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Model Driven Engineering (MDE) adoption in the industry suffers from many 
technical and non-technical problems. One of the significant technical problems 
lies in the difficulty of building complex transformations from the composition 
of small and reusable transformations. Another problem resides in developing 
transformations from scratch in case they are missing. In this paper, we present 
an approach to how to handle these issues. The approach allows composing 
reusable transformations to build more complex ones by providing a catalog 
of prebuilt transformations targeting common architectures, frameworks, 
and design patterns. To give guidance and simplify the task of developing 
new transformations, we  describe a platform description model of an entire 
system or a part of it in two views: a UML profile and a set of transformations. 
We  also present three transformation types, each of which handles different 
abstraction design concerns. Generic transformations are small and reusable 
to build complex transformations, system-independent transformations are 
reusable and implement high-level design decisions, and system-specific 
transformations are not reusable and implement all design decisions needed for 
a given system. The approach is implemented as a plugin for a UML modeling 
tool and validated by developing a system that simulates the behavior of a gas 
station through model transformations built from the composition of reusable 
transformations.
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1 Introduction

Software development processes have evolved in response to business changes and 
customer needs. The goal of these processes is to deliver software on time and reduce resources, 
which is beneficial to individuals and organizations. Over the years, several software 
development processes have been used, such as Rapid Application Development (RAD) and 
Agile development, which focus on delivering software products as fast as possible. One such 
approach is Model-Driven Engineering (MDE), which supports minimum interaction with 
the code by abstracting the software development process using models. Low-code and 
no-code platforms are other software development environments with some commonalities 
with MDE (Di Ruscio et al., 2022). These platforms allow users with limited programming 
knowledge to develop their software products.
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Model-driven architecture (MDA), proposed by the Object 
Management Group (OMG), is an implementation of MDE that 
provides a set of standards guiding the software development process 
using a set of models (Miller and Mukerji, 2003). Its two main models 
are platform-independent (PIM) and platform-specific (PSM). The 
PIM presents the system from the problem domain, while the PSM 
presents the system from the solution domain. OMG proposes 
another model called the Platform Description Model (PDM) used to 
describe a given architecture or platform. The software development 
process in MDA suggests applying a platform described in a PDM to 
the PIM to generate the PSM for a given system. The latter model is 
used to generate the system’s source code.

Our MDE approach describes the PDM in two views: a UML 
profile and a set of transformations (Chénard et al., 2010). The UML 
profile is used to parameterize the PIM with the design decisions of a 
platform or architecture. Then, the transformations are applied to the 
parameterized PIM to generate the system’s PSM or source code. 
We can use several PDMs to create the system in complex software 
products. Each PDM targets specific design decisions. We  can 
simultaneously parametrize a PIM with multiple UML profiles using 
UML modeling software. However, it is challenging to develop and 
apply a set of transformations in the same parametrized PIM and 
generate a system that implements the design decisions of the applied 
PDMs. Hence, a technique is needed to ease the development and 
composition of model transformations.

For MDE to be applicable on a large scale, its evolution must 
follow the same trajectory as that of programming since it encounters 
the same challenges, such as tooling support, handling complexity, 
and developing quality products. High-level programming languages 
like C++ and Java emerged to replace low-level ones, simplifying 
programming. As software size increased, the necessity to organize 
and structure complex software became apparent, employing several 
reuse techniques like routines, class libraries, and frameworks. 
Throughout this evolution, the emphasis on software quality remained 
essential, which drove the development of comprehensive 
environments such as Visual Studio and NetBeans, which facilitate 
software development, debugging, testing, and deployment.

MDE also witnessed some attempts to propose solutions to these 
same challenges. Initially, practitioners relied on manual and ad hoc 
approaches for model transformation. However, with OMG’s 
introduction of the MDA, the standardization of model transformation 
development became crucial. The OMG initiated an effort to develop 
the Query/View/Transformation (QVT) standard (OMG, 2009a). 
Subsequently, advanced model transformation languages like the Atlas 
Transformation Language (ATL) (Jouault et al., 2008) emerged to 
address the complexity of developing transformations. Some domains’ 
complexity and their metamodels lead to complex transformations, 
which raises new challenges related to model transformations’ 
portability, reusability, and maintainability. To overcome these 
challenges, practitioners and researchers proposed various techniques 
to facilitate the development of transformations and their reusability. 
We find the proposition of model transformation design patterns 
(Lano et al., 2018) to solve the most recurring problems in the field. 
One pattern that deals with transformation reusability is the 
transformation chain pattern (Lano et al., 2018), which addresses how 
to compose multiple transformations to build complex systems. 
Regarding tooling support, some proposals propose environments 
providing essential tools for debugging, testing, and integrating 

transformations. Moreover, some environments enable the generation 
of sophisticated and high-quality systems by leveraging the 
composition of model transformations (Alvarez and Casallas, 2013; 
Basciani et al., 2018).

This paper presents our contribution to the adoption of MDE by 
simplifying the development of transformations and their reusability. 
Our approach allows the creation of complex systems by composing 
transformations implementing multiple PDMs, each targeting specific 
design decisions. In this sense, we  introduce two types of 
transformations: generic and design transformations. Generic 
transformations are reusable and simple, reused to build more 
complex ones. Design transformations are divided into two types of 
transformations: system-independent and system-specific 
transformations. System-independent transformations (SIT) are 
constructed by composing generic transformations. They are reusable 
and can be complex, such as implementing a clean architecture, or 
simple transformations, such as those implementing an Observer 
pattern (Gamma et al., 1995). Recall that clean architecture (Martin, 
2017) is a layered architecture for modern software development 
based on domain-driven design (DDD) (Evans, 2004) and best design 
principles. It allows the creation of systems that are independent of 
implementation technology. This independence is achieved by 
decoupling the business logic from the infrastructure implementation. 
System-specific transformations (SST) are always complex and 
support several design decisions. They can be developed from scratch 
or preferably be composed of SITs. The rationale behind these two 
design transformations is that two systems rarely make the same 
design decisions. The approach is implemented as a plugin for a UML 
modeling tool and validated by developing a system that simulates the 
behavior of a gas station through model transformations built from 
the composition of reusable transformations.

This paper is organized as follows. Section 2 explores the evolution 
of transformation languages and discusses related work in model 
transformation composition and its supporting tools. Section 3 
describes our approach through a running example. Section 4 presents 
the tool supporting our approach. Section 5 concludes the paper and 
presents future work.

2 Related work

This section first explores the evolution of transformation 
languages and their applications. Next, we  investigate the crucial 
aspect of reusability in transformation development and how it 
addresses the challenge of managing complexity. Finally, we investigate 
tools’ role in enabling high-quality systems’ development through 
model transformations.

Popular transformation languages are part of the Eclipse Modeling 
Framework (EMF) ecosystem.1 For example, we find QVT (OMG, 
2009a), ATL (Jouault et al., 2008), Henshin (Arendt et al., 2010), and 
Viatra (Balogh and Varró, 2006). QVT and ATL support declarative 
and imperative constructs for transformation development. Henshin 
and Viatra are graph-based transformation languages. According to 
Burgueno et al. it was found that practitioners in the industry tend to 

1 https://www.eclipse.org/modeling/emf/
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favor the use of general-purpose programming languages such as Java 
for writing transformations (Burgueño et al., 2019). This preference 
stems from their familiarity with these languages and their desire to 
avoid the necessity of learning specialized model transformation 
languages. These dedicated languages often present a learning curve 
due to their functional nature, specifically tailored to address complex 
programming challenges (Höppner et  al., 2022). Another good 
alternative for developing transformations is XSLT, which has a 
mature ecosystem with extensive tooling and community support. 
Another important aspect of XSLT is its portability, making it highly 
adaptable and easily integrated into various tools and environments. 
As it aligns with our specific needs, XSLT became our first choice as 
we sought a language that can be widely used in other aspects than 
model transformations.

Although not widely used, adopting model-based approaches and 
transformation languages has quickly seen the problem of managing 
complex transformations. Consequently, effectively managing the 
complexity of these transformations becomes crucial. In this regard, 
reuse is considered an important factor that addresses the challenges 
associated with the complexity of developing model transformations 
and their composition. Lano et al. classified the transformation chain 
as one of the important model transformation design patterns that 
address the issue (Lano et al., 2018). A transformation chain is also 
referred to as external transformation composition, where the output 
model of a transformation is used as input for the next transformation 
in the chain (Kleppe, 2006). Another technique is internal 
composition, where the definitions of multiple transformations are 
combined and then executed. In internal composition, transformations 
must be developed in the same transformation language, which is not 
a prerequisite in external composition.

Kusel et al. identified multiple reuse techniques in the field of 
model transformation (Kusel et al., 2013) that range in terms of reuse 
granularity from reusing parts of a transformation (Wagelaar et al., 
2010) to reusing the whole transformation (Sen et al., 2012) and even 
composing multiple small model transformation chains (Yie 
et al., 2012).

Parts of transformations can be reused and composed with other 
parts using internal composition techniques to create transformations. 
The literature contains techniques such as rule inheritance (Wimmer 
et al., 2012a) and modularization (Kurtev et al., 2007).

Rule inheritance is similar to inheritance in object-oriented 
programming and allows specializing transformation rules from a 
base rule to avoid code duplication. This concept is supported by 
several model transformation languages (Wimmer et al., 2012a). Some 
support multiple inheritance, such as QVT, while others support 
single inheritance, such as ATL.

In modularization techniques, model transformation definitions 
are grouped into modules and reused in transformations. 
Modularization allows the execution of transformation definitions 
from multiple modules as a single transformation. We find techniques 
such as variability-based rule (Strüber et  al., 2018), module 
superimposition (Wagelaar et  al., 2010), factorization (Sánchez 
Cuadrado and García Molina, 2008), phases (Cuadrado and Molina, 
2009), and many objective transformation modularization (Fleck 
et al., 2017). Strüber et al. introduced the variability-based rule, a 
representation that groups similar model transformation rules to 
avoid maintenance problems. Module superimposition, proposed by 
Wagelaar et al., is another technique that allows reusing transformation 

definitions from different modules. Cuadrado and Molina proposed a 
factorization approach to extract common transformation definitions 
and compose them using phases, where phasing is a mechanism to 
organize model transformation definitions into modules or phases, 
thereby increasing their reusability and maintainability. Fleck et al. 
proposed an automatic approach to divide large ATL model 
transformations into reusable and smaller transformations.

In our approach, we have defined generic transformations (GTs), 
which are small, parameterized, and reusable transformations used to 
build more complex transformations using internal composition. The 
concept is similar to the concept of phases (Cuadrado and Molina, 
2009) with differences such as their execution order. Phases are 
executed explicitly where the user specifies the execution order or 
implicitly where the transformation engine executes the phases 
according to their order in the transformation definition. Our 
approach differentiates between two types of GTs: containers and 
building blocks, where the container GT specifies the execution order 
of the building block GTs.

Concerning reuse techniques with large granularity, we find in the 
literature approaches inspired by generic programming that introduce 
generic transformations (Sánchez Cuadrado et al., 2011; Sen et al., 
2012; Wimmer et  al., 2012b). They allow the creation of reusable 
transformations across similar source or target metamodels. These 
transformations map source to target concepts instead of concrete 
metamodel elements. Cuadrado et  al. introduce generic 
transformations (Sánchez Cuadrado et al., 2011) and their binding to 
concrete metamodels, in addition to their composition, using a 
component model (Cuadrado et al., 2014) that allows the building of 
complex transformations. Wimmer et  al. improved the work of 
Sánchez Cuadrado et al. (2011) by automatically adding adapters to 
transformations to address the problem of structural heterogeneity 
between metamodels (Wimmer et al., 2012b). Sen et al. take another 
approach to reuse model transformations by transforming the target 
metamodel to become a subset of the transformation’s input 
metamodel (Sen et al., 2012).

In our approach, we  have introduced system-independent 
transformations (SITs), reusable transformations used in constructing 
complex systems through their composition with other SITs. Each SIT 
implements partial or all design decisions of a PDM.

The effectiveness of model-driven approaches in delivering high-
quality transformations and generating reliable systems depends 
significantly on the availability of robust tooling support (Bucchiarone 
et al., 2020). We find the propositions of environments and tools that 
leverage external composition to create complex systems in the 
literature. These environments facilitate the development process by 
suggesting, validating, or executing transformation chains. However, 
many of these environments are immature and lack appropriate 
testing and debugging tools to ensure the reliability and correctness of 
the transformations and generated systems.

Aranega et  al. used feature models to guide transformation 
chains, where they validated their approach in an environment 
dedicated to embedded systems called Gaspard2 (Aranega et al., 
2012). In this case study, they assisted end users by organizing a set 
of transformations as a feature model and proposing the appropriate 
chain of transformations based on the preferences of the end users. 
Alvarez and Casallas propose a tool called MTC flow that allows the 
design, development, and deployment of model transformation 
chains (Alvarez and Casallas, 2013). They evaluated the tool through 
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two final projects of a model-driven development (MDD) course, 
where students used the tool to implement their projects and 
conducted a survey about their experience with the tool. They 
reported that the tool is easy to use but can be  enhanced by 
extending the documentation and improving the view of the 
graphical editor. FTG + PM is a framework proposed by Lucio et al. 
that provides a set of artifacts used in model transformation chains 
and their executions (Lúcio et  al., 2013). The formalism 
transformation graph (FTG) defines the transformations, and the 
process model (PM) describes the chaining of those transformations. 
They presented the power window control software in automotive 
applications as a case study. ChainTracker is a tool that focuses more 
on traceability and presents the composition of rule-based model-
to-model (M2M) transformation and template-based model-to-text 
(M2T) transformation (Guana and Stroulia, 2014). CITRIC is a tool 
that recommends to developers whether there is a multiple 
transformation chain to link a source model to a target metamodel 
using the shortest path algorithms (Basciani et al., 2018). If multiple 
chains are discovered, the optimal one is selected and executed 
based on two criteria: metamodel coverage and information loss. 
They validated their approach by transforming a sample-KM model 
into an XML specification. Wires (Rivera et al., 2009) is a domain-
specific language (DSL) (Fowler, 2010) for orchestrating 
transformation models developed in ATL. UniTI is a tool proposed 
by Vandhoof et al. that facilitates the composition and execution of 
model transformations without knowing implementation details 
(Vanhooff et al., 2007). To illustrate their approach, they transformed 
a storage model into the corresponding Java code by producing a 
transformation chain from the following model transformations: a 
transformation that converts a storage model to a UML model, a 
transformation that modifies the associations within the UML 
model, and a transformation that transforms UML into equivalent 
Java models. Etien et  al. presented localized transformations 
restricted to a specific transformation task (Etien et  al., 2015). 
Combining those localized transformations using the “extend” 
operator in the case of incompatible metamodels allows the 
construction of large transformations. As a case study, they chained 
localized transformations to transform the UML profile of MARTE 
(OMG, 2009b) into implementation platform languages such as 
SystemC2 and OpenMP.3

These approaches employ the composition at the transformation 
level, while we have adopted another approach by composing the 
results at the model level. In this sense, we have proposed a third type 
of transformation called system-specific transformation (SST). An 
SST is composed of multiple SITs depending on the system 
requirements. The execution of an SST leads to the execution of its 
containing SITs, where each SIT results in a partial PSM. Later, all the 
partial PSMs of the SST are combined using a merge tool. Our 
approach favors the separation of concerns, as each SIT transformation 
deals only with a specific design concern, and their composition does 
not require the definition and use of intermediate metamodels as in a 
transformation chain. Another important factor when developing 
transformations and their composition is the adoption of standards 

2 https://systemc.org

3 https://www.openmp.org

and best practices; that’s why we provide a process for developing and 
reusing transformations according to the MDA approach.

Some approaches provide model transformation libraries or 
catalogs to avoid developing transformations from scratch. Wimmer 
et  al. provided a library of mapping operators, which are 
transformations that map concepts from input to output metamodels 
(Wimmer et al., 2010). Wang et al. offer a library of object-oriented 
design patterns in XSLT (Wang et al., 2007). Aranega et al. suggest 
model transformation chains based on a library of transformations 
(Aranega et al., 2012). Etien et al. provided a library of localized 
transformations for developing embedded systems applications 
(Etien et  al., 2015). Our approach presents a catalog of PDMs 
supporting design patterns or architectural patterns.

3 Description of approach

3.1 The Metamodel

The OMG introduced the Platform Model or the Platform 
Description Model (PDM) to describe an implementation platform. 
According to the OMG, a PDM “provides a set of technical concepts, 
representing the different kinds of parts that make up a platform and 
the services provided by that platform. It also provides, for use in a 
platform-specific model, concepts representing the different kinds 
of elements to be used in specifying the use of the platform by an 
application (Miller and Mukerji, 2003).” In another work, we defined 
the PDM in two views (see Figure 1a): the UML profile and a set of 
transformations (Chénard et al., 2010).

The UML profile allows the extension of the UML metamodel to 
support a given domain or platform using stereotypes and tagged 
values. A UML profile is expressed using concepts and constraints 
between them. Concepts are the main building blocks of an 
implementation platform. A concept is defined by its name, type 
(classifier (class or interface), attribute, operation, parameter, or 
artifact),4 description, and design concerns. A design concern is used 
to formulate a well-known design issue. It is defined by its name, a 
type (stereotype or tagged value), concerned UML elements (package, 
classifier, attribute, operation, parameter, generalization, association, 
association end, and dependency), and description. A constraint is 
used to maintain the integrity of the implementation platform by 
restricting the use of concepts. We define a constraint by its name, the 
concerned concepts, its type (dependency, compatibility, 
incompatibility, refinement), and a description.

A transformation applies to a specific model element type 
representing its context (see Figure 1b). The model element type is 
related to the elements of the UML metamodel. It can be a package, 
classifier, attribute, operation, parameter, generalization, association, 
association end, or dependency. The context represents the condition 
of applying a transformation based on the properties of a model 
element type. For example, the context may be  the existence of a 
stereotype property named Repository in a class model element. 

4 Note that our approach is currently limited to the types of class diagram 

elements. However, it is easily extendable to support other types of elements 

in a model.
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Performing a transformation results in a model element that 
implements an architecture or platform concept. The resulting model 
element can be a classifier (class or interface), operation, attribute, 
parameter, or artifact.

A transformation is identified by its name and can have 
parameters. The existence of parameters depends on the type of 
transformation. As mentioned before, a transformation can be a 
generic or design transformation. Design transformations can, in 
turn, be system-independent or system-specific.

Generic transformations are parameterized transformations 
reused as building blocks to construct system-independent 
transformations using internal composition. A generic transformation 
(GT) can be a container, a building block, or both. An example of a 
container GT is the class transformation, which reuses other generic 
transformations such as the operation and constructor GTs. The latter 
two GTs can play both roles because they are considered containers 
for the parameter-building block GT.

System-independent transformation (SIT) is constructed by 
defining its context and reusing generic transformations as building 
blocks. An SIT can be applied directly to a model or reused with 
other SITs to build more complex systems. We can distinguish two 
types of SITs: complex SITs that implement design decisions of a 
main architecture, such as MVC or clean architecture, and simple 

SITs that implement small design designs, such as design patterns. 
The latter SITs must contain a parameter that specifies their container 
architecture or project.

System-specific transformation (SST) is another type of design 
transformation. It is constructed by reusing SITs to implement design 
decisions of a system. Unlike other transformations, SSTs are not 
reusable and are built for a specific system with a particular 
combination of design decisions.

In this sense, A PDM can be either be system-independent or 
system-specific. A system-specific PDM may be  developed from 
scratch or composed by reusing system-independent PDMs.

3.2 Overview of approach

Figure 2 presents an overview of our approach to generating the 
source code of a system from its model. It consists of five steps:

 1 Modeling the problem domain of the software system (PIM).
 2 Specifying the software system’s implementation platform 

(system-specific PDM). This specification should result from 
reusing existing system-independent PDMs instead of creating 
the specification from scratch.

FIGURE 1

The metamodel of our approach.
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 3 Parametrizing the PIM using the UML profile of the system-
independent PDMs.

 4 Applying the transformations of the system-independent PDMs 
on the parameterized PIM. This application results in partial PSMs.

 5 Merging the partial PSMs using a merge tool.

To illustrate our approach, we  use a system that simulates the 
behavior of a gas station as a running example. The PIM of the system 
contains 16 classes and two enumerations (see Figure 3). The pump 
class manages its components: tank, gun, display, meter, and motor. 
Employees can supervise the pump’s status and the tank’s level and 
change the gas price. The diagram also shows classes supporting 
accounts, transactions, and payments of customers. The station contains 
three pumps that a customer can use when authorized by an employee.

The development of the gas station system requires several major 
design decisions, including the choice of the reference architecture 
and the technologies to be used. It will also require several small, 
localized design decisions on certain system parts. We chose clean 
architecture as the system’s main architecture.

The architecture is organized into four packages (see Figure 4)5: 
the SharedKernel package defines common classes and interfaces 

5 Our implementation of the clean architecture in DotNET was inspired from 

the Ardalis Github repository (https://github.com/ardalis/cleanarchitecture).

shared between systems; the Core package represents the business 
logic of the system; the Infrastructure package includes the 
implementation of the repositories and the interactions with the 
data sources and third-party libraries; and the Presentation package 
represents the user interface of the system.

The system needs to track the pump’s status and notify other 
components, such as its display. We, therefore, decided to use the 
Observer design pattern for this task. We  used the following 
technologies: DotNET 6, C# programming languages, SQL Server 
database, and Entity Framework for object-relational mapping 
(ORM). Hence, the system will reuse at least the transformations of 
the clean architecture and the Observer pattern.

The first step in constructing a PDM is to define its UML profile. 
The clean architecture UML profile contains, for instance, Entity, 
Repository, and Service concerns. The UML profile of the observer 
design pattern includes concerns such as Observer, Subject, and 
Notify. The next step is to define the transformations of each 
PDM. These transformations are system-independent and built 
using generic transformations. For example, the clean architecture 
PDM contains the Entity SIT, which implements the Entity concern. 
Figure 5 shows an excerpt of the building blocks of this SIT using 
the generic transformations: Import, Extend, and Class. The figure 
also shows the context of the SIT, which is UML elements of type 
Class with the stereotype Entity.

The SITs from the clean architecture and design pattern PDMs are 
reused to construct an SST that generates the PSM of the system.

FIGURE 2

The process of our model-driven approach.
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After the specification of the PDMs, we parameterize the PIM 
with different design decisions using the UML profile of the PDMs. 
The parameterization of the pump, motor, and meter classes is 
presented in Figure 6. For example, the pump class is parameterized 
with the following stereotypes Entity, AggregateRoot, Repository, 
and Service of the clean architecture PDM and Subject of the 
observer PDM. Next, we apply the SST to the parameterized PIM, 
which executes the SITs of the PDMs. The partial PSMs created by 
applying SITs are merged into a single PSM representing the 
complete system.

The final step is to apply an M2T transformation to the PSM to 
generate the system’s source code. An excerpt of the PSM of the 
system is presented in Figure 7, showing only the Core layer of the 
clean architecture. It is organized into five sub-packages: the 
subpackage Entities contains domain entities; the subpackage 
DesignPatterns includes the implementation of the design patterns; 
the subpackage Interfaces contains the definition of services and 
repositories of the system; the subpackage Services includes the 
implementation of the services; and the subpackage Specifications 

contains the implementation of the Specification design pattern in 
DDD (Evans, 2004). A specification contains the criteria necessary 
for validation or retrieving an entity. An example of a specification 
is searching for a pump by its category.

4 Tool support

4.1 Approach implementation

To implement our MDE approach, we have developed a plugin for 
Visual Paradigm6 (VP) using its open API and the Java programming 
language. By extending VP’s functionalities, the plugin allows the 
specification of PDMs, PIM parameterization, and code generation. 
The PDM specification step is simplified by providing a set of user 

6 https://www.visual-paradigm.com/

FIGURE 3

The PIM of the gas station system.
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interfaces where a user can create the UML profile and specify 
the transformations.

With the VP modeling editor, PIM parameterization becomes 
easier, where the user can select the concerned UML elements and the 
necessary PDMs, and then apply various design decisions. Finally, it 
allows code generation using the parameterized PIM and the defined 
transformations. Moreover, the tool employs XML format for 
importing and exporting the specified PDMs and the parameterized 
PIM. The plugin’s architecture is illustrated in Figure  8 and is 
organized into four packages: Controllers, UserInterface, Structures, 
and Utilities, in addition to the XML file plugin.xml and the 
class MainMDE.

The XML file plugin.xml is crucial in defining the plugin by 
providing essential information such as an identifier, a description, 
the provider, the main class, action sets, and context-sensitive 
action sets. The main class (MainMDE in Figure 8) implements the 
interface com.vp.plugin.VPPlugin, and serves as the first executed 
class when the plugin is loaded. Action sets and context-sensitive 
action sets allow the customization of toolbars and menus in 
VP. We  can differentiate between two types of actions: those 
defined on the main or diagram toolbars using action sets and 
those defined in the popup menu within the diagram editor using 
context-sensitive action sets. In the plugin, we have defined two 
actions on the main toolbar for the PDM definition and code 
generation and one in the popup menu for the PIM 
parameterization step, which involves selecting the concerned 
UML elements from the class diagram. Each action is associated 
with a class presenting the action controller that implements either 

FIGURE 4

The structure of the clean architecture.

FIGURE 5

An excerpt of the Entity system-independent transformation.
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FIGURE 6

An excerpt of the PIM parameterization.

FIGURE 7

An excerpt of the PSM of the system.
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the interface VPActionController for toolbar actions or the 
interface VPContextActionController for popup menu actions. 
These action controllers are implemented in the package 
Controllers, which contains the classes PDMController, 
CodeGenerationController, and PIMParameterizationController.

The package UserInterface consists of dialogs designed to facilitate 
interactions with the tool. Each dialog within the package is required 
to implement the interface com.vp.plugin.view.IDialogHandler from 
the open API. In the plugin, we differentiate the dialogs into two types: 
main dialogs and sub-dialogs. Main dialogs are triggered by executing 
an action controller, whereas sub-dialogs are invoked through other 
dialogs. The package includes two main dialogs: PDMsDialog and 
PIMParameterizationDialog. PDMsDialog is triggered by the 
execution of the action controller PDMController, while the action 
controller PIMParameterizationController triggers 
PIMParameterizationDialog. PDMsDialog is responsible for adding, 
editing, removing, and saving PDMs. When adding or editing a PDM, 
the sub-dialog PDMDetailsDialog is invoked (see Figure 9), allowing 
the user to add, edit, or remove concepts along with their 
corresponding design concerns, constraints, or transformations.  
These tasks are performed using a set of sub-dialogs, namely 
UmlProfileConceptDialog, DesignConcernDialog, 
UmlProfileConstraintDialog, and TransformationDialog. 
PIMParameterizationDialog simplifies the process of PIM 
parameterization. It allows users to select the required PDMs using 
the sub-dialog PDMChooserDialog and listing the chosen UML 
elements as a tree. Users have the flexibility to select multiple PDMs 
for parameterizing the PIM, resulting in the creation of individual 
trees within the dialog. Each tree has the PDM name as its root and 
the selected UML elements as its children. In Figure 10, the dialog 
PIMParameterizationDialog displays two trees corresponding to the 
PDMs of the clean architecture and the observer design pattern. Once 
the trees are displayed, users can proceed to parameterize each UML 
element. This parameterization is achieved by applying the necessary 

stereotypes and tagged values with the assistance 
of DesignConcernParameterizerDialog.

The package Structures contains the classes presented in the 
metamodel, such as PDM, UMLProfile, Concept, DesignConcern, 
Constraint, and Transformation. In addition, it includes the classes 
ParameterizedDesignConcern, ParameterizedUmlElement, and 
VPProject related to the parameterization process. The class 
ParameterizedDesignConcern captures the design concern with the 
value given during the parameterization. The class 
ParameterizedUmlElement encapsulates the UML element with its 
parameterized design concerns. The class VPProject captures the 
parameterized UML elements in a given class diagram.

The package Utilities contains helper classes like XML, 
UserInterfaceUtil, and Enums. The class XML contains methods to 
import and export the PDM and parametrized PIM in an XML format. 
The class UserInterfaceUtil includes utilities that simplify controls’ 
disposition and files and folders management. The Enums class has a list 
of enumerations used in the plugin; we find the following enumerations: 
TransformationType, DesignConcernType, UMLElementType, 
UMLProfileConceptType, and UMLProfileConstraintType.

The choice of a transformation language is an important factor 
when developing transformations. In our MDE approach, we have 
chosen XSLT due to its portability, as various development 
environments support it. Those environments provide features for 
debugging and testing XSLT transformations.

Figure 11 gives an excerpt of an SIT using XSLT. It describes the 
Entity SIT within the clean architecture PDM. This transformation 
is executed when a class is parameterized with stereotype Entity, as 
indicated in the match attribute. As a result, it creates a set of classes 
that extend the BaseEntity class. To achieve this, the SIT reuses two 
generic transformations: Class and Extend GTs. To this end, this SIT 
imports and calls the extend GT (see Figure  12), specifying 
BaseEntity as the value for the class_name parameter. The result of 
this transformation is stored in a variable, which is reused in the 

FIGURE 8

The architecture of the plugin.
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Class GT alongside other parameters like the class name and 
visibility. By utilizing this approach, the Entity SIT effectively ensures 
that the classes parameterized with the Entity stereotype extend the 
required BaseEntity class, enabling conformance to the clean 
architecture principles. For simplicity, this example only shows an 
excerpt from the Entity SIT. In reality, this SIT consists of additional 
blocks created by attribute, operation, parameter, constructor, and 
import GTs. The attribute GT is responsible for generating the 
required attributes of a given class, by providing their properties such 
as name, type, default value, and visibility. The parameter GT is a 
building block transformation reused in the operation and 
constructor GT. The Import GT is also reused to import the package 
of the extended class BaseEntity.

The source code of the VP plugin and the model transformation 
composition technique are available on the GitHub repositories 
(Abdelmalek et al., 2023a,b), respectively.

4.2 Comparison with alternative 
transformation language

In this subsection, we discuss implementing our approach using 
the QVT transformation language. The OMG introduced QVT as the 

standard language for defining model transformations within the 
MDA framework (OMG, 2009a). QVT supports both declarative and 
imperative styles of transformation definitions through its QVT 
Relations (QVTr) and QVT Operational (QVTo) sublanguages, 
respectively. We opted for QVTo to implement our approach due to 
its comprehensive capabilities for specifying transformations, which 
include using the Object Constraint Language (OCL) and imperative 
constructs such as conditions and loops. By choosing QVTo, we aim 
to provide a detailed evaluation of its effectiveness relative to our 
proposed MDA methodology and to illustrate how our approach can 
be applied using other model transformation languages beyond XSLT.

4.2.1 QVT implementation
As previously outlined, our approach facilitates model 

transformation reusability by defining and composing three types of 
transformations: GTs, SITs, and SSTs. In the subsequent paragraphs, 
we assess the effectiveness of the QVTo language in implementing 
these distinct transformation categories.

GTs are parameterized transformations that are essential for 
constructing more complex transformations. In QVTo, these 
parameterized transformations can be created through mappings 
or helpers within a specific library, enabling the explicit declaration 
of parameter names and their types. When a complex 

FIGURE 9

The user interface for specifying a PDM specification.
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transformation employs a GT, it is required to specify the values for 
its parameters. For example, in defining a GT intended for creating 
attributes of classes, parameters such as the attribute’s name (of type 
String) and its visibility (of type VisibilityKind) must be explicitly 
defined. An excerpt of this attribute GT is illustrated in Figure 13, 
represented as a mapping transformation within the generic_
transformations library. In contrast to XSLT, QVTo offers the 
distinct advantage of allowing for the explicit specification of 
parameter types.

SITs reuse GTs to implement specific concepts within a 
PDM. QVTo facilitates the reuse of transformations by allowing the 
import of mappings and helpers from other libraries and modules. 
The condition for applying a SIT can be specified using a when clause 
preceding a mapping, enabling targeted selection of UML elements. 
Moreover, QVTo includes queries that extract data from models, 
similar to XPath in XSLT. These queries assist in retrieving data for 
SITs and supplying it to the parameters of the GTs when they are 
reused. An excerpt of the singleton SIT implemented in QVTo is 

FIGURE 10

The user interface for parameterizing a PIM.
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illustrated in Figure 14, targeting UML classes parameterized with the 
Singleton stereotype. This SIT reuses the attribute GT by importing 
the library containing generic transformations.

SSTs compose multiple SITs to implement various design 
decisions tailored to a particular system. SSTs function as the primary 
entry point for executing these transformations, containing the main 
function that triggers the entire process. Furthermore, SSTs import 
multiple libraries to efficiently reuse the SITs that align with the 
system’s specific requirements. Consequently, each PDM is 
encapsulated within its own library, which includes mappings 
pertinent to its unique concepts. Figure 15 illustrates an SST that 
combines an SIT of the clean architecture with an SIT designed to 
implement the Singleton design pattern.

In summary, we  have demonstrated how our approach can 
be  implemented using the standard QVTo language. QVTo’s 
imperative nature enhances reusability and composition in model 
transformations. It incorporates key features such as parameterized 
rules, modularization, and conditional execution. These features are 
crucial for facilitating the creation of GTs, SITs, and SSTs, thereby 
optimizing the efficiency of the transformation process and improving 
its maintainability.

4.2.2 Comparative analysis
In this subsection, we  conduct a comparative analysis of our 

methodology implemented using both XSLT and QVTo, focusing on 
four key criteria: transformation definition, transformation 

FIGURE 11

An excerpt of the Entity system-independent transformation.

FIGURE 12

The extend generic transformation.
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FIGURE 13

An excerpt of the attribute GT using QVTo.

FIGURE 14

An excerpt of the singleton SIT using QVTo.

FIGURE 15

An SST that composes clean architecture entity and singleton.
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reusability, code generation efficiency, and development setup 
and integration.

In terms of transformation definition, XSLT employs a template-
based approach where the transformation logic is defined through 
templates that match specific elements or patterns in the input model. 
This method provides considerable flexibility and expressiveness in 
defining transformations. However, managing and organizing the 
transformation logic for complex transformations can be challenging. 
To overcome these difficulties, we have developed three distinct types 
of transformations. Each type addresses specific concerns and is 
further integrated using an internal composition technique. In 
contrast, QVTo adopts an imperative approach, where transformation 
logic is explicitly defined through mappings between the input and 
output models. This method facilitates a more structured and 
straightforward definition of transformations. Furthermore, while 
XSLT is primarily optimized for M2T transformations, QVTo is 
specifically designed for M2M transformations (Willink, 2018).

Transformation reusability is a critical aspect of model 
transformation. Our methodology underscores the importance of 
reusing transformations from libraries and composing them to 
construct complex software systems. We employ XSLT to segment 
transformation logic into reusable templates, enabling developers to 
efficiently reuse transformation components across multiple scenarios. 
The familiarity and widespread adoption of XSLT within the software 
engineering community enhance its value in our methodology. 
Consequently, developers can leverage existing knowledge and 
resources to expedite software development by reusing transformations 
created by others. In contrast, QVT offers a more structured approach 
to transformation reusability and composition. Its modular 
architecture, support for parameterized rules, and library definitions 
significantly aid in the composition of transformations. This 
structured approach allows developers with a background in MDE to 
assemble complex transformations from reusable building blocks, 
providing a robust framework for systematic model transformation.

In terms of code generation efficiency, XSLT excels particularly 
in simpler transformations. Our methodology enhances XSLT’s 
capabilities, enabling the creation of more complex transformations 
by composing smaller, reusable elements to generate advanced 
software systems. Additionally, the familiarity and user-friendliness 
of XSLT make it accessible to a broad spectrum of developers. This 
accessibility promotes collaborative development and facilitates 
knowledge sharing within the community, further leveraging the 
collective expertise. On the other hand, while QVT is primarily 
tailored for M2M transformations, rather than M2T transformations, 
it can still be effectively utilized for code generation. This is achieved 
through its integration with other M2T tools such as Acceleo.7

Development setup and integration assess the ease with which the 
transformation development environment can be established and how 
seamlessly transformations can be integrated with other tools. XSLT 
demonstrates high portability and ease of integration, requiring 
minimal dependencies. Its compatibility across various platforms and 
environments ensures better interoperability with different tools, 
simplifying the setup process. XSLT typically only requires a software 
engine to execute transformations, making it a straightforward choice 

7 https://eclipse.dev/acceleo/

for many developers. Additionally, its widespread adoption and 
extensive documentation support facilitate easy configuration. On the 
other hand, setting up QVT might involve more complexities due to 
its lower usage and more specialized requirements. Although QVT is 
supported by some Integrated Development Environments (IDEs) 
and modeling tools, such as the Eclipse IDE, additional configurations 
and plugins may be necessary. This can add layers of complexity to the 
initial setup process, requiring a deeper understanding and more time 
to achieve optimal integration and functionality.

In conclusion, while QVT provides robust support for 
transformation composition and boasts advantages in terms of 
expressiveness and performance, XSLT remains a vital element of our 
methodology. Its flexibility, expressiveness, and widespread familiarity 
render it indispensable for implementing our approach. By 
strategically leveraging the capabilities of XSLT alongside QVT, 
developers are equipped to create robust and scalable transformation 
solutions that meet the requirements of complex software projects. 
Recognizing the unique benefits of each, some approaches, such as 
those proposed by Li et al. (2011), have attempted to synergistically 
combine the strengths of both XSLT and QVT.

4.2.3 Benefits of our approach
Implementing our methodology using XSLT offers significant 

flexibility and expressiveness, granting precise control over 
transformation processes. This adaptability is crucial for handling 
complex scenarios through the composition of reusable 
transformations. For example, our approach introduces the definition 
of SITs by composing GTs, which is then followed by the construction 
of SSTs through the further composition of SITs. By structuring 
transformation logic into reusable templates and libraries, developers 
can accelerate the development process and ensure consistency across 
various transformation scenarios. This strategy is enhanced by 
developing a VP plugin, which further supports the reuse of 
transformations and complete PDMs from a library, amplifying the 
efficiency and scalability of the development workflow.

While our approach yields significant benefits when implemented 
using XSLT, there are numerous opportunities for enhancements that 
could further augment its effectiveness. Developing additional 
tooling support tailored for XSLT-based transformations, including 
IDEs with syntax highlighting, code completion, and advanced 
debugging functionalities, could considerably streamline the 
development process and enhance developer productivity. Moreover, 
integrating XSLT-based transformations with modern technologies 
and frameworks, such as cloud computing platforms, could broaden 
their applicability across various domains. Such integration would 
not only ensure the continued relevance of XSLT in meeting the 
dynamic needs of MDE but could also extend its utility to 
sophisticated applications like model transformation composition 
within low-code platforms, as discussed by Sahay et al. (2020).

As demonstrated in subsection 3.3.1, our methodology for model 
transformation reusability is designed to be language-independent, a 
fact validated by its implementation in QVT. However, despite its 
strengths, QVT faces challenges that may limit its broader appeal. The 
limited tooling support and steep learning curve associated with QVT 
make it less accessible for developers outside the MDE community. 
These factors can restrict its adoption compared to XSLT, which is 
generally more familiar and supported within the broader software 
engineering field.
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5 Conclusion and future work

This paper presented an approach that allows composing 
reusable transformations to build more complex ones by providing 
a catalog of prebuilt transformations targeting common 
architectures, frameworks, and design patterns. To give guidance 
and simplify the task of developing new transformations, 
we described a platform description model in two views: a UML 
profile and a set of transformations. We  also introduced three 
transformation types, each handling different abstraction design 
concerns. Generic transformations are small and reusable to build 
complex transformations, system-independent transformations 
are reusable and implement high-level design decisions, and 
system-specific transformations are not reusable and implement 
all design decisions needed for a given system. The approach is 
implemented as a plugin for a UML modeling tool and validated 
by developing a system that simulates the behavior of a gas station 
through model transformations built from the composition of 
reusable transformations.

In future work, we  plan to enrich our catalog of prebuilt 
transformations and better integrate the results of one of our 
previous works into our plugin, allowing an interactive discovery of 
the platform description models of legacy systems.
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