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Many deep generative models, such as variational autoencoders (VAEs) and

generative adversarial networks (GANs), learn an immersion mapping from

a standard normal distribution in a low-dimensional latent space into a

higher-dimensional data space. As such, these mappings are only capable of

producing simple data topologies, i.e., those equivalent to an immersion of

Euclidean space. In thiswork, we demonstrate the limitations of such latent space

generativemodels when trained on data distributions with non-trivial topologies.

We do this by training these models on synthetic image datasets with known

topologies (spheres, torii, etc.). We then show how this results in failures of both

data generation as well as data interpolation. Next, we compare this behavior to

two classes of deep generative models that in principle allow for more complex

data topologies. First, we look at chart autoencoders (CAEs), which construct

a smooth data manifold from multiple latent space chart mappings. Second,

we explore score-based models, e.g., denoising di�usion probabilistic models,

which estimate gradients of the data distribution without resorting to an explicit

mapping to a latent space. Our results show that these models do demonstrate

improved ability over latent space models in modeling data distributions with

complex topologies, however, challenges still remain.

KEYWORDS

data topology, generative model, variational autoencoder (VAE), di�usion probabilistic

models (DDPM), topological data analysis

1 Introduction

Recent advances in deep generative models (DGMs) have resulted in the
unprecedented ability of these models to produce realistic data, including imagery, text,
and audio. While qualitative evaluation of generated data makes it clear that DGMs are
improving at a rapid pace, quantifying how well a model produces samples similar to the
original data distribution on which it was trained is a challenging task and an area of active
research. Inherent to this problem is that generative models are fundamentally meant to
produce data that would be judged to be realistic to a human observer, and quantifying
human perception—of images, language, or audio—is a difficult task.

A common approach to evaluating a generative model is to compute
an empirical distributional distance between a sample from the data
distribution and a sample generated by the model. For example, in computer
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vision, the Fréchet inception distance (FID) (Heusel et al., 2017) is
a popular choice for such a distance metric. The FID approximates
both the data distribution and the generated image distribution as
multivariate normal distributions on the outputs of an Inception
v3 model trained on ImageNet. The Fréchet distance between the
resulting multivariate normal distributions is then computable in
closed-form. More recently, precision and recall (Sajjadi et al.,
2018) were proposed to separately evaluate how close generated
samples are to the data distribution (precision) and how well they
cover the data distribution (recall).

The manifold hypothesis of machine learning informally
states that data distributions naturally lie near lower-dimensional
manifolds embedded in the higher-dimensional Euclidean space
formed by their raw representations. One class of DGMs, including
variational autoencoders (VAEs) (Kingma and Welling, 2014) and
generative adversarial networks (GANs) (Goodfellow et al., 2014),
attempt to model the data manifold explicitly. They do this by
generating data by mapping points from a prior distribution in a
lower-dimensional latent space into the data representation space.
This has led researchers to investigate the manifold properties of
such DGMs and use manifold methods to evaluate their quality.
Shao et al. (2018) develop algorithms for computing geodesic
curves and parallel translation of VAEs. They observed that while
VAEs were able to capture the curvature of synthetic data manifolds
when trained on real image data, the manifolds generated by VAEs
were nearly flat. Arvanitidis et al. (2018) propose that deterministic
generators lead to a distortion of the data manifold in the latent
space that fails to capture the intrinsic curvature of the data.
They propose a stochastic Riemannian metric to correct for this
and show that this results in improved variance estimates. Chen
et al. (2018) demonstrate that Riemannian geodesics in the latent
space of a DGM give better interpolations and visual inspection
of generated data. Shukla et al. (2018) show that disentangled
dimensions of the latent space of a VAE demonstrate higher
curvature.

While these works have investigated the differential and
metric geometry of DGMs, less is known about the topological
properties of DGMs. Theoretically, models that generate data
from a continuous mapping of a Gaussian prior distribution into
Euclidean space, such as VAEs and GANs, are not able to faithfully
reproduce data with non-trivial topology (e.g., spheres, tori, or
other spaces with “holes”). In practice, these models may be able
to perform fairly well in approximating non-trivial data topologies
by shifting density away from holes. The chart autoencoder (CAE)
model by Schonsheck et al. (2019) extends the topological abilities
of VAEs/GANs by modeling a manifold topology with multiple
overlapping charts. On the other hand, DDPMs and their relatives
have no topological constraints in theory. However, the topological
abilities of these various DGMs have not been empirically tested
or compared. This paper empirically tests the ability of generative
models to handle data arising from distributions with underlying
topology, and is, to the best of our knowledge, the first systematic
study in this direction. There have been papers that use topological
techniques, such as Manifold Topology Divergence (Barannikov
et al., 2021) or Geometry Score (Khrulkov and Oseledets, 2018),
to quantify the quality of data produced by generative models.
More broadly, there has been extensive recent work (Hensel et al.,
2021) at the interface of TDA and DL/ML. These range from

methods (e.g., Chen et al., 2019; Solomon et al., 2021; Nigmetov
and Morozov, 2022) that integrate TDA-based loss functions into
DL algorithms, to bespoke DNN architectures (Carrière et al., 2020)
that incorporate layers that process persistence diagrams, to works
(e.g., Naitzat et al., 2020; Wheeler et al., 2021) that use TDA to
analyze the structure of data as it moves through DNN layers.

This paper is organized as follows. In Section 2 we review
the methods used in this paper, namely, the DGMs and metrics
for evaluating their quality, including persistent homology. In
Section 3 we present our experiments comparing the ability of three
DGMs—VAE, CAE, and DDPM—to learn to generate data with
known non-trivial topologies. To do this, we use two synthetic
image datasets with a torus and sphere topology, respectively,
and a real dataset of conformations of cyclooctane, which is
known to have topology equivalent to a Klein bottle intersecting
with a 2-sphere (Martin et al., 2010). Note that this test is even
more difficult from a topological perspective, as the cyclooctane
conformations form a topology that is non-manifold, but rather a
more complicated stratified space (in this case, the intersection of
two manifolds). Finally, in Section 4 we discuss conclusions from
these experiments and future directions.

2 Background and methods

In this section, we first review the three deep generative models
(VAEs, CAEs, and DDPM) that we evaluated for their ability
to learn data distributions with non-trivial topology. Next, we
describe the evaluation metrics used for our study, both related and
unrelated to the topological structure.

2.1 Deep generative models

Various structures for deep generative models have
been proposed over time. Some of the popular models are
normalizing flows (Rezende and Mohamed, 2015), variational
autoencoders (Kingma and Welling, 2014), generative adversarial
networks (Goodfellow et al., 2014), deep energy-based model (Du
and Mordatch, 2019), and the recent denoising diffusion
models (Ho et al., 2020). Each type of generator has different
variations. Yet, topology is rarely considered in the design. Here
we choose three models to discuss.

2.1.1 Variational autoencoders
A variational autoencoder (VAE) is a type of encoder-decoder

generative model proposed by Kingma and Welling (2014).
Unlike the traditional autoencoder (Hinton and Salakhutdinov,
2006), a VAE models the probability distribution of the latent
representation, z, of each data point instead of a deterministic latent
representation. AVAEmodels themarginal log-likelihood of the ith
data point, x(i), as Equation 1:

log pθ

(

x(i)
)

= DKL

(

qφ

(

z
∣

∣

∣
x(i)
) ∥

∥

∥
pθ

(

z
∣

∣

∣
x(i)
))

+L

(

θ ,φ; x(i)
)

,

(1)
where θ is a vector of the parameters for the generative model, and
φ is a vector of the parameters for the variational approximation.
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The objective is to maximize the evidence lower bound (ELBO),
which is derived to be Equation 2:

L

(

θ ,φ; x(i)
)

= −DKL

(

qφ
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∣
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)
∥

∥

∥
pθ (z)

)

+ Eqφ

[

log pθ

(

x(i)
∣

∣

∣
z
)]

, (2)

Usually the prior pθ (z) is set to be an isotropic Gaussian, N (0, I).
The encoder also models the qφ(z | x(i)) as a Gaussian distribution
N (µ(i), (σ (i))2I). Therefore, the first term is easy to compute with
predicted mean and variance of qφ(z | x(i)). On the other hand,
the equation for the second term of the lower bound depends on
what probability distribution we assume in the data space. For
example, using an isotropic Gaussian distribution leads to the mean
squared error loss, and using a Bernoulli distribution corresponds
to minimizing the binary cross entropy loss.

As discussed above, VAEs usually assume a Gaussian
distribution in the latent space. Although this might be a reasonable
assumption for many data with trivial topology, it might cause
problems when this is not the case. Even in a simple case
where the data has an S

1 topology which is a loop, the neural
network could struggle to learn a mapping from two different
topological spaces. Although one might argue the Gaussian can
be deformed enough so that it resembles a loop in practice, we
still need experiments to investigate this issue. Similarly, generative
adversarial networks (Goodfellow et al., 2014) also use a Gaussian
prior distribution in the latent space, and therefore might as well
have problems learning data with non-trivial topology.

2.1.2 Chart autoencoders
Inmany applications of the VAE, its learned latent space is often

treated as a linear space. For instance, generating interpolations
between two points of a given dataset is often performed by
generating the linear path between the embeddings of these points
in latent space. This operation implicitly assumes that the geodesics
between points correspond to linear paths in latent space. Yet,
we know there exist manifolds, such as the sphere S2, which are
not homeomorphic to a single linear space. It follows that the
latent space learned by a VAE trained on such a manifold is
not geometrically faithful. That is the latent space either contains
a point that decodes to a point off the manifold, or the space
cannot capture all geodesic paths. To this end, recent architectures
have been introduced to rectify this problem. We consider one
such architecture, the chart autoencoder (CAE) (Schonsheck et al.,
2019).

Chart autoencoders are a generative model architecture
motivated by the concept of an atlas in differential geometry.
In comparison to the VAE, we learn a set of k encoders and
decoders parameterized by {φi}

k
i=1 and {θi}

k
i=1 respectively. Each

corresponding encoder and decoder is affiliated with a latent

chart, Zi. Thus, the latent space of the CAE is composed of a
set of linear latent spaces. The CAE output is determined by a
chart prediction network, P. In the original work, P maps x from
the input space X to p ∈ R

k, where p represents the vector
of log probabilities of the chart membership of x. In training,
the output of the CAE is taken to be the sum of the outputs

from the k decoders weighted by the chart prediction vector, p.
During evaluation, the output is taken to be that of the decoder
corresponding to the likeliest chart via p. In this work, we update
the chart prediction network to map from the direct sum of the
latent embeddings, zi, instead of x. This change was made to allow
generations from the latent space without reference to any network
input. Intuitively, this chart prediction network is analogous to
the chart transition function affiliated with a geometric atlas.
Indeed, the CAE is capable of transitioning between the outputs of
different latent charts when a linear interpolation is performed in
latent space.

2.1.3 Denoising di�usion probabilistic models
In contrast to the previous two models, the denoising diffusion

probabilistic model (DDPM) proposed by Ho et al. (2020) does not
have a low-dimensional latent space. It is based on the diffusion
probabilistic model by Sohl-Dickstein et al. (2015), which learns
to reverse a diffusion process in which Gaussian noise is gradually
added to the original image, x0, for T timesteps until we get a
sampled image xT that is nearly pure noise. We call the diffusion
process that adds noise the forward process, which is a Markov
chain. The reverse process is also defined to be a Markov chain
as follows Equation 3:

pθ (x0 :T) : = p(xT)
∏T

t=1 pθ (xt−1 | xt),

pθ (xt−1 | xt) : = N (xt−1;µθ (xt , t),6θ (xt , t)), (3)

where βt ’s define the variance schedule and θ is the parameter
vector of the model that learns the reverse process. During training,
we can optimize the lower bound of the log-likelihood.

In the DDPM, βt is fixed and therefore the first term of the
loss can be ignored. 6θ (xt , t) is also fixed for each time step t.
Then DDPM reparameterizes xt with the added noise ǫ ∼ N (0, I),
and µθ (xt , t) with ǫθ (xt), which means the model is now trained
to predict the noise ǫ. Their experiments also show that omitting
the different weights dependent on t does not compromise the final
performance, which results in the final loss (Equation 4):

Lsimple(θ) : = Et,x0 ,ǫ

[

∥

∥

∥
ǫ − ǫθ (

√

ᾱt x0 +
√

1− ᾱt ǫ, t)
∥

∥

∥

2
]

, (4)

with ᾱt ’s being expressions of βt ’s. It is also worth noting that Song
et al. (2021) derived the same model from the view of a score based
model, which learns the gradient of the log probability density in
the data space.

We can see that the DDPM does not assume any topology
on the original data distribution. The sampling only depends
on the fact that the diffused data distribution is Gaussian,
which is achieved by using a prefixed time variance schedule.
Therefore, theoretically, it should be able to learn the data of
any topological structure. Yet, this needs to be examined through
experiments. Similarly, energy based models (Du and Mordatch,
2019) also do not assume any topology on the data distribution,
and during sampling start from Gaussian distribution and then
travel to high probability regions of the data space. Thus, we
could expect a similar ability in learning distributions of non-
trivial topology.
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2.2 Quantitative metrics for evaluating
DGMs

Given the purpose of DGMs is to generate samples that are
as realistic as possible for a human, the straightforward evaluation
method would be the judgments by human eyes. However, there
have been attempts to quantitatively measure their performances.

2.2.1 Wasserstein distance
We propose to evaluate how well a generative model learns a

data probability distribution using a sample approximation to the
L2 Wasserstein 2-distance. By definition this should be Equation 5:

W2(µ, ν) = inf
γ∈Ŵ(µ,ν)

(

E(x,y)∼γ ‖x− y‖2
)1/2

, (5)

where µ and ν are probability measures of the ground truth
data and the generative model, respectively, Ŵ(µ, ν) is the set of
any joint distribution of x and y such that

∫

γ (x, y)dy = µ(x)
and

∫

γ (x, y)dx = ν(y). We implement the empirical version as
Equation 6:

W2(µ, ν) = inf
π

(

1

n

n
∑

i=1

‖Xi − Yπ(i)‖
2

)1/2

, (6)

where X1,X2, ...,Xn are random samples from µ, and Y1,Y2, ...,Yn

from ν, and π is any permutation of 1, 2, ..., n. Since the datasets
are simulated, we can easily sample from the ground truth
data distribution µ. The best π is obtained using the Jonker–
Volgenant algorithm (Jonker and Volgenant, 1988) implemented
by SciPy (Virtanen et al., 2020).

There are some existing works (e.g., Genevay et al., 2018),
that train generative models from the viewpoint of optimal
transport, and therefore include the Wasserstein distance in the
training loss. However, to the best of our knowledge, we are
the first to employ Wasserstein distance to evaluate how well
generators learn the overall data distribution. The high time
complexity (O(n3)) of the Jonker–Volgenant algorithm forbids us
from using too large sample sizes to represent ground truth and
learned distributions. Therefore, one concern is whether the set
of samples can adequately cover the whole distribution. However,
in our experiments, we use data from known low-dimensional
distributions that can be reasonably covered with relatively
fewer samples.

2.2.2 Fréchet inception distance
Fréchet Inception Distance (FID) is computed by computing

the Wasserstein distance on two probability distributions obtained
by feeding a set of ground truth examples and a set of fake examples
to an embedding function. The embedding function generally
used is Inception v3 trained on ImageNet with the final layer
truncated, yielding a 2048-dimensional vector for each sample.
A normal distribution is fit in this space for each of the ground
truth and fake sets, which are then the direct inputs for the
Wasserstein distance. While FID has been shown to usually align
with human judgement (Heusel et al., 2017), it has a number

of shortcomings (Chong and Forsyth, 2020; Parmar et al., 2022).
Despite its shortcomings, FID has established itself as the de facto
standard metric for judging the quality of generative images (Borji,
2022).

2.2.3 Density, coverage
A line of work has defined metrics that separate failure

modes by using multi-valued metrics. For example, a metric
might focus on fidelity which captures the degree to which a
generated image resembles those in a dataset, whereas another
might focus on diversity which captures the degree to which a
sample reflects the variation in generative factors that gives rise
to a dataset.

The earliest work, Precision and Recall (Sajjadi et al., 2018),
introduces two metrics that successfully separate dropping and
adding modes (recall) from image quality (precision), but have
some shortcomings including not being robust to outliers and
requiring more significant tuning to be accurate.

Density and Coverage (Naeem et al., 2020) address these
limitations by, still in an embedding space, defining a manifold for
a set of ground truth examples and measuring how often generated
points land in it. For their reported results, they use the 4,096-
dimensional layer of a truncated VGG16 trained on ImageNet as
the embedding space. They then form the real manifold as k-nearest
neighbor balls for each real point. Density is then a cumulative
measure of howmany real neighborhood balls the generated points
land in, normalized for the number of points. Intuitively, this
value is greater than 1 when many generated samples occur in
a few real modes and less than 1 when the generated samples
are too diverse or don’t fall in real modes. The other half of the
metric, Coverage, is then the percentage of real neighborhood
balls that have a generated point within them. Intuitively, this is
1 when all modes of the original data are covered, and less than
1 otherwise.

2.2.4 Topological data analysis: persistent
homology

Here we give some brief intuition about the information carried
by the persistent homology of a point cloud. Readers interested in a
fuller and more rigorous discussion are pointed to textbooks such
as Edelsbrunner and Harer (2010) or Oudot (2017).

Suppose that X = {x1, . . . , xn} is a point cloud in some
Euclidean space. For example, let X be the collection of points
on the left of Figure 1. The persistence diagram Dk(X) is a
compact summary of some of the k-dimensional multi-scale shape
information carried by X. We now give some more details about
what this means.

For each threshold value r ≥ 0, let Xr =
⋃n

i=1 Br(xi). Note
that whenever r < s, we have Xr ⊂ Xs, and as r moves from
0 to ∞, the union of balls around the points in X grows from
the points themselves to the entire Euclidean space. During this
process, various shape changes occur. In our working example, as
r increases, the number of connected components, which began
as |X|, rapidly becomes 3 as clusters form and then subsequently
decreases as those clusters merge. The r values at which these
mergers happen are recorded as death values and stored in the
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FIGURE 1

Illustration of persistence diagrams (right) for the Rips homology filtration on a point cloud (left). Persistence is shown in dimensions zero (red) and

one (blue).

zero-dimensional persistence diagram D0(X); see the red dots
on the right side of Figure 1. The higher-level connectivity of
the union of balls also changes as r increases. In our working
example, an annulus forms in the upper right of X at a very small
value of r, and a ring appears connecting the three clusters at a
larger value of r. In technical terms, these features are called one-
dimensional homology classes (Edelsbrunner and Harer, 2010) and
have rigorous algebraic definitions. The r values at which they first
appear are called birth value. Each homology class eventually fills
in as r increases; for example, the annulus at the upper right fills
in at the apparent radius of the feature. These death values of
the one-dimensional features are paired with the birth values that
created the feature, and they are plotted in the one-dimensional
persistence diagram D1(X); see the blue dots on the right side
of Figure 1.

Thus, each persistence diagram Dk(X) consists of a (multi-)
set of dots in the plane, with each dot recording the birth and
death value of a k-dimensional homological feature. Intuitively
0 and 1 dimensional features represent connected components
and loops/holes, respectively. Not shown in this example
are two-dimensional features, which represent voids, and still
higher-dimensional features. The persistence of a feature is
the vertical distance of its dot to the major diagonal y =

x in the persistence diagram. Higher-persistence features are
generally thought of as genuine representatives of the underlying
space, while lower-dimensional features are more likely to be
caused by sampling noise. This intuition can be formalized in
inference theorems (e.g., Cohen-Steiner et al., 2007; Fasy et al.,
2014).

Persistence diagrams of point clouds are computed by
transforming the growing union of balls into combinatorial
objects called filtered simplicial complexes. Without going into
the technical details here, we note that many software packages
for doing this exist (Otter et al., 2017 gives a nice overview), and
that the experiments in this paper use giotto-tda (Tauzin et al.,
2021).

3 Experiments

3.1 Datasets

We conduct experiments on two synthetic image datasets and
one real dataset. Samples of each dataset are shown in Figure 2.

The “torus” ellipse image dataset contains 10, 000 grayscale
images of white ellipses on black backgrounds. Each image is of size
32×32 and contains one ellipse. The images are downsampled from
64 × 64 images so the edges of ellipses are blurred. The ellipse can
rotate around itself 0 to π . And because the ellipse is 180−degree
rotation symmetric, it renders the topology of S1. The center point
position of the ellipse rotates 0 to 2π around the center of the image
with a radius of 7 pixels, which independently renders another S1

topology. In combination this results in S1×S
1 topology, i.e. a torus

topology.
The rotating jar image dataset is generated using POV-Ray

by Persistence of Vision Pty. Ltd. (2004). There are 10, 000 RGB
colored samples of size 64 × 64. Each image contains one rotating
jar in the fixed center position. The object has random three
dimensional orientations and it has rotational symmetry with
respect to the axis that connects the lid knob and the center
point of the bottom. Therefore, the image is defined given the
orientation of the lid knob. This indicates that the data has a
S2 topology.

The cyclooctane dataset consists of 6, 040 points in R
24,

corresponding to conformations of the cyclooctane molecule
(C8H16) (Martin et al., 2010). A conformation is a configuration
of atoms in a molecule up to rotation and translation of the
molecule. Physical chemistry constraints for cyclooctane imply the
positions of the 16 hydrogen atoms are determined by the positions
of the 8 carbon atoms in each conformation (Hendrickson,
1967; Martin et al., 2010). Each point in the dataset consists of
the 8 spatial coordinates of the carbon atoms flattened into a
single vector, as in [(x1, y1, z1), (x2, y2, z2), . . . , (x8, y8, z8)] becomes
(x1, y1, z1, x2, y2, z2, . . . , x8, y8, z8) ∈ R

24.
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FIGURE 2

Samples from each dataset. (A) “Torus” ellipse image dataset. (B) Rotating jar image dataset.

3.2 Training setups

Here we introduce our training setups of different generative
models. We adopted relatively simple architectures that are capable
of generating reasonably good quality samples. VAE and DDPM
used for the same dataset are designed to have a similar number
of parameters, so that we know the performance difference is
not because of different parameter numbers. Training hyper-
parameters, including learning rates, epochs, weight values for VAE
loss terms, and total time steps for DDPM, are determined using
Bayesian search (Falkner et al., 2018) over a set of different options.
Therefore, the hyper-parameters for each model are different but
they are chosen to maximize the performance. Every model is
trained using Adam optimizer (Kingma and Ba, 2015). For more
details see Supplementary material.

3.3 Qualitative evaluation

First, we evaluate each generative model qualitatively by
observing randomly generated samples and interpolations between
two data points.

Samples from generators trained on the “torus” dataset are
shown in Figure 3. We can see that DDPM produces high quality

samples that are almost indistinguishable from ground truth images
by human eyes. The ellipses have clear edges and are always in the
same correct shape. In contrast, VAE sometimes generates clearly
invalid images. The ellipse shapes are completely lost in some cases.
Figure 4 shows samples fromDGM trained on the rotating jar. Both
VAE and DDPM generally produce credible images. However, we
can see that VAE occasionally fails and generates misshapen jars.
These results could be due to VAE not learning the correct topology
of the dataset and possibly sampling on the “holes” of the torus or
the sphere.Wewill explore this further in the following subsections.

We also performed interpolation between two data points
using different generators, visualized in Figures 5, 6. For the
VAE, we linearly interpolate the latent space, which results in
invalid images in the middle (5−th image for the “torus” and
3−rd image for the jar). We assume this happens because when
we linearly interpolate between two points, we travel across the
void of the latent distribution, where the VAE decoder cannot
map to valid data points. For the DDPM, two end images are
diffused for several time steps (t = 250 for the “torus” and
t = 350 for the jar) and then linearly interpolated. Next, we
apply the usual denoising steps until reversing back to t = 0
to get clean images. Due to the stochasticity in both the forward
and reverse processes, the endpoints will be different from the
original images to a certain degree, depending on the diffusing time
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FIGURE 3

Random samples from di�erent generators on “torus” ellipse image dataset. (A) Variational autoencoder. (B) Denoising di�usion probabilistic model.

steps. We can also see that although the generated images look
valid but do not provide a reasonably continuous interpolation.
This can be considered as a shortcoming of DDPM not having a
latent space.

In Figure 7, we see generated samples of cyclooctane under
our different architectures. To visualize the conformations of
cyclooctane, we embed the R

24 representations in R
3 using

Isomap. This embedding is locally isometric and has been used
in literature such as Martin et al. (2010). The original embedding
of the dataset is visible on the left. Notice the geometry of this
manifold involves a Klein bottle enveloped by a sphere. We
find that the vanilla VAE struggles to generate conformations
associated with the Klein bottle. This is not ideal as these
conformations are associated with specific conformational states
that do not correspond to any points on the outer sphere.
Matching our intuition, the CAE is able to better cover the
manifold of cyclooctane, where the embedded color represents
chart membership. Still, we find the outer shell of the sphere is
sparsely covered. Perhaps counterintuitively, the DDPM model
visually best samples the data manifold. It is clear that the
samples cover both the Klein bottle and the outer sphere with
reasonable density.

3.4 Quantitative performance metrics

For each of the three datasets and each DGM, we computed
the L2 Wasserstein metric between a sample set from the ground
truth data distribution and a sample set generated by the DGM
models. Because of the computational complexity of the Jonker-
Volgenant algorithm, we were limited to computing with sample
sizes of 3,000 data in both ground truth and DGM. To ensure that
the metric values were stable at the given sample size, we repeated
the metric calculation 10 times, each time with an independently
drawn sample from both the ground truth and the DGM. For
the cyclooctane dataset, since we only have 6,040 samples in the
ground truth data, we randomly draw 3,000 samples each time
without replacement. Results are shown in Table 1. Since the sample
size used to approximate the Wasserstein distance is limited, to
rule out the effects of random sampling, we also performed t-tests
on Wasserstein distance observations and the resulting p-values
are listed in Table 2. It is clear that the Wasserstein distances for
different models are significantly different, except for between the
VAE and CAE trained on cyclooctane, which have very similar
results. We can see that on the image datasets, VAE has a
consistently smaller distance to the ground truth data distribution
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FIGURE 4

Random samples from di�erent generators on rotating jar image dataset. (A) Variational autoencoder. (B) Denoising di�usion probabilistic model.

FIGURE 5

Interpolations from di�erent generators on “torus” ellipse image dataset. (A) Variational autoencoder. (B) Denoising di�usion probabilistic model.

than DDPM, despite what appears to be worse image quality to
human eyes. The result is different for the cyclooctane dataset, with
DDPM having a significantly smaller distance while CAE has a
similar result to VAE. This should indicate in some datasets VAE
is learning the overall distribution better than DDPM. It could be
the case that in terms of L2 distance, although DDPM samples are
more precise, or more close to the ground truth distribution, VAE

samples cover the whole data distribution better. And we can also
see that the probability based metric alone does not sufficiently
represent the real world performance of models.

For the cyclooctane dataset, we calculated the bond lengths
of generated samples and compared them to the bond lengths
of the true cyclooctane data. Bond lengths for the true data
are tightly distributed about the mean value of 1.52 Å with a

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 6

Interpolations from di�erent generators on rotating jar image dataset. (A) Variational autoencoder. (B) Denoising di�usion probabilistic model.

FIGURE 7

A comparison of the cyclooctane conformations generated by sampling the various di�usion models. On the left, we display the Isomap embedding

of the original cyclooctane data. For the CAE embeddings, the di�erent colors denote the corresponding chart. Notice that the vanilla VAE struggles

to generate the inner Klein bottle of the Isomap embedding. Counterintuitively, the DDPM generations most resemble the original data manifold

even though its latent space is high dimensional.

TABLE 1 L2 Wasserstein distance.

“Torus”
ellipse

Rotating
jar

Cyclooctane

Ground truth 2.01 (±0.15) 2.05 (±0.06) 0.215 (±0.009)

VAE 2.26 (±0.05) 2.17 (±0.05) 0.860 (±0.004)

DDPM 2.65 (±0.19) 3.20 (±0.10) 0.389 (±0.011)

CAE - - 0.860 (±0.010)

Reporting mean and standard deviation over 10 independent runs, each time sampling n =

3,000 images from both the ground truth data distribution and generators.

standard deviation of 4.09e− 05 Å. Figure 8 shows the distribution
of each sample set’s bond lengths. We can see that although the
sample bond lengths of all the generative models are much more
dispersed than the ground truth values, DDPM has a relatively
better distribution. The expected errors of each distribution to the
mean ground truth value are also calculated. This error is 0.165 Å
for VAE, 0.155 Å for CAE and 0.04 Å for DDPM.

TABLE 2 p-value of Wasserstein distance observations.

“Torus”
ellipse

Rotating
jar

Cyclooctane

Ground truth &
VAE

9.28e− 5 1.26e− 4 7.47e− 32

Ground truth &
DDPM

1.30e− 7 4.04e− 17 8.70e− 19

Ground truth &
CAE

- - 2.04e− 29

VAE & DDPM 6.41e− 6 1.35e− 16 4.76e− 28

VAE & CAE - - 1

DDPM & CAE - - 3.50e− 26

We also computed deep-learning-based metrics - FID, density,
and coverage, for our two image datasets. The sample sizes of 50,000
are used for both ground-truth data distribution and the DGM
learned distribution. The deep learning model used for embedding
is VGG16 “IMAGENET1K_V1”. The FID results are shown in
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FIGURE 8

Density histogram of bond lengths of samples generated by

di�erent models, compared to the ground truth bond lengths.

TABLE 3 Torchmetrics implementation of FID using 50,000 samples.

Lower is better.

“Torus” ellipse Rotating jar

VAE 16.77 77.72

DDPM 15.00 74.90

TABLE 4 Density / Coverage.

“Torus” ellipse Rotating jar

VAE 0.895 / 0.878 0.403 / 0.605

DDPM 0.903 / 0.951 0.943 / 0.903

Reference implementation from Naeem et al. (2020) with k = 5 and torchvision pretrained
VGG16 “IMAGENET1K_V1” as the embedding. 50, 000 samples. Density is positively valued,
with a value of 1 being ideal; values greater than 1 represent generated data occurring near
common modes in the real data more often, and values less than 1 represent generated data
occurring less often near real data. Coverage is in the range [0, 1] with 1 being optimal; it
represents the percentage of real points that are covered by a generated point.

Table 3, and density and coverage results are shown in Table 4.
Unlike in the case of Wasserstein distance, DDPM constantly has
better metrics values than VAE. This could indicate that the deep
learning model used to embed images does capture image features
in a way that matches better with human visual experiences. The
much larger sample size might also influence the results.

3.5 Topological properties

We also report the persistent homology of ground truth data
and samples from generators. Giotto-tda (Tauzin et al., 2021) is
used to obtain the results. As introduced in Section 2.2.4, the
results show when a topological feature was born and died. Zero-
dimensional features are connected components, one-dimensional
features are loops, and two-dimensional features are voids (e.g.,
spheres). The further a point on the persistence diagram is from

the diagonal line of “birth = death,” the longer they persist across a
range of scales, that is, distance thresholds determining when points
are connected. These points that stand out beyond the diagonal are
more likely to indicate a topological structure.

As we can see in Figure 9A, the “torus” dataset has two
significant one-dimensional loops [approximately (2.5, 8) and
(2.5, 13)] and one two-dimensional sphere [approximately (6, 8)]
because of its torus topology. The VAE captures this topological
structure poorly (Figure 9B), and only significantly captures one
one-dimensional loop structure. Although there are many other
points relatively far above the diagonal line, there are no points
that stand out from the others clearly. On the other hand,
DDPM preserves this structure very well (Figure 9C), and we can
clearly identify two one-dimensional loops [the points located at
approximately (3, 8) and (3.5, 13)] and one two-dimensional sphere
[located at approximately (7, 8)].

This result gives insight into the fact that the VAE sometimes
generates invalid samples despite its smaller Wasserstein distance.
More intuitively, we show the PCA visualization of the data
and the generator samples in Figure 10. We can clearly see that
VAE wrongly generates samples in the middle of the torus and
violates the original data topology, but DDPM does not. The
results for the jar dataset are displayed in Figure 11. As we
discussed above, the data has a spherical topology, which is
indicated by a significant dimension 2 point in the persistence
diagram in Figure 11A [located at approximately (5.5, 7.5)]. This
structure is clearly better preserved by DDPM [approximately
(5.5, 7.5)]. Whereas in the persistence diagram of the VAE
model, the two-dimensional structure is much less significant,
and also an incorrect one-dimensional loop appears [located at
approximately (3, 5.5)].

4 Discussion and conclusion

In this paper, we investigated the ability of DGMs to model data
distributions with non-trivial topologies. We hypothesized that
VAEs would struggle to faithfully model non-Euclidean topologies
because they generate data by continuously transforming a
Gaussian random vector from a lower-dimensional, Euclidean
latent space. This hypothesis was supported by our experiments on
datasets with known topology. Our results comparing persistence
diagrams of generated VAE samples vs. the ground truth
persistence diagram show that a VAE does not faithfully recover
the correct topology in the case of the torus (T2) or the sphere
(S2). We further hypothesize that a similar failure to capture
topology would hold for other models based on a Euclidean latent
space, e.g., GANs, although this would need to be verified with
further experiments.

Conversely, we hypothesized that DDPM and related score-
based models, which theoretically have no constraint on their
topology and learn the distribution in the original data dimension,
would more effectively capture non-trivial data topologies.
This turned out to be the case in our image experiments,
where the DDPM persistence diagrams showed that they
generated samples with much better matches to the ground-
truth data topology. Furthermore, the ability of DDPMs to
adapt to the topology of the data may explain their improved
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FIGURE 9

Persistent homology of ground truth data and generator samples on the “torus” dataset. (A) Ground truth data. (B) Samples from VAE. (C) Samples

from DDPM.

performance in generating realistic data samples, as they can
avoid sampling in “holes” of the data distribution. However,
one downside to DDPMs is that they do not parameterize
the data distribution with a low-dimensional latent space. This
makes moving along the data manifold, such as in the case of
interpolation, more difficult with DDPMs. The CAE model tries
in a sense to bridge this gap by providing a low-dimensional
latent space, while at the same time also providing more
topological flexibility. Our cyclooctane results show qualitatively
and quantitatively that the CAE performs well on a complex
data topology.

One unexpected result is the disagreement between the L2
Wasserstein metric and the other quantitative metrics (FID,
density, and coverage). It may be the case the restriction on the

sample size for the Wasserstein metric limits its approximation
accuracy. Or it may be the case that the exact matching
of points between the two samples is prone to outliers or
other artifacts in the samples. Or it may simply be that
“perceptual distances” mimicked by the VGG16 network are
substantially different enough from L2 distances to cause reverse
conclusions in the two classes of metrics. This discrepancy,
and the more general question of how to best measure
the distribution quality of a DGM, are directions ripe for
future research.

In conclusion, ourmain novel contribution is the first test of the
abilities of generative models to handle different data topologies.
Our empirical findings highlight the limitations of a simplistic data
topology assumption. The main takeaways are as follows:
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FIGURE 10

PCA visualizations of ground truth data and generator samples on the “torus” dataset. (A) Ground truth data. (B) Samples from VAE. (C) Samples from

DDPM.

• Generative models that assume data can be continuously
mapped from a Euclidean latent space, e.g., VAEs, have
limited ability to capture more complex topologies present
in data.

• Conversely, DDPMs operate in the full-dimensional data
space and without assumptions about the data topology. This
results in DDPMs being better able to capture non-trivial
topologies in data.

• However, the absence of straightforward Euclidean latent
spaces in DDPM presents obstacles, particularly in tasks such
as interpolations.

• Finally, our research underscores that distribution-
based evaluation metrics sometimes fail to provide
a comprehensive assessment of a generative
model’s ability to accurately capture the underlying
data topology.
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FIGURE 11

Persistent homology of the ground truth data and generator samples on jar dataset. (A) Ground truth data. (B) Samples from VAE. (C) Samples from

DDPM.
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