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This study explores the vulnerability of robot dialogue systems’ automatic speech

recognition (ASR) module to adversarial music attacks. Specifically, we explore

music as a natural camouflage for such attacks. We propose a novel method

to hide ghost speech commands in a music clip by slightly perturbing its raw

waveform. We apply our attack on an industry-popular ASR model, namely

the time-delay neural network (TDNN), widely used for speech and speaker

recognition. Our experiment demonstrates that adversarial music crafted by our

attack can easily mislead industry-level TDNN models into picking up ghost

commands with high success rates. However, it sounds no di�erent from the

original music to the human ear. This reveals a serious threat by adversarial

music to robot dialogue systems, calling for e�ective defenses against such

stealthy attacks.
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1 Introduction

Recently, Android robots have attracted considerable attention from researchers and

the public. Their distinguishing feature is their realistic human-like appearance that also

requires their behaviors to be human-like (Glas et al., 2016). Their use as an interface for

natural conversation makes them an attractive option for use in daily life scenarios (Inoue

et al., 2019).

The automatic speech recognition (ASR) module is crucial in these recent robot

dialogue systems as the most natural human-machine interface. Owing to their superior

representation learning capabilities, deep neural networks (DNNs) have been widely

used to achieve state-of-the-art performance in several applications, including ASR. For

example, the recently proposed time-delay neural network (TDNN; Waibel et al., 1989;

Peddinti et al., 2015; Sun et al., 2017; Myer and Tomar, 2018) has demonstrated much

better performance on ASR and speaker recognition tasks (Chen et al., 2023; Wang

et al., 2023) than the traditional models. However, DNNs are known to be vulnerable to

adversarial attacks. This vulnerability of DNNs has been extensively studied in the image

domain for tasks, such as image classification and object detection, but has been rarely

explored in the audio domain except for a few seminal works (Carlini and Wagner, 2018;

Qin et al., 2019; Yakura and Jun, 2019).

In this study, we test the robustness of the ASR modules of a robot dialogue system

to adversarial music attacks. Music can be exploited as a natural camouflage to hide ghost

voice commands and mislead the ASR systems into picking up these commands without

leaving any obvious traces. Therefore, we propose a novel adversarial music attack to

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1355975
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1355975&domain=pdf&date_stamp=2024-02-15
mailto:sheng.li@nict.go.jp
https://doi.org/10.3389/fcomp.2024.1355975
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1355975/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Li et al. 10.3389/fcomp.2024.1355975

slightly perturb normal music so that it can carry ghost commands

into the perturbation. We demonstrate the effectiveness of our

proposed attack on an industrial-level ASR system trained on

a benchmark speech dataset. It can hide diverse commands in

different types of music while achieving high attack success rates.

This indicates a serious threat of ghost voice commands to modern

artificial intelligence systems and devices such as smart home

devices and smart cars.

The rest of this paper is organized as follows. Section 2 briefly

reviews the related studies. Section 3 describes our proposed

method. Section 4 presents the details of the implementation and

experimental evaluations. The conclusions and future studies are

described in Section 5.

2 Related studies

In this section, we briefly review the ASR models of a

robot dialogue system and study the existing research on audio

adversarial attacks.

2.1 Robot dialogue system

As described in the previous section, the state-of-the-art

robot dialogue system is highly realistic and displays human-

like conversational behaviors. In the typical architecture of the

spoken dialogue system (Glas et al., 2016), the robot captures the

user’s speech through a microphone array so that the user can

speak naturally without needing to hold a microphone. Speaker

identification and human behavioral sensing are implemented

through Kinect and a small camera. A real voice artist trains her

text-to-speech synthesized voice, allowing her to generate realistic-

sounding backchannels, laughs, and fillers.

The most crucial module of the robot dialogue system is the

ASR system because all behaviors are conditioned on the ASR

results. This study uses a setting similar to the ASR system to

simulate the adversarial music attack on the robot dialogue system.

2.2 Automatic speech recognition (ASR)

ASR is a technique to transcribe voice to text and is one

of the core techniques for man-to-machine and machine-to-

machine communications. In recent years, ASR techniques have

been extensively used in information retrieval and speech-to-

text services, such as the speech assistant of Apple Siri, Amazon

Alexa/Echo home management service, Google Homesmart search

and service assistant, and the Microsoft Cortana personal assistant.

In these applications, ASR serves as an efficient and smart interface,

and its performance is essential for the functioning of these services.

In a nutshell, ASR maps a spoken audio sequence to a

word sequence. Under the statistical framework, the problem is

formulated as maximizing the posterior probability of a word

sequence when observing an audio sequence. The traditional

models are hybrid models, such as the Gaussian-mixture model

in combination with the hidden Markov model (GMM-HMM;

Rabiner, 1988) or a deep neural network with the hidden Markov

model (DNN-HMM; Dahl et al., 2012). These hybrid models

consist of two independently optimized components: the acoustic

and language models. Modern ASR models follow an end-to-end

framework that integrates the two components (e.g., acousticmodel

and language model) into a single trainable network (Graves et al.,

2006; Graves and Jaitly, 2014; Chan et al., 2016; Vaswani et al.,

2017; Watanabe et al., 2018). The output words or characters can

be treated as labels in these models. We note that deploying ASR

systems in real-world applications is still challenging due to the

complex and noisy physical world conditions.

2.3 Audio adversarial attacks

Adversarial examples, which (or attacks) can be crafted

by adding small, carefully engineered perturbations into clean

examples, have attracted enormous interest in the field of computer

vision. In the context of images, adversarial examples appear the

“same” as their original versions and yet can mislead DNNs with

high success rates. In a white-box setting where the attacker knows

the model parameters, adversarial examples can be easily generated

using gradient-based methods, such as the fast gradient sign

method (FGSM; Goodfellow et al., 2014) and projected gradient

descent (Madry et al., 2017). These attack methods are mostly

developed for images and often require certain modifications to

other media, such as texts and audio.

Several studies have crafted audio adversarial examples with

the intent to mislead ASR systems. These include the genetic

algorithm (Alzantot et al., 2017) and optimization-based (Cisse

et al., 2017) audio attacks. These early attempts are all untargeted

attacks that mislead an ASR model to translate adversarial audio

into incorrect transcripts. The DolphinAttack (Zhang et al., 2017) is

a targeted attack that can mislead the ASR models into recognizing

and converting an inaudible adversarial ultrasound signal to a

specific transcript that is of interest to the attacker. However,

DolphinAttack requires special ultrasound hardware to generate

the ultrasound. Voice commands can also be disguised as noise

that sounds meaningless to humans (Carlini et al., 2016; Abdullah

et al., 2019). One common weakness of early audio attacks is that

the generated adversarial noise is suspicious, potentially exposing

the attacker, and can be easily detected by the liveness detection

methods (Abdullah et al., 2019).

Consequently, Carlini and Wagner (2018) proposed targeted

attacks1 against an end-to-end DeepSpeech model (Graves and

Jaitly, 2014) by directly perturbing the audio waveform in a

white-box setting. Alternatively, the CommanderSong (Yuan et al.,

2018) attack injects the voice command into a song to mount

a targeted attack. However, the adversarial speeches or songs

crafted by these two methods often contain obvious distortions

and thus sound obviously different from the normal audio to

human ears.

To solve these problems, Schönherr et al. (2019) proposed the

psychoacoustic hiding technique to hide voice signals that are below

a certain threshold of human perception. However, this attack is

1 Here, the target means with a given command in the white-box settings.

In the latter sections, the targetmeans the system andmodels being attacked.
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ineffective when played over the air (Qin et al., 2019), and the

tested ASR system is a traditional DNN-HMM model. Similarly,

Qin et al. (2019) introduced frequency masking to hide adversarial

commands into regions of the audio that are not perceptible

by human hearing. However, this method was only tested on

laboratory-level ASR models. Moreover, the frequency masking

technique can only be applied to audio regions that have sufficient

energy. The attacker must wait for strong signals to insert the ghost

command. This significantly limits its flexibility in noisy real-world

scenarios. Except for the CommanderSong (Yuan et al., 2018),

most existing audio attacks are based on speeches. In this study,

we propose a stealthier music attack to trick the ASR system into

picking up hidden ghost commands.

3 Proposed adversarial music attack

Unlike existing audio attacks, we focus on music’s unique

characteristics to ensure that the inserted perturbations are much

more flexible over time and are not limited to high-energy regions.

Music often has a more complex structure than speech and

thus provides a more natural camouflage for adversarial voice

commands.

Considering one pop ballad shown in Figure 1 as an example, it

is observed that it contains more resonances and a clear overtone

structure (as marked out in the figure), as the singer follows

traditional vocal singing skills. However, for other music types,

such as J-POP, the singers of rock, pop, and heavy-metal songs

tend to pay more attention to emotional expressions, and therefore

their singing produces fewer overtones. Hence, we need to study

different types of music to determine if there is a universal standard

for hiding ghost voice commands.

We denote the ASR model (which is also the attacker’s target

model) as f (·), which maps the audio input to transcription. Given

a normal audio input x, a target model f (·), an adversarial attack’s

problem is finding an adversarial example x′ that can mislead the

model into making incorrect predictions. In this study, we consider

TDNN as our target model. However, our attack is not restricted to

a particular DNN architecture.

3.1 Adversarial music example generation
stage

The ASR model f (.) is trained to map the audio input to

the target transcription. The proposed adversarial music attack is

illustrated in Figure 2 and consists of the following steps.

1. We prepare the music audio, attack command texts, and train

a TDNN-HMM model with human speech data. The details of

model training are described in Section 4.1.

2. We apply forced-alignment (Young et al., 2009) on the music to

derive the initial target label to force the attack to be inserted

into the most likely mask regions based on its energy and

the contextual continuities determined by the silence and non-

silence states in the acoustic model. This step corresponds to

Figure 2 (a). The purpose is to find the time boundaries for each

command word.

3. We iteratively perturb the input examples toward a targeted

adversarial label for every frame. This corresponds to step (b)

in Figure 2. In particular, the frame-level (tied-triphone-) state

sequence is used as the adversarial target label yadv=[s1, s2, s3,

...sm], where si (1 ≤ i ≤m) is the (tied-triphone-) state id, andm

is the frame number of the sentence. The duration of each frame

is 10 ms. For the adversarial perturbation, we first compute the

actual network output ŷ:

ŷ = f (xi). (1)

We then define the difference between the network output

ŷ and the target label yadv by a cross-entropy loss function

Ł(ŷ, yadv):

Ł(ŷ, yadv) = −
∑

yadv log ŷ, (2)

The gradient of the above adversarial loss is computed and

back-propagated to the input music x:

∇x =
∂Ł(ŷ, yadv)

∂x
. (3)

The input music x is then iteratively perturbed according to

the gradient and step size α:

xt+1 = xt − α · ∇xt , (4)

where t is the current perturbation step, we note that, unlike

conventional model training, here the model parameters remain

unchanged during the attack, and only the input music

waveform x is iteratively perturbed for a total number of T (e.g.,

1,000) iterations.

In previous studies (Carlini and Wagner, 2018; Yakura

and Jun, 2019), an Lp norm-based clipping was also applied

to constrain the perturbation within a small Lp norm sphere

around the original example x. However, the human perception

in the audio space is too complex to be modeled by standard Lp
norms. Therefore, we do not use such a constraint in our attack.

Instead, we ensure the imperceptibility of the adversarial noise

by perturbing only the masking regions. This is guaranteed by

the masking operation described in step 1.

To constrain the perturbation, we intend to locate the

position on the timeline at the frame level. Music structures

like overtones are relatively simple, and it’s easy to hide attacks

in the low-frequency domain (<8,000 Hz) using the frequency

masking method (as shown in Figure 2).

3.2 Attack stage

As introduced in Section 2.1, the most crucial module of the

whole robot dialogue system is the ASR system because all the

behaviors are conditioned by the keywords extracted from the ASR

result. In a typical case, the dialogue manager g(·) is a system

that maps the output of the ASR model ŷ directly to the robot’s

response to human speech. Proposed adversarial perturbation steps
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FIGURE 1

Musical structure of a pop ballad song.

FIGURE 2

An overview of the generation of adversarial music with details.

will mislead the model to output the adversarial target label yadv,

and subsequently also mislead the dialogue manager system to

produce an incorrect response g(yadv), meeting the goal of this

study.

4 Experiments

4.1 Acoustic model training

We train an acoustic model using 460 h of Librispeech data

(train-clean-100 and train-clean-360; Panayotov et al., 2015). We

first train a GMM-HMM model using the MFCC feature with

linear discriminant analysis (LDA), a maximum likelihood linear

transform, and fMLLR-based speaker adaptive training. Then,

we train a TDNN model with four hidden layers, each layer

comprising 2,048 hidden neurons. The output layer has 3,456

neurons corresponding to the tied-triphone-states of the GMM-

HMM model. We use the GMM-HMM model to derive state

alignment as the training label.

Instead of using the MFCC/Fbank feature to train the TDNN

model, we use the 256-dimension raw waveform feature (16,000

kHz, 16 bits, mono-channel). All of these features are mean

normalized (CMN) per speaker. It is difficult to obtain a good

reconstruction from MFCCs for two reasons: (1) MFCCs discard
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a large amount of information by a low-rank linear projection of

the mel spectrum. (2) The phase information is lost, even though

there are several methods for estimating it (e.g., Griffin and Lim,

1984).

At TDNN hidden layers, we splice the frames with offsets

{−2,−1, 0, 1, 2}, {−1, 2}, {−3, 3}, and {−7, 2}. The TDNN model

is parallel trained using natural stochastic gradient descent based

on the cross-entropy loss criterion (Povey et al., 2015). The HMM

model is derived from the GMM-HMMmodel. All of these models

were implemented using the Kaldi toolkit (Povey and et al., 2011).

We use two evaluation sets from Librispeech (dev-clean and

test-clean) for testing. The word error rates (WER%) of our

TDNN-HMM model are between ∼6 and 7%, according to a 4 g

word language model trained from the transcription of the entire

Librispeech training data set.

Because our attack target is an ASR system in the

communication robot, we must consider the impact of the

far field on the ASR system. We generate simulated noisy and

reverberant data according to Ko et al. (2015). The recipes2 and

noisy data set3 are publicly available. The Librispeech clean data

are added with the additive noise and convolved with the room

impulse responses (RIRs). There are 325 real condition RIRs, and

their reverberation times range roughly from 0.2 to 1.5 s. We also

add 60,000 simulated RIRs generated from the three large rooms

according to different speaker positions. Their reverberation times

range roughly from 0.2 to 1.8 s. We also add additive noise with

the signal-to-noise ratio (SNR) ranging from −5 to 20 dB. Then,

we retrain our acoustic model based on the simulated noisy data.

The music clips played on the air require weighted prediction error

(WPE) dereverberation (Delcroix et al., 2014). We use the online

WPE recipe4 provided in the Reverb2014 website.5

4.2 Command and music

We select 22 commands that may cause some danger from

the Google-home command sets.6 The selected 22 commands

cover a wide range of real-life scenarios such as time scheduling,

phone calls, media, and activation of other devices. We chose these

commands for testing because they are the most frequently used

commands in the current spoken dialogue systems. We further

divided the 22 commands into five groups according to command

length (e.g., the number of words in the command), as summarized

in Table 1.

The number of commands for demonstrating this kind of attack

is sufficient enough. Since the ASR model is tried at the phone

level, the dictionary can be extended to as large as librispeech’s

dictionary size. In the experiment, we mainly test the influence

of the command lengths. For the same reason, The music clip

2 https://github.com/kaldi-asr/kaldi/blob/master/egs/reverb

3 http://www.openslr.org/28/

4 https://github.com/fgnt/nara_wpe

5 https://reverb2014.dereverberation.com

6 https://www.cnet.com/how-to/every-important-google-home-and-

google-assistant-command-you-can-give

TABLE 1 Command text example groups (“OK” serves as a wake-up word).

Length Command example

4 OK, ring my phone.

5 OK, open the front door.

6 OK, delete all of my reminders.

7 OK, book a room at San Francisco.

9 OK, set an alarm for every morning

at three.

TABLE 2 Seven types of music.

Types No. of clips Average duration (s)

Anime 5 7

Ballade 1 4

Bigband 2 9

Heavy-metal 4 7

House-music 1 5

Pops 1 9

Rock 2 7

covers the general category. In the experiment, we mainly verify the

influences of music types.

In our experiment, we introduce the commands into seven

types of music, including anime, ballade, big band, heavy-metal,

house music, pops, and rock, as listed in Table 2. These types of

music are selected fromNHK backgroundmusic. These music clips

show very diverse styles.

4.3 Attack error rate for ghost commands

We divided the commands into five groups according to the

number of words in each command, as shown in Figure 3.

We first evaluate our adversarial music examples by WER.

Then, we divided our commands into two parts: the wake-up part

and the command part. The wake-up part aims to wake up our

robot-like human dialogues where it is necessary to call a person’s

name at the beginning of the conversation. The command part is

the meaning of our sentences that directly determines the robot’s

reaction.We tested the word error rate of these two parts to evaluate

the attack success rate of our adversarial examples and show the

results in Figure 3. A lower error rate means that the output of the

ASR model is closer to the adversarial target model, i.e., our music

attack is more effective. It is observed that the command length has

a considerable influence on the attack’s error rate. As the command

length increases, the error rate of the attack decreases, implying

that the proposed music attack becomes increasingly effective. The

slight rebound in the last test group may be caused by insufficient

test data.

Furthermore, Table 3 shows three types of attack error rates.

They are the WER and the two different types of pre-set keywords,

namely, the wake-up word error rate (WWER) and command word

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1355975
https://github.com/kaldi-asr/kaldi/blob/master/egs/reverb
http://www.openslr.org/28/
https://github.com/fgnt/nara_wpe
https://reverb2014.dereverberation.com
https://www.cnet.com/how-to/every-important-google-home-and-google-assistant-command-you-can-give
https://www.cnet.com/how-to/every-important-google-home-and-google-assistant-command-you-can-give
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Li et al. 10.3389/fcomp.2024.1355975

FIGURE 3

Attack error rate of commands with di�erent lengths.

TABLE 3 Attack error rate of di�erent types of adversarial music to the

ASR system.

Type WER (%) WWER (%) CWER (%)

Anime 23.15 24.77 24.77

Ballade 21.43 85.71 23.81

Big Band 17.08 17.95 5.13

Heavy Metal 51.15 34.09 62.50

House Music 20.76 7.69 17.95

Pops 18.90 9.52 14.29

Rock 41.35 82.93 63.41

The best and second-best results are marked individually in gray and light-gray cells.

error rate (CWER) results, and they are shown for different types

of adversarial music. It is observed that the music type can also

significantly impact the attack success rates. Intuitively, it may be

expected that music with a high-energy spectrumwill make it easier

to hide ghost commands with a perturbation in the spectrum.

However, the obtained result is opposite to our expectations. It is

found that the rock and heavy-metal music adversarial examples

have the least impact on the model, which is quite counter-intuitive

because these types of music often contain a high-energy spectrum.

This is because the forced alignment process tends to insert the

commands into the musical regions closer to the human voice.

In our experiment, pop, and big band music have more regions

with human-like energy and continuities (regardless of duration),

making them better for misleading the target model.

4.4 Audio quality for adversarial music
examples

To better identify the type of music more suitable for

adversarial music generation, we performed a few evaluations

using subjective and objective parameters. We aimed to find

TABLE 4 MOS of di�erent types of music.

Type Control Short Middle Long

Rock (5s) 3.67 2.00 2.33 2.50

Rock (9s) 3.41 2.16 2.42 2.08

Heavy-

Metal

3.58 2.08 2.08 2.00

Big Band 3.33 1.67 1.92 1.58

Pops 3.17 2.42 2.08 2.25

1: clearly quite different, 2: slightly different, 3: maybe similar, 4: clearly the same. The best

and second best results are marked in gray and light-gray, respectively.

a type of music with a low error rate in the keyword-

spotting task and a generated adversarial music example that

is almost the same as the original music. Such type of music

was found to be most suitable as a target for adversarial

music generation.

For subjective evaluation, based on the results of machine

evaluation, we chose three different lengths of commands (short

is a four-word command, middle is a six-word command, and

long is a seven-word command) combined with five different

types of music to generate our human listening adversarial music

test set. In our experiment, we invited 12 listeners. We used

a four-level mean opinion score (MOS) to judge the difference

between the attack music and original music, where a score

of four meant that the attack music and original music were

identical, and one meant that the attack music was significantly

different from the original music pair. We also added two original

music pairs as a control group to ensure the objectivity of

the score.

An examination of the data presented in Table 4 shows

that most of the attack music samples have scores that are

approximately one lower than the control group, indicating that

the music attack examples used in this study are the same

as the original music. However, the best results were obtained

for pop music and rock music, which generated the highest

scores in this listening test. According to the results of different

command lengths, we find that the attack music example for

the middle-length command has the least difference from the

original music.

Table 5 shows the objective evaluation of the signal distortion

between the attack and original music. Four criteria from the

speech enhancement field are used, namely, perceptual evaluation

of sleep quality (PESQ) and segment-SNR (SSNR), a composite

measure for signal distortion (CSIG), a composite measure for

noise distortion (CBAK), and a composite measure for overall

speech quality (COVRL). Almost identical to the subjective test

results, 5-s rock music and pop music perform best in the

objective evaluation.

We also directly compared the spectrum of the adversarial

examples generated by different music types. These music attack

examples are uploaded.7 Figure 4 shows the original big band

music spectrum (left part) and the adversarial example spectrum

(right part). It is observed that the music has a considerable

7 halspeech.github.io/demo_journal.html
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TABLE 5 Enhancement scores of di�erent types of examples (length type: S, short; M, middle; L, long; the best and second best results are marked in

gray and light-gray cells, respectively).

Type Len CSIG CBAK COVL SSNR PESQ

Rock (5s)

S 5.00 4.93 4.48 24.33 3.71

M 5.00 4.99 4.57 24.43 3.82

L 5.00 5.00 4.77 24.45 4.07

Rock (9s)

S 3.56 4.41 3.01 26.58 2.34

M 3.53 4.40 2.96 26.67 2.29

L 3.45 4.33 2.88 26.21 2.21

Heavy-

Metal

S 4.67 4.47 3.86 23.16 2.95

M 4.65 4.45 3.83 23.13 2.91

L 4.51 4.35 3.66 23.01 2.72

Big Band

S 4.71 4.72 4.10 23.59 3.36

M 3.92 4.08 2.98 24.32 1.93

L 4.58 4.62 3.95 23.14 3.22

Pops

S 5.00 4.58 4.57 18.47 3.75

M 4.99 4.38 4.23 18.29 3.35

L 5.00 4.52 4.46 18.32 3.64

Perceptual evaluation of sleep quality (PESQ) and segment-SNR (SSNR), a composite measure for signal distortion (CSIG), a composite measure for noise distortion (CBAK), and a composite

measure for overall speech quality (COVRL).

FIGURE 4

Spectrograms of the original big band music (left) and generated big band music with attacks in low-frequency <8 kHz (right).

FIGURE 5

Spectrograms of the original pop music (left) and generate pop music with attacks in low-frequency <8 kHz (right).
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change in the energy-sparse part of the spectrum highlighted in

red boxes. However, in the case of pop music shown in Figure 5,

only a few sparse parts are observed in the spectrum, so the

spectrum only changed slightly (also highlighted in red boxes).

This might be the reason why big band music has the best

ASR results but poor results in subjective and objective music

quality experiments.

Based on the result of keyword-spotting error rates

experiments, we noticed that pop and big band music

demonstrate the lowest error rate because they are similar to

the human voice regarding continuity and accentuation. In

the subjective and objective music quality experiments, we

discovered that pop and rock adversarial music cannot be easily

distinguished from the original music because the spectrum

of these types of music is very dense. Based on the above

two points, pop-like music is identified as the best choice for

making adversarial music examples to attack the TDNN-based

ASR system.

The experiments show that the proposed adversarial music

attack examples have a high attack success rate on the TDNN-

based ASR model. Moreover, we verified the following features

to be optimal for generating inaudible adversarial music. First,

the use of a middle-length command increases the attack

success rate. Second, the optimal regions for hiding our

attacks should match the energy and contextual nature of the

acoustic model. Third, the music spectrum range should be

wide enough to hide the attack perturbation and to make

it inaudible.

5 Conclusion

To the best of our knowledge, our study was the first

to systematically investigate the design of adversarial examples

for music to mislead the industry-level ASR model for robot

dialogue systems. We first verified that the ghost words can be

easily hidden in the music. Then, we proposed our FGSM-based

method to generate the adversarial music attack examples. The

experiments show that the proposed adversarial music attack

examples have a high attack success rate on the TDNN-based

ASR model. In the future, these discoveries will guide the use

of adversarial music examples to develop more robust audio-

based human-machine interfaces effectively. Also, the white-

box method with knowledge of music proves our ideas in an

explainable way, and we will extend this discovery to more

black-box scenarios.
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