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Experimenting with D-Wave
quantum annealers on prime
factorization problems

Jingwen Ding, Giuseppe Spallitta and Roberto Sebastiani*

Department of Information Science and Engineering, University of Trento, Trento, Italy

This paper builds on top of a paper we have published very recently, in which

we have proposed a novel approach to prime factorization (PF) by quantum

annealing, where 8, 219, 999 = 32, 749 × 251 was the highest prime product

we were able to factorize—which, to the best of our knowledge is the largest

number which was ever factorized by means of a quantum device. The series

of annealing experiments which led us to these results, however, did not follow

a straight-line path; rather, they involved a convoluted trial-and-error process,

full of failed or partially-failed attempts and backtracks, which only in the end

drove us to find the successful annealing strategies. In this paper, we delve into

the reasoning behind our experimental decisions and provide an account of

some of the attempts we have taken before conceiving the final strategies that

allowed us to achieve the results. This involves also a bunch of ideas, techniques,

and strategies we investigated which, although turned out to be inferior wrt.

those we adopted in the end, may instead provide insights to a more-specialized

audience of D-Wave users and practitioners. In particular, we show the following

insights: (i) di�erent initialization techniques a�ect performances, among which

flux biases are e�ective when targeting locally-structured embeddings; (ii) chain

strengths have a lower impact in locally-structured embeddings compared to

problem relying on global embeddings; (iii) there is a trade-o� between broken

chain and excited CFAs, suggesting an incremental annealing o�set remedy

approach based on the modules instead of single qubits. Thus, by sharing the

details of our experiences, we aim to provide insights into the evolving landscape

of quantum annealing, and help people access and e�ectively use D-Wave

quantum annealers.

KEYWORDS

quantum computing, quantum annealing, prime factorization, embedding,
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1 Introduction

Quantum computing has emerged as a novel paradigm in computer science,

offering the potential capabilities to solve complex problems that have long remained

intractable for classical computers. Among the various approaches within quantum

computing, quantum annealers (QA) stand out as a promising tool for tackling

challenging computational tasks. To this extent, prime factorization (PF)—i.e., the

problem of breaking down a number into its prime factors—is a good candidate

to be effectively solved by quantum computing, in particular by quantum annealing.

This problem is of utmost significance in modern cryptography, where the security

of systems often relies on the presumed computational intractability of PF (Rivest

et al., 1978). Several approaches have been presented to address PF by quantum

computing (e.g., Vandersypen et al., 2001; Lucero et al., 2012; Martín-López et al., 2012;

Monz et al., 2016; Amico et al., 2019; Selvarajan et al., 2021), by quantum annealing
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(e.g., Dridi and Alghassi, 2017; Jiang et al., 2018; Mengoni et al.,

2020), or by hybrid quantum-classical technologies (e.g., Wang

et al., 2020; Karamlou et al., 2021). See Willsch et al. (2023) and

Ding et al. (2024) for a summary.

This paper builds on top of a paper we have published very

recently (Ding et al., 2024), in which we have proposed a novel

approach to PF by quantum annealing, with two main results.

First, we have presented a very compact modular encoding of a

binary multiplier circuit into the Pegasus QA architecture, which

allowed us to encode up to a 21×12-bit multiplier (or alternatively

a 22 × 8-bit one) into the Pegasus 5760-qubit topology of D-

Wave Advantage annealers. Due to the modularity of the encoding,

this number will scale up automatically with the growth of the

qubit number in future chips. Second, we have investigated the

problem of actually solving encoded PF problems by running

an extensive experimental evaluation on a D-Wave Advantage

4.1 quantum annealer. In these experiments we have introduced

different approaches to initialize the multiplier qubits, and adopted

several performance-enhancement annealing strategies. Overall,

within the limits of our QPU resources, 8, 219, 999 = 32, 749× 251

was the highest prime product we were able to factorize—which,

to the best of our knowledge, is the largest number which was

ever factorized by means of a “pure” quantum device (i.e., without

adopting hybrid quantum-classical techniques).

In this paper we delve into the reasoning behind our

experimental decisions and provide a more comprehensive account

of the steps and attempts we have taken before conceiving the final

strategies which allowed us to achieve the results in Ding et al.

(2024). We illustrate a bunch of ideas, techniques, and strategies we

investigated which, although turned out to be inferior wrt. those we

adopted in the end —and as such were not of interest for the more

general public targeted in Ding et al. (2024)— may instead provide

insights to a more-specialized audience of D-Wave QA users

and practitioners. In particular, we show the following insights:

(i) different initialization techniques affect performance, among

which flux biases are effective when targeting locally-structured

embeddings; (ii) chain strengths have a lower impact in locally-

structured embeddings compared to problems relying on global

embeddings; (iii) there is a trade-off between a broken chain and

excited CFAs, suggesting an incremental annealing offset remedy

approach based on the modules instead of single qubits. Thus, by

sharing the details of our experiences, including both successes and

setbacks, we aim to provide insights into the evolving landscape

of quantum annealing and help people access and effectively use

D-Wave quantum annealers.

2 Methods

We first summarize a few concepts from Ding et al. (2024). The

prime factorization problem (PF) of a biprime number N can be

addressed by SAT solvers by encoding a n × m multiplier into a

Boolean formula, fixing the values of the output bits s.t. to encode

N. In Ding et al. (2024), we presented a modular embedding of a

Abbreviations: CFA, Controlled Full-Adder; OMT, Optimization Modulo

Theories; PF, Prime Factorization; QA, Quantum Annealer; SAT, Propositional

Satisfiability.

binary multiplier circuit into the Pegasus QA architecture, based on

locally-structured embedding of SAT problems (Bian et al., 2020).

The multiplier circuit, represented in terms of a conjunction of

Controlled Full-adder (CFA) Boolean functions linked by means

of equivalences between variables, is embedded into the Pegasus

topology, with each CFA embedded into a 8-qubit tile and with the

variable equivalences implemented through chains. Each CFA F(x)

is encoded in terms of a penalty function:

PF(

z
︷︸︸︷

x, a |θ)
def
= θ0

+
∑

zi∈V
θizi +

∑

(zi ,zj)∈E,i<j θijzizj; zi ∈ {−1, 1}; (1)

s.t. ∀x min{a}PF(x, a|θ)

{

= 0 if F(x) = ⊤

≥ gmin if F(x) = ⊥
(2)

where the Boolean variables x and a aremapped into a subset z ⊆ V

of the qubits in the topology graph (V ,E), s.t. the qubit values

{1,−1} are interpreted as the truth values {⊤,⊥} respectively;

θ0, θi, θij and gmin are called respectively offset, biases, couplings

and the gap; the offset has no bounds, whereas the range for

biases and couplings is [−4,+4] and [−2,+1] respectively. (The

ancilla variables a are needed to address the over-constrainedness

of the encoding problem.) The θ values in PF(x, a|θ) have been

synthesized by means of OPTIMATHSAT (Sebastiani and Trentin,

2020) s.t. to maximize gmin.
1 The penalty function of the whole

multiplier is thus produced as the sum of the penalty functions of

the CFAs, plus a term (2 − 2zz′) for every chain 〈z, z′〉. Then it is

fed to the annealer, forcing the values of the output qubits so that

to represent the biprime number N, and forcing to −1 the value

of the carry-in qubit of the rightmost CFA of each row, and the

value of the in2 qubit of the CFAs in the first row in the multiplier.

Therefore, if the annealer finds a ground state s.t. such penalty

function is zero, then the values of the qubit represent a solution

of the PF problem.2 (We refer the reader to Ding et al. (2024) for a

much more detailed explanation).

2.1 Alternative approaches to initialize
qubits

Solving prime factorization of a specific number N requires

some of the qubits to be initialized to some fixed value in

{−1, 1}. For instance, given an 8-bit multiplier and N = 42,

whose binary representation is 00101010, then the qubits of the

CFAs corresponding to the output number should be initialized

respectively to {−1,−1, 1,−1, 1,−1, 1,−1}; also, e.g., the carry-in

qubit of the CFA for the least significant bit in a number must be

set to −1. D-Wave API offers a native function, fix_variables(),
that replaces the truth values of the qubits into the penalty function.

1 The bigger is gmin, the easier is for the annealer to discriminate solutions

from non-solutions (Bian et al., 2020).

2 From Equations (1) and (2) we notice that, due to non-minimum values

of a, in principle we can have solution scenarios where F(x) = ⊤ and

0 < PF(x, a|θ) < gmin, which we can recognize as solutions, or even s.t.

PF(x, a|θ) ≥ gmin, for recognizing which we need testing F(x) = ⊤ explicitly,

which can be performed very easily.
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Unfortunately, this causes a subsequent rescaling of all weights if

one bias or coupling does not fit into the proper range, reducing

thus the gap gmin accordingly.

The initialization of qubits can be implemented either at the

encoding level [i.e., by imposing qubit values directly into the

penalty function PF(x|θ) ], or at the hardware level (i.e., by

imposing the qubit values through the tuning of the quantum

annealer hardware). In Ding et al. (2024) we adopted the

latter implementation by tuning flux biases, and showed the

benefits they brought to the success probability of reaching

the ground state. In this paper, we mainly focus on the

former type of implementation, proposing a few alternatives

to fix_variables():

• Ad-hoc encoding for the CFAs: we substitute the values

of the input variables into the corresponding CFAs and

then re-encode these initialized CFAs, with reduced graphs,

into new CFA penalty functions. For instance, suppose we

want to set the value of c_in to false. Then we feed to the

OMT solver the extended formula F′(x) = F(x) ∧ ¬c_in

to generate a new specialized penalty function. To prevent

the gmin from being scaled down due to the input values,

during the re-encoding process we take into account all

combinations of possible inputs that occur in the CFAs.3

This results into the generation of an offline library of

specialized CFAs, with increased minimal gaps, gmin ∈ [3, 18].

Notice that, using these modified encodings, we obtained

some solutions where F(x) = ⊤ and 0 < PF(x, a|θ) < gmin

(see text footnote 2), which never occurred in the experiments

reported in Ding et al. (2024). Both the gap increment

and the extra solutions can increase the probability to

find solutions.

• Extra chaining: we notice that in the penalty functions of CFA

we have obtained, the biases of the qubits are all within [−1, 1],

whereas the range for the D-Wave Advantage 4.1 is [−4, 4].

Based on these facts, we have explored a simple alternative way

to initialize qubits, without the risk of rescaling down the gmin

value. Specially, in order to assign qubit z to 1 [resp. −1], we

can add the penalty function for z = 1 (2 − 2z) [resp. for

z = −1 (2 + 2z)] to the penalty function of the multiplier,

s.t. the bias of z safely remains in [−3, 3]. Equivalently, we can

find an unused neighbor qubit z′ (if any), add an equivalence

chain between z and z′, and then initialize z′ to 1 (resp−1) by

fix_variables().

2.2 The impact of chain strength in QA for
modular encodings

The effect of chain strength has been previously studied in

the context of global embedding, where the input problem is

first encoded into a QUBO problem, which is then embedded

into the hardware by means of embedding algorithms. The

3 This is made necessary by one further technique, namely qubit sharing,

which we have introduced in Ding et al. (2024) and which is not explained

here.

main issue of that approach is that the QUBO model does

not know in advance how many chains are there in a

specific topology and where they will be placed. Thus, the

addition of chains a-posteriori—whose length and placement

are out of the control of the user—and the consequent re-

scaling of biases and coupling may affect the performances of

the algorithm.

Our locally-structured embedding approach in Ding et al.

(2024) differs from the above approach because the Ising model

that is generated is already hardware-compliant, so that there

is no risk of weights rescaling, and we do not need a fine-

grained analysis of chain strength. Given the modularity of our

encoding and the presence of chains to allow communication

between neighboring modules, however, it is still important to

investigate the side effects of chain strength in modular encoding.

To this extent, we choose a set of chain strengths, c ∈

{1, 1.5, 2}, as representatives for investigating their effects on the

performance of our locally structured embedding approach on

QA systems.

2.3 Incrementally remedying excited CFAs

We assume that if all CFAs in a multiplier reach the

ground state with high probability, then the success probability

of the whole multiplier will be positively affected. Based on

this assumption, we have proposed an incremental remedy

strategy, to remedy the most excited CFAs during the

solving process.

The remedy approach is based on anneal offsets (DWave,

2021). In the standard annealing process of D-Wave systems, the

annealing schedules are set identically for all qubits. However,

the system also allows for adjusting the annealing schedule for

each qubit. This is implemented by offsetting the global, time-

dependent bias signal c(s) that controls the annealing process.

More specially, for a qubit qi, its anneal offsets ±δci 6= 0

correspond to advancing and delaying the standard annealing

schedule, respectively.

In a fashion similar to Andriyash et al. (2016), Lanting et al.

(2017), Yarkoni et al. (2019), and Adame and McMahon (2020) we

adopted the idea of incrementally fixing annealing offset weights

to increase the probability of reaching a ground state. Differently

from these papers, however, where the annealing offset is set

to qubits, we set modules of our encoding (i.e., CFAs) as the

target of annealing offset tuning, and we choose the number of

excitations of these modules as a measure to guide the remedy

strategy process.

In each step of our incremental remedy approach, we first

find the most-excited CFA —i.e., the CFA whose number of

excitation occurrences out of the 1,000 samples is maximum—

and then continue to advance the annealing process of all

its qubits by annealing offset δci = 0.01, on top of the

previous remedying history, until the CFA is no longer the most

excited. The procedure terminates either if the system reaches

one ground state or if it reaches a certain number of steps

set as a threshold. This threshold is chosen according to the
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TABLE 1 Di�erent initialization approaches for solving small-size PF, with the annealing time Ta = 10 µs and 1,000 samples for each problem instance.

Size Inputs CFA0 CFA1

API Ad-hoc Chain Flux-bias API Chain Flux-bias

3×3 25 = 5×5 161 154 93 308 327 173 136

35 = 5×7 389 666 286 711 410 379 951

49 = 7×7 450 577 312 906 344 295 997

4×4 121 = 11×11 17 4 30 63 9 33 0

143 = 11×13 40 52 28 129 122 32 67

169 = 13×13 31 54 4 312 84 69 5

5×5 289 = 17×17 5 0 0 1 3 1 0

323 = 17×19 2 0 1 7 22 3 0

361 = 19×19 1 1 0 1 11 1 3

391 = 17×23 6 1 4 119 5 19 9

437 = 19×23 17 0 3 67 3 2 0

493 = 17×29 3 6 0 4 8 0 2

527 = 17×31 21 11 6 91 6 5 37

529 = 23×23 5 0 3 8 0 1 8

551 = 19×29 0 11 4 24 2 3 4

589 = 19×31 16 13 11 7 1 22 52

667 = 23×29 0 6 2 3 8 9 105

713 = 23×31 11 12 3 26 2 1 138

841 = 29×29 5 9 8 148 14 8 7

899 = 29×31 17 76 5 222 7 13 343

961 = 31×31 1 43 0 37 1 0 338

limitation on the access of QuPU, e.g., the perimeter of the

multiplier embedded.

3 Results

3.1 Results of di�erent initialization
approaches of qubits

In the experiments, we compare the proposed initialization

approaches on D-Wave Advantage system 4.1 for factoring small

integers of up to 5 × 5 bits, with the annealing time (Ta =

10µs) and 1,000 samples set for each problem instance. Table 1

by comparing the performances of the initialization techniques

, we notice that the ad-hoc re-encoding outperforms the native

API and the extra-chain approaches, but it still does not perform

as well as the flux-bias tuning, which we finally adopted in Ding

et al. (2024). In Ding et al. (2024) we also proposed a variant

of the CFA function, namely CFA1, minimizing the number

of unsatisfying assignments with gmin equal to 2. For the sake

of completeness, we also tested this encoding in combination

with initialization techniques other than flux biases. These results

confirm that the combination of the flux-bias initialization and

the improved CFA1, which we adopted in Ding et al. (2024),

produces the highest success probability for D-Wave Advantage

4.1 in finding solutions. For this reason, we continue to use this

combination, the flux-bias initialization + CFA1, in the following

experiments of this paper.

3.2 Results of di�erent chain strengths

Using the initialization approach based on CFA1 + flux

biases and the same configuration of the annealing system

(Ta = 10µs, 1, 000 samples for each problem instance) of

previous experiments, we test different chain strengths (c ∈

{1, 1.5, 2}) for QA factoring integers from 3 × 3 up to

11 × 8 bits, using the 10 highest co-prime number for each

multiplier size.

In Figure 1, left we summarize the results of all samples

provided the QA. Sorting them by the size of the input problem

(x-axis), we plot respectively the number of samples successfully

reaching the ground state (first plot), the number of samples

having no broken chain (second plot), and the number of

samples having no excited CFA (third plot). In general, we

report the score of the median sample among all problems

(dashed line) as a summary of the annealer behavior for each

sample size. In addition, for each sample size, we provide

information on the problem that reaches the ground state the
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FIGURE 1

(Left) Comparison of di�erent chain strengths c, c ∈ {1, 1.5, 2}, for QA to factor integers of 3+ 3 bits up to 11+ 8 bits, with the annealing time

Ta = 10 µs and 1,000 samples set for each problem instance. (Right) Excitations distribution of chains (first column) and CFAs (second column) for

factoring 10 integers of 8+ 8 bits tested in the previous experiments, with chain strength equal to c ∈ {1, 1.5, 2} (respectively top, middle, and bottom

row).

least frequently (represented by the minimum dotted line in

Figure 1, left), as well as the one that reaches the ground state

the most frequently (represented by the maximum solid line in

Figure 1, left).

We see that stronger chains (c ∈ {1.5, 2}) do not

always bring us a higher success probability in general for

the chosen problem sizes, and that weaker chains (c = 1)

can produce higher success probabilities than stronger chains

occasionally for middle-size problems. Notice that this result,

in terms of the success probability, is consistent with what

is mentioned by Lanting et al. (2017), suggesting that locally-

structured embedding does not behave differently from global

embedding regarding chain strengths. We also observe that

as the problem size increases, weaker chains tend to be

broken more easily than stronger chains. The rapidly declining

dotted yellow lines confirm this phenomenon, approaching 0

for problems of bigger size. Based on these two observations,

we speculate that the strongest chain, which was chosen

in Ding et al. (2024), is the best candidate for factoring

integers of up to 17 × 8 bits, the maximal problem size

they could encode into the target QA system with a locally-

structured embedding.

3.3 Results of incrementally fixing
excited CFAs

From the experiment of the previous subsection, we can see

that there seems to be a trade-off between broken chains and the

excitations of CFAs: the weaker the chains are, the more likely they

are broken, and the fewer the samples where the CFAs are excited.

Moreover, the excitations of CFAs are not uniformly distributed.

To this extent, we studied the distribution of broken chains and

CFAs in 10 8 × 8 factoring problems, shown in Figure 1, right.

The results on excitations of chains and CFAs are reported as 3D

bar plots in Figure (3rd and 4th row, respectively). Each problem

instance is mapped with its color. The x and the y axis correspond

to the column and row of the multiplier respectively; the z axis

represents the sum of excitations of each chain or CFA for the tested

10 problem instances. These results support testing an incremental

remedy strategy based on modules.

With the strongest chain strength and the same configuration

of the annealing system as the other experiments in the paper,

we test the approach of incrementally fixing excited CFAs for QA

factoring the highest integers of 8×8 bits up to 10×8 bits from the

experiments shown in Figure 1. The results are shown in Table 2.
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TABLE 2 Results of incrementally remedying excited CFAs for factoring integers of 8 × 8 bits up to 10 × 8 bits, with the same annealing time Ta = 10 µswith the number of samples ranging from 1,000 to 3,000 set

for each problem instance.

Size #Samples 1000 2000 3000

input PF (CFA,
#excs)

i PF (CFA,
#excs)

PF (CFA,
#excs)

i PF (CFA,
#excs)

PF (CFA,
#excs)

i PF (CFA,
#excs)

8×8 49,447 = 251×197 6.25 [(6, 7), 395] 5 0.0 [(0, 1), 315] 6.0 [(0, 1), 1,268] 32 4.083 [(6, 5), 490] 4.0 [(0, 1), 1,377] 32 4.083 [(4, 7), 894]

49,949 = 251×199 6.083 [(6, 7), 466] 4 0.0 [(7, 6), 347] 4.0 [(0, 1), 982] 32 4.0 [(6, 5), 429] 2.0 [(0, 1), 1,461] 25 0.0 [(5, 7), 631]

52,961 = 251×211 2.083 [(7, 5), 454] 32 6.083 [(6, 7), 250] 6.167 [(7, 5), 994] 32 6.167 [(5, 7), 452] 6.083 [(7, 5), 1,705] 6 0.0 [(7, 6), 1,001]

55,973 = 251×223 4.0 [(5, 7), 242] 2 0.0 [(7, 3), 267] 0.0 [(0, 1), 569] 0 0.0 [(0, 1), 569] 0.0 [(7, 6), 896] 0 0.0 [(7, 6), 896]

56,977 = 251×227 2.083 [(7, 6), 457] 31 0.0 [(0, 1), 351] 4.083 [(7, 6), 921] 8 0.0 [(7, 6), 593] 4.083 [(7, 6), 1,555] 16 0.0 [(0, 1), 739]

57,479 = 251×229 6.0 [(5, 7), 277] 32 4.0 [(6, 5), 200] 4.083 [(0, 1), 722] 32 4.083 [(6, 6), 471] 4.0 [(5, 7), 925] 1 0.0 [(0, 1), 905]

58,483 = 251×233 4.083 [(7, 7), 338] 32 4.0 [(0, 3), 242] 4.083 [(7, 7), 779] 32 4.083 [(1, 4), 452] 4.0 [(7, 7), 1,069] 32 4.0 [(2, 1), 669]

59,989 = 251×239 0.0 [(7, 7), 252] 0 0.0 [(7, 7), 252] 0.0 [(7, 7), 815] 0 0.0 [(7, 7), 815] 0.0 [(7, 7), 1,282] 0 0.0 [(7, 7), 1,282]

60,491 = 251×241 2.0 [(7, 7), 237] 32 4.083 [(7, 7), 276] 2.0 [(7, 7), 856] 32 2.0 [(1, 4), 461] 2.0 [(7, 7), 1,082] 32 2.0 [(3, 0), 589]

63,001 = 251×251 4.083 [(7, 7), 492] 4 0.0 [(0, 2), 292] 2.0 [(7, 7), 836] 1 0.0 [(7, 7), 889] 2.0 [(7, 7), 1,397] 6 0.0 [(7, 7), 999]

9×8 100,273 =

509×197

8.167 [(7, 4), 629] 34 4.083 [(6, 7), 281] 8.083 [(7, 4), 1,413] 34 8.0 [(1, 7), 490] 4.083 [(7, 4), 1,834] 34 4.083 [(1, 7), 754]

101,291 =

509×199

8.0 [(7, 3), 461] 34 6.25 [(6, 8), 288] 6.083 [(7, 3), 859] 34 8.0 [(6, 8), 540] 8.083 [(6, 8), 1,273] 34 6.083 [(5, 8), 692]

107,399 =

509×211

8.0 [(7, 3), 479] 34 4.0 [(7, 5), 210] 4.083 [(0, 1), 1,100] 34 6.083 [(7, 6), 431] 6.0 [(7, 3), 1,485] 34 4.0 [(1, 4), 701]

113,507 =

509×223

8.0 [(0, 1), 373] 13 0.0 [(7, 6), 244] 4.083 [(0, 1), 1,133] 3 0.0 [(7, 7), 995] 4.083 [(0, 1), 1,803] 34 6.0 [(6, 7), 612]

115,543 =

509×227

8.083 [(0, 1), 541] 34 8.0 [(7, 3), 214] 8.0 [(0, 1), 1,394] 34 6.167 [(7, 6), 460] 6.0 [(0, 1), 1,633] 34 6.083 [(0, 0), 794)

116,561 =

509×229

6.167 [(0, 1), 434] 34 8.167 [(2, 5), 226] 6.0 [(0, 1), 1,002] 34 6.083 [(6, 7), 522] 6.083 [(7, 8), 1,305] 34 6.083 [(7, 8), 660)

118,597 =

509×233

6.0 [(0, 1), 379] 34 4.0 [(2, 6), 211] 8.0 [(7, 8), 880] 34 6.167 [(6, 7), 363] 6.083 [(7, 8), 1,743] 34 6.083 [(5, 8), 683)

121,651 =

509×239

8.083 [(7, 8), 628] 34 4.083 [(7, 7), 274] 8.0 [(7, 8), 1,035] 9 0.0 [(0, 2), 508] 4.0 [(0, 1), 1,307] 4 0.0 [(0, 2), 974]

122,669 =

509×241

6.083 [(7, 8), 600] 34 4.083 [(7, 6), 272] 10.0 [(7, 8), 1,515] 34 4.0 [(0, 4), 557] 6.083 [(7, 8), 2,154] 34 4.0 [(7, 5), 685]

127,759 =

509×251

6.0 [(0, 1), 651] 2 0.0 [(0, 1), 542] 6.0 [(7, 8), 1,261] 2 0.0 ([7, 8), 1,026] 4.0 [(0, 1), 1,799] 2 0.0 [(0, 1), 1,837]

(Continued)
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TABLE 2 (Continued)

Size #Samples 1000 2000 3000

input PF (CFA,
#excs)

i PF (CFA,
#excs)

PF (CFA,
#excs)

i PF (CFA,
#excs)

PF (CFA,
#excs)

i PF (CFA,
#excs)

10×8 201,137 =

1,021×197

8.083 [(7, 2), 424] 36 10.083 [(7, 2), 234] 2.0 [(7, 2), 881] 36 4.083 [(4, 9), 463] 4.0 [(7, 2), 1,430] 36 6.083 [(2, 9), 690]

203,179 =

1,021×199

10.083 [(0, 1), 474] 36 6.083 [(0, 2), 281] 8.083 [(0, 1), 940] 36 6.167 [(5, 7), 423] 8.083 [(0, 1), 1,431] 36 8.0 [(7, 6), 1,033]

215,431 =

1,021×211

8.0 [(0, 1), 574] 36 8.0 [(7, 8), 265] 6.0 [(0, 1), 1,033] 36 6.083 [(3, 1), 422] 6.0 [(0, 1), 1,817] 36 8.0 [(7, 3), 594]

227,683 =

1,021×223

8.083 [(0, 1), 586] 36 6.167 [(5, 9), 213] 4.0 [(0, 1), 1,318] 36 4.167 [(6, 8), 419] 6.0 [(0, 1), 1,897] 36 4.083 [(7, 4), 639]

231,767 =

1,021×227

10.0 [(0, 1), 592] 36 8.083 [(5, 9), 269] 8.083 [(0, 1), 1,146] 36 6.083 [(7, 7), 452] 8.083 [(0, 1), 1,709] 36 6.0 [(7, 6), 641]

233,809 =

1,021×229

8.083 [(7, 9), 361] 36 6.167 [(5, 9), 248] 6.0 [(0, 1), 922] 36 8.0 [(2, 9), 453] 6.167 [(7, 9), 1,207] 36 6.0 [(7, 5), 776]

237,893 =

1,021×233

6.0 [(7, 9), 456] 36 6.083 [(0, 1), 185] 6.0 [(7, 9), 886] 36 6.0 [(1, 4), 378] 4.0 [(7, 9), 1,480] 36 6.0 [(2, 2), 553]

244,019 =

1,021×239

8.083 [(0, 1), 600] 36 4.0 [(7, 9), 234] 6.167 [(0, 1), 1,252] 36 6.0 [(1, 2), 427] 6.083 [(7, 9), 1,595] 30 0.0 [(0, 1), 733]

246,061 =

1,021×241

2.083 [(7, 9), 619] 36 6.0 [(1, 1), 232] 10.0 [(7, 9), 1,056] 36 8.0 [(1, 5), 499] 8.0 [(7, 9), 1,478] 36 4.0 [(2, 9), 615]

256,271 =

1,021×251

4.083 [(7, 9), 659] 36 4.083 [(7, 8), 226] 6.083 [(0, 1), 1,256] 10 0.0 [(0, 4), 695] 2.083 [(0, 1), 1,900] 36 4.083 [(7, 8), 787]

For each problem, we first report the starting point sample, including its energy, the most excited CFA, and the number of its excitations respectively. Then, we report the number of iterations performed by the remedy strategy (a bold number means we did not reach

the step threshold and a ground state has been found), together with the energy and the current most excited CFA.
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FIGURE 2

Fixing results for factoring 16-bit 113,507 in Table 2. Each coordinate corresponds to the CFA in the multiplier circuit. The numbers in the figures in

the leftmost and rightmost columns represent the number of excitations out of 1,000 samples, whereas the number in the figure in the middle

denotes the anneal o�set used in the whole fixing process, for advancing the annealing schedule of the specific CFA. Notice the less homogeneous

distribution of excitations of CFAs in the leftmost figure compared to the rightmost figure. (Left) Before the fixing. (Middle) The fixing history. (Right)

After the fixing.

To get an extensive analysis of the novel remedy strategy, we tested

three different configurations, with the only difference being the

number of samples obtained for each iteration (respectively 1,000,

2,000, and 3,000). We also show in Figure 2 the behavior of the

remedy strategy on one of the problem instances.

From the results, we can see that the remedy strategy helps in

solving some of the problem instances. In particular, this approach

works under the assumption the user has a limited amount of

QPU time (i.e., the annealing time is confined to values . 20µ)s,

showing its effectiveness when users are bound to tight constraints

in accessing the D-Wave devices. This approach works more

effectively with smaller instances, reaching the ground state more

frequently and with fewer iteration steps. Moreover, increasing the

sample size does not impact performances, showing sporadically

improvements in reaching the ground state when the number

of samples increases. Nevertheless, setting the annealing offset

scores based on the modules’ properties instead of targeting qubits

independently seems promising, and further investigations could

define different conditions to prioritize the annealing of some

CFAs.

4 Discussion

This paper has built upon the recent work presented in

our previous publication (Ding et al., 2024), which introduced

a novel approach to the problem of PF through quantum

annealing. In contrast to our previous paper, which showcased

exclusively the effective techniques that highly benefited our

task, here we discussed several intermediate and less successful

approaches. This comprehensive exploration provides insights into

the intricacies that influenced our final results in Ding et al.

(2024). The code to replicate these experiments is reported in the

following publicly available repository: https://gitlab.com/jingwen.

ding/multiplier-encoder-2nd.

Our experiments revealed several insights:

• Effectiveness of flux biases tuning: We showed that the

techniques to initialize qubits implemented at the encoding

level were not as effective as flux-biases tuning. Nevertheless,

they can be considered as viable alternative to the usage of

fix_variables() in other contexts.

• Chains coupling strength: Even though using the highest

value for chains coupling strength might not be optimal

for small-sized problems, it proved crucial for solving more

complex problems. This highlights the delicate balance

between problem size and annealing parameters, e.g., chain

strength.

• Trade-off between broken chains and CFA excitations: We

observed a trade-off between the presence of broken chains

and the excitations of CFAs when the QA generates its

samples. This further highlights the importance of monitoring

chain strength in other contexts.

• Non-uniform distribution of CFA excitations: The

excitations of CFAs were found to be non-uniformly

distributed for different samples on the same problem

instance. Understanding this distribution can be valuable for

tailoring annealing strategies to specific problem instances.

• Remedy strategy for middle-size problems: The remedy

strategy we proposed in Section 2.4, based on the above

observations, showed minor benefits in solving middle-sized

problems. Nevertheless, it could be useful in other contexts.

By delving into the details of our experimental journey, listing

both our successes and setbacks, we aim to provide valuable insights

to amore specialized audience of D-WaveQuantumAnnealer users

and practitioners. Our work contributes to the evolving world of

quantum annealing and equips researchers and professionals with

additional knowledge to effectively use D-Wave quantum annealers

in their applications.
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