
TYPE Original Research

PUBLISHED 09 April 2024

DOI 10.3389/fcomp.2024.1304687

OPEN ACCESS

EDITED BY

Andrej Košir,

University of Ljubljana, Slovenia

REVIEWED BY

Hiroki Tanaka,

Nara Institute of Science and Technology

(NAIST), Japan

Marko Meža,

University of Ljubljana, Slovenia

*CORRESPONDENCE

Ning Yang

nyang@siu.edu

RECEIVED 29 September 2023

ACCEPTED 05 March 2024

PUBLISHED 09 April 2024

CITATION

Wang M and Yang N (2024) EmoAsst: emotion

recognition assistant via text-guided transfer

learning on pre-trained visual and acoustic

models. Front. Comput. Sci. 6:1304687.

doi: 10.3389/fcomp.2024.1304687

COPYRIGHT

© 2024 Wang and Yang. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

EmoAsst: emotion recognition
assistant via text-guided transfer
learning on pre-trained visual
and acoustic models

Minxiao Wang1 and Ning Yang2*

1Computer Engineering Program in School of Electrical, Computer, and Biomedical Engineering,

Southern Illinois University, Carbondale, IL, United States, 2Information Technology Program in School

of Computing, Southern Illinois University, Carbondale, IL, United States

Children diagnosed with Autism Spectrum Disorder (ASD) often struggle to

grasp social conventions and promptly recognize others’ emotions. Recent

advancements in the application of deep learning (DL) to emotion recognition

are solidifying the role of AI-powered assistive technology in supporting autistic

children. However, the cost of collecting and annotating large-scale high-

quality human emotion data and the phenomenon of unbalanced performance

on di�erent modalities of data challenge DL-based emotion recognition. In

response to these challenges, this paper explores transfer learning, wherein

large pre-trained models like Contrastive Language-Image Pre-training (CLIP)

and wav2vec 2.0 are fine-tuned to improve audio- and video-based emotion

recognition with text- based guidance. In this work, we propose the EmoAsst

framework, which includes a visual fusion module and emotion prompt fine-

tuning for CLIP, in addition to leveraging CLIP’s text encoder and supervised

contrastive learning for audio-based emotion recognition on the wav2vec 2.0

model. In addition, a joint few-shot emotion classifier enhances the accuracy

and o�ers great adaptability for real-world applications. The evaluation results

on the MELD dataset highlight the outstanding performance of our methods,

surpassing the majority of existing video and audio-based approaches. Notably,

our research demonstrates the promising potential of the proposed text-based

guidance techniques for improving video and audio-based Emotion Recognition

and Classification (ERC).

KEYWORDS

emotion recognition, transfer learning, pre-trained model, contrastive learning, multi-

modal

1 Introduction

Many children who are diagnosed with Autism Spectrum Disorder (ASD) have

difficulty understanding social conventions and identifying sarcasm, humor, or figurative

language. They struggle with conversational turn-taking and interpreting social cues,

making it difficult to initiate and maintain friendships and relationships. These difficulties

may manifest as tantrums, anxiety, aggressive behavior, and a tendency to become easily

frustrated. The occurrence of inappropriate behavior can be attributed to various factors

related to physical and psychological aspects. A primary factor is their difficulty in

promptly recognizing others’ emotions and accurately interpreting facial expressions,

leading to challenges in adjusting to appropriate responses. This motivated us to use

machine learning technology to help autistic children better recognize people’s emotions.

AI-powered assistive technology refers to the use of artificial intelligence (AI) to
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develop tools and devices that assist individuals with disabilities in

various aspects of their daily lives. These technologies are designed

to enhance independence, accessibility, and overall quality of life for

people with disabilities. Recent advances in utilizing deep learning

for recognizing emotions are establishing it as a valuable assistive

technology, capable of providing substantial support to individuals

across multiple applications and domains.

However, collecting and annotating large amounts of high-

quality data is costly and even impossible for some special

domains, such as emotion detection. Meanwhile, existing AI-based

emotion recognition methods have imbalanced performance on

different independent modalities (audio, video, and text). For

example, on most existing benchmarks (Busso et al., 2008; Poria

et al., 2018), text-based emotion recognition methods always

achieve much better detection accuracy than audio or video-based

methods. Additionally, it should be noted that the text of speech

is not intuitive sensory information like the acoustic and visual

information in the formats of audio and video. Furthermore, for

the aspect of improving emotion recognition abilities, acoustic and

visual information are more useful (Ghaleb et al., 2019; Ma et al.,

2020) than texts. Therefore, we have considered how to improve

the audio and video-based emotion recognition performance based

on the guidance from successful text-based methods.

Recently, significant progress has been made in visual

representation learning through large-scale contrastive vision-

language pre-training (CLIP) (Radford et al., 2021). CLIP is a deep

learning model developed by OpenAI that learns visual concepts by

training on a large dataset of images paired with natural language

descriptions. The language knowledge learned in CLIP helps the

model understand the semantics or meanings associated with

various concepts in images. Hence, it can understand and represent

images in a way that is useful for a wide range of tasks. Although

CLIP initially focused on images and text, it has been extended

and adapted to learn from audio and video data. This cross-modal

learning and generalization enable a broader understanding of

multimodal information and facilitate various applications in the

audio and video domains (Xu et al., 2021; Ma et al., 2022; Zhang

et al., 2023). Furthermore, many recent works focus on adapting

the pre-trained CLIP models for various downstream applications

(Zhang et al., 2021; Lin et al., 2022; Rasheed et al., 2023).

In order to solve the data collection and performance imbalance

issues for deep learning-based emotion recognition, we believe

that fine-tuning the pre-trained foundation models offers a good

solution. In this paper, we propose transfer learning methods

to take advantage of large pre-trained models, particularly CLIP

and wav2vec 2.0, for video and audio-based emotion ERC tasks.

We improve the audio and video-based emotion recognition

performance based on the guidance from text-based methods. The

main contributions are listed below:

• Design a visual fusion module and an emotion prompt fine-

tuning method to improve visual emotion representations of

CLIP with the guidance of texts.

• Adopt CLIP’s text encoder and use supervised contrastive

learning to improve transfer learning on another

pre-trained model (wav2vec 2.0) for audio-based

ERC tasks.

• Design a joint few-shot emotion classifier for the fine-tuned

visual and acoustic representations to achieve better accuracy

on the video and audio-based ERC.

Evaluation results on the MELD dataset showed that our

methods outperformed existing video and audio-based methods

and all of the proposed methods can bring benefits to video and

audio-based ERC.

The remained of this presents, related work in Section 2.

Section 3 outlines our methodology. Section 4 analyzes the

experiments and the evaluation results. Conclusions are described

in Section 5 and Section 6 discusses future work.

2 Related work

Previous research studies have established connections between

challenges in narrative skills in individuals with ASD to deficits in

social cognitive abilities. These challenges can include difficulties

in accurately interpreting the emotions and cognitive states of

others, which could potentially restrict their ability to respond

appropriately in social situations (Tager-Flusberg, 2000; Losh

and Capps, 2006). An important factor contributing to social

difficulties in children with ASD is emotion recognition, which

involves the ability to accurately identify and interpret emotions

based on facial expressions, vocal cues, body language, and

contextual information. Assistive technology can greatly assist

individuals by providing a supportive and engaging environment

for learning and practicing emotion recognition in a structured

and effective manner. The use of machine learning in emotion

recognition can analyze vast amounts of related data, and enable

the development of personalized solutions based on individual

needs, preferences, and abilities that meet children’s unique

social challenges.

2.1 Emotion recognition

Emotion recognition research is a continuously evolving

and dynamic domain. Researchers continue to explore various

approaches and technologies to improve the accuracy and

applicability of emotion recognition systems. Deep learning

models, such as Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), Long Short-Term Memory

(LSTM) networks, and more recently, Transformer-based models,

have shown significant promise in emotion recognition tasks

(Kahou et al., 2015; Fan et al., 2016; John and Kawanishi, 2022;

Febrian et al., 2023). Transfer learning, in which pre-trained

models are fine-tuned for emotion recognition tasks, has gained

popularity due to its ability to leverage large-scale labeled datasets

(Feng and Chaspari, 2020).

Over the past few years, there has been an increasing focus

on multimodal emotion recognition using deep learning and

signal processing methodologies (Tashu et al., 2021; Ma et al.,

2022). Combining information from multiple modalities (e.g.,

facial expressions, speech, text, physiological signals) has been
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a focus to improve the accuracy and robustness of emotion

recognition. Integrating data from different modalities (e.g., text,

audio, video) has shown improved performance compared to using

a single modality. However, each modality has its own features,

structure, and noise, and extracting meaningful features from

diverse modalities and fusing them into a cohesive representation

that captures emotional content is a key challenge (Zhang et al.,

2018).

Emotion recognition in real-world scenarios often requires

considering the contextual and temporal aspects of emotional

expressions. Contextual information from conversations,

interactions, or surrounding events can help to better understand

and interpret emotions. Children with ASD may exhibit slower

responses to people or social cues. Integrating emotion recognition

tools into educational and therapeutic interventions can offer

valuable support to enhance their understanding of emotions in

various social contexts.

2.2 Pre-trained models

Pre-training models on large-scale text data help the model

learn rich and abstract representations of language. These learned

features can be transferable and beneficial for understanding text

in various domains, including emotion recognition. Considering

the efficient use of data, pre-training leverages vast amounts of

readily available unlabeled text data. This enables the model to

learn from diverse and extensive linguistic patterns and nuances

without requiring large amounts of labeled emotion-specific data.

Pre- training also facilitates transfer learning, allowing the model

to use its learned knowledge and representations from a general

task such as language understanding, and apply them to a specific

task like emotion recognition, reducing the amount of labeled data

needed for the specific task.

Contrastive Language-Image Pre-training (CLIP), created by

OpenAI, is an advanced deep-learning model that matches natural

language descriptions with images, enabling a broad spectrum of

vision-related tasks. It simultaneously trains an image encoder

and a text encoder to correctly associate pairs of (image, text)

training examples within a batch. During testing, the text encoder

generates a zero-shot linear classifier by embedding the names or

descriptions of the classes in the target dataset (Radford et al., 2021).

CLIP is a flexible approach that can be applied to various image

understanding and processing tasks without the need for task-

specific training. It can recognize broad categories and concepts

in images, but may struggle with fine-grained object recognition

or distinguishing subtle differences within similar categories.

Furthermore, it has limited contextual understanding because

it operates on an image-by-image basis without considering

contextual information or relationships between multiple objects

or entities within an image. It may not capture complex spatial or

contextual dependencies.

FIGURE 1

Overview of the EmoAsst framework. EmoAsst comprises three pre-trained encoders, all of which are frozen during operation. The image and text

encoders are sourced from the CLIP model, while the audio encoder is based on the wav2vec 2.0 model. A visual adapter (visual fusion module) and

an auditory adapter are proposed for transferring the pre-trained knowledge for ERC downstream tasks with contrastive learning. A cache

model-based emotion recognition classifier is proposed for final prediction.
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Facebook AI Research has developed a cutting-edge framework

for self-supervised learning of speech representations,Wav2Vec 2.0

(Baevski et al., 2020a). The model is designed to transform raw

audio signals into a more abstract and informative representation

that can be used for downstream speech-related tasks like

transcription or translation. Wav2Vec 2.0 employs a self-

supervised learning approach, which allows it to be pre-trained

on a large amount of unlabeled data. The key advantage lies in

its architecture and training methodology, particularly in its audio

encoder and subsequent use for downstream audio decoding.

3 Methods

In this study, we transferred and combined the pre-trained

CLIP and wav2vec 2.0 models to the downstream emotion

recognition task. In particular, we focused on improving the

performance of video and audio-based emotion recognition

based on the guidance of learned representation features from

text-based methods.

To this end, we proposed a CLIP-basedmulti-modal contrastive

transfer learning framework (Section 3.1). Particularly, we first

proposed a visual emotion representation fine-tuning method

based on the pre-trained CLIP model in Section 3.2; then, we

proposed an acoustic emotion representation transfer learning

method with pre-trained features from the wav2vec 2.0 model

and fine-tuned with the CLIP structure in Section 3.3; finally,

we proposed a multi-modal emotion recognition classifier for the

transferred visual and acoustic emotion representation features in

Section 3.4.

3.1 Framework overview

An overview of our transfer learning framework is presented

in Figure 1. The EmoAsst framework includes (1) the most

widely adopted vision-language contrastive learning paradigm,

CLIP, which consists of an image encoder and a text encoder

for extracting visual and language features; (2) a wav2vec 2.0

model, which works as an audio encoder; and (3) an emotion

recognition classifier for predicting emotion with the transfer

emotion representation feature.

In EmoAsst framework, we adopted the pre-trained CLIP and

wav2vec 2.0 models with frozen weights. In order to adapt the pre-

trained CLIP to a video-based emotion recognition downstream

task, we first bridged the gap between images and videos by

appending a visual fusionmodule after the image encoder. Next, we

added a visual adapter to transfer the learned visual representations

to the emotion-related domain. Finally, we used a text prompting

method to train the visual fusion module and visual adapter

with contrastive loss. To adapt the pre-trained wav2vec 2.0 to

audio- based emotion recognition downstream tasks, we combined

wav2vec within the CLIP model as a triple-branch CLIP. As an

audio encoder, wav2vec 2.0 extracts acoustic representations that

are then transferred to the emotion-related domain by the following

auditory adapter. The audio branch is also fine-tuned with the same

text prompting method in the video branch.

FIGURE 2

The structure of the visual fusion module.

3.2 Visual emotion representation
fine-tuning on CLIP

3.2.1 Adapting image CLIP for visual emotion
Many existing works (Lin et al., 2022; Rasheed et al., 2023)

report that large-scale image-text-based pre-trained CLIP can be

transferred to the video learning domain by adding extra learnable

parametric modules (normally stacked LSTM layers or transformer

encoders) to model the temporal relation among frames. However,

based on the analysis of EmotionCLIP (Zhang et al., 2023), the

transferred video-level CLIP for the visual emotion recognition task

cannot achieve comparable success in other video- based tasks, such

as human action understanding. We believe the main reason is

that emotional expressions may not always be easily discernible.

In a video, the primary focus lies in the subject’s movements and

actions, with their internal emotions often taking a secondary role

as supplementary information. Therefore, we designed a novel

visual fusion module to bridge the modality gap between images

and video.

3.2.1.1 Visual fusion module

Instead of modeling the temporal or context relationships in

videos, we used the image fusion module to extract consistent

emotional expressions. As shown in Figure 2, unlike the existing

transformer encoder-based temporal video fusion modules (Ma

et al., 2022; Zhang et al., 2023), our visual fusion module consists

of one transformer encoder layer and two transformer decoder

layers. The transformer encoder works as an adapter to fine-tune

the representation of each individual video frame independently.

The sequence of fine-tuned representations of N video frames is

further fed to the transformer decoder layers.

The transformer decoders also take M query features as an

additional input. The query feature is the summation of a trainable

embedding vector and an emotion-prompt feature vector extracted
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FIGURE 3

The character Rachel had three di�erent emotion types during the smoking action in the same scenario. The similar temporal and contextual

information makes it hard to recognize the di�erent emotions. To solve this, we proposed an emotion prompt to fine-tune the emotion

representation features. Six examples of prompt format are given.

from the text encoder. The emotion-prompt features are used

to calculate cross-attention in the transformer decoder layers

with the sequence of fine-tuned representations. Details about

emotional prompting will be introduced in Section 3.2.2. Due

to the participation of emotion-prompt features, the transformer

decoder layers can extract the emotion-related features from the

sequence of N fine-tuned representations of video frames. The

added embedding vector makes the extraction process trainable

instead of using the fixed emotion-prompt features.

3.2.2 Fine-tuning the emotion prompt
In this section, we introduce the adopted emotion prompt

engineering technique for fine-tuning the pre-trained CLIP and

wav2vec 2.0 model. Although CLIP has also been adopted for

learning emotion representations by EmotionCLIP (Zhang et al.,

2023), emotion-related prompting has not been included in those

works. This is because the research scope of our work is different

from EmotionCLIP. EmotionCLIP is a pre-training framework

that which can only use uncurated data from the internet, such

as YouTube, to learn emotion representations based on video

and text communication information. As a pre-training paradigm,

EmotionCLIP only needs to provide a few sentiment cues to

force the large model to learn emotion-related knowledge. But

our EmoAsst focuses on a specific downstream task—emotion

recognition, we can provide more conspicuous emotion-related

guidance in our approach.

As shown in Figure 3, the three pictures are three video frames

that come with three videos with different emotion labels in the

MELD dataset. However, those three videos have the same speaker

(Rachel), the same background, and the same action (smoking). In

this case, we should notice that only capturing the temporal and

contextual relationships may be enough for the action recognition

task but not enough to distinguish different emotions. This scenario

is quite common in real-life conversations. In daily conversations,

the subjects of the conversation, as well as the scene and activities

they are engaged in usually remain the same.

To fine-tune the visual emotion features, we customized the

prompt text to emphasize the emotion-related context. In EmoAsst,

we added the emotion prompts to the text information, which is

the input of the CLIP text encoder. In our approach, we adopted

six prompt formats to augment the text representations so that the

text features can help fine-tune the visual features to include more

emotion-related information. In our prompt format, the emotion

label [emotion] must be included. Meanwhile, to emphasize the

emotion, we used some keywords, such as “speaking”, “say”, and

“face” to guide the visual fusion module to focus more on the

speaker’s face. To increase the diversity of prompts, [speaker]

and [utterance] information were optionally added to the prompt

sentences.

Another compelling rationale for employing multiple prompt

formats lies in their capacity to mitigate the issue of false negative

pairs. In the context of the CLIP model’s contrastive loss, all video-

text intersection pairs are mandated to be categorized as negative.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1304687
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Wang and Yang 10.3389/fcomp.2024.1304687

Nevertheless, it is untenable to enforce a negative label on video-

text pairs that share the same emotion label. To address this

concern, we introduced a variety of prompt texts, complemented

by additional contextual information such as utterance content and

speaker name or gender.

3.3 Fine-tuning acoustic emotion
representation in CLIP and wav2vec 2.0

Since the original CLIP does not include an audio encoder, we

adopted the wav2vec 2.0 model as the audio encoder for EmoAsst.

Although wav2vec shares a similar transformer structure with the

text encoder of CLIP, the large training cost makes it impossible to

pre-train wav2vec 2.0 from scratch. Additionally, in this work, we

focused on text-guided transfer learning. Therefore, we used a pre-

trained wav2vec 2.0 base encoder whose checkpoint was trained

by SEGUE (Tan et al., 2023). SEGUE is a pre-training method for

spoken language understanding (SLU) tasks. Although SEGUE did

not use the text encoder from CLIP, it did use wav2vec 2.0 as its

audio encoder. Furthermore, SEGUE’s pre-trained audio encoder

was evaluated on the same MELD (Poria et al., 2018) dataset as our

work, which proves it can provide a good starting point for our task.

3.3.1 Model structure
Specifically, we adopted the frozen CTC-based feature encoder

and the frozen first 9 transformer layers of the context network

of the wav2vec 2.0 structure, followed by three extra trainable

transformer layers, called auditory adapter (AA), to match the

different feature dimensions (768-dimensional embedding for

wav2vec 2.0 and 512- dimensional embedding for CLIP) and the

different downstream tasks of ASR and emotion recognition. The

structure of AA is shown in Figure 4 AA projects the extracted

representation of the pre-trained audio encoder into the same

representation space as the text encoder of CLIP.

3.3.2 Training objective
During the training of the audio encoder, two levels of transfer

learning are included: (1) cross-task transfer, where the auditory

adapter is trained to transfer the extracted features from the

SLU task to the emotion recognition task; (2) cross-modality

transfer, where the CLIP text encoder works as a teacher network

and the frozen wav2vec 2.0 with auditory adapter is a student

network. Although the SEGUE pre-training bridged the modality

gap to a certain extent, the difference in the dimensions of the

representation feature reduced its reusability.

To efficiently train the AA structure for the downstream

emotion recognition task, we adopted the supervised contrastive

(SupCon) loss (Khosla et al., 2020), which is defined as Equation 1:

L =
∑

i∈M

−1

|P(i)|

∑

p∈P(i)

log
exp(zi · zp/τ )∑

a∈A(i) exp(zi · za/τ )
(1)

where i is the data sample index of the setM, consisting of both the

extracted audio and text features zi, so the size ofM is two times the

FIGURE 4

The structure of the auditory adapter.

batch size. The P(i) is the set of samples that have the same class as

sample i. The A(i) is the set of all the other samples except i.

With the guidance of the labels, the positive/negative samples

are clearly defined. Compared with the contrastive loss used in

CLIP, the SupCon loss also considers the contrast within the

same modality representations, which can help to distinguish the

acoustic representations with different emotions. Furthermore, the

supervised loss can encourage the audio encoder to learn closely

aligned representations of all samples from the same class.

3.4 Emotion recognition classifier

In this work, we aimed to apply the transferred pre-trained

CLIP and wav2vec 2.0 for emotion recognition assistant

technology. The zero-shot performance cannot meet the

recognition accuracy requirement. To further improve the

recognition performance, we adopt a cache model-based emotion

recognition classifier, which is inspired by Tip-Adapter. Zhang

et al. (2021) show that Tip- Adapter can achieve comparable

performance compared to those CLIP adaptation methods that

require training without fine-tuning. Additionally, it can be further

improved by few-shot fine-tuning on the cache model.

As shown in Figure 5, the emotion recognition classification

joins the zero-shot classifier and the joint cache model. The zero-

shot classifier is constructed from the extracted features generated

by the text encoder of EmoAsst. For all N emotion labels, text

prompts are fed into the text encoder to generate Ftext
cls

, which are

the weights of the zero-shot classifier. The zero-shot classification

is calculated as

predzero = (f videotest Ftext
cls

T
+ f audiotest Ftext

cls
T
)/2, (2)

where f videotest , f audiotest ∈ R
1×d, and Ftext

cls
T
∈ R

N×d.

To improve the zero-shot emotion recognition classification in

Equation 2, a K-shot joint cache model is introduced. As shown in

the left part of Figure 5, K-shot training data are collected and fed

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1304687
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Wang and Yang 10.3389/fcomp.2024.1304687

FIGURE 5

The classification process is shown in this figure. The joint cache model is depicted on the left side. Here, the K-shot visual and acoustic

representations serve as the keys within the cache model, while their respective labels are one-hot encoded as values. During the testing phase, the

extracted visual and acoustic features are treated as queries, and information is gathered from the cache model through similarity-based retrieval.

This process is employed to calculate the probability of emotion recognition.

into the fine-tuned EmoAsst to extract visual and acoustic emotion

representations as the Keys of the cache model, denoted as Fvideo
train

and Faudio
train . The corresponding labels are encoded into one-hot

vectors as the Values of the cache model, denoted as Ltrain. The

K-shot classification is calculated in Equation 3 as:

predk = αvideoϕ(f
video
test Fvideo

train
T
)Ltrain + αaudioϕ(f

audo
test Faudio

train
T
)Ltrain

(3)

where Fvideo
train

T
, Faudio

train
T

∈ R
NK×d and Ltrain ∈ R

NK×N . α is the

residual ratio, and the function ϕ() is defined as Equation 4:

ϕ(x) = exp(−β(1− f videotest Fvideo
train

T
)), (4)

where β represents a modulating hyper-parameter that is

independent of the video or audio features. The final prediction of

the emotion recognition classifier is predzero + predk, which is the

combination of Equations 2, 3.

Because the joint prediction of twomodalities, video and audio,

is a weighted summation, the emotion recognition classifier can

work for both single modality and multiple modalities by simply

choosing the workflow pipeline. The single modality classifier is

used for the evaluation in Sections 4.2 and 4.3. The training-free

cache model classifier can also be easily updated in real-world

application scenarios by collecting K-shot training data from the

target application scenarios.

4 Results and discussion

In this section, first, we describe the experimental settings,

including datasets, training configurations, and baseline models

in Section 4.1. Then we present the performance improvement

on video-based and audio-based emotion recognition separately

with guidance from language-based methods in Sections 4.2

and 4.3.

4.1 Dataset and experimental settings

4.1.1 Dataset
We leveraged the Multimodal EmotionLines Dataset (MELD)

(Poria et al., 2018) to use information from multiple parallel data

channels, including video, audio, and text. MELDwas developed by

expanding upon and enriching the original EmotionLines dataset

(Chen et al., 2018). MELD boasts a comprehensive collection

of over 1,400 dialogues and 13,000 utterances sourced from the

Friends television series, featuring contributions from multiple

speakers. MELD includes seven emotions for the annotation, which

are anger, disgust, fear, joy, neutral, sadness, and surprise, across the

training, validation, and testing splits. More statistical information

is presented in Table 1. Compared with other multimodal emotion
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TABLE 1 The statistical information of the MELD dataset.

Statistic Train Dev Test

Num of modality 3 3 3

Num of dialogues 1,039 114 280

Num of utterances 9,989 1,109 2,610

Avg utterance length 8.03 7.99 8.28

Max utterance length 69 37 45

Avg duration of an utterance 3.59s 3.59s 3.58s

recognition datasets, MELD presents conversational scenarios that

are more similar to the real-life application scenarios of emotion

recognition assistance technology. In this work, we used the official

training, validation, and test split. A limitation of this work is that

the experiment only evaluated one dataset. The reason we only used

one dataset is that not many datasets include both text and video

modalities. In addition to the MELD dataset used in this work,

other datasets, such as IEMOCAP, normally were generated in a lab

environment. However, in this work, we needed a dataset for the

conversation in real-life scenes. Therefore, other existing datasets

were not suitable for our goal.

4.1.2 Experimental settings
Our EmoAsst framework and the pre-trained models were

implemented in Pytorch (Paszke et al., 2019). We fine-tuned

our EmoAsst framework on an NVIDIA GeForce RTX 4070 Ti

GPU with a batch size of 128. For the optimizer, we adopted

AdamW (Loshchilov and Hutter, 2017) with a 0.01 scale of weight

decay regularization and a group of learning rates, 0.001 for

the Visual Fusion Module, and 0.0001 for the auditory adapter.

As we mentioned in Section 3.2.1, VFM includes a transformer

encoder and two transformer decoders, where the encoder has 512

input dimensions for self-attention layers and 2,048 dimensions

for feed–forward networks, while the decoder has 512 for both

text embedding and frame features for self-attention layers, and

2,048 dimensions for feed-forward networks. The total VFM

parameter count is 11.56 M. The AA, in Section 3.3, includes

three transformer encoders that have 512 input dimensions

for self-attention layers, and 2048 dimensions for feed-forward

networks. The total AA parameter count is 9.46 M. Pre-training

the VFM and AA on the training set in Table 1 required 200

epochs (21.22 min per epoch) to achieve the results shown in

Sections 4.2 and 4.3.

For each text input, the prompt format was randomly chosen

from the six given examples for the training stage. During the

testing stage, as the emotion labels are not participating in the

inference, the text input will only use the utterance text. For the

input video clips, the number of sparsely sampled frames was 24

for each clip. Due to the video clips in the MELD dataset having

various lengths, the implementation had to choose a fixed sampling

number instead of a sampling ratio to ensure the input shape.

To evaluate our method, we adopted recognition accuracy and

weighted F1 score as evaluation metrics. The weighted F1 score

took into account the imbalance in class ratio. Each class was

TABLE 2 The performance of fine-tuned visual emotion representations

compared with other existing video-level CLIP in terms of accuracy and

weighted F1 score by linear-probe evaluation.

Method Linear-Eval

Acc Weighted F1

VideoCLIP (Xu et al., 2021) 45.19 32.06

X-CLIP (Ma et al., 2022) 38.31 32.46

EmotionCLIP (Zhang et al.,

2023)

48.28 34.59

VFM 49.36 36.31

VFM + prompt 50.37 + 1.01 37.13 + 0.82

The bold value is the highest value.

assigned a weight based on its relative proportion in the dataset.

The weighted F1 score is calculated with Equation 5:

WF1 =

∑N
i=1 wi × F1i∑N

i=1 wi

(5)

4.1.3 Pre-trained baseline
We adopted the pre-trained EmotionCLIP model as our visual

baseline model. The pre-trained EmotionCLIP applied a ViT

(Dosovitskiy et al., 2020) with a patch size of 32 and an input size of

224. The dimension of the extracted representational embeddings

was 512. Furthermore, we replaced the original video transformer

with the proposed Visual FusionModule. For the audio baseline, we

adopted a wav2vec 2.0 (Baevski et al., 2020b) model that was pre-

trained with 960 hours of Librispeech on 16kHz sampled speech

audio within the SEGUE pre-training method for SLU. Since SLU

is a different downstream task than ours, we used the output of the

nine transformer layers in the contextualized encoder of wav2vec

2.0.

4.2 Video emotion recognition
performance

We evaluated the proposed visual fusion module (VFM) and

the fine-tuning of emotion prompts in two steps. First, we used the

same linear-probe evaluation method adopted in CLIP (Radford

et al., 2021) to directly show the quality of the fine-tuned emotion

representations. The proposed VFM helped the original CLIP

structure to achieve 50.37% accuracy and 37.13% weighted F1

score. Then, we further evaluated the supervised performance. In

particular, we compared the performance of our fine-tuned model

followed by a few-shot trained classifier (50.37% and 37.13%) and

other supervised ERC methods. In addition, we added an ablation

experiment within each step to show the effect of prompt can

further improve 1.01% accuracy and 0.82% weighted F1 score.

The linear-probe evaluation results of video-based ERC are

shown in Table 2: our methods achieved better performance than

other CLIP-based methods in terms of accuracy and weighted

F1 score. Our first experiment (VFM) trained VFM only with

utterance-only text guidance. The VFM+prompt trained VFMwith
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TABLE 3 The performance of the supervised fine-tuned visual fusion

module (VFM) and classifier compared with other existing supervised

methods in terms of accuracy and weighted F1 score.

Method Supervised

Acc Weighted F1

GRAPHCFC (Li et al., 2024) 47.59 33.26

EmoCaps (Li et al., 2022) 31.64 31.26

M2FNet (Chudasama et al.,

2022)

45.63 32.44

VFM 50.83 38.28

VFM + prompt 52.04 + 1.21 41.18 + 2.90

The bold value is the highest value.

the emotion prompt proposed in Section 3.2.2. The results show

that the emotion prompt can further improve the performance

of VFM. Compared with other video-level CLIP methods, the

main difference of our proposed VFM is that we adopted the

transformer decoder structure and trainable embeddings to extract

emotion-related features instead of only considering the temporal

or contextual information.

The evaluation results for the supervised methods are

shown in Table 3. We adopted the few-shot emotion classifier

proposed in Section 3.4 to categorize the extracted visual emotion

representations instead of the linear classifier. The emotion

classifier uses the extracted representations to construct its cache

model. When the classifier is used to improve the VFM method,

it will use the representations extracted from VFM, achieving

50.83% accuracy and 38.28% weighted F1 score. When it works

for VFM+prompt, the cache model of the classifier will be updated

by the representations extracted from VFM+prompt and achieve

52.04% accuracy and 41.18% weighted F1 score. The results show

that our methods can outperform the existing supervised multi-

modal methods when only working on video data. Compared with

Table 2, the emotion classifier can further improve the emotion

recognition accuracy of both VFM and VFM+prompt methods by

achieving 1.21% accuracy and 2.90% weighted F1 score.

4.3 Emotion recognition performance in
audio and two modalities

We evaluated our transferred wav2vec 2.0 on MELD to

show the audio-based emotion recognition performance. The

cross-modality pre-training study on wav2vec 2.0 did not

receive as much attention as the CLIP-based visual pre-trained

models. Therefore, we only compared our audio-based method

with the existing supervised method. The results in Table 4

report that the proposed methods can outperform the existing

supervised methods in terms of accuracy (52.66%) and can

achieve comparable weighted F1 scores (41.50%) to these

supervised methods. The ablation comparison shows that both

the transfer learning auditory adapter and the prompt fine-tuning

method can improve the emotion recognition performance of

audio representations.

TABLE 4 The performance of the supervised fine-tuned auditory adapter

(AA) and classifier compared with other existing supervised methods in

terms of accuracy and weighted F1 score.

Method Supervised

Acc Weighted F1

CFN-ESA (Li et al., 2023) 49.35 41.46

GRAPHCFC (Li et al., 2024) 47.55 41.62

M2FNet (Chudasama et al.,

2022)

49.04 39.63

AA 51.72 39.08

AA + prompt 52.66 + 0.94 41.50 + 2.42

The bold value is the highest value.

In addition, we also conducted an evaluation of the joint

emotion classifier on the MELD dataset to assess its performance

on the joint visual and acoustic representations in Table 5.

The results presented in Table 5 demonstrate that our proposed

methods have superior accuracy (51.86 + 2.29%) compared to

existing supervised two-modalities methods. Additionally, our

methods achieved weighted F1 scores (42.34+ 0.46%) that surpass

those of the majority of other methods, with the exception

of CFN-ESA (Li et al., 2023) (the best weighted F1 score

is 43.25%).

It is worth noting that the multi-modal input did not

provide any further improvement over the single-modal baseline

in Tables 3, 4. On the contrary, the accuracy was relatively

reduced compared to the video and audio-based baselines. We

believe that the unsatisfactory multi-modal performance was

caused by the following reasons: (1) Indirect feature alignment.

The visual and acoustic representations were only trained with

align to the same text representations but were not aligned

with each other. This indirect alignment led to insufficient

synchronization of the representations from different modalities.

(2) No trainable multi-modal fusion module. The adopted joint

cache model was not a trainable feature fusion module but

only a decision ensemble module with two hyper-parameters

to balance the different modalities. However, it is essential to

make a trade-off between the performance of the experimental

dataset and the practical application scenario. Although a trainable

late fusion classification module could improve the testing

performance on the MELD dataset, it could also face challenges

related to distribution shifts in real-world application scenarios.

In contrast, the few-shot cache model-based classifier offered

greater adaptability as it could be readily updated by collecting a

limited K-shot training dataset from the specific target application

scenarios.

5 Future work

The proposedmethods adapt the pre-trainedmodel to a specific

emotion recognition scenario—AI-powered assistive technology

for children with ASD. In this work, we focused on designing the

core deep learning-based emotion recognition model for the whole

assistive technology system. Our emotion recognition assistive
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TABLE 5 The performance of the supervised fine-tuned two modalities

fusion and joint classifier compared with other existing supervised

methods in terms of accuracy and weighted F1 score.

Method Supervised

Acc Weighted F1

CFN-ESA (Li et al., 2023) 50.34 43.25

GRAPHCFC (Li et al., 2024) 47.61 41.62

M2FNet (Chudasama et al.,

2022)

48.35 35.74

VFM + AA 49.57 41.88

VFM + AA + prompt 51.86 + 2.29 42.34 + 0.46

The bold value is the highest value.

technology aims to provide daily life assistance for helping autistic

children understand others’ emotions in conversation.

Toward this goal, a novelty presented in this work was the use

of a k-shot cache model as an emotion recognition classifier. The

benefit of the cache model is to accelerate the fine-tuning speed,

which can efficiently improve the model’s real-world application

performance. In a future system, we will design an interface for

the assistance system so that the parents or supervisors of autistic

children can quickly adapt the model to children’s appropriate

living environments and familiar conversational partners. For

example, the system will automatically record a few video clips of

conversations that are ambiguous for emotion recognition. Then,

parents can update the cache model by providing the correct labels

and fine-tuning. In this case, the emotion recognition assistive

function can be improved and customized for the users’ living

environment.

6 Conclusions

In this paper, we have presented a transfer learning framework,

EmoAsst, to exploit the power of large pre-trained models,

specifically CLIP and wav2vec 2.0, to significantly advance video

and audio-based ERC tasks. Through our EmoAsst, we have

effectively increased the performance of emotion recognition in

both audio and video domains, guided by the knowledge from

text-based methods. The EmoAsst includes the development of

a visual fusion module and an emotion prompt fine-tuning

method, both of which have successfully enriched CLIP’s visual

emotion representations by incorporating text-based guidance.

Additionally, we have demonstrated the efficacy of adopting CLIP’s

text encoder and applying supervised contrastive learning to

enhance the transfer learning process for wav2vec 2.0, resulting

in improved audio-based ERC. To further improve the accuracy

of video and audio-based ERC, we have introduced a novel joint

few-shot emotion classifier that takes advantage of the fine-tuned

visual and acoustic representations. The evaluation of the MELD

dataset underscores the exceptional performance of our methods,

which outperform the majority of existing video and audio-based

approaches. Importantly, our work has shown that all of the

proposed methods have the potential to improve video and audio-

based ERC.
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