoded in such a representation and may be taken as part boundaries 
at a certain basic level of representation.

Even when part of a smooth contour requires multiple constant 
curvature primitives, the smoothly joined segments tend to 
be perceived as belonging to a single part if they are smooth and 
monotonic. For example, consider Figures 15A,B. Both displays are 
made up of two different curvature segments, but the fragment made 
from two smoothly joined curves looks like a single token, while the 
fragment made from two straight segments does not.

This observation is closely related to analyses by Wertheimer 
(1923) in his classic work “Laws of Organization in Perceptual Forms,” 
and it underlies his description of what has come to be called “good 
continuation.” He  showed contour displays similar to the ones in 
Figure 15D and asked observers to divide them into two parts, finding 
that they almost always organized the two smoothly joined curvature 
pieces together, separating this connected segment from the straight 
segment. In terms of derivatives, we may consider any continuous 
(unbroken) contour to have zero order continuity. Wertheimer’s 
examples show that, despite zero-order continuity, a 1st-order or 
tangent discontinuity (undefined first derivative) produces some 
degree of perceptual segmentation. Figure 15E shows another of his 
examples; here, we can consider 4 segments, A, B, C, and D, and the 
perceptual impression is that A and C are a unified segment, as are B 
and D, but observers do not naturally partition such a display into BC 
and AD, or AB and CD. Although Wertheimer did not invoke 
presence or absence of discontinuities in the first derivative as the 
relevant information, he  gave a number of examples (in his 
Figures 1–19), all of which indicate that a contour junction (tangent 
discontinuity) breaks contiguous line drawings into discernible parts, 
whereas the smooth continuation (absence of a tangent discontinuity) 
produces perception of a single contour or contour segment. It is 

interesting that despite offering two formal names for this principle 
(the “Factor of Direction” and the “Factor of Good Curve”), it is a 
phrase he used in passing—“good continuation” that has stuck as the 
name of this principle.

Figures 15A,C also illustrate that higher-order discontinuities, such 
as the 2nd-order discontinuity where two curves different smoothly 
join (matched slope at the join point), do not produce obvious 
perceptual segmentation. Evidence from visual search in noise shows 
that search for a contour segment with a 0-order or first-order 
discontinuity from other segments is easy, but a segment having 0-order 
and first-order continuity, but a second-order discontinuity, is effortful, 
slow, and error-prone (Kellman et al., 2003). If shapes made up of sharp 
corners are perceived to have significantly more parts than shapes made 
up of smoothly connected contours, it follows that they will be more 
representationally complex and therefore more difficult to encode.

Consistent with the above reasons that sharp corners may 
impose an additional encoding burden is that corners are important 
features for other perceptual processing goals, such as identifying 
points at which one object might be occluding another (Ratoosh, 
1949; Dinnerstein and Wertheimer, 1957; Shipley and Kellman, 1990; 
Kellman and Shipley, 1991; Rubin, 2001). Also, as we mentioned 
earlier, corners are important in theories of object representation and 
recognition (e.g., Biederman, 1987). Although some of these 
accounts suggest that encoding of corners might be beneficial for 
comparing objects, it may increase the complexity relative to 
smooth objects.

Conclusion

The results from these experiments suggest that the visual system 
perceives shapes from arrays of dots more easily when the perceived 

FIGURE 15

Contours made up of more than one curvature segment. (A) A contour made up of two smoothly joined constant curvature segments. (B) A contour 
made up of two straight segments joined at a vertex. (C) A contour made up of two smoothly joined constant curvature segments and one straight 
segment joined at a vertex. Individual parts are marked by letters A, B, or C. (D,E) Displays show examples redrawn from Wertheimer (1923), 
corresponding to his Figures 8 and 11, respectively. (F) Illustration of the role of perceived corners in dot displays in determining segmentation. 
Redrawn from Wertheimer (1923), Figure 3.
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contour between the points is smooth rather than angular. Although 
consistent with previous literature concerning good continuation 
between dots, these findings refute other formulations of good 
continuation that explicitly favor linear continuations. They also point 
to a more general phenomenon in shape perception that extraction of 
curvature is a fundamental process in the formation of an abstract 
shape representation and allows for efficient encoding of contours 
with changing orientation. Virtual contours that can be described by 
a relatively constrained set of curvature primitives appear to give rise 
to shapes more often, more quickly, and more precisely than virtual 
contours that are perceived and represented as segments connected 
by corners.

Data availability statement

The datasets presented in this study can be found in online 
repositories. The names of the repository/repositories and 
accession number(s) can be  found at: DOI: 10.17605/OSF.
IO/7DGJC.

Ethics statement

The studies involving humans were approved by IRB University 
of California, Los Angeles. The studies were conducted in accordance 
with the local legislation and institutional requirements. The 
participants provided their written informed consent to participate in 
this study.

Author contributions

NB: Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Software, Validation, Writing – original draft, Writing – 
review & editing. PK: Conceptualization, Formal analysis, Funding 
acquisition, Investigation, Methodology, Project administration, 
Supervision, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. We gratefully 
acknowledge support from the National Institutes of Health award 
number R01 CA236791 to PK.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Attneave, F. (1954). Some informational aspects of visual perception. Psychol. Rev. 61, 

183–193. doi: 10.1037/h0054663

Baker, N., Garrigan, P., and Kellman, P. J. (2021). Constant curvature segments as 
building blocks of 2D shape representation. J. Exp. Psychol. Gen. 150, 1556–1580. doi: 
10.1037/xge0001007

Baker, N., and Kellman, P. J. (2018). Abstract shape representation in human visual 
perception. J. Exp. Psychol. Gen. 147, 1295–1308. doi: 10.1037/xge0000409

Baker, N., and Kellman, P. J. (2021). Constant curvature modeling of abstract shape 
representation. PLoS One 16:e0254719. doi: 10.1371/journal.pone.0254719

Bar, M., and Neta, M. (2006). Humans prefer curved visual objects. Psychol. Sci. 17, 
645–648. doi: 10.1111/j.1467-9280.2006.01759.x

Barsalou, L. (1999). Perceptual symbol systems. Behavioral and brain sciences. 22, 
577–660.

Barsalou, L. W. (2003). Situated simulation in the human conceptual system. Language 
and cognitive processes. 18, 513–562.

Bertamini, M., Helmy, M., and Bates, D. (2013). The visual system prioritizes locations 
near corners of surfaces (not just locations near a corner). Atten. Percept. Psychophys. 
75, 1748–1760. doi: 10.3758/s13414-013-0514-1

Bertamini, M., Palumbo, L., and Redies, C. (2019). An advantage for smooth 
compared with angular contours in the speed of processing shape. J. Exp. Psychol. Hum. 
Percept. Perform. 45, 1304–1318. doi: 10.1037/xhp0000669

Biederman, I. (1987). Recognition-by-components: a theory of  
human image understanding. Psychol. Rev. 94, 115–147. doi: 
10.1037/0033-295X.94.2.115

Bouma, H. (1976). Perceptual functions. In J. A. Michon, E. G. Eijkman and KlerkL. 
F. De. Dutch handbook of psychonomy (pp. 229–287). Deventer, Netherlands: Van 
Loghem Slaterus (in Dutch).

Box, G. E., and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal 
Statistical Society Series B: Statistical Methodology. 26, 211–243.

Chow, C. C., Jin, D. Z., and Treves, A. (2002). Is the world full of circles? J. Vis. 2:4. 
doi: 10.1167/2.8.4

Clowes, M. B. (1971). On seeing things. Artif Intell 2, 79–116. doi: 
10.1016/0004-3702(71)90005-1

Cooper, L. A., and Shepard, R. N. (1973). “Chronometric studies of the rotation of 
mental images” in Visual information processing. ed. Chase W. G. (New York: Academic 
Press), 75–176.

Costa, T. L., and Wagemans, J. (2021). Gestalts at threshold could reveal gestalts as 
predictions. Sci. Rep. 11:18308. doi: 10.1038/s41598-021-97878-0

De Winter, J., and Wagemans, J. (2008). Perceptual saliency of points along the 
contour of everyday objects: a large-scale study. Percept. Psychophys. 70, 50–64. doi: 
10.3758/PP.70.1.50

Dinnerstein, D., and Wertheimer, M. (1957). Some determinants of phenomenal 
overlapping. Am. J. Psychol. 70, 21–37. doi: 10.2307/1419226

Feldman, J. (1996). Regularity vs genericity in the perception of collinearity. Perception 
25, 335–342. doi: 10.1068/p250335

Feldman, J. (1997). Curvilinearity, covariance, and regularity in perceptual groups. 
Vision Res. 37, 2835–2848. doi: 10.1016/S0042-6989(97)00096-5

Feldman, J., and Singh, M. (2005). Information along contours and object boundaries. 
Psychol. Rev. 112, 243–252. doi: 10.1037/0033-295X.112.1.243

Field, D. J., Hayes, A., and Hess, R. F. (1993). Contour integration by the human visual 
system: evidence for a local “association field”. Vision Res. 33, 173–193. doi: 
10.1016/0042-6989(93)90156-Q

Garrigan, P., and Kellman, P. J. (2011). The role of constant curvature in 2-D contour 
shape representations. Perception 40, 1290–1308. doi: 10.1068/p6970

Hawkins, R. X., Houpt, J. W., Eidels, A., and Townsend, J. T. (2016). Can two dots form 
a gestalt? Measuring emergent features with the capacity coefficient. Vision Res. 126, 
19–33. doi: 10.1016/j.visres.2015.04.019

Heitger, F., Von Der Heydt, R., Peterhans, E., Rosenthaler, L., and Kübler, O. (1998). 
Simulation of neural contour mechanisms: representing anomalous contours. Image Vis. 
Comput. 16, 407–421. doi: 10.1016/S0262-8856(97)00083-8

Hess, R., and Field, D. (1999). Integration of contours: new insights. Trends Cogn. Sci. 
3, 480–486. doi: 10.1016/S1364-6613(99)01410-2

https://doi.org/10.3389/fcomp.2024.1367534
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://doi.org/10.17605/OSF.IO/7DGJC
https://doi.org/10.17605/OSF.IO/7DGJC
https://doi.org/10.1037/h0054663
https://doi.org/10.1037/xge0001007
https://doi.org/10.1037/xge0000409
https://doi.org/10.1371/journal.pone.0254719
https://doi.org/10.1111/j.1467-9280.2006.01759.x
https://doi.org/10.3758/s13414-013-0514-1
https://doi.org/10.1037/xhp0000669
https://doi.org/10.1037/0033-295X.94.2.115
https://doi.org/10.1167/2.8.4
https://doi.org/10.1016/0004-3702(71)90005-1
https://doi.org/10.1038/s41598-021-97878-0
https://doi.org/10.3758/PP.70.1.50
https://doi.org/10.2307/1419226
https://doi.org/10.1068/p250335
https://doi.org/10.1016/S0042-6989(97)00096-5
https://doi.org/10.1037/0033-295X.112.1.243
https://doi.org/10.1016/0042-6989(93)90156-Q
https://doi.org/10.1068/p6970
https://doi.org/10.1016/j.visres.2015.04.019
https://doi.org/10.1016/S0262-8856(97)00083-8
https://doi.org/10.1016/S1364-6613(99)01410-2


Baker and Kellman 10.3389/fcomp.2024.1367534

Frontiers in Computer Science 20 frontiersin.org

Hochberg, J., and Gellman, L. (1977). The effect of landmark features on mental 
rotation times. Mem. Cognit. 5, 23–26. doi: 10.3758/BF03209187

Jolicoeur, P. (1985). The time to name disoriented natural objects. Mem. Cognit. 13, 
289–303. doi: 10.3758/BF03202498

Kalar, D. J., Garrigan, P., Wickens, T. D., Hilger, J. D., and Kellman, P. J. (2010). A 
unified model of illusory and occluded contour interpolation. Vision Res. 50, 284–299. 
doi: 10.1016/j.visres.2009.10.011

Kanizsa, G. (1979). Organization in vision: Essays on gestalt perception. Praeger Press.

Kellman, P., Erlikhman, G., and Carrigan, S. (2016). Is there a common mechanism 
for path integration and illusory contour formation? J. Vis. 16:311. doi: 10.1167/16.12.311

Kellman, P. J., and Fuchser, V. (2023). Visual completion and intermediate. Sensory 
Individuals: Unimodal and Multimodal Perspectives, 55.

Kellman, P. J., and Massey, C. M. (2013). “Perceptual learning, cognition, and 
expertise,” in The psychology of learning and motivatio. (Ed.) S. J. Dickinson and Z. Pizlo, 
Vol. 58, (Amsterdam: Elsevier Inc.), 117–165.

Kellman, P. J., Garrigan, P. B., Kalar, D., and Shipley, T. F. (2003). Good continuation 
and relatability: related but distinct principles. J. Vis. 3:120. doi: 10.1167/3.9.120

Kellman, P. J., Garrigan, P., Shipley, T. F., Yin, C., and Machado, L. (2005). 3-d 
interpolation in object perception: evidence from an objective performance paradigm. J. 
Exp. Psychol. Hum. Percept. Perform. 31, 558–583. doi: 10.1037/0096-1523.31.3.558

Kellman, P. J., and Shipley, T. F. (1991). A theory of visual interpolation in object 
perception. Cogn. Psychol. 23, 141–221. doi: 10.1016/0010-0285(91)90009-D

Kelly, B. A., Kemp, C., Little, D. R., Hamacher, D., and Cropper, S. J. (2024). Visual 
perception principles in constellation creation. Top. Cogn. Sci. 16, 25–37. doi: 10.1111/
tops.12720

Kemp, C., Hamacher, D. W., Little, D. R., and Cropper, S. J. (2022). Perceptual 
grouping explains similarities in constellations across cultures. Psychol. Sci. 33, 354–363. 
doi: 10.1177/09567976211044157

Koffka, K. (1931). “Psychology of visual perception” in Handbook of normal and 
pathological physiology. ed. A. Bethe (Berlin: Dessoir), 1215–1271.

Koffka, K. "Principles of gestalt psychology, 481–493." (Routledge) (1935).

Krzywinski, M., and Altman, N. (2014). Visualizing samples with box plots. Nat. 
Methods 11, 119–120. doi: 10.1038/nmeth.2813

Kubovy, M., and Wagemans, J. (1995). Grouping by proximity and multistability in dot 
lattices: a quantitative gestalt theory. Psychol. Sci. 6, 225–234. doi: 10.1111/j.1467-9280.1995.
tb00597.x

Leek, M. R. (2001). Adaptive procedures in psychophysical research. Percept. 
Psychophys. 63, 1279–1292. doi: 10.3758/BF03194543

Lezama, J., Randall, G., Morel, J. M., and von Gioi, R. G. (2016). Good continuation 
in dot patterns: a quantitative approach based on local symmetry and non-
accidentalness. Vision Res. 126, 183–191. doi: 10.1016/j.visres.2015.09.004

McGill, R., Tukey, J. W., and Larsen, W. A. (1978). Variations of box plots. Am. Stat. 
32, 12–16. doi: 10.1080/00031305.1978.10479236

Metzger, W. (2009). Laws of seeing. Cambridge, MA: Mit Press.

Norman, J. F., Phillips, F., and Ross, H. E. (2001). Information concentration along the 
boundary contours of naturally shaped solid objects. Perception 30, 1285–1294. doi: 10.1068/
p3272

O'Callaghan, J. F. (1974). Computing the perceptual boundaries of dot patterns. 
Comput Graph Image Process 3, 141–162. doi: 10.1016/S0146-664X(74)80004-3

Papari, G., and Petkov, N. (2005). “Algorithm that mimics human perceptual grouping 
of dot patterns” in International symposium on brain, vision, and artificial intelligence. 
(Eds.) Gregorio, M. D., Frucci, D. M., and Musio, C. (Berlin, Heidelberg: Springer), 
497–506.

Pasupathy, A., and Connor, C. E. (2001). Shape representation in area V4: position-
specific tuning for boundary conformation. J. Neurophysiol. 86, 2505–2519. doi: 10.1152/
jn.2001.86.5.2505

Pettet, M. W. (1999). Shape and contour detection. Vision Res. 39, 551–557. doi: 
10.1016/S0042-6989(98)00130-8

Pizlo, Z., Salach-Golyska, M., and Rosenfeld, A. (1997). Curve detection in a noisy 
image. Vision Res. 37, 1217–1241. doi: 10.1016/S0042-6989(96)00220-9

Pomerantz, J. R., and Portillo, M. C. (2011). Grouping and emergent features in vision: 
toward a theory of basic gestalts. J. Exp. Psychol. Hum. Percept. Perform. 37, 1331–1349. 
doi: 10.1037/a0024330

Prinzmetal, W., and Banks, W. P. (1977). Good continuation affects visual detection. 
Percept. Psychophys. 21, 389–395. doi: 10.3758/BF03199491

Ratoosh, P. (1949). On interposition as a cue for the perception of distance. Proc. Natl. 
Acad. Sci. U. S. A. 35, 257–259. doi: 10.1073/pnas.35.5.257

Rubin, N. (2001). The role of junctions in surface completion and contour matching. 
Perception 30, 339–366. doi: 10.1068/p3173

Shepard, R. N., and Metzler, J. (1971). Mental rotation of three-dimensional objects. 
Science 171, 701–703. doi: 10.1126/science.171.3972.701

Shipley, T. F., and Kellman, P. J. (1990). The role of discontinuities in the 
perception of subjective figures. Percept. Psychophys. 48, 259–270. doi: 10.3758/
BF03211526

Smits, J. T. S., and Vos, P. G. (1986). A model for the perception of curves in dot 
figures: the role of local salience of “virtual lines”. Biol. Cybern. 54, 407–416. doi: 
10.1007/BF00355546

Smits, J. T., and Vos, P. G. (1987). The perception of continuous curves in dot stimuli. 
Perception 16, 121–131. doi: 10.1068/p160121

Smits, J. T., Vos, P. G., and Van Oeffelen, M. P. (1985). The perception of a dotted line 
in noise: a model of good continuation and some experimental results. Spat. Vis. 1, 
163–177. doi: 10.1163/156856885X00170

Troncoso, X. G., Macknik, S. L., and Martinez-Conde, S. (2005). Novel visual illusions 
related to Vasarely's ‘nested squares’ show that corner salience varies with corner angle. 
Perception 34, 409–420. doi: 10.1068/p5383

Uttal, W. R. (1973). The effect of deviations from linearity on the detection of dotted line 
patterns. Vision Res. 13, 2155–2163. doi: 10.1016/0042-6989(73)90193-4

Van Assen, M. A., and Vos, P. G. (1999). Evidence for curvilinear interpolation 
from dot alignment judgements. Vision Res. 39, 4378–4392. doi: 10.1016/
S0042-6989(99)00150-9

van den Berg, M. (2006). Grouping by proximity and grouping by good continuation 
in the perceptual organization of random dot patterns. Wickens: New York, NY: 
Unpublished doctoral dissertation, University of Virginia, Charlottesville.

Van Oeffelen, M. P., and Vos, P. G. (1983). An algorithm for pattern description on the level 
of relative proximity. Pattern Recogn. 16, 341–348. doi: 10.1016/0031-3203(83)90040-7

Wertheimer, M. (1923). “Laws of organization in perceptual forms” in A source book 
of Gestalt Psychology. (Ed.) W. D. Ellis, London: Kegan Paul, Trench, Trubner & Co.

Wickens, T. D. (2001). Elementary signal detection theory Oxford university press.

Wouterlood, D., and Boselie, F. (1992). A good-continuation model of some occlusion 
phenomena. Psychol. Res. 54, 267–277. doi: 10.1007/BF01358264

Yuen, H. K., Princen, J., Illingworth, J., and Kittler, J. (1990). Comparative study of 
Hough transform methods for circle finding. Image Vis. Comput. 8, 71–77. doi: 
10.1016/0262-8856(90)90059-E

Zucker, S. W., Stevens, K. A., and Sander, P. (1983). The relation between proximity 
and brightness similarity in dot patterns. Percept. Psychophys. 34, 513–522. doi: 10.3758/
BF03205904

https://doi.org/10.3389/fcomp.2024.1367534
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://doi.org/10.3758/BF03209187
https://doi.org/10.3758/BF03202498
https://doi.org/10.1016/j.visres.2009.10.011
https://doi.org/10.1167/16.12.311
https://doi.org/10.1167/3.9.120
https://doi.org/10.1037/0096-1523.31.3.558
https://doi.org/10.1016/0010-0285(91)90009-D
https://doi.org/10.1111/tops.12720
https://doi.org/10.1111/tops.12720
https://doi.org/10.1177/09567976211044157
https://doi.org/10.1038/nmeth.2813
https://doi.org/10.1111/j.1467-9280.1995.tb00597.x
https://doi.org/10.1111/j.1467-9280.1995.tb00597.x
https://doi.org/10.3758/BF03194543
https://doi.org/10.1016/j.visres.2015.09.004
https://doi.org/10.1080/00031305.1978.10479236
https://doi.org/10.1068/p3272
https://doi.org/10.1068/p3272
https://doi.org/10.1016/S0146-664X(74)80004-3
https://doi.org/10.1152/jn.2001.86.5.2505
https://doi.org/10.1152/jn.2001.86.5.2505
https://doi.org/10.1016/S0042-6989(98)00130-8
https://doi.org/10.1016/S0042-6989(96)00220-9
https://doi.org/10.1037/a0024330
https://doi.org/10.3758/BF03199491
https://doi.org/10.1073/pnas.35.5.257
https://doi.org/10.1068/p3173
https://doi.org/10.1126/science.171.3972.701
https://doi.org/10.3758/BF03211526
https://doi.org/10.3758/BF03211526
https://doi.org/10.1007/BF00355546
https://doi.org/10.1068/p160121
https://doi.org/10.1163/156856885X00170
https://doi.org/10.1068/p5383
https://doi.org/10.1016/0042-6989(73)90193-4
https://doi.org/10.1016/S0042-6989(99)00150-9
https://doi.org/10.1016/S0042-6989(99)00150-9
https://doi.org/10.1016/0031-3203(83)90040-7
https://doi.org/10.1007/BF01358264
https://doi.org/10.1016/0262-8856(90)90059-E
https://doi.org/10.3758/BF03205904
https://doi.org/10.3758/BF03205904

	Shape from dots: a window into abstraction processes in visual perception
	Introduction
	Experiment 1
	Methods
	Participants
	Display and apparatus
	Stimuli
	Design
	Procedure
	Dependent measures and data analysis
	Results
	Discussion

	Experiment 2
	Methods
	Participants
	Stimuli
	Design
	Procedure
	Results
	Discussion

	Experiment 3
	Methods
	Participants
	Stimuli
	Design
	Procedure
	Results
	Discussion

	Experiment 4
	Methods
	Participants
	Stimuli
	Design
	Procedure
	Results
	Discussion

	General discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

