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Applying
learning-from-observation to
household service robots: three
task common-sense
formulations

Katsushi Ikeuchi*, Jun Takamatsu, Kazuhiro Sasabuchi,

Naoki Wake and Atsushi Kanehira

Applied Robotics Research, Microsoft, Redmond, WA, United States

Utilizing a robot in a new application requires the robot to be programmed at
each time. To reduce such programmings e�orts, we have been developing
“Learning-from-observation (LfO)” that automatically generates robot programs
by observing human demonstrations. So far, our previous research has been
in the industrial domain. From now on, we want to expand the application
field to the household-service domain. One of the main issues with introducing
this LfO system into the domain is the cluttered environments, which makes
it di�cult to discern which movements of the human body parts and their
relationships with environment objects are crucial for task execution when
observing demonstrations. To overcome this issue, it is necessary for the system
to have task common-sense shared with the human demonstrator to focus on
the demonstrator’s specific movements. Here, task common-sense is defined
as the movements humans take almost unconsciously to streamline or optimize
the execution of a series of tasks. In this paper, we extract and define three types
of task common-sense (semi-conscious movements) that should be focused on
when observing demonstrations of household tasks and propose representations
to describe them. Specifically, the paper proposes to use labanotation to describe
the whole-body movements with respect to the environment, contact-webs
to describe the hand-finger movements with respect to the tool for grasping,
and physical and semantic constraints to describe the movements of the hand
with the tool with respect to the environment. Based on these representations,
the paper formulates task models, machine-independent robot programs, that
indicate what-to-do and where-to-do. In this design process, the necessary
and su�cient set of task models to be prepared in the task-model library
are determined on the following criteria: for grasping tasks, according to the
classification of contact-webs along the purpose of the grasping, and for
manipulation tasks, corresponding to possible transitions between states defined
by either physical constraints and semantic constraints. The skill-agent library
is also prepared to collect skill-agents corresponding to tasks. The skill-agents
in the library are pre-trained using reinforcement learning with the reward
functions designed based on the physical and semantic constraints to execute
the task when specific parameters are provided. Third, the paper explains the
task encoder to obtain task models and task decoder to execute the task models
on the robot hardware. The task encoder understands what-to-do from the
verbal input and retrieves the corresponding task model in the library. Next,
based on the knowledge of each task, the system focuses on specific parts
of the demonstration to collect where-to-do parameters for executing the
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task. The decoder constructs a sequence of skill-agents retrieving from the
skill-agnet library corresponding and inserts those parameters obtained from
the demonstration into these skill-agents, allowing the robot to perform task
sequences with following the Labanotation postures. Finally, this paper presents
how the system actually works through several example scenes.

KEYWORDS

learning-from-observation, task model, skill-agent library, grasp taxonomy,

Labanotation, face contact equations, reinforcement learning

1 Introduction

One powerful means of acquiring human behavior is to

observe and imitate the behavior of others. Humans go through

a period of imitating their mother’s behavior at one stage of

development (Piaget, 2020). Even in adulthood, imitation from

practice videos is often used in various sport practice such

as golf practice and judo practice. Learning-from-observation,

programming-by-demonstration and learning-by-watching aim

to apply this behavior observation and learning paradigm to

robots and to automatically generate robot programs from

observation (Schaal, 1999; Schaal et al., 2003; Asfour et al., 2008;

Billard et al., 2008; Dillmann et al., 2010; Akgun et al., 2012). The

origin of this field lies in our research Ikeuchi and Reddy (1991)

and Ikeuchi and Suehiro (1994) as well as Kuniyoshi et al. (1994).

These two studies shared the common goal that they attempted to

understand human behavior by viewing it under some framework

and to make robots to perform the same behavior following the

framework.

Later, in terms of the approach to obtain this framework for

observation, the research field was split into two schools: the

bottom-up and the top-down. The “bottom-up” school (Schaal,

1996; Samejima et al., 2006; Billard et al., 2008) has been attempting

to acquire this framework from scratch through learning. The

“top-down” school (Kang and Ikeuchi, 1997; Tsuda et al., 2000;

Takamatsu et al., 2006) has been attempting to mathematically

design a framework by utilizing the accumulated knowledge of

robotics field to date. The “bottom-up” approach has been the

mainstream due to the population of researchers and the rise of

machine learning.

The authors, on the other hand, take the “top-down” position.

In both human and robot learning, the physical structure, height,

and weight of the student often differ from those of the teacher.

Furthermore, environmental changes are also present. Therefore,

trying to mimic the teacher’s trajectory itself, as in the bottom-

up approach, is difficult due to these differences in kinematics,

dynamics, and environment. This difficulty is avoided by first

extracting the essence of the behavior from the observation and

then mapping this essence in the way adapted to the individual

hardware and environment. For this purpose, we aim to design

mathematically consistent abstracted behavioral models based on

the knowledge accumulated in the robotics field, and to utilize these

models to represent the essence of the demonstrations.

Going back to the history of robot programming, since its early

days, some researchers have worked on automatic programming,

to generate robot programs from assembly drawings or abstract

concepts, referred to as task descriptions (Lozano-Perez, 1983;

Lozano-Perez et al., 1984; De Mello and Sanderson, 1990). This

trend, after about 30 years of research, encountered more difficult

obstacles than imagined, as summarized in Raj Reddy’s Turing

Award talk “AI: To dream possible dreams” in 2000 (Reddy, 2007).

In this talk, Reddy advocates 90% AI to overcome this barrier.

In other words, for the relatively easy part of 90% or so, the

solution is automatically obtained using the accumulated methods

of automated programming to date. The remaining 10% or so of the

problem, which cannot be solved by any means, should be solved

with hints from humans.

Our “top-down” approach is based on this 90% AI approach.

It attempts to overcome the difficulties of automated programming

by designing a framework of understanding based on the theory

accumulated in previous automated programming efforts in the

field of robotics, and by gleaning hints from human demonstrations

to actually make the system work.

This paper focuses on the “top-down” approach, provides

some findings on this approach, and describes some ongoing

projects to apply these findings to the development of household

robots. In the next section, we review previous research along

with the LfO paradigm. Section 3 describes the task common-

sense that must be shared between human demonstrators and

the observation systems in order to apply this paradigm to

the household-service domain and discusses the formulation

of this knowledge. Section 4 describes the grasping and the

manipulation skill-agent libraries necessary to implement this

formulated knowledge in robots. Sections 5 and 6 describe the

system implementation and the system in action. Section 7

summarizes this paper.

The contribution of this paper are:

• to give an overview of the past LfO efforts,

• to enumerate the three task common-senses, semi-conscious

human body-part movements, required to apply LfO to the

household domains,

• to propose representations of the three task common-senses,

and

• to show how these representations are used in LfO task-

encoder and task-decoder.
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FIGURE 1

(A) Object recognition. (B) Task recognition.

2 LfO paradigm

The LfO paradigm can be considered as an extension of the

Marr’s paradigm of object recognition (Marr, 2010). First, let us

review the Marr’s paradigm, shown in Figure 1A. Marr defines

the purpose of object recognition as creating a copy of the real

world inside the brain or computer. For this purpose, an abstract

object model is created inside the computer and then matching

is performed between the internal model and the external image.

Thematching process involves two distinct sub-processes: indexing

and localization. Indexing is the process of identifying which

of the abstract object models corresponds to the observed one.

Namely, indexing obtains the solution corresponding to what this

is. Localization is the process of transforming the abstract object

model into an instantiated object model with concrete dimensions

and placing it in virtual copy. In other words, localization obtains a

solution corresponding to where this is. In computer vision, these

two operations are often performed sequentially. In the brain, these

two sub-processes are carried out in separate and distinct circuits,

with indexing proceeding in a new pathway through the visual

cortex, and localization proceeding in an older pathway through

the superior colliculus (Ramachandran and Blakeslee, 1998). In

either case, a world model with instantiated object models, a copied

world named by Marr, is eventually created in the computer or the

brain (Marr, 2010).

Task recognition can be viewed as an extension of the Marr’s

object-recognition paradigm, as shown in Figure 1B (Ikeuchi and

Suehiro, 1994). The purpose of task recognition is to be able to

imagine in the brain or computer what task has been performed.

An abstract task model is created that associates a state transition

with an action required to cause such a transition. An abstract

task model takes the form of Minsky (1988)’s frames, in which the

slots for the skill parameters required to perform the action are

also prepared. Object recognition is then performed on the input

images to create two world models before and after an action. Task

recognition instantiates a particular task model corresponding to

the action based on the state transition extracted by comparing the

pre- and post-action worlds. Namely, the what-to-do is obtained.

Third, the where-to-do parameters, skill parameters for the action,

such as the starting point, the end point, and the grasping point,

are extracted from the images, and the instantiated task model is

completed. The instantiated task model guides the robot to imitate

human actions.

When designing task models, a divide-and-conquer strategy is

used to address the different domains of human activity. It would

be difficult, if not impossible, to design a set of abstract task models

that completely covers all human activity domains. It would be

inefficient, too. Therefore, we divide various human activities into

specific domains and design a set of task models that satisfies the

necessary and sufficient conditions for complete coverage of those

domains. The domains we have dealt with so far include:

• Two-block domain (Ikeuchi and Reddy, 1991).

• Polyhedral object domain (translation only) (Ikeuchi and

Suehiro, 1994).

• Polyhedral object domain (translation and

rotation) (Takamatsu et al., 2007).

• Machine-parts domain including screw tightening, snap

pushing, and rubber-ring hanging (Sato et al., 2002).

• Knot-tying domain including eight-knot and

bowline-knot (Takamatsu et al., 2006).

• Folk dance domain (Nakaoka et al., 2007; Okamoto et al., 2014;

Ikeuchi et al., 2018).

3 Task common-sense

When applying the LfO paradigm to the household-service

domain in the human home environment, the main obstacle is
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FIGURE 2

Service-robot domain. (A) Cluttered environment. (B) Three relations.

the overwhelming crowding in this domain (see Figure 2A). In

the traditional industrial domain, the only objects present in the

surroundings are those related to the task, to the exclusion of

other miscellaneous objects. There are also not so many unrelated

people in the surroundings. However, as seen in the Figure 2A,

in the human home environment, there are unrelated objects on

the table as well as various people moving around. Therefore,

it is important to share the human task common-sense of what

is the important for the demonstration between the LfO system

and the demonstrator, and let the LfO system decide where to

direct its attention to avoid the crowding. Here, task common-

sense is defined as the semi-unconscious movements of parts of

the human body toward specific objects in the environment to

streamline and optimize the execution of a serise of tasks. We

propose to focus on the following three relations as shown in

Figure 2B to explicitly express task common-sense in household

environmental tasks:

• Environment and robot: to represent human task common-

sense regarding the postures a person should take with respect

to the environment for smooth execution of a task sequence.

• Robot and tool: to represent human task common-sense

regarding grasping strategies of objects (mainly tools) for

robust execution of a task sequence.

• Tool and environment: to represent human task

common-sense regarding the movement of the tools in

relation to the environment for successful execution of a

task sequence.

The following sections will discuss these relationships and

describe task common-sense representations.

3.1 Environment-body relation

Our system is designed to mimic the approximated postures of

the demonstrator. For example, when opening a refrigerator door,

a robot with redundant degrees of freedom, as is common in recent

humanoid robots, can perform this task in several different postures

as shown in Figure 3. However, we prefer the robot to work in

a human-like posture, as shown in Figure 3B, for the following

reasons:

• When performing tasks, human-like postures are more

predictable to bystanders and less likely to cause interpersonal

accidents.

• Humans unconsciously adopt the optimal postures for the

environment in order to perform next task in a task sequence.

In the example above, the purpose of opening the refrigerator

door is often to take out the items inside as the next task. The

human-like posture shown in Figure 3B is considered more

efficient for this purpose.

We need a representation method to describe approximate

postures. The difference between human and robot mechanisms

makes it difficult to achieve exactly the same postures by taking

exactly the same joint angles and joint positions at each sampling

time. Our approximate imitation does not require such precise

representations. Rather, it is necessary to capture the essence of

those postures that the bystanders perceive as nearly identical.

For this approximation, we will use Labanotation (Hutchinson-

Guest, 1970), which is used by the dance community to record

dance performances. The relationship between dance performances

and Labanotation scores is similar to the relationship between

music performances and music scores. Just as a piece of music can

be performed from amusic score, a piece of dance can be performed

from a Labanotation score; just as a music score can be obtained

from listening to a peice of music, a Labanotation score can be

obtained from watching a piece of dance. More importantly, from

the same Labanotation score, each dancer, with different heights

and arm lengths, performs a piece of dance that appears the same

to spectators. In other words, the Labanotation score is considered

to capture the essence of the dance for the observers.

Labanotation is an approximation of human movement. Each

dancer has different lengths in various parts of their body. However,

it is known that when dancers follow Labanotation to dance the

piece, their movements appear similar to spectators. When robots

mimic human movement, due to the differing lengths of body

parts between humans and robots, it is mechanically difficult, if
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FIGURE 3

Two possible postures for opening the refrigerator door. (A) Inhuman-like posture. (B) Human-like posture.

FIGURE 4

Dancing robot. See our YouTube video (https://youtu.be/PGKGXxwp6LM) for comparison. The pictures show the extracted frames corresponding to
the key poses of the contentious dance motion in the YouTube video. Regarding the description of the lower body motions and the upper body
motions, see Nakaoka et al. (2007) and Ikeuchi et al. (2018), respectively. The robot dance in the YouTube was originally demonstrated to the public in
2003 at the University of Tokyo’s Institute of Industrial Science. The copyright of the video belongs to Ikeuchi laboratory, Institute of Industrial
Science, The University of Tokyo (at that time).

not impossible, to take the same joint angles or joint positions at

each sampling interval, and, even if it would be possible, there

would be no guarantee that the movements would appear to be

same to spectators. However, if a robot follows (or approximately

follows) Labanotation at each key pose, it can achieve a posture

flow that spectators perceive as almost the same. In fact, our dance

robot creates movements based on Labanotation, even though

each detailed movements are different from those of humans, they

appear similar. See Figure 4 (Nakaoka et al., 2007) and YouTube

video.1 Therefore, we decided to use Labanotation as posture

approximations for this service-robot domain.

In a music score, time flows from left to right, whereas in

a Labanotation score, time flows from bottom to top. A simple

1 https://youtu.be/PGKGXxwp6LM

example of Labanotation can be found around the middle of

Figure 5. Labanotation follows this digitization in the time domain,

i.e., each symbol in the score represents a posture at each brief

stop. Each column of the Labanotation is used to represent the

postures of one human part, such as an arm or an elbow. The

length of each symbol represents the time it takes to move from

the previous posture to that posture. The shorter the symbol, the

faster the person moves the part; the longer the symbol, the slower

the person moves the part. The shape of the symbol represents the

digitized azimuth angles of the part in eight directions, such as east,

west, north, and south, and the texture of the symbol represents

the digitized zenith angles of the part in five directions, such as

zenith, higher, level, lower, and nadir. Although the digitization

of the eight azimuthal angles and the five zenithal angles seems

somewhat coarse, it is consistent with Miller’s theory of human
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FIGURE 5

Applying LabanSuite to a cooking scene.

memory capacity (Miller, 1956), which is probably why the dance

community has represented angles with this granularity.

LabanSuite (Ikeuchi et al., 2018)2 was developed to detect

short pauses, digitize the postures at the pauses, and obtain a

Labanotation score from a human movement sequence. There are

2D and 3D versions: the 3D version uses a bone tracking obtained

through the Kinect camera sensor and its default SDK,3 while the

2D version uses a bone tracker based on OpenPose (Cao et al.,

2017) and lifting (Rayat Imtiaz Hossain and Little, 2017) from video

input. Both versions still extract short stops from the bone motion

sequence and digitize postures at the granularity of 8 azimuthal and

5 zenithal angles according to the Labanotation rule.

Figure 5 shows the 2D version applied to a cooking scene. Brief

pauses are extracted at the 0.55 and 1.80 seconds and the postures

at these timings are described as Labanotation symbols by the

LabanSuite. These correspond to the times when the right hand

picks the lid of the pod (0.55) and places it on the table (1.80). The

right hand at the pick timing is recorded as “Place low” for the right

elbow and “Forward low” for the right wrist, and the right hand at

the place timing is recorded as “Right low” for the right elbow and

“Right forward low” for the right wrist. These postures are recorded

in the task models and used for robot execution.

3.2 Body-tool relation

The relationship between the body and the tool when

performing a task sequence, especially how the tool is grasped, is an

important factor in the success of the task sequence. As shown in

Figure 6, even when we grasp the same pen, we grasp it differently

depending on the purpose of the task sequence. For example, when

2 https://github.com/microsoft/LabanotationSuite

3 https://azure.microsoft.com/en-us/products/kinect-dk/

pushing, we grab the pen with the whole hand so that we can apply

enough force to the pen (Figure 6A), and when pointing, we pick

the pen with the fingertips so that we can freely manipulate the

direction of the pen (Figure 6B). When writing, we hold it so that

we can control the tip of the pen while exerting pressure on it, as

shown in Figure 6C.

Various grasping taxonomies have been proposed in the

robotics community, starting with Cutkosky’s pioneering

work (Cutkosky, 1989) to Felix’s recent detailed taxonomy (Feix

et al., 2015). For LfO, the concept of the contact web (Kang and

Ikeuchi, 1997) was used to create a grasp taxonomy. Consistent

with the application of the closure theory (discussed later), we use

this contact web-based taxonomy and built a recognition system

based on it, (a system that classifies an input image into a grasp

type in the taxonomy using a CNN). To improve the performance,

we used the prior distribution of grasp types (affordance) for each

object (Wake et al., 2020).

3.3 Tool-environmental relation

We define a task as a transition in the contact relation between

the grasped object and the environment as in Ikeuchi and Suehiro

(1994). As an example of a state transition, let us consider a pick

task. In Figure 7, the cup on the table is in surface contact with

the table surface before the pick task. Surface contact constrains

the range of directions an object can move. Let N be the normal

direction of the tabletop surface and X be the direction in which

the cup can move. Then, the range that X can take can be expressed

by Equation (1):

N · X ≥ 0 (1)

The only directions in which the cup can move are up in

Figure 7 are upward, i.e., the northern hemisphere of the Gaussian
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FIGURE 6

The grasping method depends on the purpose of the task sequence. (A) For applying power. (B) For precise control. (C) For versatility.

FIGURE 7

Pick task.

sphere, assuming the table surface is facing upward. The Gaussian

sphere is used to illustrate the direction of movement; a unit

directional vector is represented as a point on the Gaussian sphere.

The starting point of the vector is located at the center of the sphere,

and the end point on the sphere represents the directional vector.

In the example of a cup on a table, the upper directions are the

movable directions of the cup, which correspond to the northern

hemisphere of the Gaussian sphere shown in white, assuming the

surface normal of the table is represented as the north pole of the

Gaussian sphere.

As a result of the pick task, the cup is lifted into the air and no

longer has the surface contact with the table. As the result, the cup

can move in all directions. The entire spherical surface becomes the

movable region. This transition from one-directional contact to no

contact is defined as the pick task (see Figure 7).

Let us enumerate the surface contact relations to count

up how many transitions we have between them in general.

For each additional surface contact, the range of motion is

further constrained by an additional linear inequality equation

corresponding to the surface contact. Adding an inequality

equation one by one, the final range over which the object canmove

can be expressed as the solution of linear simultaneous inequalities

given by the set of surface contacts. Using Kuhn-Tucker theory with

respect to the solution space of linear simultaneous inequalities, we

can count seven characteristic solution spaces, or contact states, for

infinitesimal translational motion and seven characteristic solution

spaces, or contact states, for infinitesimal rotational motion. Since

there are seven possible initial states and seven possible final states,

in principle, we have 7 × 7 = 49 transitions for translation and

49 transitions for rotation. However, by considering the physical

constraints, the number becomes 13 transitions for translation

and 14 transitions for rotation (Ikeuchi et al., 2024). Thus, the

maximum number of tasks required would be 27 different tasks,

assuming all possible transitions.

Further examinations in household tasks using YouTube video

as well as our own-recorded cooking video reveal that only a few of

them actually occur:

• PTG1:Pick/Bring/Place: This group consists of actions such

as picking up and placing an object on the desk, which

involves eliminating or generating surface contact between

the desk and the object. Theoretically speaking, PTG11

(pick) is an action that eliminating surface contact through

infinitesimal translation, transitioning the contact state in the

direction of motion, from semi-freedom (surface contact)

to complete freedom (floating). In the case of an actual

action by a robot and a human, a translation motion with

a finite interval is always observed immediately after the
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infinitesimal translation, so this finite interval is also included

in the definition of PTG11 (pick). During this infinitesimal

and finite translation, in the direction orthogonal to the

motion direction, the complete degree of freedom (floating) is

maintained, allowing movement in this orthogonal direction.

PTG13 (place) is the reverse of this. PTG12 (bring) involves

only a finite translation interval in which surface contact

transitions in the direction of motion do not occur at either

end of the movement.

• PTG3:Drawer-Open/Drawer-Adjust/Drawer-Close: This

group includes actions such as opening and closing a drawer,

which involves eliminating or generating surface contact

at the back of the drawer by moving linearly while being

constrained in the orthogonal directions to the motion

direction by its surroundings. Theoretically, similar to

PTG11, in the direction of motion, the contact state of PTG31

(drawer-open) transitions from semi-freedom to full freedom

due to the elimination of surface contact at the bottom of

the drawer through infinitesimal translation. Additionally,

finite translation is also observed in this case as well. The

difference from PTG11 is that in the direction orthogonal to

the motion, the contact state remains constrained with no

degree of freedom due to the surrounding walls of the drawer,

allowing no motion in this direction. PTG31 (drawer-close) is

the reverse of this. PTG32 (drawer-adjust) involves only the

finite transnational interval, in which contact state transitions

in the motion direction do not occur at either end of the

movement, while in the direction orthogonal to the motion,

the constrained state is maintained.

• PTG5:Door-Open/Door-Adjust/Door-Close: In PTG5, the

action involves rotation instead of translation, as opposed

to PTG3, where surface contact is eliminated or generated

through the rotation action in the rotation direction.

Theoretically speaking, due to the infinitesimal rotation of

PTG51 (door-open), the DOFs in the direction of rotation

transits from semi-freedom (surface contact) to full freedom,

while the rotation remains constrained in the direction

perpendicular to the rotation direction. Similarly, a finite

rotation is also included in this case. Conversely PTG53

(door-close) causes the opposite transition. PTG52 (door-

adjust) involves only finite rotation, while being constrained

perpendicular to the rotation direction, no changes in contact

state occur at both ends in the direction of rotation.

Physical transitions other than these rarely occur in household

activities, probably because they are difficult for the average

unskilled person to perform. In this paper, these nine types of

tasks have been prepared as the task models for the corresponding

manipulation skill-agent library. Note that the remaining tasks can

be added to the library, if needed in the future.

In household tasks, in addition to the physical tasks described

above, we need to consider semantic tasks. For example, consider

an action such as wiping a table surface with a sponge. Physically,

the sponge on the table surface, is in contact with the surface in

only one direction. This means that the sponge can be moved

upward beside moving on the table surface. However, if the sponge

is lifted off the surface of the table, it cannot wipe the surface of

FIGURE 8

An illustrative example of pick (PTG11) task model.

the table. In other words, under the task common-sense of wiping,

the movement must be such that it always maintains contact with

the surface. To express this, we can introduce a virtual surface

that exists parallel to the surface of the table. The wiping motion

can be described by considering that the sponge can only move

in directions between this virtual surface and the original physical

table surface. We will refer this virtual surface as a semantic

constraint surface. By examining the actions in the household

operations, the following five semantic constraints were obtained.

• SGT1: Semantic ping: A task such as carrying a glass of juice

can be described by a semantic ping. Physically, the glass can

rotate about any axis in the air. However, in order to carry

the juice without spilling it, the glass is only allowed to rotate

about the axis along the direction of the gravity and not in any

other axis direction. We assume that the semantic ping stands

perpendicular to the surface of the glass. The object is only

allowed to rotate around the semantic ping.

• STG2: Semantic wall: In a task such as wiping a table, only the

directions ofmotion along the surface of the table, i.e., between

the actual table surface and the semantic surface, is allowed.

• STG3: Semantic tube: Tasks such as peeling in cooking

require translational motion along a specific trajectory on the

object surface. This motion can be interpreted as the one along

a semantic tube.

• STG4: Semantic sphere: In the STG2 semantic wall, motion

was constrained between two planes. In the case of wiping

spherical surfaces, motion is constrained between two

spherical surfaces, a real sphere and a semantic sphere.

• STG5: Semantic hing: In a task such as pouring water from

one pitcher into another, the motion of the pitcher must be a

rotational motion around the spout, meaning rotation around

the semantic hinge at the spout.
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FIGURE 9

Three closures. (A) Passiveform closure. (B) Passiveforce closure. (C) Activeforce closure.

Task models are designed in the design phase, with the name

and slots for the skill parameters essential for task execution, as

in a Minsky’s frame. Figure 8 shows Pick (PTG11) as an example

task model. The task name is registered as Pick (PTG11), and

the transition of surface contacts is described as PC (partial

contact), i.e., one-directional contact, to NC (no contact). This

transition information will not be used for execution, but is

retained to help humans understand the transition states more

easily. The actor slot describes whether to execute with the right

or left hand. A slot to register the name of the object is also

prepared, which is used for MS-Custom vision4 to identify the

location of the object in the image. Slots are also prepared for

the first and last Labanotation, the initial position of the object,

and the detaching direction and distance, in which direction and

how much the object will be lifted up. Daemons are attached

to these slots to observe and obtain these parameters from the

demonstration.

During the teaching mode, the task encoder first

recognizes which task it is from the verbal input and

instantiates the corresponding task model, i.e., determining

what-to-do. At the same time, it also obtains the name

of the target object from the verbal input. Next, the

instantiated task model collects the necessary skill parameters

from human demonstration according to each daemons

attached at the slots in the task model, i.e., determining

where-to-do.

4 Skill-agent library

In order for a robot to be able to perform the corresponding

motion from the recognized task model, an execution module

corresponding to each task model, a module to know how-

to-do, is necessary. In this section, we design the grasp skill

library and the manipulation skill library which contain such

execution modules, which we refer to as skill-agents. The

core of each skill-agent consists of a control agent, Bonsai

4 https://www.customvision.ai/

brain,5 with a policy trained using Bonsai reinforcement learning

system. Each skill-agent also includes interfaces to retrieve

necessary skill parameters from the corresponding task model

as well as to obtain additional parameters needed at run

time.

4.1 Grasp-skill-agent library

4.1.1 Closure theory and contact web
In Robotics community, Feix et al. (2015) proposed a grasp

taxonomy containing 33 grasp patterns. However, in terms of robot

execution of task sequences, these 33 grasp patterns are redundant

and can be aggregated using the closure theory. For example,

Thumb-4 finger and Thumb-3 finger can achieve almost the same

goal in the task sequence following the grasp. According to the

closure theory, the grasping task can be classified into the following

three objectives (Yoshikawa, 1999).

• Passive form closure: to maintain the constant position of

a grasped object by bringing the hand into a particular

shape without actively applying force on the grasped object.

Examples include wheel bearing in a wheel (see Figure 9A).

• Passive force closure: to hold a grasped object in place without

loosening its motion by applying force from all directions.

Examples include a vice (see Figure 9B).

• Active force closure: to allow fingertip manipulation of the

grasped object while grasping it (see Figure 9C).

To be able to perform these three types of closures, we assume

a particular gripper and a particular shaped object, and computed

contact-webs, the distribution of contact points between the object

and the gripper. In this paper, Shadow-hand Lite6 is used as the

5 Bonsai is a reinforcement learning package developed in Microsoft and

Bonsai brain refers to an agent equipped with a trained policy, which works

in the Bonsai environment.

6 https://www.shadowrobot.com/dexterous-hand-series/
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gripper and the shape of an object is assumed to be able to be

approximated as a superquadric surface. Three kinds of contact-

webs are computed for each object shape: a passive-form contact

web, a passive-force contact web, and an active-force contact web.

In order for a robot to perform a grasping task, the skill-

agent must obtain the location of the contact webs from the visual

information at run time to guide. As shown in Figure 10, the

visual and grasping modules are designed as an integral part in

the grasping skill-agent. The visual CNN determines the contact-

web on the target object, and then the grasping brain relies on

this contact-web location to control the hand. Such pipelines are

prepared for each of the three contact-webs. At runtime, a specific

grasp pipeline is activated by a grasp task model. Note that only

three pipelines are prepared that are independent of object shape

and size, since differences in shape and size are absorbed by the

randomization in CNN training and reinforcement learning (Saito

et al., 2022).

4.1.2 Contact-web localizer
The contact-web localizer consists of a multi-layer CNN that

takes a depth image as input and outputs the contact-web locations.

In order to obtain contact web locations without making a priori

assumptions about the shape and size of an object, the depth

image training data was generated by randomly sampling the size,

shape, and viewing parameters of a superquadric surface, which

can approximate a variety of objects by varying the shape and size

parameters. Specifically, the shape parameters, the size parameters,

the azimuth angle, and the zenith angle are randomly selected

from the range of 0 to 1.0, 10 cm to 30 cm, between plus and

minus 120 degrees from the front, and 0 to 90 degrees, respectively.

For each closure, the positions of the contact-web were calculated

analytically based on the superquadric equation of these parameters

using the specific robot hand (in this paper, the Shadow-hand). The

axis directions and the origin of the coordinate system are also

given as true values so that the object-centered coordinate system

of the superquadric surface can also be output.

4.1.3 Grasp skill-agents
Each grasp-skill agent contains a Bonsai brain, an agent

with a policy for controlling the hand. The brain is pre-trained

offline using the Bonsai reinforcement learning system to control

the robot’s hand movements. Note that for reusability at the

hardware level, only the hand movements are trained, not the

whole arm, to take advantage of the effectiveness of the role-

division algorithm (Sasabuchi et al., 2021), which will be discussed

later. The brain receives the positions of the contact-web from

the contact-web localizer and the approach direction from the

demonstration as hint information with respect to the object

centered coordinates. The observable states include the current

joint positions of the hand and the drag force derived from the

effort at each joint. Since it is not practical to attach a force sensor

to each fingertip, we decided to measure the drag force on a

fingertip using the effort value instead. The effort is defined as the

amount of electrical current required by the joint motor to move

the joint to the target position. The greater the reaction force, the

more current is required. The grasp task is considered complete

when the drag force on the fingertip, as measured by the effort,

is sufficient. The reward is the success or failure of the pick after

the grasp.

4.2 Manipulation-skill-agent library

The manipulation skill-agents are also implemented as

brains using the Bonsai reinforcement learning system. In the

manipulation skill-agents, objects can be assumed to be already

grasped. The hint information is the direction of motion of the

grasped object by human demonstration. The observation states

include the current joint positions and the drag force from the

environment of the grasped object. The drag force is assumed to be

obtained from a force sensor attached to the arm. The tasks of Place

(PTG13), Drawer-closing (PTG33), and Door-closing (PTG53) are

terminated when drag force from the wall or table surface is

detected. The tasks of Pick (STG11), Door-opening (PTG31), and

Drawer-opening (PTG51) ends when drag force is eliminated and

the hand position given in the demonstration is reached. The

reward for PTG13 is given by whether the object is stable when

released, while the reward for the remaining tasks is given by

whether the terminal condition is met.

5 Implementation

The system consists of two main modules:

• Task encoder: Recognizes tasks from verbal input, obtains

skill parameters required for each task from visual input, and

completes a sequence of task models.

• Task decoder: Based on the task model sequence, pick the

corresponding skill-agents from the libraries and generates

robot motions by the skill-agents.

5.1 Task encoder

An Azure Kinect sensor (see text footnote3) was positioned to

provide a full view of the site through the entire demo, capturing

RGBD images of the demonstrator and the object as well as the

audio input of the demonstrator. The resolution of the images was

1, 280× 720 and the nominal sampling rates of the video and audio

were 30 Hz and 48,000 Hz, respectively. AR markers were placed

to align the orientation of the demonstration coordinates with the

robot coordinates. Note that the role of the AR markers is to align

the rough orientation of both coordinates, and the objects, human

and robot positions do not need to be exactly the same during

demonstration and execution.

One unit of robot teaching begins with the grasping task of an

object, followed by several manipulation tasks of the object, and

ends with the releasing task of the object. This sequence of grasping,

manipulation, and releasing tasks is referred to as a GMRoperation,

and each GMR operation is assumed to manipulate the same object

with the same hand.
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FIGURE 10

A grasp-pipe line. The observation module and the execution brain are designed as an integrated unit. The observation module consists of a CNN
that determines the positions of the contact web from the scene, and the execution brain is trained using reinforcement learning to control the hand
based on the positions of the contact web and the force feedback.

To facilitate teaching the granularity of tasks in one GMR

operation, a stop-and-go method is used (Wake et al., 2022). That

is, for each task, the user verbally indicates the task to be performed,

and starts moving his/her hand. Then, when the demonstration of

that task is completed, the user stopsmoving his/her hand and, after

a brief stop, begins the next cycle of verbal instruction and visual

demonstration corresponding to the next task. This series of verbal

instructions and visual demonstrations is repeated until the GMR

operation is completed. For example, the GMR operation “pick up

a cup and carry it to the same table” consists of five cycles: grasp

the cup (passive-force grasp), pick it up (PTG11), bring it carefullly

(STG12), place it (PTG13), and release it (release).

Figure 11 shows an example of human demonstration. The

video and audio are segmented at the timings when the hand stops

(Figure 11A). To detect these timings from the input video, the

brightness disturbance of the input video is characterized (Ikeuchi

and Suehiro, 1994) (Figure 11B). For the calculation, the RGB

image is converted to a YUV image and the Y channel is extracted

as brightness. The brightness image is spatially filtered using a

moving average of a 50 × 50 window, and the absolute pixel-by-

pixel difference between adjacent frames is taken. The average of the

differences is taken as the brightness perturbation at each timing.

After removing outliers and low-pass filtering at 0.5 Hz, the local

minima are extracted as the stop timings. The input video and

audio are segmented based on these stop timings. This video-based

segmentation is preferred over audio-based segmentation because,

although human verbal instructions and hand demonstrations

are roughly synchronized, their synchronization is not exact, and

accurate video timings are needed for skill parameter extraction,

such as hand waypoints (Figure 11C).

The segmented video and audio are processed in two steps

for task encoding. The first step is task recognition based on the

audio segments, and the second step is skill parameter extraction

based on the video segments. The segmented audio is recognized

using a cloud-based speech recognition service.7 In addition,

the fluctuations in the user’s verbal instructions are absorbed by

a learning system based on our own crowdsourced data. The

segmented audio segments, corresponding video segments, and

7 https://azure.microsoft.com/en-us/products/congnitive-service/

speech-to-text/

recognition results can be previewed and modified by the user via

the GUI.

In the second step, the task-encoder instantiates a sequence

of task models based on these recognition results. Each task

model has a Minsky frame-like format with slots for storing skill

parameters, which will be collected from the video segments. The

skill parameters are mainly related to hand and body movements

with respect to the target object. The handmovements are extracted

using a 2D hand detector8 and depth images, while the body

movements are obtained by the LabanSuite.

The image of the operating hand in the last frame of the

grasping video is given to the grasp recognition system, which

determines the grasp type. From the hand movements immediately

before the end of a task, the approach direction for a grasping task,

the attaching direction for PTG13 (place), PTG33 (drawer-closing),

and PTG53 (door-closing) are calculated in the object-centered

coordinate system. The hand movements immediately after the

start of a task also provide the departure direction for a releasing

task and the detaching direction for PTG11 (pick), PTG13 (drawer-

opening), and PTG15 (door-opening). Human body movements

are also important skill parameters. From the first and last postures

of a human arm, we estimate the 3D posture of the performer

and convert them into Labanotation using LabanSuite. These skill

parameters are stored at each corresponding slot of a task model for

later task decoding.

5.2 Task decoder

We developed the TSS system, a task decoding platform

that allows a robot to execute task models given by the

encoder (Sasabuchi et al., 2023). The TSS system reads a set of

task models from the task encoder, coordinates the parameters

among the task models, calls the skill-agents with Bonsai brains

corresponding to the task models, and passes the parameters stored

in the task models to the skill-agents. TSS is also equipped with the

Labanotation-based IK. Generally, humanoids have many degrees

of freedom, and there are multiple IK solutions to bring the end

effector to one position. To resolve this redundancy, an initial

8 https://www.ultralytics.com/
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FIGURE 11

Example of the task encoder computation: (A) An example of a stop-and-go demonstration given to the system (Box-displacement demo). (B) Video
segmentation based on the time-series luminance changes in the demonstration video. The top-left images show an example of the pixel-wise
absolute di�erence between adjacent luminance images. (C) Extracted hand positions (Cup-relocation demo). Images were modified from Wake
et al. (2022).

solution to IK, a rough arm shape, is determined based on the given

Labanotation, and a neighboring solution is obtained using IK from

the rough initial approximation given by the Labanotation. The TSS

system can simulate movements with a virtual robot displayed in an

unreal-engine environment or control a real robot via ROS.

The role-division algorithms in TSS improves reusability at the

hardware level (Sasabuchi et al., 2021; Takamatsu et al., 2022). All

skill-agents in the libraries used by TSS are those trained to control

robot hand movements, not the movements of the entire robot as a

whole. To realize these hand movements, the robot arm must form

certain poses given by the inverse kinematics (IK) of the robot. The

shape of the arm, on the other hand, must be as close as possible

to the shape of the human demonstration as represented by the

Labanotation score; the adjustment between the arm shape given

from the Labanotation score and the arm shape required by the

Bonsai brain is done using the Role-Division algorithm. Using this

method, when introducing a new robot, only the Labanotation-

based IK needs to be replaced, without need for retraining of

skill-agents.

Three Bonsai brains in the three grasping skill-agents are

directly connected to their vision modules to determine the

contact-web locations and the local coordinate system, as described

in the grasp skill-agent library section. This is because although the

target objects are placed under nearly identical positions during the

demonstration and execution, the robot’s position is not exactly the

same as the human demonstration position, so that the target object

must be observed again during the execution in order to perform

the robot grasp robustly. From the grasping taskmodel, the decoder

activates the RGBD sensor and detects the bounding box of the

object using MS custom vision. Next, a plane fitting based on

RANSAC (random sample consensus) (Fischler and Bolles, 1981)

is applied to the depth image withing the bounding box so as

to segment the object from the background table. The segmented

depth image is then given to the trained CNN, which outputs the

contact-web locations as well at the local coordinate system of the

superquadric, from which the approach direction is re-calculated.

Finally, the Bonsai brain receives those locations and the direction

as hint information, and generates hand and finger movements

based on force feedback.

Figure 12 shows the summary of the information flow to/from

the Bonsai brain performing a grasping task. Each brain is

designed to output hand movements using the demonstration

parameters as hint values and the forces from the environment

as state values. To minimize the differences between Sim2Real

and between different sensors, the values from the force sensor

are not used directly, but are processed to see if they exceed

a certain threshold value. According to the hand position

specified by the Bonsai brain, IK is solved by relying on human

Labanotation. The robot’s overall posture is also determined

using the robot’s mobile and lifting mechanisms as well to
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FIGURE 12

Bonsai brain and parameters.

satisfy the required shoulder position by the role-division

algorithm.

6 Robot execution

To emphasize reusability at the hardware level (Takamatsu

et al., 2022), two robots, Nextage and Fetch, both running in ROS,

were used as testbeds. Nextage by Kawada Robotics has two arms,

each with six degrees of freedom, with one degree of freedom

(rotation around a vertical axis) at the waist. In this experiment,

the robot did not use its left arm or waist, working only with its

right arm, which is equipped with a Shadow Dextrous Hand Lite

from Shadow Robotics as a robotic hand. Nextage is equipped with

a stereo camera to observe the environment. The Fetch Mobile

Manipulator has 7 DOFs in the arms with 1 DOF at the waist

(vertical movement) and 2 DOFs in the mobile base. The Fetch

robot is also equipped with a Shadow Dexterous Hand Lite. It is

also equipped with a Primesense Carmine 1.09 RGB-D camera

for environmental monitoring. In this paper, as an example of

hardware-level reusabiliy, the same task-model sequence, generated

from a demonstration, is given to the TSS to control the two robots,

which share the same skill-agent libraries, with only different IKs.

For videos of the robot executions, please refer to our website.9

6.1 Box-placement GMR operation

A box-displacement GMR operation is demonstrated in front

of Azure Kinect with the verbal instructions, as shown in

Figure 11A. The task model sequence, consisting of:

1. grasp the box (active-force closure),

2. pick up the box from the desk (PTG11),

3. bring-carefully the box (STG12),

4. place the box on a plate (PTG13), and

5. release the box (active-force closure).

9 https://www.microsoft.com/en-us/research/project/interactive-

learning-from-observation/

was obtained and initiated from the verbal input, and

then, corresponding skill parameters for each task models are

obtained from the visual demonstration. The task model sequence

was uploaded to Azure and, then down loaded to the local

TSS at the Shinagawa site controlling Nextage in Shinagawa

as shown in the upper raw of Figure 13. In the lower raw

of Figure 13, the same task model sequence on Azure was

downloaded to the local TSS at the Redmond site controlling

Fetch at Redmond to perform the tasks. These two TSSs share

the same skill-agent libraries, and differ only in the IKs to control

the robots.

The success ratio during execution was approximately 90%.

The main cause of the failures was due to errors in the

positions of the contact web points obtained by the active-

force grasp-agent at the time of execution. Another cause of

failure was that the object was positioned too far from the

edge of the table, making it impossible to solve the inverse

kinematics (IK).

6.2 Shelf GMR operation

The task sequence was identified, from the verbal instruction

shown in the upper raw of Figure 14, as:

1. grasp the cup (Passive-force closure),

2. pick up the cup (PTG11),

3. bring-carefully the cup (STG12),

4. bring-carefully the cup (STG12),

5. bring-carefully the cup (STG12),

6. place the cup (PTG13), and

7. release the cup (Passive-force closure).

Note that in this operation, bring-carefully STG12 is used

three times in a row to teach the robots the trajectory to avoid

collision with the shelf. In other words, the demonstrator, not

the system, plans the collision avoidance path and teaches the

collision avoidance path to the system according to Reddy’s 90% AI

rule (Reddy, 2007). See the lower two rows of Figure 14 for robot’s

execution.
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FIGURE 13

Executions of box-displacement GMR operation.

FIGURE 14

Shelf GMR operation.

6.3 Garbage-disposal GMR operation

The garbage-disposal GMR operation in Figure 15 consists

of:

1. grasp the can (Active-force closure),

2. pick up the can (PTG11),

3. bring the can (STG12), and

4. release the can (Active-force closure).

The difference between the box-placement operation and this

garbage-disposal operation is whether the the object is placed

and then released or not placed and then released in the air. It

is interesting to note that even if the order of tasks does not

change that much, the purpose of the task sequence can change

significantly by simply shaving off some of the tasks.

7 Summary and discussions

This paper introduces a system for automatically generating

robot programs from human demonstrations, referred to as

learning-from-observation (LfO), and describes three task

common-sense requirements for applying this system to the

household domain. Unlike the more common learning-from-

demonstration or programming-by-demonstration approaches,

LfO does not attempt to directly mimic human trajectories. Instead,

LfO semantically maps human behavior to robot behavior. That

is, human behavior is first transformed into machine-independent

representations, referred to as task models, based on verbal and

visual input. This representation consists of frameworks that

specify what-to-do, referred to as task models, with associated skill

parameters that specify where-to-do. Notably, the skill parameters
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FIGURE 15

Garbage-disposal GMR operation.

are not the trajectories themselves, but rather a collection of local

features with respect to the object and the task, obtained from

the trajectories, a collection of important relative trajectories with

respect to the object and the task, such as from which direction

to approach for grasping the object in the grasp task or to which

direction to approach for placing the object to the table in the

place task. These task models are then mapped to the primitive

actions of each robot using the skill-agent libraries, a collection

of skill-agents that encompass how-to-do, designed and trained

using reinforcement learning to each robot hardware. This indirect

mapping aims to overcome the kinematic and dynamic differences

between humans and robots.

The purpose of this indirect mimicking can also be rephrased

as distinguishing between reusable and non-reusable information

in the demonstration, focusing only on the reusable information.

The other information for execution is generated during the

robot’s execution based on local force feedback and other factors.

For representing this reusable information, LfO uses three types

of representations: Labanotation, Contact-web, and face-contact

relations.

For instance, let’s reconsider Labanotation, which expresses

whole-body postures. As reusable information, the sequence of

postures (key poses) at specific sampling times (brief stop timings)

should be used, while the trajectories between those postures

do not need to be reused. This is because it is impossible to

mimic everything due to differences in hardware between the

demonstrator and the robot, i.e., differences in weight, height and

arm lengths between them. Therefore, it is necessary to express

only the key points that make the movements appear similar

to a human spectator. For example, for human dance, in the

robot dance uploaded on YouTube (see text footnote1), the robot’s

key poses mimic the keyposes of Master Yamada on the left.

On the other hand, the movements of the robot’s various part

between key poses are generated to make stable postures each

time for maintaining balance and preventing falling. Therefore, the

detailed movements of the robot itself differ from Master Yamada’s

movements. However, after watching this video, there is little sense

of discrepancy between the two, at least for the authors.

The tendency of humans to focus only on the sequence of key

poses at key timings was also observed in Perera et al. (2009). This

also aligns with the Gestalt view of movements, which suggests the

humans perceive a dance as a sequence of key poses as a whole.

Therefore, according to the Gestalt point of view, when generating

robot movements from human demonstrations, it is not necessary

to mimic the entire time-series trajectory; instead, this suggests

the approach that only imitates key poses, which in fact we follow

in the dancing robot and this household robot. Similar reasoning

has been applied in the design of the contact-web and face-contact

relation based on the distinction between re-usable and non-usable

information.

As mentioned in the introduction, LfO is a teaching system

based on Reddy (2007)’s 90% AI, where the system gets hints

from human demonstrations to solve difficult problems such

as determination of a grasp strategy, a collision avoidance

path and postures toward the target object. For example, in

collision avoidance, as explained in the shelf demonstration in

Section 6.2, the human demonstrator consciously presents key

way-points for collision avoidance, such as first moving the object

out of the shelf, then adjusting its height only after it is far

enough to avoid collisions with the shelf. Namely, the human

demonstrator solves the collision avoidance and provides the

global guidance of the collision-free path to the system. The

system, then, automatically generates a trajectory passing though

these way-points according to the global guidance, where three

Bring-carefully (STG12) tasks, instead of one Bring (PTG12)

task, are generated for the collision avoidance purpose from the
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human demonstration. This 90%AI concept was also used in

the Labanotation-based IK, where the system solves redundance-

degree IK from the initial pose given from the Labanotation.

These 90% methods, even in the automatic generation system,

utilize human demonstrations as initial solutions, making it

easier to reach a global solution in problems with multiple local

solutions. Improving the interaction between humans and systems

based on 90%AI approach is one of the key approaches for

human-robot collaboration.

In this LfO project, we have chosen to focus on home service

robots in care-giving sector, as a non-traditional robot application,

i.e., non-industrial domain, which faces a shortage of labor despite

the aged society. Unlike industrial environment, various objects

are present in the proximity environment, requiring the system to

pay attention to specific relationships. We proposed Labanotation,

contact-web, and face-contact relation as representations of

relationships for this focus-of-attention. Similarly, agriculture can

be considered another non-industrial domain (Lauretti et al.,

2023, 2024). This field presents additional challenges such as

handling flexible objects and the need for advanced sensing

technologies due to the outdoor environment. Nevertheless,

considering that this field also involves cluttered environments,

we believe that the representations proposed in this paper can

essentially used to focus attention and extract only re-usable

information in these environments. Applying such new service

robot concepts to these fields is a direction worth pursuing in

the future.
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