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XAI Human-Machine
collaboration applied to network
security

Steve Moyle1*, Andrew Martin1 and Nicholas Allott2

1Department of Computer Science, Oxford University, Oxford, United Kingdom, 2NquiringMinds,

Southampton, United Kingdom

Cyber attacking is easier than cyber defending—attackers only need to find

one breach, while the defenders must successfully repel all attacks. This

research demonstrates how cyber defenders can increase their capabilities by

joining forces with eXplainable-AI (XAI) utilizing interactive human-machine

collaboration. With a global shortfall of cyber defenders there is a need to amplify

their skills using AI. Cyber asymmetries make propositional machine learning

techniques impractical. Human reasoning and skill is a key ingredient in defense

and must be embedded in the AI framework. For Human-Machine collaboration

to work requires that the AI is an ultra-strong machine learner and can explain its

models. Unlike Deep Learning, Inductive Logic Programming can communicate

what it learns to a human. An empirical study was undertaken using six

months of eavesdropped network tra�c from an organization generating up-to

562K network events daily. Easier-to-defend devices were identified using a

form of the Good-Turing Frequency estimator which is a promising form of

volatility measure. A behavioral cloning grammar in explicit symbolic form was

then produced from a single device’s network activity using the compression

algorithm SEQUITUR. A novel visualization was generated to allow defenders

to identify network sequences they wish to explain. Interactive Inductive Logic

Programming (the XAI) is supplied the network tra�c meta data, sophisticated

pre-existing cyber security background knowledge, and one recurring sequence

of events from a single device to explain. A co-inductive process between the

human cyber defender and the XAI where the human is able to understand,

then refute and shape the XAI’s developing model, to produce a model that

conforms with the data as well as the original device designers programming.

The acceptable model is in a form that can be deployed as an ongoing active

cyber defense.

KEYWORDS

eXplainableAI, network security, IoT security, symbolicmachine learning, inductive logic

programming

1 Introduction

1.1 Cyber security and its challenges

Defending assets from cyber attack remains challenging. There are many asymmetries

that disadvantage the defender, including rare symptoms of compromise are buried within

burgeoning log files of (most likely) normal behavior; specification of the assets are

rarely complete and accurate; public knowledge of exploits are always out of date, with

the continual emergence of new zero-day attacks; and systems may have a vulnerable

component, but the deployment context and configurationmaymake it unexploitable. This

leaves the defender having to reason in the complex world where the information they have

access to cannot be relied upon. Ultimately, skilled cyber defenders admit that it is almost

impossible for them to give any strong security guarantees (Meer, 2015).
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There is a severe lack of human skilled cyber defenders. An

international body that supports cyber defenders estimates that

there are more than three million fewer defenders than necessary

[(ISC)2, 2022]: “To adequately protect cross-industrial enterprises

from increasingly complex modern threats, organizations are

trying to fill the worldwide gap of 3.4 million cybersecurity

workers.” Organizations with cybersecurity resources are those who

can afford it or must have it—industries like banking, finance,

government and military. The shortfall identifies only skills of

industrial enterprises—it is greater still in the small business and

the domestic settings. It is here where many devices are simply

installed from their packaging and left operating in an undefended

environment, with little or no attention.

Real computer networks can be arbitrarily complex. For

example, detailed analysis of a small organisation’s network, where

data was collected for half a year, showed that 181 devices were

connected within its networks (see Section 2.1 for further details).

Some of the devices are for normal operational duties (for example

laptops, network routers, door swipe access controllers), others

are defensive in nature (for example anti-virus software and

vulnerability scanners). All devices pose a risk of expanding the

organisation’s attack surface.

In larger organizations the asset registers and design

documentation can soon fall behind those of the true

implementations. Systems architects often cannot agree what

is and what is not actually running in their environments. Cyber

defenders are keen to incorporate both controls (for example

network firewalls) andmonitoring as part of their defensive toolkit.

Monitoring can be passive like the continuously running network

security monitoring system Zeek (Zeek, 2021), or it can be active,

like vulnerability scanners (e.g., OpenVAS, OpenVAS, 2023) where

probes for known vulnerabilities are commissioned.

Designing a secure device is fundamentally challenging.

Internet-of-Things (IoT) devices are often resource constrained

so as to meet demanding low-power and low cost specifications.

Security of the device is a lower priority. Certifying the level

of security for a particular device design is also challenging and

costly1 [e.g., (the now super-ceded) Orange Book (United States

Department of Defense, 1985) and Common Criteria (ISO/IEC,

1999)]. A certified secure device at installation time allows us

to presume that it is good at that time, but some time later a

vulnerability in that version of the device is discovered. This does

not automatically mean the device is bad—the vulnerability needs

to be exploitable, and that a path-way to exploitation is present.

Installers and operators of devices rarely know precisely how

the device should behave. There is a growing appreciation for

published device information from the device manufacturers

themselves helping to improve security (Grayeli and Mulugeta,

2020; Megas et al., 2022). The Distributed Device Descriptors (D3)

standard (ManySecured, 2021) allows both manufacturers and

interested parties to specify what resources a device class requires,

and the behavior that it produces. This provides the possibility to

perform run-time comparisons of the behavior of an instance of

1 The costs of security certification for systems is prohibitively high,

and worse, only assure the current version under evaluation. Awarded

certifications do not apply to future bug fixes or feature enhancements.

the device class and its actual, monitored behavior. Deviations from

specification can be caused by the device going bad, or simply that

the specification has errors of omission or commission.

The number of computable programs is countably infinite

(Turing, 1937). If we consider a crude partitioning of all programs

into good programs and bad programs it is obvious that each

of these partitions are themselves countably infinite. It follows

that it is unrealistic, in general, to be able to guarantee that

a persistent attacker will not be able to entice the computer-

based systems to execute bad programs. It is easier to intercept

communications between devices than to access the runtime

environment of the devices. Considering the messages between

computing devices, these too, are countably infinite. This makes

it difficult, in the general case, to use external eavesdropping

of devices’ communications for accurately predicting whether

the messages themselves are sinister or benign. One can also

appeal to the notion of trust or not trusting anything one has

not produced oneself [See Ken Thompson’s ACM Turing Award

Lecture (Thompson, 1984)] to appreciate the daunting cyber

security challenges.

Standards and processes exist that allow systems to have their

security properties rigorously asserted (United States Department

of Defense, 1985; ISO/IEC, 1999). Although these are typically only

used for high-end systems (i.e., rarely for consumer devices and

IoT) they do provide empirical evidence of the existence of some

sliding scale of easy-to-secure and hard-to-secure device designs. As

a cyber defender, are there devices which operate in a manner that

make defending them easier than other devices? Can we determine

by observing devices externally which of them are (likely to be)

easier to defend? By studying their eavesdropped connections and

messages to other devices, can easier to defend devices’ predictable

behaviors be defended by blocking novel behaviors (or at least

alarming or alerting with the novel events occur)?

1.2 Machine intelligence and explainable AI

ChatGPT and other systems powered by large language models

have captured the public imagination in recent times. However,

not everyone considers that these are general purpose artificial

intelligences (Wolfram, 2023). In his 1950 paper (Turing, 1950),

Turing goes beyond his pragmatic imitation test of machine

intelligence2 and considers the question, “Can machines think?.”

Turing quickly dismisses nine common philosophical objections to

his question about thinking machines, and then focuses on three

strategies which might lead to the creation of a thinking machine.

Broadly from Muggleton (2014) these are (1) AI by programming,

(2) AI by ab initio machine learning, and (3) AI using logic,

probabilities, learning, and background knowledge.

Ab initio machine learning is the current state of the art of AI.

It takes recorded examples of some phenomena that we wish to

forecast and use algorithms for the production of models or code

(see Flach, 2012). Ab initio refers to the way the models are updated

when the new data arrives—typically by discarding the model and

2 Machine Intelligence was the term Turing used. It was not until 1959 that

John McCarthy introduced the term Artificial Intelligence (McCarthy, 1959).
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starting the learning again, but with the additional data to utilize.

Many of the current techniques give excellent forecasting accuracy

when interpolating with novel inputs. This gives an illusion of

intelligence. In reality these are systems typically trained to perform

one, narrow, task.

Michie3 categorizes machine learning styles asweak, strong, and

ultra strong (Michie, 1988). His weak criterion ofMachine Learning

is a “system [that] uses sample data (training set) to generate an up-

dated basis for improved performance on subsequent data.” Indeed

deep neural network models satisfy this criteria. He goes on to

define the Ultra-strong criterion4 of Machine Learning as a “system

[that] satisfies [the] weak criterion and also can communicate its

internal updates in explicit and operationally effective symbolic

form.” Beyond the standard accuracy of its forecasts, this requires

that the machine learning generated model can be communicated

to another agent5; and that the agent can be coached to improve its

own performance on the same task that the model is used for. In

other words “Don’t simply give me the answer, explain it to me and

teach me how to use it.”

Under this lens of Michie’s Ultra-strong Machine Learning,

Deep Learning and its black-box style models fall short6. Inspecting

the matrices of weights that represent their models are not

comprehensible, nor are they in a symbolic form. Some researchers

have found ways to identify what it is that the Deep Learning has

focused on to when making its forecasts. For example in object

recognition from digital images, is it the polar bear or the snowy

background? People argue that this is a step to explaining the

A.I.7—but it clearly fails Michie’s stronger definitions. NIST (2021)

describe a multi-stakeholder practical framework for eXplanatory

AI (XAI) based on four principles : (1) explanation, (2) meaningful,

(3) explanation accuracy, and (4) knowledge limits. Each of these

can be seen to be encompassed, either explictly or implicitly, within

Michie’s Ultra-strong Machine Learning.

Returning to Turing’s view (Turing, 1950) on the matter of

the construction of an AI. His third, and preferred alternative is:

AI using logic, probabilities, learning and background knowledge.

Turing states that “. . . one might have a complete system of

logical inference ‘built in.’ . . . the store would be largely occupied

with definitions and propositions. The propositions would have

various kinds of status, e.g., well-established facts, conjectures,

mathematically proved theorems, statements given by an authority,

expressions having the logical form of proposition but not a belief-

value.” In a sense, Turing is suggesting that underpinning the

learning should be a compendium of existing knowledge—in a

logical form that can be used to reason with. Such an approach

provides benefits over the ab initio machine learning. (1). Existing

knowledge can be utilized as “Background Knowledge.” This

3 Donald Michie was a wartime colleague of Alan Turing. They discussed

Machine Intelligence whilst playing chess socially.

4 The Ultra-strong criterion of machine learning is an incremental upgrade

on the the Strong criterion adding the conjunction “and operationally

e�ective.”

5 The agent we are most interested in is a human.

6 Deep Neural Network models do manage to pass the less stringent

criterion of Weak Machine Learning.

7 It seems that AI simply means machine learning in this context.

has benefits for the learner—in that it is not forced to relearn

every thing every time new examples appear. (2). New Learned

knowledge can be independently verified. In Turing’s world, it is

possible to ask the learner after the fact, “What it is that you have

learned?” The learner can then answer, for example, by emitting

its learned model in logic. Even if the model is not perfect, it is

in a form that can be tested, debugged, and then adopted into the

background knowledge for future learners to use.

Going beyond systems that simply offer good predictions,

Explainable Artificial Intelligence (or XAI) as described in Gunning

et al. (2021) can be seen as patching a gap in contemporary black-

box machine learning techniques, so as to overcome limitations

in communicating the machine learning results to humans.

However, Turing, in 1950, had already provided a pathway

to Explainable Artificial Intelligence. Michie (1988), too, was

insistent on machine learning results being communicated in a

comprehensiblemanner. Comprehensible communication remains

challenging, even between humans, and continues to be researched

(e.g., Muggleton et al., 2018).

1.3 Machine learning challenges for cyber
security

The application of machine learning techniques faces particular

challenges in the domain of cyber security. Cyber defense in itself

is plagued by many asymmetries that advantage the attacker, the

greatest being that the defender must prevent all attacks (many of

which are previously unknown), whilst an attacker need only one

way of breaking in.

Machine learning—by definition—requires example data8 to

learn from. There is no shortage of data in the cyber world—

for example vast quantities of log files are collected relating to

systems and their operation. However, most machine learning

techniques are supervised (for a general description of machine

learning practices see Flach, 2012) requiring that each data item is

labeled with the outcome observed. For this discussion we can use

the simple labels of sinister and benign. Unfortunately, the vast log

data is unlabeled making supervised machine learning techniques

inappropriate. In cases where attacks are analyzed and the log

records associated with them labeled (as sinister) there remains a

vast imbalance in the training set. Machine learning algorithms give

the strongest results when trained on balanced training sets: in this

case equal amounts of sinister and benign example records. When

the proportion of sinister to benign records is low (e.g., say, one

in a hundred—which is likely to be quite an over-estimate in real-

world operational environments), the models produced will almost

certainly predict a new log record as benign. This leads to false

negative errors where the sinister records are identified as benign—

making the detection a useless defense. Pushing the learning to

focus on the sinister records [e.g., by using boosting (Flach, 2012)]

will only lead to a model that has a high false positive alarm rate—

misidentifying benign records as sinister. Cyber security systems

with high false positive alarm rates are considered untrustworthy,

and often lead to them being ignored.

8 Examples used to learn from are known as the training [data] set.
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In one sense, there is too much data (unlabeled logs), yet

in another sense we don’t have enough (sinister labeled logs).

To a naive first approximation everything is considered safe. To

make progress we must keep expert human cyber defenders in the

machine learning cycle, and provide them with tools to make sense

of what they see. If humans are key, then so too is XAI, as the cyber

defenders will require machine learning frameworks that output

models that they find comprehensible.

1.4 Human-Machine collaboration in
scientific discovery

The practice of extracting patterns from collected data has

a long history9. Humans are somewhat distinguished from most

other animals by making tools. The usefulness and ease of use of

which are important factors. If one seeks a deeper understanding of

the tangible world then using the tool of scientific method is a good

practice. For example, the inductivist incorporation of empirical

observations as a basis for constructing general laws [this can be

traced back at least to the 17th century (Bacon et al., 1996; Peirce,

1996; Jevons, 2012)].

For Humans to be able to collaborate with the data science

tools requires that both agents—the human and the machine—

understand a common language. Quite often the scientific expert

is not a data analytics expert, so a team-based approach is required.

Significant successes have been achieved this way where the actual

scientific “discovery” is initially proposed by a machine (learning

algorithm). Mutagenesis (King et al., 1996) and drug discovery

(Finn et al., 1998) are examples where published results in a

discipline were proposed by a machine learning system (see also

Gillies, 1996). In these cases it is key that the output of the systems

are comprehensible to the experts, requiring translations into the

experts’ preferred formats.

Considering human cyber defenders, they apply their skill and

reasoning in much the same way that a detective solves a murder

case. They constantly form hypotheses, collect more evidence, and

focus their investigations. They will use abductive reasoning to form

hypotheses and seek yet-to-be discovered evidence, whilst forming

constraints based on the evidence that will rule out incompatible

hypotheses and lines of enquiry. They may be able to conclude,

based on reasonable probability, the motive, opportunity, and

weapon used by a suspect. Once the case is solved, then it is possible

to follow a deductive reasoning process that explains the case and

its artifacts. Furthermore, with the solution of similar styles of cases

it is possible to apply inductive reasoning to learn general patterns

(e.g., Moyle and Heasman, 2003).

We require that the machine can make use of the existing

domain knowledge with which the human expert is familiar. A

bi-directional shared language is necessary. One that is directly

executable is Logic programming, which has a long history of

knowledge representation and reasoning. Despite its longevity and

many successes standard Prolog, with its sound semantics and

elegant computation model (e.g., Lloyd, 1984), does not directly

9 Kepler, in the 17th century, is credited with fitting Tycho’s planetary

observational records to an elliptical orbit.

support the forms of reasoning that humans often rely on. The

more expressive Answer Set Programming (e.g., Lifschitz, 2022),

allows a broader range of reasoning, and is not restricted to Logic

Programs with single models. Subsets of Logic Programming using

constrained natural language are enabling humans to have two-way

interactions with systems (Kowalski, 2011; Schwitter, 2020).

Science proceeds where scientists can replicate another’s work.

A more robust advance is where scientists can refute and argue

about another’s findings. Indeed, philosophers of scientific method

suggest that refutation is key (e.g., Popper, 1935). A strong human-

machine system will be one where each party can argue both

for and against the communicated understanding of the other. A

framework for this scenario is reported in Srinivasan et al. (2022).

A candidate Human-Machine environment would need to

support explicit symbolic knowledge, in a comprehensible and

explainable form for the human, that is directly executable by the

machine, where the state of knowledge can be refuted by each party,

through multiple logical reasoning forms (deduction, abduction,

and induction). This seems to be similar to Turing’s original 1950s

preferred specification (Turing, 1950) of what it will take to build

a “thinking machine”—what we would now call an XAI. This

research reports on efforts to develop techniques for use in an XAI

environment specifically to support Cyber Defenders.

1.5 Objectives

Motivated by how difficult it is for professional cyber defenders

to keep their environments safe (Meer, 2015), one of the goals is to

identify ways to improve the security of Internet-of-Things (IoT)

devices in a domestic setting. We wish to determine if it is plausible

to use XAI-like tools to reverse-engineer behavioral models (c.f.

Bain and Sammut, 1995) (i.e., rules) that a specialized IoT gateway

device could utilize to only permit necessary network interactions

to IoT devices and their controllers.

The main aim of this research is to test the following

hypotheses:

• Hypothesis 1–Identifying easier-to-secure periods of

operation: That it is possible to use eavesdropped

communications information to identify periods of time

in a network of devices that are easier-to-secure than other

periods of time by measuring the volatility of all the devices’

communications over time.

• Hypothesis 2–Identifying easier-to-secure devices: That it is

possible to use eavesdropped communications information to

identify devices that are easier-to-secure than other devices by

measuring the volatility of devices’ communications.

• Hypothesis 3–Reverse-engineering behavioral models

of easier-to-secure devices: That it is possible to use

eavesdropped communications information from identified

easier-to-secure devices to build behavioral models of allowed

(and disallowed) communication using XAI approaches.

These hypotheses chain together. Without evidence that there

are time periods or individual devices that show reduced volatility,

then it will be difficult to identify candidates that are easier to
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defend. Hypothesis 3 requires a positive result from Hypothesis 2.

Should Hypothesis 3 be valid then a subsequent line of research

would be to determine if and how the behavioral models of

communication can be extracted and then deployed as a defensive

tool for the device(s). This is dealt with in Sections 4, 5. Hypotheses

1 and 2 are tested in Section 3.

1.6 Outline

This is empirical research utilizing observational data collected

from a real-world organization. The computer network and the

data are outlined in Section 2. Then in Section 3 we consider how

to identify easier-to-secure devices by studying the eavesdropped

connections and messages to other devices. Devices that have low

network volatility allow predictable behaviors to be defended by

blocking novel behaviors (or at least alarming or alerting with the

novel events occur). We thus identify and target one particular

IoT-like device to study in detail. A form of behavioral cloning is

performed using machine learning of sequences of messages used

by the target device in Section 4. A novel tool to visualize the

extracted patterns allows a human defender to select interesting

recurring sequences generated by the target device for further

analysis. Section 5 details an interactive logical induction approach

to analyzing fine grained sequence patterns in the presence of

existing background knowledge. The results produced conform to

the expectations of eXplainable AI—they can be understood by the

cyber defender. The discussion, conclusion, and suggestions for

future research directions are covered in Sections 6, 7.

2 Observational case-study context

2.1 Network tra�c monitoring

Systems can be observed from many perspectives and many

different granularities. For example we can observe the internal

operation of entire computer systems by executing them from

within a virtual machine environment—a form of white box

analysis. An alternative perspective is to observe the inter-system

communications passed into and out-of a computer system—

a form of passive black box analysis. In this research, out of

operational pragmatism, we choose the latter approach, and

study the observation logs recorded from eavesdropping network

connections and conversations between individual devices.

To collect data for the case study, we implemented the

system architecture shown in Figure 1. Network traffic metadata is

passively collected by a bespoke edge device consisting of a network

TAP (i.e., a device that clones data flowing across a network)

and system-on-chip processor running an established Network

Security Monitoring system called Zeek (2021). Data is periodically

pushed to a secure cloud storage facility. This IoT-like device was

developed by integrating publicly available components, in a secure

and robust way, and utilizing efficient server-less cloud processing

design patterns.

2.2 Materials and methods

This is an empirical enquiry using captured eavesdropped

communications data. The data was from a small business from

January 1st to June 20th 2021 (inclusive; 172 days) with between

28 and 185 active networked devices per day, and between

approximately 63K and 562K logged connection events per day.

The data collected by the Zeek (2021) Intrusion Detection

and Network Monitoring System is metadata extracted from the

observed network communications. Different Intrusion Detection

Systems (Khraisat et al., 2019) utilize different detection approaches

ranging from being based on anomalies to a being based on

heuristics. Anomaly approaches can use statistical information

derived from simple measures, for example data flow rates. In

this work we explore the use of a device-to-device communication

volatility (see Section 3, below). Only the communications that

pass through the network monitoring device are logged for

analysis10. The map of the metadata schema is shown in Figure 2.

The master data table is conn, which keeps a summary record

for all connection events observed. The analyses focus on the

connection log. An example record and details of the meta data

fields available in the conn log are shown in Table 1. Many of

the Zeek tables have a similar initial set of columns with event

timestamp–ts, unique identifier–uid, originating IP address and

port–id.orig_h, id.orig_p, responding IP address, and port

id.resp_h, id.resp_p recurring in many tables.

2.3 From raw network to new cyber
defender knowledge

Raw network logs are only one source of information. We want

to process, transform, and analyze the logs so that they can be

used by the Human-XAI to co-create behavioral descriptions of

the device being studied. This process is sketched in Figure 3. Note

that the cyber defender plays a key role in selecting the device

of interest to study (H1), providing the background knowledge

about the environment and cyber security (H2), and interacting

directly with the XAI system to produce a new understanding that

is mutually acceptable.

3 Simple Good-Turing as device
volatility

We first tackle the two initial hypotheses regarding easier-to-

secure periods and devices outlined in Section 1.5. In this section

we utilize an analytic technique first developed by Alan Turing

and Jack Good whilst working as code breakers at Bletchley Park.

They developed frequency-based attacks on enemy cipher systems,

including determining estimates of character bi-gram probabilities.

Their frequency smoothing approach was based on the frequency

of frequencies of observed bi-grams11 in samples of plain-text. The

models built by the technique provide an estimate of the unseen

10 An eavesdropper can only record what it observes. Encrypted and

wireless communications were not explicitly monitored by our device.
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FIGURE 1

System Context diagram: a network monitoring edge device passively records metadata about observed network connections from and to an o�ce

with networked devices. Logs are securely stored and processed in the cloud.

FIGURE 2

Eavesdropped network communications metadata data schema. The left hand side depicts the table name/columns for the connmaster metadata

table recorded by Zeek (2021). The right-hand side shows the complete metadata schema map (for context only). Note the many subordinate

metadata tables, which provide metadata details for each service recorded in the conn table (e.g., http, dns, dhcp, …).

probability mass from a sample. In this research we use a simplified

form of the algorithm SGT from Gale and Sampson (1995) to fit

Good-Turing frequency models on samples of real-world network

traffic data.

11 Legend has it that Good (Good, 1953) cunningly published the

technique with a motivating example relating to ornithology so as to avoid

censorship.

3.1 Good-Turing frequency estimation

The original motivation for the Good-Turing Frequency

estimation relates to what can be sensibly inferred beyond a sample

of nominal objects relating to objects not present in the sample.

It takes as input the counts of objects in the sample, and then

uses the counts of the counts (spectra) to fit a log-log regression

equation. For each model, the method returns the slope and the

intercept of the regression equation, as well as a goodness-of-fit

measure (r2). The fitted model can be used to provide smoothed
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TABLE 1 Column names, data types, and examples of fields from the Zeek

connmetadata log.

Column
name

Data
type

Example Selected
descriptions

ts timestamp 2020-12-31 23:59:22 Timestamp of

connection

uid string CSuVAz2v3MtaiPkaja Unique ID

(key)

id.orig_h string 10.0.100.55 Source IP

address

id.orig_p bigint 51475 Source IP port

id.resp_h string 192.29.32.24 Destination IP

address

id.resp_p bigint 80 Destination IP

port

proto string tcp Protocol

service string http Service type

duration string 0 days

00:01:00.052789000

orig_bytes bigint 282 Originator

message size

resp_bytes bigint 510 Response

message size

conn_state string SF

local_orig boolean TRUE

local_resp boolean FALSE

missed_bytes bigint 0

history string ShADadFf

orig_pkts bigint 6

orig_ip_bytes bigint 534

resp_pkts bigint 4

resp_ip_bytes bigint 682

tunnel_parents string (empty)

year smallint 2020

month smallint 12

day smallint 31

NB (1) Some values have been altered to ensure confidentiality. For a complete description

of fields see: https://docs.zeek.org/en/master/logs/conn.html. NB (2) The year, month, and

day fields are additional helper fields provided independently from Zeek to improve database

storage and indexing.

estimates of probabilities of objects occurring in the population,

including an estimate of the unseen probability mass P0. This

method works even when the underlying population cardinally is

very large (or indeed infinite)12. We are predominantly interested

in the parameter P0—and using it as as an indicator of volatility.

12 This makes the technique useful in computational linguistics where

the number of potential sentences in a natural language is for all practical

purposes infinite.

3.2 Analyzing network tra�c with SGT

For all analyses we used data collected from the real-

world network described in Section 2.2. We are interested in

the originators of network messages and responders, originator-

responder pairs, as well as gross network traffic, and that of

specific devices. We aim to determine whether the Simple Good-

Turing (SGT) models show evidence of utility in measuring

network event volatility from daily conn data. The process for

analyzing the data, particularly the SGT models, is outlined in

Figure 4.

Recall that Hypothesis 1 (see Section 1.5) concerns

volatility for which we use the SGT estimate of unobserved

species of network communication events, P0events. Does

P0events vary over time? If there is a variation, can we

determine low volatility and high volatility periods of

network traffic? A summary of the SGT analysis of the

network traffic follows13. Figure 5 shows daily statistics for

aggregate counts of source and destination connections

(individually and as pairs) observed, as well as the number of

devices.

The following observations are from the 172 day period

for which data was collected. The daily number of devices

(max. 185/min. 28) and connections (max. 561.7K/min. 63.7K)

are correlated with the organizations work patterns, with

noticeably lower counts on work-weekends. Network connection

rates (weakly positively) correlate to low values of P0 (low

volatility). The number of originating devices is about forty-

fold lower than the responding devices14, and that the values

of originating and responding P0 do not appear to be tightly

coupled.

From this, we adopt the conclusion that the SGT P0 measure

can be used to identify time periods of higher and lower of network

traffic volatility in real-world data.

Hypothesis 2 (see Section 1.5) Identifying individual devices

that are easier-to-secure than others by using the SGT P0

value. For each device the SGT P0Device was calculated for each

day. The mean P̂0Device for the 172 day period along with

the standard deviations were also calculated (see footnote13).

Both daily and mean P0Device values vary significantly. with

the mean SGT metric varying from lowest device to highest

device of two orders of magnitude. The standard deviations

also allows the identification of devices that are consistently low

volatility.

Ranking the devices from lowest to highest P̂0Device shows

a sigmoid-shaped plot (see Figure 6). Figure 7 focuses in on the

lowest twelve lowest scoring devices. For comparison, the period

run-charts for a low and a high value P̂0Device are shown in

Figure 8.

We adopt a second conclusion that the SGT P0 measure can be

used to identify individual device of higher and lower of network

traffic volatility in real-world data.

13 For full details refer to the supporting materials (Moyle et al., 2023b).

14 For the 243 day period from 2021-01-01 to 2021-06-21 the sum of the

count of each days originating devices O was 16,372 and for the responding

devices R was 621,389 giving a ratio of R/O = 37.95.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1321238
https://docs.zeek.org/en/master/logs/conn.html
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Moyle et al. 10.3389/fcomp.2024.1321238

FIGURE 3

Process flow diagram: Data Elements (D) start with eavesdropped Network Tra�c (D1), and are processed by processing elements (P) with the

human Cyber Defender’s interactions (H), using eXplainable AI, to produce new knowledge (K) culminating in the understanding of device behavior

that can be used to improve security further. The data transformations D1 to D6 are along the top line of the figure; below are the processes P1 to P4

that perform the transformations. The human cyber defender plays their crucial role in H1, H2, and H3; with the ultimate outcome produced as new

knowledge in K1.

FIGURE 4

Outline process for calculating Simple Good-Turing (SGT) analysis based on id.orig_h data recorded in the conn network flow meta-data table.

The process is analogous for generating SGT trends for id.orig_respmodels and id.orig_h–id.orig_resp pairs models.

3.3 SGT discussion

Like a skilled cyber defender, we would like to understand what

the actual devices are and their roles. However, passive network

eavesdropping rarely produces definitive identity information. The

MAC address of a device allows us to guess the manufacturer of the

device15. Information gleaned16 from active vulnerability scanning

can help. Combining both such sources allows us to form an

opinion about one particular high scoring P̂0Device. The conjecture

is that it is a WiFi access point or router which is always on and

interacting with a vast number of devices on behalf of its connecting

devices.

15 The MAC address is not 100% trustworthy as it can be spoofed.

16 A website for performing MAC Address lookups is: https://www.

macvendorlookup.com/.

By studying the hardware MAC address of the third lowest

scoring P̂0Device device, and combining the information from

the device’s vulnerability scan (that we were fortunate to already

have with the data) we determine its hardware and operating

system. This is fortuitous, as it directly identifies the IoT-like

network monitoring device that was placed in the network.

We also make some tentative guesses that amongst the lowest

five volatility scoring devices are a router, a network-attached-

storage device, and a printer. Having identified an IoT device

using the SGT analysis of network connection information

Section 4 details how the data can be used to perform behavioral

cloning.

With respect to the first hypothesis regarding whether SGT P0

can be used to identify fluctuations in gross network network-as-

whole traffic over time, the answer is a cautious Yes. With respect to

the second hypothesis regarding whether P0 can be used to identify

individual devices that show markedly lower (or higher) P0, the

answer is a more confident Yes.
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FIGURE 5

Simple Good-Turing frequency analysis of individual Originating IP addresses, individual Responding IP addresses, and combined

Originating-Responding IP address pairs by day. (A) P0 SGT probability mass of unseen addresses (a proxy for volatility) Originating IP addresses

(purple ); Responding IP addresses (pink ); Originating-Responding IP address pairs (green ). (B) Daily count of IP addresses Originating

IP addresses (dark blue); Responding IP addresses (light blue ); Originating-Responding IP address pairs (black ). (C) Orange bars number of

monitored connections. (D) Model fit parameters intercept (red ), slope (blue ), r2 (green ) model for Originating IP addresses (solid

lines ); Model for Responding IP addresses (dashed lines ); Originating-Responding IP address pairs (dotted lines

).

4 Sequence grammar induction and
device behavioral cloning

Behavioral cloning is the machine learning process of recording

the performances of skilled agents and using induction algorithms

on the traces of the behavior so as to generate models that behave

in a similar manner as the original agent (Bain and Sammut, 1995).

Typically the agents under consideration are skilled humans, but

here we are interested in inducing models of device behavior. For

this purpose we study the network event traces of an identified

low SGT P0 volatility IoT-like device. We use the compression and

grammatical induction system SEQUITUR (Neville-Manning and

Witten, 1997).

One way to consider machine learning is that it is the

(algorithmic) extraction of patterns from data. Another view is

that machine learning is about extracting generalizations from

specific examples. The related Minimum Description Length

(MDL) principle is that “what is learned by a machine learning

scheme is a kind of theory of the domain from which the examples

are drawn” (Frank et al., 2016). From Ockham’s Razor we prefer

the shortest theory with the same explanatory power, which means

thatMDL encourages the selection of the shortest theory that allows

us to reconstruct the original example data. This is similar to the

objectives of a compression algorithm that allows us to regenerate

the original (data) file from the generalized (or compressed) file.

In this research we use the SEQUITUR compression algorithm

from Neville-Manning and Witten (1997). It is a lossless

compression algorithm with a computational complexity linear in

the size of the input and is particularly well suited to long sequences.

Furthermore, the compressed output contains a human-readable

data structure—a hierarchical grammar—that explicitly encodes for

frequent sub-sequences from the original file.

4.1 Analyzing the network tra�c of a single
device with SEQUITUR

From the 185 devices observed we selected the device with IP

address 10.0.0.145which (1) had very low volatility; and (2) we

could identify it (as the IoT-like network monitoring). The overall

data transformation process is depicted in Figure 3. Here we focus

on the sequence mining using SEQUITUR. For full details of the

analyses including source listings refer to Moyle et al. (2023b). The

outline process is:
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FIGURE 6

Simple Good-Turing frequency analysis summary of individual internal IP addresses observed daily rank ordered by mean P0 value for the period. The

device with lowest average volatility is the left-most data-point; and the device with the highest average volatility is the right-most data-point. (A)

blue bars – the period average P0conn each bar represents a single id.orig_h (e.g., an IP address); (B) red bars – the period standard deviation of

P0conn; (C) green bars – the number of days the id.orig_h is active in the period (maximum = 171 days). Note that the (A, B) are log scales, while

the (C) is linear scale.

• Select a day’s Zeek data for the identified device (2021-01-10,

consisting of 3,613 events);

• Build string tokens combining the conn table fields:

id.origh_h – source IP address, id.resp_h –

destination IP address, id.resp_p – destination port

number, prot – identified protocol, and service –

identified service for each network connection event that the

device has.

• Hash the string tokens to a unique 9 digit number as

connection event IDs.

• Input the sequence of 3,613 connection event IDs into

SEQUITUR to generate the hierarchical compression

grammar.

4.2 Hierarchical grammar output

One of the strengths of the SEQUITUR approach is that it

produces human comprehensible symbolic output. As it is designed

for compression, the expansion process must be able recreate the

original input. The first item in the SEQUITUR output is the start

rule (S0); which is then followed by a series of grammar rules

each with a unique rule identifier (Ri). The start rule—typically

very long—contains instructions for where to expand the grammar

rules. Each of the grammar rules contains grammatical structure as

well as the original string elements that it encodes for.

1 RuleID : 118
2
3 Rule : [ head ( 1 1 8 ) , token (271311686 ) , r u l e ( 1 6 2 ) ]
4
5 Expans ion : [ 271311686 , 847213017 , 847213017 , 271311686 ]
6 Length : 4
7 Frequency in t r a i n i n g : 21 /3613
8 Frequency in th e grammar : 19
9
10 271311686 : 1 0 . 0 . 0 . 1 4 5 1 0 . 0 . 0 . 1 3 7 ( name_not_found ) 53 udp dns
11 847213017 : 1 0 . 0 . 0 . 1 4 5 3 . 2 0 9 . 9 9 . 5 6 ( ec2−3−209−99−56.compute−1.

amazonaws . com) 22 t cp −

12 847213017 : 1 0 . 0 . 0 . 1 4 5 3 . 2 0 9 . 9 9 . 5 6 ( ec2−3−209−99−56.compute−1.
amazonaws . com) 22 t cp −

13 271311686 : 1 0 . 0 . 0 . 1 4 5 1 0 . 0 . 0 . 1 3 7 ( name_not_found ) 53 udp dns

Listing 1 SEQUITUR Grammar Rule 118 details. A reformatting of the raw

SEQUITUR grammar in that it includes the original mapping between the

network connection event metadata information and their unique 9 digit

number IDs.

SEQUITUR takes our input of 3,613 connection IDs and

produces one start rule, and 129 grammar rules. Consider

Grammar Rule 118 as an example (see listing 1). To expand

S0, simply replace every occurrence of 118 with 271311686,

847213017, 847213017, 271311686.

4.2.1 Visualization of sequence information
Mapping grammar rule numbers and connection event IDs

to unique colors, leads to a natural visualization. For example

The full expansion for rule 118 can be visualized by overlaying
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FIGURE 7

Simple Good-Turing frequency analysis summary of individual internal IP addresses observed daily. Rank ordered by mean P0 value for the period

Zoomed in on the lowest 12 ranked P0 IP addresses. (A) blue bars – the period average P0conn each bar represents a single id.orig_h (e.g., an IP

address); (B) red bars – the period standard deviation of P0conn; (C) green bars – the number of days the device was operating. Note that the (A, B)

are log scales, while the (C) is linear scale.

the colored tiles for IDs 271311686 and 847213017, on the rule

color tile rectangle for Rule 118 as depicted in Figure 9. A simple

tool was developed for visualizing sequences and the grammar

rules using such a color tiling scheme.17 It provides a way of

browsing the original input sequence, guided by information

overlaid from the SEQUITUR sequence extraction and some

other sources.

In studying the sequence of events we drop the timestamps

and focus only on the ordering of events.18 Having discarded

absolute temporal information and relied on event ordering to

produce a visualization, we incorporate some adornments to

convey some absolute temporal information. These include (1)

to identify grammar rule sub-sequences that recur at the same

relative time, we add a simple black strike-through marker to

the visualization to indicate which is the first token tile to

occur after the a new hour; (2) to indicate a beginning of

a group of events that are clustered19 within a pre-defined

tolerance with a red underline. These features are shown in

Figure 10.

17 The prototype has been coded in the XPCE (Wielemaker and

Anjewierden, 2002) graphical extensions to swi-prolog (Wielemaker et al.,

2010).

18 Dropping timestamps for sequence visualization purposes is also used

in Nguyen et al. (2018).

19 The algorithm [from tyrex (2021)] has a single parameter ǫ which is used

for identifying clusters in one-dimension.

4.3 Sequence grammar induction
discussion

The use of SEQUITUR for the sequence mining of

network connection events was successfully incorporated into a

visualization enabling a human to browse and identify repeating

sequences generated by a low volatility IoT-like device. The internal

hierarchical grammar induced by SEQUITUR has been helpful.

However, we have not yet explained any of the recurring sequence

patterns, but it is a key step in the behavior cloning process which

is completed in the logical inductions that follow in Section 5.

5 Logical XAI for cyber defense

5.1 Logic for human-computer interaction
and reasoning

Mathematical logic has a long history including being used

by the pioneers of AI (McCarthy, 1959; Robinson, 1965; Barrett

and Connell, 2005). Indeed, when it comes to a strategy for

building a Thinking Machine Turing sees logic as a fundamental

component (Turing, 1950). Logic provides a way of explicitly

encoding knowledge with well defined semantics. A form of logic

primarily for knowledge sharing and reasoning has been used for

more than 20 years to power the WC3’s Semantic Web (Koivunen

and Miller, 2001).

The forms and power of reasoning vary. Most often the

form of logical reasoning used is deduction, being a relatively

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1321238
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Moyle et al. 10.3389/fcomp.2024.1321238

FIGURE 8

Simple Good-Turing frequency analysis summary of internal IP addresses 10.0.0.8 (high P0 values) and 10.0.0.145 (low P0 values)observed daily. Blue

line – device with IP address 10.0.0.145, Red line – device with IP address 10.0.0.8. The P0 axis is linear (not logarithmic as in some

other figures).

efficient and safe way of drawing conclusions from known

trusted information. Deductions take general laws and cases to

derive sound results. However humans are able to reason with

incomplete, and sometimes contradictory evidence, more akin to

abductive reasoning. Abductions take known general laws and

results to speculate on unknown cases. Abductive Logic, and its

implementations (e.g., Arias et al., 2018) are beginning to make

contributions to cyber defense research (Moyle et al., 2023a).

5.2 Machine learning in logic: inductive
logic programming

A third form of reasoning, induction, takes as input cases

and results and hypothesizes general laws. Inductive Logic

Programming (ILP) (Muggleton and Raedt, 1994) is a form of

symbolic machine learning where all aspects of the learning

problem are specified and modeled as fragments of logic

programs—typically as Prolog programs. The resulting models

are comprehensible for humans. This makes the approach well

suited to interactions with domain experts in their quest to explain

some phenomena.

A simple tutorial illustration demonstrates how Inductive Logic

Programming differs fromDeductive Logic Programming is shown

in Figure 11. Background knowledge encoded in logic (in the

example these are known relationships in the family domain; but

in general can be anything); examples are the positive/negative

examples to be explained (also in logic) (in the example there

are two positive examples of the relationship grandfather—and

no negative examples); the hypothesis or explanatory model (to

be generated as a fragment of logic). The outputs (models),

being in logic, are easily comprehensible. ILP, however, is poor

in domains with numerical or probabilistic information, and it is

computationally expensive making the use of very large datasets

problematic. It is normally used in a batch mode [refer to Ko

(2000) andMoyle andHeasman (2003) for batchmode ILP in cyber

security domains].

In this research we use Srinivasan’s ALEPH ILP system

(Srinivasan, 2001) as it provides an extensive set of features and

capabilities. It requires configuration parameters to be specified that

relate to the specific machine learning context and task. Normally,

this process is done in a batch fashion, but in this work, an

interaction with a domain expert, in which they constantly feed in

more guidance and expertise as the search for an explanation that is

acceptable to them converges. ALEPH has some support for such an

interactive usage mode, but extended features are provided by the

ACUITY wrapper system (Ray et al., 2016; Ray and Moyle., 2021).

The formation of the explanation is a co-discovery with the ILP

system being guided by a (cyber security network forensics) domain

expert. For such an interaction between human and machine, it is
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FIGURE 9

Simple SEQUITUR sequence visualization for example grammar rule 118. The backgound color pink is specific to the grammar rule, while the colors

of the square tiles are unique to each of the underlying network connection IDs (or tokens). The left-to-right order of the tokens is from the original

input sequence.

FIGURE 10

A simple SEQUITUR-based sequence visualization. Individual event tokens are represented by colored squares. The sequence of events flows

left-to-right, top-to-bottom. Underlayed on the event tokens are colored rectangles representing recurring sub-sequence patterns extracted by

SEQUITUR rules. Tool tips (not shown) provide detail information for selected event tokens. Adornments relating to absolute timestamps are black

strike-throughs (e.g., which token is nearest to the start of an hour). Red underlines denote the start of a cluster of events. Note that the purple

highlighted borders are manually drawn, to show the occurrences of rule 118 in the context of the the input sequence of tokens. The events are

from 00:00 UTC to approximately is 06:00 UTC. Each instance of rule 118’s sub-sequence is in its own cluster (ǫ = 5.0 seconds), and not at the

top-of-the-hour.
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FIGURE 11

Tutorial illustration of Inductive Logic Programming. The left-hand panel – (Deductive) LP – depicts the normal deductive usage of Logic

Programming where sound conclusions are derived from general rules about the grandfather relationship and specific facts. The right-hand panel –

(Inductive) LP – depicts the (potentially unsafe) production of a general law about the grandfather relationship, produced from specific examples of

grandfathers and other associated background facts.

important that the both parties can comprehend (Michie, 1988) any

intermediate results, and react to what has been produced in a way

so as to refine the outputs into an acceptable20 explanatory theory.

An outline of the interactive ILP process is:

1. Assemble data, background knowledge, and settings (as

fragments of a Logic Program).

2. Select a specific exemplar to be explained.

3. Let ALEPH build a most specific clause and search the

lattice with respect to the input data, background knowledge,

constraints, and settings – outputting a proposed explanation as

a single Prolog rule.

4. If the proposed explanation is acceptable, then remove all

the other examples that are also explained by the acceptable

explanation, otherwise the human communicates to ACUITY

that the proposed explanation is unacceptable, and makes

changes to settings and other constraints, then repeat step 2.

5. If more examples exist go back to step 2 and select another

unexplained exemplar; otherwise output the collection of all

rules and other knowledge accumulated in the session as the

explanatory theory.

5.3 Experiment to logically explain NetMon
data

Having identified a single IoT-like device operating within

the operational network (see Section 3.3), we wish to use a

Human-XAI approach in the explanation of a sequence of related

network events (see: Section 4.2.1) that can be incorporated into

a (partial) specification of what the device normally does. Often,

a key challenge for securing IoT devices is first identifying their

20 We do not provide a strong definition of acceptability here, only that the

domain expert is satisfied with the explanation arrived at.

presence on the network (as asset registers do not exist, or they

have not been properly maintained). The analysis of the data in

Section 3.3 identified that the volatility of network connections

to/from a device provides an indication, relative to other devices

on the same observed network, of whether it belongs to the class

of IoT-like devices. From that analysis the device with IP address

10.0.0.145 had low volatility and was selected for further the

explanatory analysis.

5.3.1 ACUITY Data preparation
The data transformation process is depicted in Figure 3. The

following summarizes the process for building the inputs to the XAI

machine learning system ACUITY. It takes as a precursor, the data

transformations described in Section 4.1:

• Use the sequence visualization to identify interesting

(repeating) subsequences as examples for XAI machine

learning.

• The following items are then utilized by the XAI machine

learning system:

– The raw Zeek connection table event records;

– The extracted Zeek dns and dhcp table event records;

– The sequence pattern data extracted by the SEQUITUR

system (see Section 4.2)

– The hierarchical grammar and supporting data elements

(from SEQUITUR).

– Prolog code providing logical relationships between

entities.

A noteworthy inclusion of cyber defender expertise into the

XAI background knowledge relates to the concept of beaconing.

This is a common design pattern in IoT-like devices that regularly
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contact a central service for any pending commands21. A fragment

of Prolog was coded to determine if there was a time around

which repeating sequences clustered with respect to the minute

hand on the clock. This specification was made available in

the learning process. Detailed Data Understanding and Data

Preparation information can be found in Moyle et al. (2023b).

5.3.2 Human-Machine XAI explaining a
SEQUITUR sequence

This section outlines a proof-of-principle experiment using

ACUITY to explain one of the subsequences extracted by

SEQUITUR from network monitoring data of the device at IP

address 10.0.0.145 on 2021-01-01. The exemplar under study

is grammar Rule 8 which is a sequence of events containing four

elements with the token hashes [363783709, 100233664,

100233664, 363783709], and occurs 18 times in the twenty-

four hour period under study.

Following the process outlined in Section 5.2 leads to a co-

discovery conversation between the cyber defense expert and the

machine learning system in which seven interactions occur: an

example to be explained is selected22; the first suggested explanation

is rebutted; the expert defines an over-general constraint; a counter

example is added to refute another explanation; constraints are

added based on what the expert finds most interesting (twice); and

the explanation (known as the theory–see listing 2) is accepted.

For complete details see Moyle et al. (2023b).

1 [theory]
2

3 [Rule 1] [Pos cover = 1 Neg cover = 0]
4 exp_seq(A) :-
5 rule_start_zeek_uuid(A,B), next_to(B,C), next_to(C,D

),
6 has_port_service(D,ssh),
7 has_dest_name(D,’ec2-3-209-99-56.compute-1.amazonaws

.com’),
8 beaconing_every_hour(A,10).
9

10

11 [positives]
12 exp_seq(8).
13

14 [negatives]
15 exp_seq(sk_1_1_rule_id).
16 exp_seq(1).
17

18

19 true .

Listing 2 Explanatory Theory of grammar rule 8 for the IoT-like

eavesdropping device learned with ACUITY.

The theory to explain the sequence that is generated starting

from the single example of SEQUITUR grammar rule 8 consists of

the single positive example (exp_seq(8)), two expert introduced

examples (“this is not an example of a grammar rule 8 sequence”),

and a single (ALEPH rule). This rule can be directly translated from

the Prolog rule in listing 2 into English:

21 Malware sometimes use the same design pattern for which it is part of

their Command and Control (or C2) system.

22 The most specific rule based on the inputs and the selected example is

57 literals long, defining the size of the search space for single clauses to be

2.40× 1032.

The sequence of events is explained if: the sequence

grammar rule starts with a Zeek UUID (B) and that the

next event after B is C and the next event after C is D.

The event D connects to port service ssh at the server

’ec2-3-209-99-56.compute-1.amazonaws.com’,

at the beaconing frequency of 10 minutes past the hour.

5.3.3 Evaluation
We are fortunate to have access to the device manufacturer of

the device instance we are studying. The device developers confirm

that the device class has code that attempts to establish a connection

to the named cloud host every 10 minutes past the hour, as shown

in the implemented code fragment for the device’s cron scheduler in

listing 3.

1 :
2 */10 * * * * /path/to/ai-aws-ssh.sh >> /var/log/ai/aws-

ssh.log 2>&1
3 :

Listing 3 Beaconing ssh connection to the cloud-based controller in the

cron scheduler of device 10.0.0.145.

We further check the coverage of the final theory with respect to

the data for the entire day, in which we find that both SEQUITUR

grammar rules 8 and 191 are predicted by the final theory.

Inspection of grammar rule 191 shows that it is an extension of

rule 8 (and is probably produced by an over specification23 by the

compression algorithm).

The cyber defender is sufficiently content in the explanation

that they have co-constructed with the XAI system in that (1) it

fits their broad understanding and experience; (2) it covers other

unnoticed instances; and (3) it does not false alarm. They are also

relieved that they have not had to spend much effort in studying

detailed logs, and the extensive searching for explanations has been

done by the machine.

6 Discussion

Cyber defenders are deluged by data that lacks labels to make

machine learning and other artificial intelligence techniques a

challenge to apply. Scarce human defenders themselves can be

significantly enhanced if they can team up with an XAI that

amplifies their skills. This requires both the Human and Machine

can share with each other what they know and what it is that

they have newly determined. In this research we have used

network monitoring meta data as a first source of data. This data

is transformed and filtered through a volatility measure, which

provides the ability to identify both periods of operation as well as

individual devices that are easier to defend.

It can be difficult for academic cyber security researchers to

obtain real world data. For this research it was possible to utilize

approximately six months of operational network data from a

modest sized organization. 185 individual devices were observed

during the study period. Although the organization had a variety

23 We prefer over specialization by the distribution free SEQUITUR system

so that the generalizations can be produced by ACUITY.
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of devices there was only one fully identified device, the network

monitoring system that was installed for this observational case

study.

In Section 3 we showed how the Simple Good-Turing frequency

estimator unobserved probability mass (P0) can be applied to the

eavesdropped network metadata. Gross patterns of daily network

traffic show periods of less volatility (and there is a strong

correlation to periods when traffic and volatility can be expected to

be relatively less—e.g., on non-workdays). Average daily network

volatility varies substantially throughout the 172 day period with

a minimum value of 6.1 microns and a maximum value of 331

microns. In the same period, the number of observed devices varies

between 28 and 185, whilst the total number of observed network

connections in a one-day period varies from 63,710 to 561,742.

The ratio of Originating device connections to Responding device

connections is about 1 to 40, and that these two sources of P0 are

not strongly correlated.

A spectrum of volatility exists in real device behavior, giving

initial support that it is possible to identify easier-to-defend devices.

Without physical access to the devices post-hoc identification of

network devices is difficult. The analysis of the lowest ranked five

devices suggests these are devices with repetitive simple behaviors.

Unsurprisingly, the network monitoring system itself is a low

volatility device, being the third lowest ranked device in the survey.

As this device is fully specified and identified in advance, it allows

any analyses to be compared to its designed IoT behavior, making

it a good target for further detailed study.

The SEQUITUR compression algorithm is used to perform

an initial phase of behavioral cloning to an arbitrary day’s worth

of metadata traffic containing 3,613 network connection events.

SEQUITUR is used as a machine learning algorithm as its

internal basis records a hierarchical grammar. This consists of

grammar rules that encode repeating sequences. The whole original

sequence can be visualized using a colored tiling that encodes

both the individual events and the repeating sequences that are a

component of. The SEQUITUR algorithm does not take account

of the timestamps, only the sequence of events. This is similar to

approaches taken elsewhere also in applied security domains (e.g.,

(Nguyen et al., 2018)). However, adding back some information

into the sequence visualization is helpful: (1)marking the beginning

of each hour; and (2) clustering the events along the time dimension

using the original timestamps. The human cyber defender can

use the visualization to identify some (possibly recurring) sub-

sequences that they want to explore more deeply. Each occurring

instance of an identified becomes an example that can be used for

the defender to give to the XAI.

The final phase of generating a behavioral cloning

understanding of specific device behavior is performed in

Section 5 using the interactive inductive logic programming

system ACUITY (see Ray and Moyle., 2021). This takes as input

the example of the sequence of behavior to be explained, and

contextual background knowledge. These inputs are all expressed

as fragments of Logic Programs, which are comprehensible to

the Human defender, and directly executable by the XAI [which

conforms to Michie’s description of an ulta-strong machine learner

(Michie, 1988)]. The defender is able to directly refute the XAI’s

working hypotheses when needed, to shape an explanation that

sufficiently fits both the observed data and tacit expertise of the

defender.

The result of theHuman-XAI collaboration session explains

the SEQUITUR rule 8 pattern from a single example, with one

negative example added by the defender, and one negative example

inferred through the defender’s rebuttal process. The explanation

includes the defender’s high-level concept of beaconing which is

a common design pattern used in some IoT devices where they

periodically contact a master controller for any pending commands

at some regular frequency. It is rendered in English, but has a

direct representation as a fragment of Prolog, which can be used

to reason with, or even deploy as an allowable behavior of the

device that can be permitted on the network at run time. This has

some similarities logical induction of intrusion detection system

rules reported in Ko (2000), but our approach does not require

significant, pre-labeled balanced datasets.

Revisiting Michie’s version of eXplainable AI which he calls

Ultra-strong Machine Learning the following tests must be met:

• [M1] [a] system [that] uses sample data (training set) . . .

• [M2] . . . to generate an up-dated basis for improved

performance on subsequent data . . .

• [M3] . . . and also can communicate its internal updates in

explicit . . .

– [M3.1] . . . and operationally effective . . .

– [M3.2] . . . symbolic form

The results reported here were generated from a system that

used sample data, which originated as network traffic, and was

identified and selected by being filtered through volatility, then

extracted as recurring sequence patterns. This satisfies Michie’s

[M1] requirement. The induced rule, mentioning beaconing,

updated basis was applied to a randomly selected day of that

devices network logs, and found that the behavior appears 24

times at the hourly time stamps forecast. This, then satisfies

the [M2] requirement of improved performance, as without the

rule, the system would not be able to identify the behavior in

unseen data. Dealing with the combined [M3/M3.2]—the cyber

defender was able to verify the beaconing rule (indeed they helped

create it) in the symbolic natural language formulation above,

thus demonstrating that the system was able to communicate its

internal update to a human. Finally, the combined [M3/M3.1] we

see that we can directly utilize the isomorphic Prolog form of

the beaconing rule, in both identifying the behavior in subsequent

network logs, and also as part of a more fine-grained defensive

system. Furthermore, we can add this operationalization to the

manufacturer’s specification for that device class (see Grayeli and

Mulugeta, 2020, ManySecured, 2021) for use in other deployment

contexts.

Although we have demonstrated XAI Human-Machine

collaboration applied to network security, it still falls short of

replacing human cyber defenders. The results above utilize

restricted reasoning that is limited to deduction and some

induction. Cyber defenders constantly form hypotheses, collect

more evidence, and focus their investigations. They will use

abductive reasoning (Peirce, 1996) to form hypotheses and seek
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yet-to-be discovered evidence, whilst forming constraints based

on the potentially contradictory evidence that will rule out

incompatible hypotheses and lines of enquiry. Once the case is

solved, then it is possible to follow a deductive reasoning process

that explains the case and its artifacts. Abductive reasoning is

difficult to achieve using standard logic programming techniques

(e.g., like Prolog). Advances in Answer Set Programming

(Lifschitz, 2022)) provide for environments that describe their

world in a comprehensible form (e.g., logic) whilst permitting

missing and or contradictory evidence. Some initial explorations

have been made in the field of cyber security in the s(CASP)

environment (Moyle et al., 2023a). Providing high-level symbolic

interaction in natural language continues to be explored in the

s(CASP) system (see Sartor et al., 2023).

7 Conclusion and future work

To center this research clearly in the realms of eXplainable AI

we have chosen to align with Donald Michie’s definition of Ultra-

strong Machine Learning (Michie, 1988). As his definition insists

at the outset on comprehensible internal models that are learned

by the AI there is no need to reverse-engineer (Gunning et al.,

2021) any learned black-box model to understand what it might

do when making predictions. Systems that perform within Michie’s

definition could be termed Self Explanatory AI.

Supported by an empirical case study we demonstrated that

passively collected Network Monitoring event data can be used

to identify the volatility of communications of network devices.

It provides further evidence to motivate a systematic approach to

the identification of individual devices’ network traffic volatility as

provided by the Simple Good-Turing frequency estimator (Good,

1953; Gale and Sampson, 1995). We have shown with empirical

evidence that there is a spectrum of easier-to-defend through to

harder-to-defend network devices. This supports Meer’s conjecture

(Meer, 2015) that it is very difficult to defend whilst much easier to

attack.

The case study has also demonstrated that the symbolic

compression algorithm,SEQUITUR (Neville-Manning andWitten,

1997), can be used as a sequence pattern extractor from a stream of

temporal network events. Furthermore, an elementary method for

visualizing the sequence patterns provides a basic human-computer

interface for navigating the network data. Humans can explore the

network event interaction sequences via visualizations, and select

targets for further investigations

The symbolic compression techniques can be used as a

form of behavioral cloning (Bain and Sammut, 1995) by

extracting hierarchical grammars to describe sequences of network

interactions. The grammars provide a component of background

knowledge that can be deployed in an interactive inductive logic

programming system (ACUITY, Ray et al., 2016). Further rich

knowledge about the cyber security domain and specific network

security context can be added. For example, high-level concepts

that cyber defenders understand, like the behavior pattern of

device beaconing, can also be incorporated into the discourse.

We demonstrated that a cyber defender can have a robust

comprehensible direct interaction with the XAI machine learning

environment to guide it toward a mutually understood explanation

of the sample network phenomenon selected from the event

logs.

The resulting knowledge produced was compared

with the ground-truth knowledge from the generating

device’s actual behavior and that was found to be

a consistent explanation. Such knowledge could be

deployed in an operational role with high confidence to

improve individual device security and security of the

network.

The XAI systems used for this research are still very

rudimentary, they do not yet fulfill the complete standard expected

by Srinivasan et al. (2022) in which an XAI environment should to

be two-way, requiring the XAI to be further capable of refuting the

hypotheses of their human collaborator.

7.1 Future work

There are numerous directions that can be pursued from this

research ranging from empirical (e.g., more analysis of the existing

data), to theoretical (e.g., how robust is SGT and how does it

compare to other volatility measures?).

Is it possible to use the visualization of tilings in other ways?

In Axon (2018) sounds are mapped to network traffic data for the

purpose of network-security monitoring. The abstraction of data

used in Axon (2018) is low level. A higher level of abstraction could

be used for sonification by using analogs of the tokens and the token

map visualization. For example each rule color (i.e., number) and

each token color (token ID) can be mapped to particular tones and

perhaps particular instrument timbres.

The proof of concept described has used data from on

particular day from a single device. It is claimed that SEQUITUR

(Neville-Manning and Witten, 1997) is particularly effective when

working with longer sequences. The current tooling for cyber

defenders is crude and there are many plausible enhancements. The

visualizations of the SEQUITUR outputs from sequence mining the

network event data could be integrated into the ACUITYworkflows

to enhance the ability to explain most, if not all, sequence patterns

produced by a single device. Improved user interfaces of the type

being explored here (Deane and Ray, 2023) may be beneficial.

We have not yet turned the new knowledge into an widely

usable active defense. Having produced behavior explanations,

can these be codified and exported in a standard form? Existing

standards for IoT behavior specification includeD3 (ManySecured,

2021) andMUD (Grayeli and Mulugeta, 2020).

The system has a restricted power of reasoning as it is

using standard logic programming deductive techniques which

are limited to simple deductions appropriate when there is one

single consistent logical model, whilst coping with inconsistencies

and missing data are common in human reasoning. Using

developments in Answer Set Programming (Lifschitz, 2022) and

s(CASP) (Arias et al., 2018) for a more comprehensive reasoning

basis will keep the formalism human comprehensible, and extend

the power.

The above list is not exhaustive, but provides some future

research and development directions. For a more detailed list see

Moyle et al. (2023b).
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