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Internet of Things (IoT) has become an interesting research domain as numerous

devices, preferably equipped with sensors, communication, and actuator

modules, are deployed to capture real-time data in the di�erent application

areas, such as smart healthcare and industries. These devices have the built-

in capacity to directly interact with the physical phenomenon and report any

unusual situation within their respective coverage areas, i.e., monitoring a

critical patient in the smart hospital but direct communication with a common

destination module is not guaranteed and could possibly be very challenging

if two or more devices, preferably those in closed proximity, are interested to

transmit simultaneously. Therefore, in this manuscript, we are going to present a

hybrid slot allocation approach, which is specifically designed for those devices

resided in neighborhood and are eager to communication concurrently with a

common destination device, i.e., server. In the beginning, the k-mean clustering

algorithm is used to group these devices into clusters where server is forced

to collect data from devices deployed in the respective coverage areas. Thus,

every server generates dedicated slots for active devices and an additional slot for

server(s). Similarly, the proposed neighborhood-enabled time division multiple

access (TDMA) has the flexibility of assigningmultiple slots to a requesting device

if available, which is needed in scenarios, such as detection of pest in the field.

Additionally, amember device is allowed tomigrate (if needed and possible) from

one server’s coverage region to another. Simulation results confirmed that the

proposed approach is better than the existing algorithms (opportunistic TDMA,

hybrid TDMA, and non-orthogonal multiple access), particularly in terms of

bandwidth, end-to-end delay, and empty slot utilization. The proposed scheme

has improved bandwidth and empty slot utilization, which are approximately 15%

and 12%, respectively, whereas it has achieved approximately 94.89% utilization

of the available slots which was previously 93.4%.
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1 Introduction

Internet of Things (IoT) is defined as a self-organized network

of various devices Ci, i.e., things, which are dispersed either

randomly or deterministically (if feasible) to periodically monitor

a physical phenomenon, i.e., controlling manufacturing process

in the hazard environment when entry of the human being is

susceptible to possible danger (Song et al., 2020). These devices

are attached directly to the equipment and programmed such

that the required information is captured precisely and accurately

after a fixed time interval (Alam et al., 2024). Furthermore, these

devices Ci depend on the on-board battery that is most probably

not rechargeable and equipped with transceiver module that has

a limited coverage area, and thus, every device is not able to

communicate directly with the base station (Nassereddine and

Khang, 2024). It is important to note that these wearable devices

Ci may be embedded with various application-dependent sensors

and actuator modules in IoT networking infrastructures(Alshehri

et al., 2018). Reliable and timely transmission of the capture data is

one of the difficult problems with IoT networks (Wang et al., 2024).

This captured data are either transmitted directly (if possible) or

through multi-hop communication mechanism where a group of

these wearable devices acts as relaying devices and is bounded to

transmit data of the neighboring devices in addition to their own

data (Gope et al., 2021). In these scenarios, it is high likely that

multiple devices may be interested to communicate with a common

destination module, i.e., server in this case.

Due to the concurrent communication in the IoT, the

probability of collision among various packets is very high

in industrial Internet of Things (IIoT) networks (Alshehri et

al., 2019). Therefore, various simultaneous transmission-enabled

communication approaches have been presented to guarantee

concurrent transmission of packets from multiple wearable devices

Ci to IIoT networks. These mechanisms are primarily based

on the idea allocating dedicated sub-channels or a time slot or

a separate code for the communication. Orthogonal Frequency

Division Multiple Access (OFDMA) is one of the common

mechanisms which is used to guarantee simultaneous transmission

of multiple wearable devices Ci with a common receiver, i.e.,

server Sj in this case (Nguyen et al., 2020). OFDMA generates

smaller frequency bands by dividing available bandwidth which is

called sub channelization. These channels are assigned to various

competing wearable devices preferably in first-come-first-serve

or priority bases in IIoT networking infrastructures. Similalrly,

OFDMA with a single carrier is presented to address concurrent

communication of multiple devices through a hybrid of time

and frequency domains. Apart from it, non-orthogonal multiple

access (NOMA) was reported in the literature to enable packet

transmission of multiple wearable devices Ci, concurrently using

a shared medium of communication in the IoT networks (Khan

et al., 2020). An extended version of the NOMA, i.e., power-

enabled NOMA, was reported to address the aforementioned

issue; power levels are utilized as a differentiating factor in the

concurrent communication among multiple devices (Shahab and

Shin, 2018; Sun et al., 2019). Wastage of the available bandwidth

is among the core issues associated with these approaches,

particularly in the IoT networks. In addition to these schemes, time

division multiple access (TDMA)-based schemes were presented,

where available sliding window (preferably time-based) is divided

into various slots, and these available time slots are allocated

to needy wearable devices either permanently or preemptive-

based strategy (Johari and Krishna, 2020). A hybrid mechanism,

i.e., TDMA and hierarchical, was reported in the literature to

enable concurrent or simultaneous transmission of packets among

multiple active wearable devices in the IoT networks. Although

this mechanism has addressed various problems linked to the

TDMA-based approaches, it is susceptible or vulnerable to the

failure of a single point that is parent device Ci. Apart from

these, neighborhood-based schemes have been presented for static

and mobile IoT networks, respectively; however, both schemes

do not consider applicability of the machine learning approaches,

especially in scenarios where networks becomemature (Khan et al.,

2021, 2023). Therefore, an effective, reliable, and efficient wireless

communication algorithm is required to be proposed that not only

ensure simultaneous communication among multiple devices but

also equally resolve the aforementioned issues.

In this study, we present a machine learning and neighborhood

slot allocation-enabled wireless communication methodology that

is particularly developed for the edge-enabled IoT infrastructure.

In this approach, k-mean clustering (AI-based methodology) is

utilized to organize randomly deployed wearable devices Ci into

an operational hierarchical IIoT networks, where every server

or cluster head (CH) has a specific set of member devices Ci.

Second, every server Sj has been forced to form two groups of

time slots, where one group, preferably large, is dedicated for

the ordinary member devices Ci and other, particularly small, is

reserved for server modules Sj, which are not able to transmit

directly. The major contributions to the research community of the

work presented in this study are as follows:

1. Machine learning and neighborhood slot allocation-enabled

transmission for IoT networks with minimum possible

communication overheads.

2. K-mean algorithm is used to ensure maximum possible

utilization of the available bandwidth and empty slots in IoT.

3. Migration aware TDMA approach where wearable devices Ci

may migrate from coverage area of a server to another, a

common scenario in the smart hospitals.

4. A two tier machine learning-enabled slot allocation approach

which is specifically designed for the hierarchical IoT networks.

The rest of the study is organized as follows. In Section 2,

a brief but comprehensive literature review of the most relevant

techniques is presented. In Section 3, we have focused on explaining

how the proposed machine learning and neighborhood slot

allocation-enabled mechanism are formed and how it is used to

be applicable in the problem domain. In Section 4, a detailed

and thorough analysis of the proposed and available schemes is

presented in terms of numerous performance metrics. Finally,

concluding remarks and future directions are presented.

2 Literature review

In this section, a brief literature review of numerous related

approaches have been presented as complete review is beyond the

scope of this study.Moreover, as existing approaches cover different
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research domains such as non-orthogonal multiple access (NOMA)

and time division multiple access (TDMA), details of these schemes

are shown in separate subsections.

2.1 Non-orthogonal multiple access-based
approaches

Unlike single sub-carrier approach, where a high rate or

power stream is transmitted to enable simultaneous wireless

communication, a multiple sub-carrier concept is utilized in

OFDMA. In this scheme, multiple small sub-carriers, preferably

within the same single carrier stream, enable simultaneous

communication amongmultiple interest devices in both traditional

and constraint-oriented networking infrastructures (Nguyen et al.,

2020). In OFDMA-enabled approaches, the available bandwidth

(single stream) is divided into smaller multiple sub-carries or

frequency bands which are allocated to those interested wearable

devices. It is observed that these sub-carriers were bounded to

transmit in parallel, where guard carriers are used to reduce channel

interference and transmission delay. Similarly, vector OFDMA was

reported which is based on the concept of multiple input and

multiple output (MIMO), whereas flash OFDM is based on the

concept of multiple tone and fast hoping to enable simultaneous

wireless transmission among multiple devices. Single-carrier

OFDMA is an alternative solution to the traditional OFDMA

which has the capacity to allow more powerful transmitters.

Additionally, NOMA scheme, that is a random access approach-

based technique, has been reported in the literature to enable

simultaneous transmission of multiple devices over a common

channel (Khan et al., 2020). NOMA is reliable and has the ability

to achieve expected goal of the 5G networks. In this scheme,

every device is bounded to operate in the same frequency band,

where power levels of every device are different from other, which

is used as a differentiating factor at the destination module or

device. Generally, NOMA utilized super position coding-enabled

transmitters which are helpful to differentiate between down-

link and up-link channels at the respective receiver that is a

successive interference cancellation-enabled. An extended version

of NOMA, that is power-enabled NOMA, was reported, where

numerous devices use completely different power level in order

to transmit data values (Shahab and Shin, 2018; Sun et al.,

2019). Although these methods have addressed the communication

problem (concurrent) with IoT networks, one of the frequent

problems with these techniques is bandwidth waste.

2.2 Time division multiple access-based
approaches

Contention-enabled multiple access approach, that is primarily

a four-way hand shake approach, was presented to allow

simultaneous transmission of more devices, preferably active and

interested, with a common receiver. Furthermore, the situation

becomes more and more complex only if devices have to utilize

a common channel or medium for communication (Adame

et al., 2014; Doost-Mohammady et al., 2016). Although this

mechanism has resolved the collision issue, excessive time for

registration is a challenging issue with this approach. Combined

authentication/association (Shahin et al., 2016), distributed

authentication control (Bankov et al., 2016), and centralized

authentication control (Pawlowski et al., 2014) were reported

in the literature to address numerous possible problems with

the contention-enabled multiple access mechanism. Similarly, a

reliable and efficient handshaking approach (four way), that is RTS

and CTS which are used to represent request and clear-to-send,

respectively, was presented specifically to resolve the challenging

issue that is hidden terminal scenario (Chen et al., 2018). This

mechanism ensure the reliability of an ongoing communication

session by forcing other devices to hold their transmission until the

session is completed. The exposed terminal scenario, where devices

that can interact without interruption are constrained to wait for

the successful conclusion of an ongoing communication session, is

a strongly connected problem with this technique. Faruque (2019)

have presented a TDMA-enabled communication mechanism to

enable simultaneous transmission of multiple devices. In TDMA,

the sliding window, time based, is divided into numerous slots,

preferably of equal size. These available time slots are allocated

to wearable devices on first-come-first-serve basis preferably in a

non-preemptive manner. A member device must communicate

(if it has data to send) in its dedicated slot, and slot is empty if a

particular device does not have any data to send. In a dedicated

TDMA approach, collision is completely avoided, but wastage of

the available bandwidth is very high. Lee and Cho (2017) presented

an alternative approach to the traditional TDMA scheme that

is a hybrid scheme. TDMA and hierarchical approaches were

integrated to form an exceptional communication scheme for

the IoT network. However, single-point failure and transmission

delay (maximum) are among the common issues associated

with this approach. Similarly, a contention-free MA scheme was

proposed by Zhai et al. (2016), to enable a proper schedule-based

transmission of packets in time and frequency domains. It has

used an automatic repeat request-based scheme to improve

reliability and efficiency. However, specific hardware-oriented is

one of the core issues associated with this scheme. Similarly, a

slotted hybrid approach, that is based on CSMA/CA and TDMA,

was presented by Shahin et al. (2018), to enable simultaneous

transmission of multiple interested wearable devices preferably in

their own time slot. This scheme is quite effective to address the

excessive registration problem associated with the IoT networks.

In this system, member devices are compelled to broadcast their

authentication request messages via CSMA/CA, while association

request messages are handled exclusively by TDMA. Batta et al.

(2019a,b) have proposed various extensions to the traditional

TDMA approach, especially distributed to improve latency in

IoTs. A distributed and token-based mechanism was developed to

resolve the hidden terminal scenario problem preferably in the IoTs

and Mobile Ad Hoc Networks (MANETs) (Ye and Zhuang, 2017).

Prolong end-to-end latency, concurrent packet transmission, and

single-point failure are among the core problems with this scheme.

Similarly, distributed TDMA was reported in the literature to

minimize bandwidth wastage in the IoT networks, where slots

are allocated to various devices using a mature scheduling policy
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(Li et al., 2017). This scheme has used priority metric of a device

to guarantee the allocation of a slot. However, starvation and

simultaneous communications are not guaranteed, as time slot

assignment strategy is prioritized. Thus, a low-priority device

should wait longer. Similarly, a time slot assignment approach,

which is based on the distributed TDMA, was presented by Bhatia

and Hansdah (2013) where the allocation process of available slots

is random. Synchronization is among the core problems, which

is closely linked to this approach. A novel multi-channel hybrid

approach was presented to resolve the aforementioned issue in

IoMT (Ramachandran et al., 2020). On-board power efficiency

and complexity are the main problems linked to this methodology.

Similarly, topological orders-enabled TDMA scheme was reported

in the study mentioned in the reference (nguyen et al., 2020),

where wearable device maintained valuable information about the

scheme, and it is very useful to get a time slot. However, slots’

waiting time has a direct co-relation to the network density.

3 Proposed machine learning and
neighborhood slot allocation-enabled
communication scheme for Internet
of medical things

A thorough and in-depth explanation of the suggested machine

learning and neighborhood slot allocation-enabled communication

technique is provided in this section. The proposed methodology is

advanced enough to enable the transmission of packets, especially

simultaneous of several devices, ideally close neighbors, to a single

destination device, such as a server module or cluster head (CH)

in IIoT networks. In the beginning, a hierarchical IIoT network

is created using the K-mean clustering technique, one of the

unsupervised learning and partitioning clustering mechanisms,

where each member device is placed so that it may connect directly

with the desired CH module in the IIoT networks. Below is a

thorough explanation of the K-mean clustering method.

3.1 K-mean clustering in the proposed
communication approach

Usually, k-mean clustering approach is used to divide data

values (preferably non-labeled) into clusters, and it is high likely

that data values belong to a particular cluster have the similar

characteristics, particularly those on which clustering is performed.

Initially, k-means clustering is bounded to randomly select K

devices Sj, where K represents the expected number of clusters in

the IoT networks as the intended CH Sj. In the proposed setup,

CHs Sj are devices preferably with higher communication and

processing capabilities than the ordinary devices Ci in the IoT

networks. These devices Sjjmay reside at different locations, as the

deployment process or mechanism is random, and it is high likely

that a balance clustering approach, where every cluster has similar

member devices Ci, is not feasible. These cluster heads are deployed

randomly using Equation 1, where every CH module Sj represents

a particular centroid in the modified k-mean clustering approach as

follows:

Ck =

∑

j :(C(j))=k CHj

Nk
(1)

where k=1.....K clusters in the IoT network. In the second step of the

k-mean algorithm, member devices Ci of every CH Sj are identified

through a systematic processing that is using a well-known distance

measure, such as Euclidean distance measure. Euclidean distance

between a CH Sj and ordinary device Ci is calculated as described

in Equation 2

Distance(Sj,Ci) =

√

√

√

√

n
∑

l=0

(S1j − C1i)2 (2)

where l represents various metrics used to calculate the distance

between a particular CH and its neighboring devices preferably

those reside in the coverage area of the communication module.

Furthermore, a specific threshold value, i.e.„ δ = 0.05 in this case,

is assumed to divide member and non-member devices Ci using

Equation 3 which is presented below.











∀j=0...m D(Sj,Ci) < δ

∃i=0...n D(Sj,Ci) == δ

(3)

It is necessary to find the best possible set of nearest neighboring

devicesCi for every CHmodule Sj in the IoT network. Additionally,

every ordinary device finds the nearest CH module Sj, which is

computed using Equation 4 as follows:

CH(j) = argminj<k<K[CHj − Ci]
2 (4)

where j=1 . . .m. Thus, a particular member device Ci joins the CH

module Sj which is deployed at the least possible distance in the IoT

networks.

Additionally, every CH module Sj is bounded to broadcast its

location information to the neighboring devices Ci, which is quite

similar to the process of computing a new centroid in the traditional

K-mean clustering mechanism as given in Equation 5.

CHj(a) =
1

nj :CHj←Ci

∑

xi(a) (5)

where a represents the numerical or attribute value of possible set

of member devices in the coverage area of a particular cluster head

module Sj. It is noteworthy that amodified version of the traditional

k-mean approach is used, where the cluster head selection process

is repeatedly applied. However, in the proposed setup, CHmodules

are powerful devices, and the rotation process for the CH module

is not needed. In this way, every device Ci becomes a member of

the nearest possible CH module in the operational IoT networks.

Furthermore, unlike balanced clustering mechanism where every

cluster has similar number of member devices Ci, the proposed

model adopts a non-balanced clustering methodology. It is due to

the random deployment nature of these devices, i.e., Ci & Sj, where

it high likely that a particular area may have dense deployment

than other areas. As soon as the clustering formation mechanism

is complete, the next process is to generate a dedicated time slot for

every member device Ci in a particular CH module Sj.
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4 Proposed neighborhood-enabled
slot allocation approach for Internet of
medical things

In this phase, it is assumed that every CH module Sj has

completed the membership process of the ordinary devices Ci

(preferably neighboring devices). Furthermore, a member device

is bounded to be a part or member of a particular CH module

Sj even though the another CH module is located in its coverage

area. However, devices Ci reside on the edges of two or more

clusters should keep the record of other CH modules Sj+1, which

are at second and third (if any) positions as far as distance is

concerned. Initially, every CH module Sj divides the allocated

frequency domain (preferably radio) into time slots of equal size

such that a particular time slot is sufficient for the transmission

of data captured by a member device Ci. Moreover, every CH

has to make sure that slots are allocated to those devices only

which fall within the direct coverage area, i.e., having minimum

possible distance. To understand the complete methodology, a

detailed flow chart of the entire working process of the proposed

neighborhood-enabled slot allocation scheme is shown in Figure 1.

Furthermore, a single device is allowed to transmit its data

in a particular time interval, whereas other devices wait for their

allocated time slots. Thus, the net rate of transmission in scenarios,

where load remains constant, is shown in the following Equation 6.

ηSTDMA =
1

M
(6)

where M is the total number of member devices Ci in the coverage

area of a particular CH module Sj. In the proposed TDMA

approach, every CH module has a different number of member

devices, and thus, it is high likely that the number of slots is different

in every CH module Sj. For example, if a CH Sj has twelve (12)

member devices, then it is forced to generate or divide the radio

frequency into 12 equal time slots. Furthermore, these time slots

are assigned in first-come-first-serve (FCFS) basis. Time slot T1 is

assigned to device Ci only if the time slot has reserved the device

before othermember devicesCi+...n in a particular CHmodule Sj. It

is important to note that spectral efficiency of the proposed TDMA

scheme is computed using the following Equation 7.

ηa =
τMt

Tf
(7)

wheremetric τ represent the duration of a particular time slot,Mt is

used to represent the total number of slots per frame, and Tf is used

to depict the duration of a particular frame in the IoT networks.

As soon as time slots are assigned to the member devices Ci, the

next step is the transmission of data captured by these member

devices. In the proposed neighborhood-enabled TDMA approach,

it is possible that a particular CH module Sj has maximum number

of member devices than other CH modules Sj+1 in the networks.

Therefore, a member device Ci in this particular CH is expected

to wait longer for its particular time slots. For example, the nth

device Cn has to wait for ψn, which is represented by the following

Equation 8.

ψn = τ −Mod((

n
∑

i=1

Wi +
n− 1

µ
),T) (8)

where Wi and µ represent arrival and transmission time of a

particular deviceCi, respectively, in the proposed TDMA approach.

Meanwhile, the serving time µ is represented by Equation 9.

µ =
1

T
(9)

where T represent the time interval of a particular time slot which

is constant in the proposed mechanism. Thus, putting the value of

µ in Equation 8, we get Equation 10 as given below.

ψn = τ −Mod((

n
∑

i=1

Wi + (n− 1)T),T) (10)

which is further simplified into the following Equation 11, as given

below.

ψn = τ −Mod((

n
∑

i=1

Wi,T) (11)

To resolve this issue, the proposed TDMA approach allows devices

deployed on edges of two or more clusters to switch from one

cluster to another. This process is applicable only if its waiting

time interval with the first cluster is longer than its expectation.

However, this shifting process is bounded by certain rules which

are given below.

1. Migration is applicable in early stages of the IIoT and only once

for every interested wearable device Ci.

2. slot waiting time or the expected value of ψn for a wearable

device Ci is greater than the defined threshold value.

3. The number of wearable devices Ci in current cluster Sj should

be greater than that of neighboring cluster Sj+1 (if any exist).

4. A wearable deviceCi, that is interested inmigration, should be in

direct communication range of the intended CHmodule Sjj+ 1.

5. The intended CH module has not accepted any or at-most one

migrated device Ci.

If a particular member device Ci fulfills the aforementioned

restrictions, the proposed scheme allows this device tomigrate from

current CH module Sj to another CH Sj+1. For this purpose, this

device Ci should inform the current CH module Sj before sending

a cluster joining request to another CH module that is Sj+1. This

previous information is helpful for the current CH; current CH Sj
utilizes this time slot by assigning it to other member devices Ci+1

or repeating the process of dividing the radio frequency into the

time slots. However, it is noteworthy that the migration process of

any member device Ci is possible until the network becomes fully

operational.

When a device interested in migration sends a request to join

cluster message to the intended cluster head, it waits for a certain

time interval which is sufficient to receive response message from

the expected CH module Sj, as described in Equation 12

Tb = rand(100− 1000)microsec (12)
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FIGURE 1

Flow chart of the proposed neighborhood-enabled slot allocation scheme.

where Tb represents back-off or waiting time interval of device Ci,

which is interested in migration and joining another CHmodule Sj.

The concerned CH module Sj generates time slot for the migrated

device Ci by dividing the radio frequency domain into time slots.

However, every CH module is bounded to repeat (if necessary)

slot generation process once or twice, but it should be completed

before the network becomes fully operational. Once time slots are

generated, the alloted time slot is shared with the migrated device

Ci in the IoT networks.

Migration activity of member device Ci from one CH to

another is very helpful in the efficient utilization of the available

bandwidth, maximizing throughput of the underlined networks.

Apart from it, slot waiting time is reduced, which is directly

proportional to the number of member devices in a particular

CH module Sj. Additionally, the proposed TDMA approach allows

a device Ci to hold multiple slots (if available) as long as other

member devices Ci+1 are not eager to communicate with the CH

module Sj. However, a request should be sent by the concerned

device Ci to the intended CH module Sj that multiple slots

are required. For example, an IoT network is considered which

has five CH modules Sj and fifty devices Ci where j=1.....5 and

i= 1....50. Since the deployment process is random, it is quite

likely that every CH module has different number of member

devices. Apart from that, it is possible that a member device may

be a part of two or more clusters, which is possible for those

devices that are deployed on the edges of these clusters. However,

unlike existing TDMA schemes, the proposed approach does not

allow any device Ci to be a member of multiple cluster heads,

resulting in data duplication and wastage of resources. Let us

further assume that CH1,CH2,CH3,CH4, and CH5 have 15, 10,

10, 7, and 8 member devices, respectively. Thus, cluster heads

CH1,CH2,CH3,CH4, and CH5 are bounded to generate 15, 10,

10, 7, and 8 time slots, respectively, and assign these slots to the

member devices in FCFS. However, slot waiting time in CH1 is

approximately double than that of CH4 and CH5, respectively.

Thus, as suggested in the proposed TDMA approach, if two devices

are migrated from CH1 to CH4 and tow to CH5, then waiting

time interval in cluster head one,i.e., CH1, is reduced considerably,

which enhances throughput of the networks. Although slot waiting

time intervals in both cluster heads, i.e., CH4 and tow to CH5,

are increased approximately, its impact on overall waiting time of

the member devices is less as member devices are less than other

modules in the network. The proposed neighborhood-enabled slot

allocation scheme bounds every CH to maintain a closed ratio

with the number of available slots and member devices in the IoT.

Additionally, every member device is bounded to communicate

within its allocated time slot and more slots are required, these

should be assigned based on their availability. Furthermore, reserve

slots are utilized only if a new device enters in the coverage area

of the respective CH, and free slots are not available. A complete

description of this whole process is graphically presented in a

diagram or system model, which is shown in Figure 2 .

5 Simulation results and discussion

In this section, a detailed analysis on the performance of the

proposed machine learning and big data analytic-enabled approach

in the light numerous evaluation metrics is presented. For this

purpose, the proposed scheme along with the existing schemes is
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FIGURE 2

Graphical representation of the proposed neighborhood-enabled slot allocation scheme in the IoT.

implemented in OMNET++ (?), where the signal to noise ratio and

interference are assumed to be constant. Every member device was

assumed to have initial energy of 52000 mAh, which was similar to

the capacity ofWaspMote Technology Pro-board (?). Moreover, we

have assumed that transmission and processing power of the CH

module are far more greater than an ordinary device. Simulation

parameters, which are used in conducting these experiments both

for existing and proposed approaches, are shown in Table 1. In this

simulation, the expected channel rate was assumed as 9600 and

2400 bps, where value of µ = 0.5 and 2.8. For example, if channel

rate is 9600 bps, then the length of a single packet is 86 * 8 bits⇒

approximate length of a single slot is Ts = 64 ∗ 8/9600 = 0.05s.

Now, if the total member devices in a particular cluster is 15, then

the frame length TsM = 0.75 s. Apart from it, channel delay was

assumed as constant in both schemes, i.e., proposed and existing.

These algorithms are evaluated using different and well-known

performance metrics, such as message or packet delay during

transmission, packet loss ratio, slot waiting time, and utilization of

the empty slots.

5.1 Average slot waiting time in the
industrial Internet of Things

Usually in TDMA schemes, a shorter average waiting time

for a respective slot (preferably for dedicated time slot of a

particular device) of a particular member device is considered as

the best possible solution in the IIoT networks. Slot waiting is the

approximate time a device must be in the waiting state for the

allocated time slot in every frame. Generally, slot waiting time has

a direct proportionality ratio to member devices in a particular

cluster or server device. Figure 3 shows that the proposed approach

is a feasible solution than the existing approaches for the resource-

constraint devices as it reduces the waiting time of a particular

member device to an expected level. On X-axis, individual slot

time, that is based on the number of devices in the coverage

area of the respective server, is presented, whereas the Y-axis

shows the approximate time required for a member device to

wait for its dedicated slot in the IoT. Furthermore, the proposed

scheme achieves this milestone without compromising on other

performance metrics in the IIoT networks. Similarly, the proposed

scheme outperforms than the existing scheme if migration of

member devices, preferably from one cluster to another, is carried

out properly, as shown in Figure 4.

5.2 Empty slot utilization in the industrial
Internet of Things

In both traditional and IIoT networking, it is high likely that a

particular device may not be interested in the transmission activity

either due to non-availability of data or other issues. Thus, slots
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TABLE 1 Simulation parameters of the Internet of medical things.

Parameters Values

Area of deployment 900m * 900m

Ordinary devices 60, 120, 600, 1200

Cluster head Sj five (05)

Preamble & header 15µs

Tb Waiting Time random

Number of slot member based

Time slot 50 us

Size of data 2000 bits

block size p 1 burst

Burst type Synchronization Burst

Residual battery power (Er) Ei-Ec

Initial battery power (Es) 52000 mAh

Channel delay (Chdelay) 10 milliseconds

Receiver energy consumption (PRx ) 59.1 mW

Transmitter energy consumption (PTx ) 91.4 mW

Energy consumption in idle mode 1.27 mW

Energy consumption in sleep mode 15.4 µW

XBee transceiver (Ti) 1 mW

Range of Xbee module (Tr) 500m

Transmission (blind) of physical layer Sj 28

Receiving power threshold (RTSn) 1024 bits

Packet size (Psize) 512 bits

Multi-frame 51

Distance between devices and CH 350m

Sampling interval 1, 2, 3,...10 seconds

Topological infrastructure Static and Random

Carrier BCCH

allocated to such type of devices are empty, i.e., no data values,

which is a wastage of the valuable resources that are bandwidth

in this case. To address this issue, the proposed machine learning

and TDMA-enabled approach allowed a particular device to use

two or more slots in a single frame if available. Figure 5 presents

a comparative analysis of the proposed and existing approaches

preferably how efficiently empty slots are utilized. On X-axis,

individual slot time, that is based on the number of devices in

the coverage area of the respective server, is presented, whereas

Y-axis show the approximate time required for a member device

to wait for its dedicated slot in the IoT. Similarly, in even-

based application, it is possible that only those member devices

are interested in communication, where the expected event is

triggered in their vicinity. Figure 6 shows that the proposed scheme

outperformed approximately all the existing schemes by allocated

two or more slots (depending on their availability) to those devices,

which are eager to communicate the expected event information.

FIGURE 3

Proposed MLTDMA-based and field-proven approach evaluation

(empty slots [without migration aware strategy]).

FIGURE 4

Proposed MLTDMA-based and field-proven approach evaluation

(empty slots [with migration aware strategy]).

5.3 Average packet transmission delay in
the industrial Internet of Things

The performance of the proposed machine learning-enabled

communication and existing approaches preferably with respect

to the average packet transmission delay is shown in Figure 7,

which clearly depicts that the proposed scheme has achieved

the minimum possible transmission delay, where value of µ =

0.5. On X-axis, member devices belong to the internet of things

and have an average transmission delay of 0.5 are represented,

whereas on Y-axis, the approximate ratio of delay is encountered

or observed during the whole communication process. The

proposed approach has accomplished this minimum possible
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FIGURE 5

Proposed MLTDMA-based and field-proven approach evaluation (empty slots).

FIGURE 6

Proposed MLTDMA-based and field-proven approach evaluation (empty slots [event-based application]).

ratio due to the allocation of multiple slots and migration

of member devices from heavy loaded clusters. Furthermore,

processing delay at both ends, i.e., source and destination

devices, is minimized due to availability of slot(s) in the

IIoT networks. The proposed machine learning and big data

analytic-enabled approach have reduced approximately 13% of the

average packet transmission delay in an active IIoT networking

infrastructure.
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FIGURE 7

Proposed MLTDMA-based and field-proven approach evaluation (message delay).

5.4 Packet or frame loss ratio in the
industrial Internet of medical things

Packet or frame loss ratio is one of the common evaluating

metrics which is used by researchers and scientific organizations

to judge the performance of a communication approach in the

realistic environment of IIoT networks. APLR is defined as the

possible ratio of the total transmitted packets to those which

are delivered successfully to the server Sj. APLR is assumed

as the challenging evaluation and effective metrics to judge the

performance of a communication protocol, particularly in the

IIoT networking infrastructures. Therefore, the proposed machine

learning and big data analytic-enabled communication approach

are compared with the existing approaches with respect to their

performance while using APLR as evaluation metric. Figure 8

shows that the proposed scheme has the ability to maintain the

lowest possible ratio of the average packets, which are lost during

the communication process. On X-axis, member devices belong to

the IoT are represented, whereas on Y-axis, the approximate ratio

of those packets which are lost during the communication process

is depicted. The proposed scheme has achieved this milestone by

allowing member devices to migrate from heavy loaded, i.e., CH

with approximately maximum members, clustering into others

where load is minimum.

5.5 Computational complexity

Generally, every physical object is defined through time

and space parameters. Similarly, efficiency of an algorithm is

determined through the complexity of these two parameters,

particularly time and space. Both of these parameters are very

crucial particularly in situations where devices are resources-

constraint, i.e., IoT. The time complexity of the proposed scheme is

O(n) as compared to other algorithms, that isOn
2 or even higher.

6 Conclusion and future directions

During the last two decades, the efficient utilization of

resources, preferably bandwidth, was assumed as a challenging

issue for communication approaches both in traditional and

resource-constraint networks. In this study, machine learning

and neighborhood slot allocation-enabled wireless communication

approach were presented to address the aforementioned issue,

particularly in the IoMT. Initially, uniform clustering is achieved

through a modified k-mean clustering algorithm, where centroids

were constants, i.e., cluster head in this case, which are

approximately 5–10% of the ordinary devices. Then, a well-

known distance measure was used to find member devices of

every CH module, whereas devices reside on the edge of two

or more CH modules were allowed to select any one of them.

Furthermore, member devices are encouraged to migrate (in terms

of membership not mobility) from one cluster to another cluster

with certain rules and restrictions. Similarly, a member device was

allowed to hold two or more slots if available in IIoT networks.

Simulation results have verified that the proposedmachine learning

and big data analytic-enabled communication scheme are one

of the best candidates than the existing approaches, especially

IIoT networks. The proposed scheme has improved empty slot

utilization ratio, approximately 13%, than the existing scheme with

available resources.
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FIGURE 8

Proposed MLTDMA-based and field proven approach evaluation (APLR).

In future, we will investigate performance of the proposed

machine learning and big data analytic-enabled approach in

the IoMT environment, where wearable devices are mobile.

Furthermore, it will be interesting to observe the results of the

proposed scheme in those IoMT networks where both wearable

devices and CH are mobile.
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