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The purpose of this study was to address the logistical and data challenges of

using wearable technologies in the context of a clinical trial to measure heart

rate variability (HRV) as a marker of physiologic stress in emergency healthcare

providers during the COVID-19 pandemic. When using these wearable smart

garments, the dilemma is two-fold: (1) the volume of raw physiological data

produced is enormous and is recorded in formats not easily portable in standard

analytic software, and (2) the commensurate data analysis often requires

proprietary software. Our team iteratively developed a novel algorithm called

HRVEST that can successfully process enormous volumes of physiologic raw

data generated by wearable smart garments and meet the specific needs of HRV

analyses. HRVEST is a noise-filtering and data-processing algorithm that allows

the precise measurements of heart rate variability (HRV) of clinicians working in

an Emergency Department (ED). HRVEST automatically processed the biometric

data derived from 413 electrocardiogram (ECG) recordings in just over 15min.

Furthermore, throughout this study, we identified unique challenges of working

with these technologies and proposed solutions that may facilitate future use

in broader contexts. With HRVEST, using wearable smart garments to monitor

HRV over long periods of time becomes logistically and feasibly viable for future

studies. We also see the potential for real-time feedback to prophylactically

reduce emergency physician stress, like informing optimal break-taking or short

meditation sessions to lower heart rate. This could improve emotional wellbeing

and, subsequently, clinical decision-making and patient outcomes.
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heart rate variability, smart garments, wearable sensors, sensor toolkits, emergency

medicine, ECG noise reduction
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1 Introduction

Burnout among emergency medicine physicians has been

a significant concern even prior to the COVID-19 pandemic

(Shanafelt et al., 2015; Panagioti et al., 2017). The demanding

and high-stress nature of their work, along with long hours, sleep

deprivation, and exposure to traumatic events, can contribute to

burnout. However, the COVID-19 pandemic added new challenges

and intensified the existing ones, leading to increased burnout

due to increased workload, high-stress environments, and personal

challenges (Nguyen et al., 2021). They have been on the frontlines,

working tirelessly to treat and manage COVID-19 patients, often

facing difficult decisions and emotional stress. Recognizing and

addressing burnout is crucial to ensure the wellbeing of healthcare

providers and maintain high-quality patient care.

With the recognition of the impact of mental wellbeing on

healthcare providers, research has increasingly focused on methods

to measure stress in both the simulated and clinical environment.

Our recent work outlining the impact of COVID-19 on

Emergency Department (ED) clinicians highlights the importance

of supporting clinicians along a range of psychological needs,

including basic safety through proper use of personal protective

equipment, social supports fostering teamwork, and preparedness

for clinical challenges, including difficult conversations regarding

patient care (Wong et al., 2020). If these needs are unmet,

healthcare workers are at an increased risk of infection, anxiety,

and burnout (Lai et al., 2020; Wong et al., 2020). The syndrome of

burnout in physicians increases the risk of patient safety incidents,

extends patient waiting times, threatens healthcare workers leaving

the profession, and reduces patient safety (De Stefano et al., 2017;

Tawfik et al., 2019). Evidence suggests links between physiologic

measures of acute stress, particularly HRV, and the emotional

exhaustion subscale of burnout (Kanthak et al., 2017).

Heart rate variability (HRV), defined as the beat-to-beat

changes in heart rate, reflects the autonomic nervous system

(ANS). HRV is a physiological marker of stress, and stress is a

known component to provider burnout (Shaffer and Ginsberg,

2017; Wong et al., 2020). In the absence of physiologic stress,

the parasympathetic nervous system (PNS) primarily influences

the pacemaker cells of the heart. The PNS and the sympathetic

nervous system (SNS) compete to determine the beat-to-beat

variability of the heart to balance the heart’s hemodynamic status.

As the SNS causes the heart rate to increase in response to stress,

the beat-to-beat interval is reduced, so HRV decreases. Multiple

variables contribute to measuring HRV and can be broken into

three domains: time domain, frequency domain, and geometric

domain. The time domain measures HRV over time intervals

between normal cardiac cycles. The frequency domain quantifies

the contribution of both the PNS and SNS. The geometric domain

is a non-linear measurement that quantifies the unpredictability

and complexity of a series of changes in the time intervals between

consecutive heartbeats, called inter-beat intervals (Shaffer and

Ginsberg, 2017).

During the COVID-19 pandemic, our team developed

and implemented a simulation-based educational intervention

designed to support preparedness for the clinical stressors

physicians encountered while caring for patients. In a clinical

trial entitled COVID-19 Responsive Intervention: Systems

Improvement Simulations (CRI:SIS), we aimed to test the

effect of our educational simulation intervention on mitigating

physician stress during their subsequent clinical shifts (Evans

et al., 2022). We utilized HRV as the outcome variable for stress

measurement, collected via smart garments that continuously

recorded physiologic data, worn by participants during work

hours. The size of our overall dataset (encompassing nearly 3000 h

of ECG data) led to the need for specialized analysis solutions that

could be applied to the clinical assessment of stress and burnout in

the ED.

Smart garments are equipped with wearable sensors that

provide precise and continuous cardiac, respiratory, and activity

monitoring that can be used to analyze HRV. These smart garments

can provide valuable real-time data on changes in heart rate

patterns, which can be used in the clinical setting in several

ways: smart garments can measure HRV and provide insights

into the wearer’s physiologic stress levels, and subsequently,

their overall mental wellbeing. This information can potentially

be useful in managing conditions such as anxiety, burnout,

depression, or Post-traumatic stress disorder (PTSD), as healthcare

providers can track changes over time and tailor treatment

plans accordingly.

This research highlights the sensor and environment-based

challenges of working with these technologies in situ, and

provides both recommendations and implementable solutions to

the challenges of obtaining and analyzing biometric data. The

fundamental barrier to using wearables for a prolonged period of

time is the commensurate data analysis required to consolidate

and extract the metadata. Subsequently, while current data analysis

approaches allow the analysis on a single recording, they are limited

in performing an integrated and custom analysis on a large set

of files for several individuals collected at different time intervals.

Therefore, we describe the development of a novel approach to

batch analyze the physiologic data and automate the detection and

removal of noise and artifacts derived from recordings produced by

these wearables.

During initial development, we considered several tools

to process electrocardiogram (ECG) signals captured from

continuous recording, perform pre- and post-processing

operations that generate HRV-related metrics: Time-domain,

Frequency-domain, and Non-linear plots. Tools analyzed included

independent software such as: HRV analysis (Pichot et al., 2016),

Kubios (Tarvainen et al., 2014), Kardia (Perakakis et al., 2010),

ARTiiFACT (Kaufmann et al., 2011), RHRV (Rodriguez-Linares

et al., 2011; García Martínez et al., 2017), and the Cardiovascular

Signal Toolbox developed by the PhysioNet Project (Goldberger

et al., 2000; Vest et al., 2018). From the existing prefabricated

options, we identified two broadly defined tool categories for

processing HRV data: (1) tools with graphical user interfaces

(GUI), and (2) importable libraries that can be integrated into

code. GUIs, although generally more user friendly, did not have the

requisite features needed for processing complex multimodal data.

In particular, none of these were able to complete the processes we

identified as essential to analyzing complex data collected during

our clinical trial: batch processing, customizable windows, signal

quality, and integrated multimodal sensor data.
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These factors led to the creation of a customized solution,

combining several software libraries capable of generating the

analyses needed into a cohesive open-source solution. Our

algorithmic solution, called Heart Rate Variability Experimental

Sensor Toolkit (HRVEST), allows for multi-file and cross-file data

sourcing that streamlines the pre-processing, processing, and post-

processing stages of physiological data and is adaptable to meet

the specific needs of HRV analyses. Our algorithmic method

allows for repeated measures analysis of participant heart rates

with beat-by-beat processing across multiple clinical shifts. The

automation, scalability, and open-source nature of HRVEST will

help facilitate future use of these smart garments in both research

and clinical settings.

2 Materials and equipment

2.1 Smart garment monitoring

Hexoskin Smart Shirts (Carré Technologies Inc.) have

physiologic sensors embedded within the textiles (Figure 1), and

these portable sensors allow for continuous cardiorespiratory

and activity monitoring via a1-lead electrocardiograph, two

respiratory inductive plethysmography (RIP) sensors, and a

3-axis accelerometer. These sensors provide real-time reporting

on QRS events, RR Intervals (RRi), Heart Rate (HR), HRV,

accelerometry, step count, and cadence. As a portable and

non-invasive technology, these smart garments allowed for the

unobtrusive capture of physiological measures of the participant

during normal and strenuous activities. Participants’ heart rates

were captured via ECG, and data from these tracings were used to

calculate HRV and related metrics.

Smart garments often have different designs and fit for men and

women, one of which may include a built-in bra in the women’s

shirt. For a precise fit, the embedded textile ECG, respiratory

sensors, and activity sensors must be aligned with the thorax and

naval and be in direct contact with the participant’s skin. A water-

soluble lubricant (ultrasound gel) was applied to the sensors to

enhance conductivity. During data collection, the smart garments

were worn underneath the participants’ standard scrub shirts for

the duration of their ED shifts.

The Hexoskin Smart Device (Figure 1) is the advanced onboard

system that, when coupled with the Hexoskin Smart Shirt, monitors

and records the biometric data collected from the shirt. The smart

device can transmit data to in-range mobile devices via Bluetooth

and can share live heart rate data, including a visualization of the

ECG in real-time.

2.2 Software

Software packages were leveraged to support the development

of the HRVEST. Python was used as the programming language

of choice, as it provided useful packages such as PyHRV (Version

0.4.1) and HRV-Pythonic package for Heart Rate Variability

Analysis (Version 0.2.10). PyHRV is an Open-Source Toolkit that

supports the computation of the primary types of HRV data: Time

Domain, Frequency Domain, and Non-linear (Gomes, 2018), while

HRV is a package tailored to manipulate, preprocess, visualize, and

analyze HRV-related data (Bartels, 2021). The HRV package was

primarily employed in data preprocessing and filtering, while the

PyHRV was employed to compute time and frequency domain

statistics and non-linear metrics. We also employed the Python

software module load_hx_data.py to convert Hexoskin’s binary

data output from the sensors into a readable Comma-Separated

Values (CSV) format. It should be noted, our data processing

required separate scripts for binary and wav formats; these

are now available as a package (Hexoskin Support Community,

2023).

2.3 Hardware

The data was analyzed on an off-the-shelf

computer dedicated to data analyses with the following

specifications: 13th Gen Intel
R©

CoreTM i9–13900HX,

64 GB RAM, 1 TB SSD. Analyses ran successfully on

computers using the MacOS and Microsoft Windows 10

operating systems.

3 Methods

3.1 Trial design and objectives

This was a prospective randomized clinical trial conducted

across two clinical sites at a large hospital system to assess the

efficacy of a simulation intervention on physician stress and

anxiety during the COVID-19 pandemic. The primary outcome

was changes in HRV as a physiologic measure of stress during the

clinical care of COVID-19 patients during ED shifts pre- and post-

simulation intervention. Smart garments were used to monitor and

record real-time heart rate and activity measurements.

The data collection period was from January to December 2021.

Each recruited participant underwent a baseline session and four

data collection sessions. All participants were randomized after

the second data collection. Those assigned to the intervention

group received virtual simulation training (CRI:SIS). The trial

intervention included an adaptive series of immersive scenarios

delivered as just-in-time simulations to prepare emergency

physicians working post-intervention clinical shifts (Evans et al.,

2022). We hypothesized that this intervention would lower

participant anxiety and stress levels when caring for acutely ill

COVID-19 patients on subsequent shifts as measured by changes in

resting HRV. An outline of our clinical trial can be seen in Figure 2.

3.2 Participants

The target participant demographic was frontline Emergency

Medicine (EM) physicians across various experience levels working

full-time (on average 8-h shifts) and actively treating acutely

ill COVID-19 (and suspected COVID-19) in the ED. Eligible

participants were enrolled across a twelve-month period starting in

January 2021.
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FIGURE 1

(A) Sensors. Location of cardiac and respiratory sensors on the Hexoskin Smart Shirt. (B) Hexoskin Smart Device connects to the Hexoskin Smart

Shirts via Bluetooth to record and store physiologic measurements and can be used to visualize data in real time.

FIGURE 2

Study design included a baseline session, four data collections, and a virtual simulation intervention (CRI:SIS). Participants were randomized either to

the intervention group or the control group.

3.3 Procedure

A baseline session was conducted during a non-clinical period

where the participants sat quietly for 10 min−15min to record a

baseline heart rate at rest. Each participant wore a smart garment

across four clinical shifts in the ED. Our setup provided real-time

visualization of the ECG signal, and a clear trace was confirmed

by a research team member prior to the start of each participant’s

clinical shift.

3.4 Data conversion

An essential first step was converting the physiologic data

collected by the wearable sensors into a usable quantitative format.

Records were synced from the recording devices and stored on

an online dashboard. The full, non-subsampled raw data records

were downloaded from the dashboard in a compressed zip binary

format. This generated the ECG in a Waveform Audio File Format

(WAV) and RR intervals in binary. The ECG data is synchronous,

while the RR interval data is asynchronous, returning a series of

encoded timestamp/value pairs. The synchronous data does not

contain the timestamps.

The WAV files required conversion into CSV, in order to be

further processed in statistical and signal processing tools. We used

the Hexoskin load_hx_data library as the basis to create a custom

script to perform the WAV conversion. This conversion process

also added the readable timestamps from the metadata statistics.csv

file to the ECG recordings. Additionally, the relative time of the

recordings were also added so we could match the recordings’ start

and end times with the hospital’s schedule and calendar allowing us

to precisely target windows. This conversion was run once for the

whole dataset, and the results were used as the input for the data

processing algorithm, discussed in detail below.

3.5 Algorithm development

Through exhaustive visual inspection and manual parsing of

our ECG recordings by our data cleaning experts, we came to the
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realization that the complexity of the task and required expertise

in the computational aspects of physiological data and sensor

analysis. After market research of available software options and

data services, we decided to create our own custom solution. Our

team iteratively developed a Python algorithm called HRVEST

to analyze the raw physiologic data collected from wearable

biosensors. As part of the iterative process, we held weekly team

meetings centered around the algorithm’s development. This was

a successful multidisciplinary collaboration where our computer

science expert presented each developmental stage, challenge, and

decision point, to the team which allowed for end user experience

decisions to be made by our clinical experts. This open discussion

allowed us to troubleshoot issues as they arose, and quickly move

forward to develop a final product that met the specific HRV

analysis needs of our clinical study.

HRVEST works in five phases: record analysis, metadata

extraction, windowing, data selection, filtering, and analysis. These

phases are thematically outlined in Figure 3 and explained in detail

in Figure 4 and below.

3.5.1 Metadata extraction
The entry point of the code execution was the input of

parameters by the user to allow the execution of the code according

to the custom needs of each run. The first parameter requested

was the relative path where the recordings were stored. This

information was used as an entry point as the script recursively

went deeper into the file structure, looking for a specific statistic

file statistics.csv to process any subfolder by calling the Record

Analysis function.

During this stage, the algorithm required input regarding the

window size used in the analysis. We employed 5min as the default

window size, as we were looking at short term measurements for a

reflection of dynamic changes and PNS tone (Shaffer and Ginsberg,

2017). Within the scope of this function, a Pystats.txt was created

and populated with information regarding the specific run. This set

of information allows investigators to have more information about

each generated dataset and the parameters utilized, including time,

the filter used, whether plots were generated, and other parameters

to add traceability to the analysis. A sample statistics output is

presented in the following sequence:

Folder Path: Hexoskin Raw Data

Window Size (Seconds): 300

Filter Type: Threshold

Threshold Strength: strong

Script Start Time: 2023-01-11 15:08:29

Analysis Runtime (Seconds): 4869.494397163391

Filtered: (0)

Generate Plots: False

Outliers Removed: True

Number of Standard Deviations: 3

Next, we retrieved metadata for each recording. We used the

statistics.csv file, which contained information from the wearable

sensor regarding the recorded session and the many parameters

available (including mean HR, max HR, cadence, and step count).

We retrieved time stamps related to the start and end times for

each recording. Additionally, we calculated the total recording

time and number of windows expected for that recording. Finally,

the metadata regarding the anonymized participant IDs and the

corresponding data collection stage (e.g., baseline, data collection

one, two, three, or four) were collated automatically by the naming

convention utilized in the directories structure, using regular

expression matching.

3.5.2 Quality classification
We employed several criteria to ensure sufficient data quality

to select the data that would undergo further processing. The

primary quality indicator was RR signal reliability. We used

the native sensor-generated data field RR_Interval_Quality, which

provided an indicator of data quality for each RRi measured.

These indicators were: “Reliable,” indicating good RRi and QRS

quality; “Noisy,” indicating a QRS was detected in a signal with

noise; and “Unreliable,” indicating a QRS could not be accurately

detected. These quality categorizations are derived using histogram

analyses that can flag characteristics of individual QRS signals. For

more information, see Hexoskin’s API documentation (Hexoskin

Health Sensors AI, 2023). We only accepted data categorized

as “Reliable” and recursively calculated the proportion of RRi

classified as “Reliable” for each window for all recordings in the

dataset. This filtering step enabled the calculation of an “Overall

Quality” score based on the proportion of “Reliable” RRi out of

the total identifiable RRi in the evaluated segment. For instance, an

“Overall Quality” value of 0.80 would indicate that 80% of the RRi

in any given segment were classified as “Reliable.”

3.5.3 Window parsing
The recordings were divided into consecutive 5-min length

segments (windows). HRVEST treated each window as an

independent recording, and were processed sequentially, serving as

unique inputs for HRV and quality calculations.

The conventional minimum recording is 5-min durations and

have been widely used and studied for decades and appear to be

the most commonly found source of published HRV data (Shaffer

and Ginsberg, 2017). This is likely based on a balance between

capturing enough variability to make meaningful assessments

and the practical constraints of real-world applications. A 5-min

recording provides a sufficient number of heartbeats to obtain

statistically reliable measures of HRV. In terms of clinical and

research standards many HRV studies and guidelines, including

those set by professional organizations (e.g., the Task Force of

the European Society of Cardiology and the North American

Society of Pacing and Electrophysiology), recommend a 5-min

recording for HRV analysis. This timeframe strikes a balance

between capturing short-term variability while keeping the analysis

computationally manageable.

3.5.4 Outlier removal and noise filtering
We tested four filtering options for noise removal: moving

average, moving median, quotient filter, and threshold filter:

1. The moving average, which given an order value n, replaces

every RRi value by the average of its n neighbors values (Bartels
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FIGURE 3

Thematic description of HRVEST. Algorithm design can be divided into five unique phases.

FIGURE 4

A detailed description of HRVEST, displayed as a function calling map outlining process flow.

and Peçanha, 2020). This smoothens the signal by reducing the

impact of random fluctuations or noise. However, the moving

average gives equal weight to all samples whichmay not suppress

very noisy signals effectively. The moving average filter is a

good smoothing filter in the time domain but ineffective in

the frequency domain. In applications where only time-domain

processing is present, moving average filters are effective, but

in applications where information is encoded in both time and

frequency (such as HRV), or in frequency domain solely, it may

not be the optimal filter option.

2. The moving median, which works similarly to the moving

average filter, but applies the median function that replaces

every RRi value by the median value of its n neighboring

values (Bartels and Peçanha, 2020). By running through the

signal entry by entry, outliers and random fluctuations are

mitigated, providing a more stable and representative signal.

This technique is particularly useful in smoothing time-series

data or eliminating abrupt spikes, contributing to improved

signal quality. The moving median is less sensitive to outliers

because the filter simply removes outliers from the result, while

the moving average filter always takes into account every point.

However, the moving median can be even more sensitive to

short term significant spikes that span several points, especially

when they span more than half of the moving window.

3. The quotient filter removes the RRi values which the ratio

with its adjacent RRi is >1.2 or <0.8 (Piskorski and Guzik,
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2007; Bartels and Peçanha, 2020). Quotient filtering for noise

reduction involves using a specialized hash-based technique to

efficiently filter out noisy elements from a set. By employing hash

functions and a quotient rule, it identifies and discards elements

that are likely noise. This approach is especially effective

in scenarios where minimizing false positives or irrelevant

information is essential.

4. The threshold filter utilizes a threshold-based artifact correction

algorithmwhere each RRi is compared to a local value consisting

of the median of adjacent RRi (local median size = 5). If the

difference between a given RRi and the local median is greater

than the threshold in milliseconds this RRi is considered an

ectopic beat. Ectopic RRi values are replaced with cubic spline

interpolation of the entire tachogram (Bartels and Peçanha,

2020).

We ultimately selected a threshold-based artifact correction

filter as it allowed for the most specific detection parameters

while not distorting normal RRi. Additionally, rather than simply

removing artifacts, such as ectopic beats andmissed beat detections,

the threshold filter algorithmically corrected and replaced outlier

RRi-, helping mitigate concerns of data loss. When these

corrections were applied, artifact signal was replaced using cubic

spline interpolation. Cubic spline interpolation is a mathematical

technique used for noise reduction by creating a smooth curve that

connects a set of points on a graph using cubic polynomials. By

fitting cubic polynomials between adjacent points, it helps filter

out high-frequency variations, reducing the impact of noise in

the overall signal. This method is effective in producing a cleaner

representation of the underlying data by creating a smooth and

continuous curve.

Signal filtering occurred in two steps. First, we removed all RRi

values over three standard deviations (SD) from the median value

of the entire signal. Second, we filtered using the threshold-based

artifact correction algorithm. Like in the moving median filter, each

RRi was compared to the median value of neighboring RRi. We

increased the local median size (N = 10) from the default (N =

5). All outlier RRi, in which the difference was greater than the

local median value plus a threshold value, were replaced by cubic

interpolated RRi (Figure 5). Our selected threshold value was the

most sensitive, with a pre-defined strength value of 50mswhichwas

considered “Very Strong.” When combined, the standard deviation

and threshold-based data filtering processes operated at the global

and local levels for each recording. The removal of RRi based

on a standard deviation metric detected outliers across the whole

recording, while the filtering procedure using the threshold-based

artifact correction algorithm identified outliers for each RRi.

In addition to noise filtering, we also implemented a quality

check to verify if the amount of data we had after filtering was

suitable for further analysis. This was necessary to avoid noise

artifacts impacting HRV calculations. This quality check featured

two criteria to ensure that each window and the generated HRV

metrics would have clinical significance and interpretability. These

criteria were: (1) at least 10% of the window data was usable

after removing outliers and applying filtering procedures, and (2)

a minimum of 10 s of continuous RRi intervals. These criteria

were applied simultaneously to ensure that the RRi series fed into

the analysis would be comparable among different time windows.

Given our selected window size of 5min, our two criteria covered

the standards for a “reliable interval” of continuous data used to

calculate HRV metrics, where HRV intervals as short as 10 s−30 s

were considered reliable (Pham et al., 2021).

3.5.5 Analysis and statistical methods
Various metrics of HRV were produced both in time and

frequency domains. During the analysis stage, each 5-min window

served as a unique input to the Python Toolbox or Heart

Rate Variability package (PyHRV), which returned a series of

HRV-related metrics (e.g., time domain, frequency domain, and

geometric metrics). These outputs also included HRV graphical

plots for each window. Two widely used non-linear indices in

the domain of HRV analysis were produced to support the future

analysis of specific segments, namely Poincare and Power Spectral

Density (PSD) plots (Figure 6). The Poincaré ellipse plot is a

scatter plot used to display the relationship between consecutive

data points in a time series, with each point corresponding to

a pair of adjacent RRi values (Bartels and Peçanha, 2020). In a

Poincaré plot, the shape of the resulting plot reveals information

about short-term HRV patterns, such as variations in beat-to-beat

intervals. Features like the plot’s width and length can indicate

the balance between sympathetic and parasympathetic influences

on the heart, offering insights into the ANS influence on heart

rate. PSD plots in HRV analysis is a graphical representation of

the distribution of power across different frequency components

of the HRV signal. The plot typically shows two main peaks

corresponding to low-frequency (LF) and high-frequency (HF)

bands. LF is associated with sympathetic and parasympathetic

activity, while HF reflects parasympathetic modulation. The LF/HF

ratio or the absolute power in each band can be analyzed to gain

insights into the autonomic nervous system’s balance and its impact

on cardiovascular function during HRV assessments.

HRV is commonly measured by calculating the successive time

difference between successive Q waves on an ECG in milliseconds.

Throughout the literature, this value is represented as the mean

normal-to-normal (N-N) interval. The specific time value used in

our analysis is the root mean square of the successive differences

(RMSSD) of sequential RRi. This value assesses the root mean

square of the proportion of N-N intervals that are >50ms to

the total number of N-N intervals. The RMSSD represents the

peripheral nervous system (PNS) and is considered a measure of

vagally mediated change which is more resistant to respiratory

artifacts than other HRV measures (Shaffer and Ginsberg, 2017).

Other indicators of HRV generated were: Mean NNI difference

(ms), Minimum NNI difference (ms), Maximum NNI difference

(ms), and standard deviation of NNI differences (ms). Three non-

linear metrics were also part of the HRV time-domain metrics:

Standard deviation (SD1) of the major axis, Standard deviation

(SD2) of the minor axis, and the ratio between SD1 and SD2

(SD2/SD1) (Shaffer and Ginsberg, 2017). These HRV indicators

were calculated for each window. Two key indices used to visualize

the time-domain (represented in a Poincaré plot) are SD1 and SD2.

The former (SD1) is an indicator of short-term changes in HRV

and has shown to be highly correlated with RMSSD, while the

latter (SD2) correlates with the standard deviation nearest neighbor
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FIGURE 5

Threshold-based artifact correction filter. Our algorithmic threshold filter e�ectively reduces background noise. We tested five filter pass options:

Very Low: 450ms, Low: 350ms, Medium: 250ms, Strong: 150ms, Very Strong: 50ms. This segment was generated from a sample isolated from one

of our data recordings.

FIGURE 6

Sample of the graphical outputs generated by HRVEST. (A) Poincaré plot. (B) PSD plot using Welch’s method for spectral density estimation. A

Poincaré plot and PSD plot is generated per window analyzed.

(SDNN). Additionally, the SD1 index represents the width of the

ellipse in a Poincaré plot, whereas the SD2 index represents the

length of the ellipse in the plot (see Figure 6A; Bartels and Peçanha,

2020).

Regarding frequency domain metrics, we calculated the

PSD of the RRi series using Welch’s method for spectral

density estimation. The Welch method is a non-parametric

approach based on Fourier Transformations and consists of

the average of several PSD estimations on different segments

of the same RRi series (see Figure 6B). All frequency domain

parameters were then computed from this PSD according to the

specified frequency bands. We retained the default values for

frequency bands Very Low Frequency (VLF): (0.00Hz−0.04Hz),

Low Frequency (LF): (0.04Hz−0.15Hz), High Frequency (HF):

(0.15Hz−0.40Hz). The HF component is associated with the

respiratory fluctuations and is produced by parasympathetic
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modulation. The LF is mainly coupled with variations in the blood

pressure and represents the modulation of both parasympathetic

and sympathetic branches of the heart (Bartels and Peçanha,

2020).

Visualized examples for both outputs can be seen in Figure 6.

All metrics and plots mentioned above were generated and retained

in the final data file for further statistical analysis. It should be noted

that the omission of these graphical outputs can be edited in the

array in the source code, diminishing the final file size and time to

perform the calculations.

4 Results

4.1 Algorithm performance

We recruited 81 physicians according to our clinical trial

protocol (Evans et al., 2022) who each completed a baseline session

and four recorded shifts in the ED per participant, for a total

of 81 baseline recordings and 324 shift recordings. Our clinical

shift recordings averaged 8 h, 59min, and 54 s in length (SD =

02 h:05 min:46 s), while the officially scheduled ED shifts are

on average 7 h−10 h in length. Our entire compressed dataset,

when downloaded from an online dashboard that totaled 27.6 GB.

Using HRVEST, we were able to process a total of 23,241 files

across 413 folders, with each folder containing 33 files of biometric

data exported from the data collections. As we uncompressed

the data (converted the WAV files to CSV format), the total

dataset was a sizable 347 GB (composed of both compressed and

uncompressed files).

4.2 Data retention

When combined, the standard deviation and threshold-based

data filtering processes operated both at the file-level and interval-

level variable scope for each recording. The removal of RRi based

on standard deviation detected outliers across the whole recording

and removed individual RRi that exceeded our established limit

of three standard deviations, while the threshold-based artifact

correction filter identified outliers by comparing to neighboring

RRi (N = 10). Approximately 99.7% of data was retained,

considering a normal distribution of RRi.

4.3 Performance advantages

HRVEST was designed to be flexible and allow key parameters

to be changed during each run of the script or by changing

flag variables to either include or exclude certain features, such

as graphical outputs. Parameters determined by the research

team that were likely to be frequently changed were defined

by a prompt at the point of execution and required manual

input by the user. The other parameters were implemented as a

variable assignment in code and were static until otherwise edited

(see Table 1).

TABLE 1 HRVEST parameters.

Run-time parameters Variable assignment
parameters

Path folder– directory that contains the

recordings (the algorithm searches for

recordings in this path and all

subfolders within the path).

RRi standard deviation outlier

removal– Turn ON or OFF.

Default set to ON. Number of

standard deviations for RRi

Outlier Removal. Default set to 3.

Window size– the size (measured in

seconds) of each window subject to

analysis. We selected 300 (5-minutes).

Generate plots for each window

(Poincare and Spectral Power

Density). Turn ON or OFF. Default

set to OFF.

Type of noise filtering– moving

average, moving median, quotient filter,

threshold filter, or the option of not

using a filter. We selected a threshold

filter for our final dataset.

RRi quality thresholds to be

included in the analysis (Reliable,

Noisy, and Unreliable). Default set

to Reliable only.

Filter strength– filter pass options: Very

Low: 450ms, Low: 350ms, Medium:

250ms, Strong: 150ms, Very Strong:

50ms. We selected Very Strong: 50ms.

Metrics used for analysis–The

addition or removal of required

metrics can be accomplished by

editing the array in the source code.

Outline of parameters that are adjustable either at the point of execution (prompted) or

through variable assignment (static variables). These parameters can be adjusted based on

the expected and actual frequency of use.

4.4 Scalability

We are preparing to release HRVEST as an open-source

project, along with accompanying documentation, so that it can

be implemented for other research use cases. It will also provide

a foundation for adding additional heart sensors or wearables. The

generic parser function (Genparse) can be customized to different

signals by automating the creation of windows, synchronizing and

aggregating the results at various levels of granularity.

HRVEST was based on batch runs that can accommodate larger

datasets, studies, and configurations. These configurations can have

different types of signals and metrics (e.g., RRi, cadence, number of

steps), that automatically merge the data with unique identifiers.

The merger can be repeated for each participant along the different

data collection points (e.g., baseline, pre-intervention, and post-

intervention). Given that the most computer-intensive processes

occur at the window level, the only computational limiting factor

for the number of participants and recording length is based on

hardware and software resources.

With regards to linear time scalability, HRVEST was able to

process more than 400 ECG recordings on average of 15min and

28 s (916.9984 s; SD = 2.72 s over 10 runs) on a laptop computer

with the following specifications: 13th Gen Intel
R©

CoreTM i9–

13900HX, 64 GB RAM, 1 TB SSD. This efficiency can be applied

to the analysis of any RR recordings going forward. However,

the runtime required is a function of the options selected. The

generation of plots for each window adds significant additional

runtime. Another factor influencing the total runtime is the noise

filter selected during the initial setup. We used the threshold filter

at the most sensitive setting (Very Strong: 50ms) for all of our runs.

To test the scalability of HRVEST with a larger dataset, we

conducted a simulated run with 50 iterations to display the mean

and SD for run times of 100, 50, and 25 recordings (randomly

selected). The following parameters were used: threshold filter with
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strong filter setting and a window size of 5min, with plot generation

disabled. The total aggregate time for the sampled 100 recordings

was 749 h and 15min. This amounted to 8,991 windows; mean

= 9 h 26min 56 s; SD = 2 h 49min and 44 s. These results are

displayed below in Figure 7.

The run times demonstrated two main properties of HRVEST:

stability and linearity. The stability of the run time, defined by the

Coefficient of variation (CV), was as follows for our runs of varying

sample sizes: [CV (100) = 0.187 %; CV (50) = 0.453%; CV (25)

= 0.481%]. Additionally, run time shows a linear growth pattern

as a function of the number of recordings to be processed, with an

average of 76 s to process 25 files, 154 s to process 50 files, and 298 s

to process 100 files.

To verify the scalability with different sample sizes, we reran

HRVEST with samples ranging from 25 to 500 recordings and

timed the results over 5 consecutive runs for each sample size. The

results to verify HRVEST’s scalability can be seen in Figure 8. The

sample recordings consisted of multiple copies of the original 100

files used in the previous timing procedure. The results of the run

time analysis also demonstrated a linear growth as a function of the

number of recordings to be processed, with an average of 76 s to

process 25 recordings, 154 s to process 50 files, 301 s to process 100

recordings, 753 s to process 250 recordings, and 1524 s to process

500 recordings.

The run times across these samples confirm the linearity of

HRVEST and its ability to process large datasets on commercial

off-the-shelf (COTS) systems. Execution can also be parallelly split

acrossmultiple computers, and the results can be easilymerged. It is

also scalable to high-performance computing (HPC) environments

with minor changes to the source code.

5 Discussion

With the increased availability and affordability of wearable

technologies, researchers have shown interest in predicting error-

prone conditions by measuring psychological changes as they

correlate with event-based stressors (Alaimo et al., 2020). Many

COTS devices (Apple Watch, Whoop, Fitbit, Microsoft HoloLens,

HTC Vive) are available and used in methodological studies.

Our study required a wearable sensor suitable for an active

environment, placing physical and emotional stressors on the

wearer. We chose Hexoskin’s Smart Shirts, a smart garment with

embedded textile sensors worn like an athletic shirt underneath

a typical healthcare uniform. Technologically, it has a large

recording capacity, is not dependent on Bluetooth or Wi-Fi signal,

allows for data organization of multiple participants, and provides

multimodal sensor input and output.

The data solution we implemented utilizes two general purpose

Python libraries that apply filters, calculate HRV metrics, generate

plots, implement defined time windows for each record, and

merged all results into a cohesive and complete dataset (Gomes,

2018; Bartels, 2021). Although these libraries were capable of

calculating the HRV metrics, they could not help us resolve

other challenges experienced when attempting to process all files

sequentially, as well as in the creation of an interrelated datasets

containing participant information.

Additionally, choosing the size of the time window to analyze

can be challenging, as anywhere from 2min to 24 h can be

utilized for HRV calculation. The duration can reflect different

characteristics of the Autonomic Nervous System (ANS) (Shaffer

and Ginsberg, 2017). Our participants generally worked 8-h

shifts, so in addition to choosing window length, choosing

which time window to select was a study design challenge

(Thielmann et al., 2021; Martinez et al., 2022). The HRVEST

quality classification system simplified this task, by scoring the

quality of each window, allowing for optimal window selection in

future analyses. HRVEST can support other wearable sensors [with

multiple complementary measures, e.g., Electrodermal Activity

(EDA) and ECG] recommended in the literature to understand

stress in real-world environments (Martinez et al., 2022). Another

study examined wrist-based pulse rate monitors with emergency

medicine physicians. The authors questioned whether the sensor

technology is mature enough for the stressors and complexities

of an ED setting, with high susceptibility to interference from

motion and heavy occurrence of artifacts within the data (Peters

et al., 2019). This research demonstrates that HRVEST can begin

to overcome the environmental characteristics of the ED and can

provide reliable data.

5.1 Potential applications

Existing literature describes how visual inspection and

marking of physiologic data is both time-consuming and

cumbersome (Hossain et al., 2022). Our previous work

elucidated that manual evaluation and noise removal require

several hours for a single ECG recording (Joseph et al.,

2022). Manual evaluation could be feasible for individual

recordings, studies with small sample sizes, or studies with short

recording times.

Given our study’s scope and the dataset’s size, we decided

to look at software-driven ECG noise-removal solutions. While

testing different interactive desktop and cloud-based applications,

we encountered significant limitations and found the need

to develop HRVEST (see Table 2). For instance, even though

batch processing is an option available in several of the

packages we reviewed, most of these packages required the

files be in the same folder, which would render the task of

organizing the outputs back to an unified dataset infeasible.

Alternatively, they would output multiple files and not combine

them into a single dataset. Beyond these limitations, the

specialized packages did not have a viable option to include and

synchronize non RRi information as additional sensors for the

same research participant. Nor were they able to synchronize

across different types of data and parameters – such as time

windows, RRi, number of steps, cadence, data selection based

on quality, and the ability to integrate additional sensors

and features.

The main differentiating features of HRVEST are (1) the ability

to batch-run datasets, (2) the ability to create analysis segments

(windows) of variable size, and (3) compilation and collation

of metadata. This contrasts the industry standard that operates

on an assumption of individual file analysis (one recording at a
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FIGURE 7

Density distribution of the average runtimes for (A) 25, (B) 50, and (C) 100 files, respectively.

time), which proved unmanageable with our quantity of recordings.

Furthermore, there are associated costs per run, which can become

prohibitively expensive. This feasibly limits the quantity of data that

could be analyzed, the number of adjustments that could be made,

and the features that can be included. Many of these changes could

only be identified through iterative testing and development.
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FIGURE 8

Processing times for full-length recordings. Number of recordings from 25 to 500. Minimum, maximum, and average time across 5 runs for each

sample size.

In terms of customizability, we integrated select signals (e.g.,

cadence, number of steps, and data quality) and synchronized

them to each window. Additionally, we included the capacity to

add additional biometric data as new fields, such as continuous

blood pressure, respirometry, activity level, and accelerometry.

However, while initially designed in the context of Hexoskin’s data

formats and outputs, HRVEST can be adapted to support batch

processing of other physiologic sensors and measurement devices.

Our we targeted select metadata fields such as, start and end

times of the recording, sensor source, and recording quality. Our

customizations allow the use of a user-defined naming scheme and

relative recording file locations. Finally, we were able to perform

synchronization of the data at the window-level for all recordings,

resulting in a unified data set.

HRVEST was built to enable the seamless addition, inheriting

settings from the other signals (e.g., window size, time, and quality

thresholds) while providing recursive file processing, windowing

operations, filtering, and synchronization between different sensor

metrics for each window. The general process to include a

new sensor to HRVEST involves: (1) the conversion to CSV

format (if not already provided by the device) and reading the

file into memory; (2) adding relative time information (time-

stamping); (3) generating information on sensor data quality; and

(4) calculating any sensor-specific metric to be generated from

the signal (e.g., average, maximum, minimum, frequency counts)

or other statistical parameters of interest. With this universal

utility, we hope to deliver HRVEST as an available resource to the

academic community.

5.2 Metrics selection

The three major types of HRV measurement are time-domain,

frequency domain, and geometric (Shaffer and Ginsberg, 2017).

The primary measurement of interest for our analyses is a time
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TABLE 2 HRVEST compared to industry competitors in key performance

indicators.

HRVEST Industry
competitors

Cost Built upon open-source

libraries. Free to use.

Proprietary. Charges by

segment of data analyzed

(cost per line) and number of

experimentation parameters

(cost per run).

Batch

processing

Compiles metadata,

recursively processes

files, and differentiates

between data phases.

Can process all files in a given

folder but unable to perform

customized batch runs.

Data Aggregated from

multiple sources and

physiologic sensors.

Detailed HRV analysis

can be coupled with

other

simultaneous signals.

ECG, Photoplethysmography

(PPG), and HR. Detailed HRV

analysis only.

Window

parsing

Analysis can be

performed on an

arbitrary window size,

and the associated

metrics are generated for

all windows in a

given file.

Processing occurs on the full

recording only. Cannot

customize the generation of

metrics for a given time

window. Full recording is

analyzed as one segment.

Quality

classification

Defines and employs

criteria for processing

data only if the segment

meets a given

quality threshold.

Generates metrics regardless

of the quality of the

recordings, potentially

generating metrics from noisy

and unreliable data.

domain value, represented by RMSSD. However, HRVEST outputs

both time-domain and frequency-domain data to support usability

by other developers and researchers, as well as to take advantage of

functionality built into the PyHRV toolkit. Furthermore, our future

research may expand to the frequency-domain data, minimizing

the need for additional development. Non-linear data incorporated

into HRVEST is an additional area of interest for future study. The

metrics gathered from the HRVEST algorithm can also be used in

conjunction with other wearable devices.

5.3 Logistics

By using wearable smart garments, we could both accurately

and precisely record the heart rates of emergency physicians

while working in the ED and measure HRV, a known physiologic

indicator of sympathetic activity. These smart garments will be

powerful clinical research tools but are not without their challenges.

In situ, there are a few challenges in using wearable devices in a

clinical environment. Constant skin contact with the sensor’s leads

and lubrication are required to obtain a clean ECG signal. We

initially used ultrasound gel as the conductor for the leads, which

was applied directly to the sensor on the inside of the wearable

smart garment, based on recommendations from other researchers

using the garments. However, we switched to a glycerin-based

lotion after several participants developed contact dermatitis from

the ultrasound gel. After switching lubricants, no allergic reactions

occurred, and we noticed no difference in ECG recording quality.

Furthermore, the lubricant must be periodically reapplied when

the smart garment is worn over an extended period. Participants

were instructed to reapply on their breaks, but this was not always

possible and could be the cause for low-quality ECG recordings.

While the wearable smart garments were previously sized and

fitted, they can loosen and shift over the course of activity and lead

to the sensors not being optimally placed. Movement of the shirt

may interfere with the ECG reading and cause discomfort to the

participant, leading to further adjustment to the sensor position. A

notable cause of artifact in the recordings of female participants was

that the band of the built-in shelf bra could flip over, causing the

sensors to no longer be in direct contact with skin. Additionally,

some participants opted to wear a separate bra under the smart

garment, which occasionally caused contact-interference with the

thoracic leads.

5.4 Data processing

Other than the logistical challenges of using a wearable sensor,

our largest hurdle was analyzing the amount of raw physiologic data

collected as a set of interrelated sensor data recordings. HRVEST

assessed the readability of RRi from large batches of participant

ECG data and automated the analysis of the shift recordings while

filtering outlier beats that skewed the RRi variability calculations.

One advantage we had in overcoming the data challenges was

the multidisciplinary nature of our research team. Our computer

scientist provided clarifications of pathways in code, our human

factors engineers assisted in translating code to usable human-

centered output, and our research clinicians ensured relevance and

accuracy within the healthcare setting in which they worked.

From a Computer Science perspective, iterative development

involved testing four different lowpass filters for noise removal.

We determined which protocol yielded the most usable results

by comparing datasets of the four filter options: moving average,

moving median, quotient filter, threshold filter, and with no filter

applied. We selected a threshold-based artifact correction filter,

which not only was the most sensitive to identifying ectopic

beats but also corrected and replaced the RRi to maximize data

retention. Literature support also establishes the threshold filter as

a reliable noise-reduction methodology utilized by other industry

ECG analysis software(s) (Tarvainen et al., 2014; Alcantara et al.,

2020).

5.5 Baseline

The baseline required reworking in order to meet the quality

requirements to maximize flexibility and baseline comparison

for future studies. Below we discuss challenges as well as our

implemented solution.

5.5.1 Challenges
The baseline recording posed two unique challenges. The

first was the size of the baseline recordings, which were a
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FIGURE 9

Baseline windowing optimization. (A) default windowing behavior for the baseline recording. (B) implemented baseline windowing algorithm. Moving

reading frame every RRi logging every sequential window. Selects the highest quality 5-min window within a recording.

minimum of 10min that would typically be split into two 5-

min windows. Any remaining time would be discarded if it did

not fit exactly within a 5-min interval. The downside to this

approach was that we were losing data and not guaranteeing

the highest-quality windows from the recording. The default

program sequentially defines 5-min windows starting with the

beginning of the recording. However, if the highest quality window

overlapped between two 5-min windows, it would not be captured

(see Figure 9).

A second challenge was when the baseline session was

combined with the first data collection, which had to be

differentiated. Due to scheduling complications, some participants

sat for their baseline session immediately before starting their first

data collection. After leaving the baseline session, the participant

continued wearing the smart garment from the baseline session and

subsequently began their shift in the ED. Because the recording

device was never paused or disconnected, it was still actively

recording, causing the Baseline session and Data Collection #1 to

be one continuous recording. These select recordings had to be

manually identified, and a secondary process was utilized to split

these recordings into their respective phases for analysis.

All files processed as a baseline were relocated to a specific

folder to facilitate the data splitting. Once we identified the baseline,

the first 20min of the recording were analyzed with the normal

protocol for identifying the best windows within the baseline, so

the recording would start after the 20min used for the baseline

to prevent analyzing the same segment twice. Furthermore, all

computed windows created prior to the start of the non-baseline

portion of the recording were discarded.

5.5.2 Adaptation
For the baseline recordings, we selected the highest quality

5-min window by adapting and implementing a unique baseline

windowing protocol. First, the script confirmed that at least one

window was available in the recording, calculated the quality

score, and logged the start and end times. The algorithm reading

frame then sequentially assessed every RRi from the beginning

of the baseline recording and logged each 5-min window and

identified the window with the best signal quality. The algorithm

determined if the window fit the reading frame, and if so, then

calculated the quality index and stored the start and end time of

the new window. A visual representation comparing the original

and adapted baseline behaviors can be seen in Figure 9.

5.6 Limitations

Being that HRVEST was a custom-developed solution to fit

a particular use case, the main limitations of HRVEST were

introduced by the study design and the equipment used. Both

limitations can be addressed since additional customization will be

required as some signals differ from device to device, such as signal

quality indicators (which were used to select suitable RRi segments

to be processed). The limitations related to the study design are

the specific folder naming schemes and the location of meta

information. HRVEST assumes that the unidentified participant ID

and data collection phase are embedded in the naming of the files.

Furthermore, the location in specific folders, such as “Baseline”
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dictates how files are organized and will be processed, compared

with data available on folders assigned to “normal” full-length

recordings. These methods can be customized or eliminated in

future adaptations according to each use case and changes in the

study design.

Regarding equipment used, we employed a sensor that

provides signal quality information for each RRi. In cases

where devices do not provide signal quality information, this

information could be added through third-party libraries

or by using alternative classifiers to indicate whether

the data is considered adequate for further analysis. The

generated data can also be integrated into our existing

record analysis with minor adjustments to ensure readability

by HRVEST.

It should be noted that the default activity measurements

we included were step count and cadence. Through testing,

cadence was determined to be inaccurate for movement under 30

steps/min. Formore precise activitymeasurements, we recommend

combining movement with accelerometer data in order to give

further insight as to whether the participant was sitting, standing,

or lying down during a particular moment of rest. High-resolution

activity data can be exported from the 3-axis accelerometer,

and given more time to develop HRVEST, we could have

incorporated accelerometer data for a more detailed picture of the

participant’s activity.

5.7 Future directions

The impact of burnout on healthcare providers is concerning

as it can lead to increased medical errors, compromised patient

care, decreased job satisfaction, and negatively affect their mental

health. It is crucial to implement strategies to reduce stress,

such as providing adequate support, creating an environment

that promotes work-life balance, and prioritizing provider

wellbeing. Data collected from wearable sensors can provide

insight into directed interventions, such as targeted counseling

services, guided debriefing sessions, and access to mental

health resources.

While most existing literature involves wearables during

simulation scenarios, our use case is one of the first to use

in situ. Further investigation of combining smart garments and

educational simulation should be explored to monitor and improve

our colleagues’ physical and emotional wellbeing. Now, with

the ability to batch process data in a quality-controlled way,

using wearable sensors to monitor HRV over long periods of

time becomes logistically viable for future studies. We also see

the potential for real-time feedback to prophylactically reduce

physician stress, like informing optimal break-taking or short

meditation sessions to lower heart rate. This could improve

emotional wellbeing and burnout factors, subsequently improving

clinical decision-making and patient outcomes. Furthermore, our

algorithm can be adapted to process heart rate data exported from

other common consumer wearables (i.e., Apple Watch, Whoop,

and Fitbit). Using ubiquitous devices to track heart rates can

greatly expand the participant base from a sensor wear ability and

availability perspective.
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