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The study of the geometric organization of biological tissues has a rich history in 
the literature. However, the geometry and architecture of individual cells within 
tissues has traditionally relied upon manual or indirect measures of shape. Such 
rudimentary measures are largely a result of challenges associated with acquiring 
high resolution images of cells and cellular components, as well as a lack of 
computational approaches to analyze large volumes of high-resolution data. This 
is especially true with brain tissue, which is composed of a complex array of cells. 
Here we review computational tools that have been applied to unravel the cellular 
nanoarchitecture of astrocytes, a type of brain cell that is increasingly being shown 
to be  essential for brain function. Astrocytes are among the most structurally 
complex and functionally diverse cells in the mammalian body and are essential 
partner cells of neurons. Light microscopy does not allow adequate resolution 
of astrocyte morphology, however, large-scale serial electron microscopy data, 
which provides nanometer resolution 3D models, is enabling the visualization 
of the fine, convoluted structure of astrocytes. Application of computer vision 
methods to the resulting nanoscale 3D models is helping reveal the geometry and 
organizing principles of astrocytes, but a complete understanding of astrocyte 
structure and its functional implications will require further adaptation of existing 
computational tools, as well as development of new approaches.
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1 Introduction

The study of the geometric organization of biological tissue has a rich history in the 
literature (Thompson, 1917; Blum, 1973; Neville, 1993). The organization of cells into tissues 
and organs has often been described qualitatively and with visual illustrations. However, 
advances in imaging technology coupled with modern computer vision (CV) techniques have 
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progressively allowed speculation on structure-function relationships 
in biology and medicine to be formalized quantitatively. CV is pivotal 
in investigating biology and physiology over a wide range of spatial 
resolutions, from tracking eye and animal movements in behavioral 
studies (Naik et al., 2023), to modelling organ structure and function 
in CT and fMRI studies (de Belen et  al., 2020), to analyzing the 
structure of cells and proteins at the microscopic (Dileep et al., 2023) 
and angstrom levels (Punjani et  al., 2017). Integrating structural 
information across these levels of spatial resolution will continue to 
drive our understanding of biological structure and physiology. 
Importantly, quantitative tools for understanding tissue and cell 
morphology will ultimately allow for better understanding of disease. 
For example, in the heart, the cellular organization and overall shape 
of the organ changes in diseases such as dilated cardiomyopathy or 
myocardial infarction to different degrees (Chen et  al., 2003; von 
Deuster et al., 2016). Similarly, the cellular structure of astrocytes, a 
specialized cell-type in the brain, which we focus on here, drastically 
changes in conditions such as Alzheimer’s disease and stroke (Acosta 
et al., 2017).

1.1 Applying computer vision methods to 
study astrocyte nanostructure

Neurons are the primary cells responsible for transmitting 
information in nervous systems, and they undergo the plastic 
processes thought to lead to memory formation and learning. As such, 
both inside and outside the neuroscience community, neurons are 
generally imagined to be solely responsible for brain function while 
other cell types in the brain are often ignored. This neurocentric view 
has also permeated computer science; artificial neural networks are 
based on neuronal form and function. However, neurons have 
essential partner cells, called astrocytes, which are necessary for 
normal brain function and health. While astrocytes were originally 
thought to be the “glue” that held neurons together, in the past three 
decades it has become clear that astrocytes are active participants in 
brain function. Astrocytes control energy supply to the brain, regulate 
the ions and neurotransmitters required for information flow, direct 
neural circuit development, and couple the circulatory system to the 
brain (Khakh and Deneen, 2019). Astrocytes thus play vital roles in 
behaviors including respiration, olfaction, food intake, vision and 
sleep (Petzold et al., 2008; Halassa et al., 2009; Kim et al., 2014; García-
Cáceres et  al., 2016; Brancaccio et  al., 2017). Astrocytes are also 
intimately involved in learning and memory (Henneberger et al., 2010; 
Adamsky et al., 2018). Evidence from the mouse visual system also 
suggests that astrocytes play a direct role in information processing 
(Curreli et al., 2022). Incorporating astrocytes into models of neural 
computation may thus be  a critical component missing in 
understanding biological intelligence (De Pittà and Berry, 2019; 
Murphy-Royal et  al., 2023). A number of studies incorporating 
astrocytes into artificial neural networks have shown promise (Ivanov 
and Michmizos, 2021; Polykretis and Michmizos, 2022; Kozachkov 
et al., 2023), suggesting that “artificial astrocytes” may prove to be key 
in building networks capable of generalization.

Astrocytes are an interesting case study in CV for two reasons. 
Firstly, their structure-function relationships have yet to be  fully 
elucidated, and thus analysis of their geometry, shape, and the 
principles by which their structure is organized will lead to new 

theories of how they participate in brain function. Secondly, due to 
their morphological complexity, astrocytes push the limits of 
microscopy and CV algorithms. Innovative CV approaches are 
therefore necessary to understand their shape and function.

1.2 The problem of astrocytic form

A common adage in neurobiology is that “function follows form” 
(Marín and Gleeson, 2011). The branching patterns of neuronal axons 
and dendrites, as well as the macroscopic connections between brain 
regions, must be  precisely structured to allow for healthy brain 
function. The adage also applies to astrocytes, however, as mentioned, 
astrocytic form has yet to be fully elucidated. Astrocytes are essentially 
space-filling cells. They tile, or tessellate, virtually the entire brain 
without invading each other’s territories (Figures 1A,B). They can 
be  approximated as occupying a roughly spherical polyhedral 
territory, with a diameter of ~60 micrometers (μm) in rodents, where 
they have predominantly been studied (Figures 1C,D) (Bushong et al., 
2002; Grosche et al., 2013). Within that volume, astrocytes densely fill 
the space between neurons (Figure 1D), intimately contacting neural 
circuitry and the blood vessels that they regulate. Their space-filling 
form means that astrocytes have a convoluted and complex 
morphology. Their finest branches are extremely thin, on the order of 
tens of nanometers, falling well below the resolution limit of standard 
light microscopes (Kosaka and Hama, 1986; Ventura and Harris, 1999; 
Hama et al., 2004; Khakh and Deneen, 2019) Such fine 3D anatomy 
has hampered investigation of astrocytic form. However, several 
recent studies have used volume electron microscopy (vEM) to image 
and reconstruct astrocytes at the nanoscale (Mathiisen et al., 2010; 
Patrushev et al., 2013; Medvedev et al., 2014; Gavrilov et al., 2018; Calì 
et al., 2019a; Aten et al., 2022; Salmon et al., 2023; Villanueva et al., 
2023). These studies bring to light a variety of challenges in mapping 
and understanding the structure and function of astrocytes which will 
require further development of CV tools. Here we highlight key gaps 
in our current ability to automatically segment, map, and ascribe 
functional significance to astrocytic form. Given the fledgling nature 
of the toolbox for parsing astrocyte nanoarchitecture, we keep an eye 
to the future, focussing on areas where CV methods can be applied 
and extended to help elucidate astrocytic nanoarchitecture and 
structure-function relationships. We aim to provide not just a review 
of the literature, but also a roadmap, for both computer scientists and 
biologists, as to where novel contributions from the CV community 
are most needed.

2 Segmentation and reconstruction of 
astrocytic nanostructure

Understanding the structure of nervous systems requires 
investigation at the nanoscale. To capture 3D structure of brain cells 
at the nanoscale, serial section EM (ssEM), a form of vEM whereby 
individual slices (sections) are cut from a tissue sample and imaged in 
sequence, is generally required (Figures 2A–F). ssEM can be done in 
two modalities: (1) by cutting and collecting serial sections and then 
imaging them (Spacek, 1985; Hayworth et  al., 2015), or (2) by 
repeatedly imaging the surface of a block of tissue (the blockface), as 
sections are removed and discarded (Figures  2E,F). This latter 
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modality can be done using serial blockface EM (SBEM) (Denk and 
Horstmann, 2004) or focussed-ion beam scanning EM (FIB-SEM; 
Figure 2E) (Knott et al., 2008).

2.1 Automated segmentation in the brain

Following acquisition of image series, structural modelling of 
nanoscale cellular features from ssEM requires extensive image 
segmentation (Figure 2G), which has been and remains the central 
bottleneck in studying cellular nanostructure (Lee et al., 2019). As a 
result, early efforts in ssEM imaging, which involved collecting serial 
sections by hand after cutting with diamond blades, resulted in only 
small portions of brain cells, primarily neurons and astrocytes, being 
reconstructed. 3D modelling in these early studies was initially 
performed by hand (White and Rock, 1980), camera lucida techniques 
(DeFelipe et al., 1986), and with early film digitization and computer 
graphics approaches (Stevens and Trogadis, 1984). 3D models were 
sometimes constructed with wood (White and Rock, 1980) or molded 
plastic (Spacek and Lieberman, 1974). Subsequently, a number of 
proprietary and community-built software packages such as 
Reconstruct (Fiala, 2005), IMOD (Kremer et al., 1996), TrakEM2 
(Cardona et al., 2012), VAST (Berger et al., 2018) and a variety of 

Blender tools (Jorstad et al., 2014) allowed for reconstruction of larger 
pieces of brain cells (Figure  2H). Such programs enable manual 
segmentation, storage of segments in hierarchies and families, and 
semi-automated segmentation with fast-marching tools (Kremer et al., 
1996; Cardona et  al., 2012). However, these early attempts at 
automation did not significantly speed the process of segmentation, 
which remained in large part manual (Kreshuk et al., 2011; Meijering 
et  al., 2016). Now, despite advances in automated segmentation, 
significant manual corrections are still required, and so state of the art 
vEM software like CATMAID (Saalfeld, 2019), webKnossos (Boergens 
et al., 2017), and FlyWire (Dorkenwald et al., 2022) is still used for 
manual segmentation.

Modern automated ssEM (Denk and Horstmann, 2004; Knott 
et al., 2008; Hayworth et al., 2015) allowed for longer series of EM 
images to be collected, making it feasible to reconstruct models of 
whole cells (Briggman and Denk, 2006). This approach, applied to 
mapping wiring diagrams of neural circuits and whole brains, is often 
referred to as cellular “connectomics” (Helmstaedter, 2013), hereafter, 
simply connectomics. With the arrival of these large datasets, efforts 
began to automatically segment ssEM image stacks (Jain et al., 2007; 
Turaga et  al., 2010). Major advances have been made, with 
convolutional neural networks (CNNs) forming the backbone 
methodology of the field. Several reviews detail the history and state 
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FIGURE 1

Tissue- and cellular-level structure of astrocytes. Schematics (left) and light microscopy images (right) showing astrocytes at the mesoscale (A,B) and 
the microscale (C,D). (A) Schematic showing astrocytes tiling across neural space (shades of green) and surrounding neurons (shades of gray). 
(B) Astrocytes in the mouse hippocampus. Astrocytes have the feature of expressing some molecular markers at different levels from their neighbors. 
These markers can thus be used to see rough contours of astrocytes in an otherwise uniform field. Here, the potassium channel, Kir4.1 (green), is 
expressed at variable levels (top left). Astrocyte cell bodies are shown in magenta (bottom left). The overlay of the green and magenta channels 
(enlarged, right) is superimposed with dotted lines showing the rough boundaries of individual astrocytes, demonstrating their tessellation of the brain. 
Neurons are left unstained in these images and are therefore not visible. Negative space at centre of green image is the outline of densely packed 
neuronal cell bodies in the stratum pyramidale of the mouse hippocampus. Scale bars, 50  μm. (C) Schematic of a zoom (from yellow box in A) on an 
individual astrocyte. Neurons in gray. (D) Two neighboring astrocytes in the mouse sensory cortex experimentally labelled with green fluorescent 
protein. Cell bodies and primary branches can be seen in solid green, while the ill-defined nanoscopic branches appear as a cloud more peripherally. 
White arrowheads indicate the sheet-like structures of astrocytic perivascular endfeet that wrap around unlabelled blood vessels. Scale bar, 20  μm.
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of the art in segmentation of neurons for connectomic reconstructions 
(Lee et al., 2019; Motta et al., 2019; Urakubo et al., 2019; Aswath et al., 
2022). Rather than replicate those, we focus specifically on challenges 
for segmenting astrocytes.

2.2 Unique challenges of astrocytic 
ultrastructure

At the micrometer scale, neurons are clearly dendritic in 
structure, with relatively sparse branches resembling those of a 
branch-system of a tree (Figure 1A, in gray). Astrocytes, on the 
other hand, when examined at the micrometer scale, are poorly 
defined, resembling a dense bramble, bush, or cloudy structure 
(Figures 1B,D). This difference in structure is likely explained in 
part by the fact that, during the development of an animal’s brain, 
neurons are born and take up residence before astrocytes, and 
astrocytes fill the spaces left by neurons, squeezing between 
pre-existing structures. As a result, astrocytes have significantly 
thinner branch diameter than neurons on average (Salmon et al., 
2023). These extremely thin and irregular branches are difficult to 
trace through the dense visual space of raw ssEM data. This is 
further complicated by the resolution of large ssEM datasets. While 
typical EM provides nanometer resolution in the X and Y 
dimensions, acquiring the large datasets needed for whole-cell 
reconstructions requires compromise. Either z-resolution is set 
relatively low (30–70 nm) to capture more tissue (Calì et al., 2019a; 
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FIGURE 2

Workflow for producing nanoscale models of astrocytes from ssEM 
data. (A) A top down (dorsal) view of a mouse brain after chemical 
fixation and extraction from the cranium. The bottom of the frame 
corresponds to front or rostral aspect of the brain. Dotted line 

(Continued)

indicates approximately where the brain slice in B was taken. (B) A 
coronal section of mouse brain. The cutting plane to produce this 
slice is orthogonal to the plane of the image in A, with the cut made 
along the dotted line in A. Blue pseudocolor is a combined labeling 
of cell nucleii (TO-PRO-3) and Layer 5 pyramidal neurons. (C) A 
micro-dissected piece of a coronal mouse brain slice, prepared for 
ssEM imaging. The tissue is embedded in an epoxy resin and is 
stained black with heavy metal contrast agents. (D) A thin section of 
a piece of mouse cerebral cortex, in coronal orientation, taken from 
the blockface of epoxy-embedded tissue similar to that presented in 
C. Stained with Toluidine Blue dye for examination with a light 
microscope. (E) Left, Focussed Ion Beam Scanning Electron 
Microscope (Helios Nanolab C3, FEI, Oregon). Right, View of the 
blockface of a sample of mouse cerebral cortex seen by the electron 
beam (ssEM view, top) and focussed ion beam (FIB view, bottom), of 
a FIBSEM. Naught symbol (left, ssEM view) and “X” symbol (lower left, 
FIB view), are fiducial markers for alignment of serial imaging. White 
asterisks indicate trenches that are milled on either side of the 
blockface to collect debris from ion beam milling during imaging. 
Double-ended arrow indicates the path along which the ion beam 
sweeps to remove material from the blockface. The slightly darker 
region at the centre of the ssEM view is the image acquisition region. 
(F) Schematic representation of serial EM images (left), a 
reconstructed tissue volume obtained by aligning and interpolating 
between serial images (right). (G) Single plane of ssEM dataset with 
astrocyte segmented in yellow (left). At right, the same segmentation 
mask is presented in monochrome, omitting raw EM data. All black 
labels are from a single connected component representing a single 
piece of astrocyte. (H) A 3D blender model of a piece of astrocyte 
obtained after segmenting contiguous astrocytic compartments in a 
FIBSEM dataset measuring ~8  μm × 12.7  μm × 6  μm, with a pixel size 
of 4  nm × 4  nm × 8  nm. An asterisk marks where the centre of a 
blood vessel would lie, surrounded by astrocytic perivascular 
endfeet. (A,C) Adapted from Kasthuri et al. (2015). (E) Adapted from 
Salmon et al. (2023).

FIGURE 2 (Continued)
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Aten et al., 2022), or serial blockface EM techniques are used, which 
facilitate automated tissue collection and alignment of 3D stacks, 
but compromise on x-y resolution due to the imaging modality, 
which uses backscattered electrons for imaging (Briggman et al., 
2011; Korogod et al., 2015). In either case, the thinnest regions of 
astrocytic branches (~30 nm) become difficult to discern (Salmon 
et  al., 2023), creating challenges for manual and automated 
segmentation alike.

Plaza (2016) notes that, for neuronal connectomics, “perfect 
reconstruction is seemingly unnecessary and also generally 
untenable due to image ambiguity.” However, high quality 
reconstruction is more important for astrocytes. While the main 
question for neurons is the arrangement of their branches and 
connections into neural circuits, paying close attention to the 
shape, in particular local width and volume, of astrocyte 
sub-compartments is important for understanding their function 
(Covelo et  al., 2022). To support and regulate brain function, 
astrocytes actively remove neurotransmitters from the synaptic 
space to end neurotransmission. Astrocytes also control the 
concentration of ions surrounding synapses and neurons, which 
changes how easily and how much neurotransmitter is released by 
neurons. Effectively, both of these functions rely on the capacity 
of astrocytes to handle ions, since neurotransmitter uptake relies 
at least in part on harnessing ionic concentration gradients 
(Verkhratsky et al., 2019). The volume of astrocytic compartments 
is therefore an essential consideration, as volume of water in a 
compartment affects capacity to store ions and neurotransmitters, 
and volume itself can influence cell surface channels mediating 
movement of these molecules into and out of astrocytes 
(Benarroch, 2016). Branch width is also important as very thin 
connecting parts (“constrictions”) that separate larger-capacity 
parts (“expansions”) (Figure 3A) likely form barriers to diffusion 
between compartments (Denizot et al., 2019; Arizono et al., 2020; 
Denizot et  al., 2022; Salmon et  al., 2023), potentially biasing 
astrocytic intracellular signalling toward producing more 

localized events and toward more local regulation of neural 
function. Analyzing the fine shape of these sub-compartments is 
therefore an important aspect of untangling structure-function 
relationships in astrocytes.

2.3 Segmentation of astrocytes

All studies analyzing large reconstructions of astrocytes have 
relied almost completely on manual segmentation by teams of 
annotators (Figures  3B–D) (Mathiisen et  al., 2010; Patrushev 
et  al., 2013; Medvedev et  al., 2014; Gavrilov et  al., 2018; Calì 
et  al., 2019a; Aten et  al., 2022; Salmon et  al., 2023). While 
automated segmentation methods for neural ssEM datasets have 
been used for neuronal reconstructions since at least 2007 (Jain 
et al., 2007), their utility for investigating astrocyte structure has 
not been assessed. Indeed, it has been noted that astrocytes are 
often a source of error in large ssEM reconstructions, and some 
algorithms for circuit tracing are designed to specifically deal 
with errors caused by astrocytes (Berger et al., 2018; Januszewski 
et al., 2018). These errors can be easily found in the large open-
access MICrONS data sets (Figures  4A–D), which were 
automatically segmented with state of the art approaches and are 
being continuously updated with crowdsourced manual 
corrections (MICrONS Consortium, 2021; Turner et al., 2022). 
Interestingly, to our knowledge, no attempts have been made to 
actively ignore astrocytes in automated segmentation tasks. 
Therefore, if astrocytes could be  specifically segmented, this 
would not only benefit astrocyte biologists, but could also be used 
as a preprocessing step to improve neuronal segmentation.

After only a small amount of training, humans can easily 
recognize astrocytes in the dense EM visual space (Figure  5A). 
Astrocytes have distinctive dark-staining glycogen granules, and in 
most EM preparations, astrocytes have clearer cytoplasm than 
neurons and lighter staining mitochondria (Figures 5B,C) (Spacek, 
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FIGURE 3

Nanoscale structure of astrocyte branches. Schematic (left) and ssEM-based images and models (right) showing astrocytes at the nanoscale. (A) A 
schematic of a zoom (from, for example, the yellow box in Figure 1C) on the fine branching structure of an astrocyte. The “branch-branchlet-leaflet” 
heuristic is shown at the top, while the “core-expansion-constriction” schema is shown at the bottom. (B) Astrocytic segmentation in a single ssEM 
frame, corresponding to the astrocytic model in C,D. Scale bar, 200 nm. (C) Zoom on a 3D model of the complex mesh of astrocytic branches. Scale 
bar, 1 μm. (D) A model of a section of astrocyte that accounts for ~1/30th of a whole astrocyte. Scale cube, 1 × 1 × 1μm.
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1985). Importantly, due to their thin branches, despite tiling across 
the entire brain, astrocytes occupy only a small fraction of total brain 
volume, on the order of 8% in ssEM data (Kasthuri et al., 2015). This, 
combined with their identifying features, may aid in targeted 
segmentation of astrocytes. While very thin branches are likely to 
present barriers to complete segmentation of astrocytes, probabilistic 
U-Nets (Kohl et  al., 2018), originally developed to account for 
ambiguities in ground truth segmentation, may be useful to handle 
difficult-to-segment thin and constricted regions by generating 
several possible segmentations. The unique morphology and tiling 
nature of the cells can then be used to generate the most plausible 
segmentation. The stereotyped, restricted volume within which single 
astrocytes are contained without overlapping with each other may 
be useful: disconnected astrocytic segments within a certain distance 
of an astrocyte cell body are likely to connect with that astrocyte, and 
anything further away is more likely to connect with another. Taking 
these features of astrocytes into account may significantly ease 
agglomeration of oversegmented astrocytes once astrocytic 
compartments can be automatically recognized.

2.4 Proofreading

While automated segmentation has progressed rapidly for 
mapping neural circuits, initial 3D segmentations are still error prone, 
and thus automated proofreading steps have been incorporated. For 
example, Zung et  al. (2017) used supervised dense multiscale 3D 
CNNs for neural boundary detection and a separate dense network 
for error detection and correction. Gonda et al. (2021) exploit neural 
circuit connectivity for error correction. Rolnick et al. (2017) learn 
neuron morphology using unsupervised training to guide error 
detection. Nguyen et al. (2023) use reinforcement learning for merge 
and split error detection. Others focus on split errors across gaps in 
imaging of thinner axons using 3D steering (Berman et al., 2022; 
Schmidt et  al., 2024). However, these methods are tailored to 
morphology of neurons, which is much simpler than that of astrocyte 
morphology (Figures  6A–C). Approaches focused on the 
particularities of astrocytic morphology may be  required. In 
astrocytes, both split and merge errors are likely to occur at regions 
where astrocytic branches are very thin (Salmon et al., 2023). Thus, 

DCBA

FIGURE 4

Challenges when automatically segmenting astrocytes. (A) A single automatically segmented mesh in the Cortical MM3, or minnie65_public (v661), 
MICrONS dataset (MICrONS Consortium, 2021). All objects, which include blood vessels (medium to thick tubes), astrocytes (B), fine axons (C) and a 
thin dendrite (D) are connected to each other somewhere in the volume, which expands far outside the image boundaries in A. (B–D) Are zooms of 
regions in white boxes in A. The axons and dendrite depicted in C,D merge with astrocytes outside the image boundaries. The minnie65 dataset can 
be accessed here, and the specific view presented in A can be accessed (here). Scale bars, 20 μm (A–C), 10 μm (D).

CBA

**

* *

*
FIGURE 5

Segmentation of a portion of an astrocyte in dense EM visual space. (A) Raw electron micrograph containing multiple segments of an astrocyte. Scale 
bar, 1  μm. (B,C) Zoom of yellow box in A, without segmentation (B) and with astrocyte segmented in yellow (C). Dark staining glycogen granules are 
indicated with red arrowheads, lighter staining mitochondria (compared to neuronal mitochondria) are indicated with cyan arrowheads. Note that 
astrocytes have clearer cytoplasm, lacking the striations of neuronal components, obvious examples of which are indicated by asterisks in A–C. Scale 
bars, 1  μm. Figure adapted from Salmon et al. (2023).
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directing automated proofreading to thinned regions with nearby 
segments that might have been erroneously split from them, using for 
instance an error metric based on the thickness of the segmented 
objects, may be helpful. Merge errors are also likely to cause loops in 
the topology of astrocytic models, due to astrocytic branches doubling 
back on themselves and being restricted within a relatively small 3D 
space. We  recently showed that loops and holes are very rare in 
astrocytic structure. Instead, astrocytic branches tend to loop back on 
themselves without fusing (Salmon et  al., 2023). These so-called 
“reflexive loops” often correspond to flattened surfaces where two 
branches are apposed to one another (Aten et al., 2022; Salmon et al., 
2023). Erroneous loops tend to occur here, where segmentation errors 
on individual serial images can fuse with otherwise unconnected, but 
apposed surfaces. Erroneous loops are also formed where very thin 
branches touch each other. Thus, directing proofreading to sites along 
loops that are in the vicinity of flat, apposed surfaces or thin regions 

would improve proofreading. Additionally, as mentioned above, the 
space tilling nature of astrocytes, which means that astrocytic branches 
are confined within an ~30 μm radius of the cell body, could provide 
an effective signal for both detecting and correcting split and merge 
errors on branches which, due to merge errors, are longer 
than expected.

Importantly, methods relying only on split and merge errors are 
agnostic to precision of segmentation. For example, missing some 
voxels along the surface of a cell, or labelling extracellular voxels as 
within a cell (i.e., tracing outside the lines), may not cause any splits 
or merges in the segmented cell. Split and merge errors can have 
significant impact in understanding neural circuit connections and 
topology of astrocytic branching patterns, however, astrocytes may 
additionally also require accurate membrane segmentation, especially 
of thin branches due to the functional importance of the width of 
those branches. Higher weight likely needs to be assigned to accuracy 

A

B

C

Astrocyte Dendrites Axons

FIGURE 6

Astrocytic shape and topology are more complex than those of neuronal components. (A) Left, ssEM reconstructions of dendrites, axons and a 
subsection of a single astrocyte shown in their dense native spatial arrangement in the mouse cerebral cortex. Separate dendrites and axons are shown 
in different colors. The piece of astrocyte can be seen in yellow amongst the surrounding neuronal components. Right, the segment of astrocyte 
shown alone in yellow. Scale bar 5  μm. (B) Top-down view of astrocyte, dendrites and axons. Scale bar 5  μm. (C) A subset of the dendrites and axons 
shown in A,B, arranged to demonstrate their relative simplicity compared to the convoluted nature of astrocytes. Scale bar 5  μm. Segmented ssEM data 
and meshes were produced from publicly available datasets provided with VAST segmentation software (Berger et al., 2018).
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of segmentation, in addition to the split and merge errors, when 
dealing with astrocytes.

Since astrocytes have been all but ignored in automated 
segmentation for connectomics, high quality open-source training 
data for astrocytes is not yet available. Producing training data will 
require extensive manual proofreading of existing connectomics 
datasets containing erroneously segmented astrocytes. Guided manual 
proofreading will speed this effort and will be  useful for manual 
quality control that is still required for all automated segmentation. 
While specific algorithms for “focused” and “guided” proofreading 
have been tested for neural segmentation (Plaza, 2016; Haehn et al., 
2018; Bishop et al., 2021; Matelsky et al., 2022; Sanchez et al., 2022; 
Xenes et al., 2022; Celii et al., 2023; Joyce et al., 2023; Troidl et al., 
2024), once again, the particularities of astrocyte morphology need to 
be taken into account. The sites of likely errors outlined above could 
be  used to guide human proofreaders to errors. An additional 
consideration here is that the basic visual experience of following 
astrocytic branches through serial images is different from that of 
neurons. Dendrites and axons are more tubular and directed than the 
convoluted branches of astrocytes (Figures 6B,C). Capitalizing on this 
tubularity, some groups have generated interfaces for “flying” through 
neuronal branches and correcting merge and split errors along the way 
(Drawitsch et al., 2018; Dorkenwald et al., 2022). This will likely not 
be optimal for astrocytes, whose branches are much less tubular and 
more convoluted than those of neurons. Case by case guided 
proofreading is likely more useful.

As new tools are designed and deployed in formats that allow 
astrocyte biologists to use them, the resulting reconstructions will 
provide the raw material for understanding astrocyte structure-
function relationships. Astrocyte structure and function are known to 
vary depending on the microcircuits and brain regions in which they 
are embedded (Halassa et al., 2007; Endo et al., 2022;  Murphy-Royal 
et  al., 2023). Acquiring high quality reconstructions of whole 
astrocytes from different brain regions, in multiple species, in differing 
states of health and disease, will help in understanding their functions. 
To support this endeavour, the community should prioritize sharing 
segmented astrocyte labels as well as the underlying ssEM image 
stacks, as is widely done with largescale connectomics datasets 
(Kasthuri et al., 2015; MICrONS Consortium, 2021; Shapson-Coe 
et al., 2021; Covelo et al., 2022; Dorkenwald et al., 2023). An astrocyte-
tailored database with appropriate metadata would be beneficial for 
this purpose. Once reconstructions are acquired and made available, 
however, we must be able to parse their complex structure to probe 
the principles by which astrocytic structure is organized and how this 
influences astrocyte function.

3 Analysis of astrocytic shape and 
nanostructure

Understanding differences between shapes of organs and cells, 
and modeling the variability both within and across populations, in 
healthy and disease contexts, has many applications in biology and 
medicine (Thompson, 1917; Blum, 1973; Grenander and Miller, 1998). 
Investigations of Alzheimer’s disease (AD) provide a range of 
examples. At the macro-scale, CV analysis of MRI data has been 
extensively used for modelling the shape of the hippocampus, a 
curved brain region of approximately 0.4 cm3 involved in learning and 

memory (Bouix et al., 2005; McHugh et al., 2007; Brusini et al., 2020). 
The same approaches are also used to study changes in the size and 
shape of the hippocampus in conditions such as AD (Shen et al., 2012; 
Achterberg et al., 2014; Joshi et al., 2016; Sarasua et al., 2022). At the 
molecular scale, both classical CV (Fukatsu et  al., 1988) and 
CNN-based approaches (Vizcarra et  al., 2020) have been used to 
better understand and detect pathological markers of AD. While 
dramatic changes can also be observed qualitatively in the nano-scale 
shape of astrocytes in AD (Bouvier et  al., 2016), we  lack a full 
understanding of even healthy astrocyte nanostructure. Shape analysis 
is therefore needed to understand astrocytes in the context of health 
and diseases like AD.

3.1 Shape analysis for understanding 
astrocytic structure

Interpreting the structural complexity of astrocytes requires 
operating across a range of scales, and this has historically complicated 
interrogating astrocytic nanostructure. To simplify this complexity, a 
straightforward heuristic was adopted whereby the astrocytic 
structure was broken down into the cell body, main branches, thinner 
branchlets, and the thinnest, terminal leaflets (Figure 3A) (Khakh and 
Sofroniew, 2015). Interestingly, astrocytes have long been described as 
“spongiform” or “spongelike,” and so the tree analogy used in this 
heuristic neglected the notion that astrocytes contain loops and holes, 
which are features of sponges but not of simple tree-like branching 
diagrams. We have proposed a quantitative approach to decompose 
astrocytes into parts by detecting abrupt changes in branch thickness 
using local width measurements, calculated using radii of inscribed 
spheres (Salmon et al., 2023). This allowed sections of astrocyte to 
be broken down into central core regions giving rise to branches of 
alternating thin constrictions and thicker expansions (Figure  3A). 
Functionally, alternation of constrictions and expansions may form 
separate sub-compartments between which diffusion is limited, 
biasing signalling events in astrocytes toward remaining more local. 
Theoretical work on molecular dynamics in astrocytes shows that this 
is likely true for diffusion of calcium (Ca2+), a key intracellular signal 
that controls many astrocytic functions (Denizot et  al., 2022). 
Quantitative CV-based approaches thus provide details that point to 
likely functional outcomes of structural specializations.

Importantly, neither the branch-branchlet-leaflet hierarchy, nor 
the core-expansion-constriction schema fully capture the morphology 
of astrocytes. A single astrocyte can have morphologically distinct 
parts such as highly branched regions interspersed by reflexive loops, 
as well as flat, sheet-like regions with more uniform curvature and a 
cylindrical geometry at endfeet (Maynard et al., 1957; Mathiisen et al., 
2010) or around synapses (Grosche et al., 1999). Additionally, along 
with undulations in branch width forming constrictions and 
expansions, the amplitude of that undulation may decrease with 
distance from the cell body, resulting in progressively smaller 
constrictions and/or expansions. Further categorizing different parts 
of an astrocyte is therefore an interesting open problem which could 
benefit from the rich object part segmentation methods in CV. For 
example, spectral decomposition methods segment objects into parts 
using eigenfunctions of the Laplace–Beltrami operator over said 
objects to analyze their shape (Reuter et al., 2009a,b; Andreux et al., 
2015). Essentially, these approaches model heat diffusion across a 
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surface to describe shape, ultimately decomposing irregular objects 
into clearly recognizable parts. Alternatively, bottom-up hierarchical 
methods such as co-hierarchical clustering of part types (van Kaick 
et al., 2013) allow decomposition of complex objects into classes of 
parts that are similar in shape but dissimilar in size or in their spatial 
relationships to each other. This approach may allow recognition of 
constrictions, expansions and sheets that vary in size and location 
within the astrocyte structure. Adaptation of methods like these for 
astrocyte morphology would allow for a data driven division of 
complex astrocytes into constituent parts based solely on their 
structure without the need for setting thresholds that dictate 
decomposition as in Salmon et al. (2023).

3.2 Medial representations for parsing 
astrocytic shape and topology

As a result of the “spongiform” appearance of astrocytes in light 
microscopy images, it has been unclear for decades whether astrocytes 
have a tree-like architecture, or a Swiss cheese-like morphology with 
holes and looping structures (Rusakov, 2015). Medial representations 
are a group of shape descriptors that exploit local symmetries to 
simplify complex 3D objects. The resulting skeletal models are ideal 
for examining object topology.

The most prominent algorithm used for skeletonization of 
neurons segmented from ssEM data is TEASAR (Tree-structure 
Extraction Algorithm for Skeletons-Accurate and Robust) (Sato et al., 
2000), which has varying implementations in toolboxes such as 
MeshParty (Dorkenwald, 2023), Skeletor (Schlegel and Kazimiers, 
2021), NeuTu (Zhao et al., 2018), Skeletopyze (Funke, 2022), and 
Skeletonization (Bae, 2023). Although these approaches produce high 
quality centrelines, they can be slow, in part because they require 
segmentation masks to be converted to meshes. Silversmith et al. 
(2022) have recently reported the connectomics toolbox, Igneous, 
which incorporates a python-based TEASAR implementation 
(Kimimaro) that circumvents the meshing step, works on subdomains 
of segmentations to avoid memory issues, and is optimized for cluster 
computing. However, while TEASAR-based skeletonization works 
well on “wire-like,” hierarchically branching objects, it is not 
homotopic—i.e., it does not produce skeletons that accurately 
maintain the topology of more complex shapes (Figure  7A). The 
skeleton produced can also vary drastically with object rotation 
(Supplementary Video S1). Furthermore, the algorithm specifically 
ignores loops. This is not optimal for 3D models of astrocytes as they 
are not wire-like and do contain occasional bona fide loops 
(Figure 7B) and many error-generated looping structures that need 
to be detected (Salmon et al., 2023). Several other, less well-used, 
skeletonization approaches are homotopic (Figure 7A) and do not 
require a meshing step (Malandain et al., 1993; Siddiqi et al., 2002). 
Homotopic thinning (HT), which gradually thins objects down to a 
medial representation, was used in two recent studies of astrocyte 
morphology (Mohammed et al., 2018; Salmon et al., 2023). Average 
outward flux (AOF)-based methods, which detect medial surfaces by 
locating singularities in the signed distance function of an object, 
have also been used (Salmon et al., 2023). We refer to both HT and 
AOF approaches as “homotopic methods.” Homotopic methods can 
be implemented efficiently using heaps, with distance-to-boundary as 
the sorting key, significantly speeding skeletonization. While efficient 

implementations of both TEASAR and homotopic methods are 
O(NlogN), where N is the size of the object, TEASAR requires 
computing Euclidean distance fields multiple times. The homotopic 
methods use a single Euclidean distance field (Lee et al., 1994; Siddiqi 
et  al., 2002). Further, Mohammed et  al. (2018) have developed a 
parallel HT algorithm, likely providing even greater efficiency.

Importantly for studies of astrocytes, homotopic methods can 
generate both medial surfaces and medial curves (Figure  7C). 
Medial curves, which are classical single pixel-wide skeletons, are ill 
defined for non-tubular objects, but are nonetheless useful for 
understanding neuronal as well as astrocytic connectivity and 
branching. On the other hand, medial surfaces, which provide 
skeletal representations of general embedded objects in 3D, are 
useful specifically for astrocytes where morphological properties like 
branch width and sheet-like structures (see below) are of interest. As 
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FIGURE 7

Medial representations of astrocytes. (A) A toy example of an object 
with multiple holes containing curved as well as rounded regions in 
translucent gray and corresponding curve skeletons shown using red 
curves. The left had side shows the skeleton generated using the 
TEASAR algorithm, whereas the right hand side show the medial 
curve generated using a homotopic thinning algorithm. Notice that 
homotopic thinning preserves the topology of the object. (B) A 
segment of an astrocyte presented as a transparent mesh with its 
medial curve shown in pink. A rare loop in astrocyte morphology is 
highlighted in the zoomed box on the right in blue. (C) A toy 
example of an object with tubular as well as a flat, curved region 
shown in translucent gray, with the corresponding medial curve (left) 
and medial surface (right) shown in red. The medial curve does not 
adequately represent the shape of an object in non-tubular regions. 
(D) The medial surface representation of the same segment of 
astrocyte depicted in (A) with colormap indicating the local width of 
the part. The zoom box at right depicts both tubular as well as non-
tubular regions in an astrocyte. Scale bars 1 μm.
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whole-cell astrocyte reconstructions become available, homotopic 
methods will speed analysis and provide accurate and richer 
skeletal representations.

Reducing astrocytes to homotopic medial representations allows 
for straightforward extraction of their topological nature (Mohammed 
et al., 2018; Salmon et al., 2023). Representing the medial curve of 
subregions of astrocytes as spatial graphs allows for a straightforward 
search for loops using the spanning tree of the graph (Figure 7B) 
(Salmon et  al., 2023). This showed that astrocytes have a mostly 
hierarchical structure, in which true loops are rare, as mentioned in 
the previous section. Astrocytic structural organization with extensive 
looping structures would likely lead to easier and more extensive 
diffusion of chemical signals throughout the cell. Instead, again, 
astrocytic architecture appears to bias these cells toward operating 
more locally on a subcellular scale.

Some studies have observed that parts of astrocytic branches can 
be  “sheet-like.” This appears to be  particularly true for terminal 
branches of Bergmann glia, the specialized astrocytes of the 
cerebellum (Grosche et al., 1999). Others have noted that cortical 
astrocytes can have sheet-like regions wrapping synapses (Khakh and 
Sofroniew, 2015). And most conspicuously, astrocytic endfeet, which 
wrap around blood vessels, do so by forming roughly cylindrical 
sheets (Mathiisen et  al., 2010; Salmon et  al., 2023). Using medial 
surfaces and their curvature properties can help define a notion of 
sheet structure in astrocytic subregions (Figures 7C,D). Discerning 
where astrocytes are sheet-like vs. tubular will be  important for 
understanding how astrocyte shape affects diffusion of intracellular 
ions and signalling molecules, as thin sheets have been shown to affect 
diffusion differently than thin tubules (Kinney et al., 2013; Tønnesen 
et al., 2023). The structure of medial surfaces is different in flat vs. 
tubular vs. branching regions (Figures 7C,D), which can be exploited 
as in Lin et  al. (2022) to decompose complex objects into 
morphologically meaningful elements. Thus, using medial surfaces, 
one can identify different regions where astrocytes likely deploy sheet-
like, tubular, or branching morphology for modulating diffusion, 
buffering ions/neurotransmitters, or signal transduction.

3.3 Spatial relationships between 
astrocytes and synapses

A primary function of astrocytes is the support and regulation 
of neuronal synapses. Astrocytes modulate synapse function by 
regulating the concentrations of ions and neurotransmitters in the 
vicinity of synapses, and are required for synaptic plasticity leading 
to memory formation (Henneberger et al., 2010; Papouin et al., 2012; 
Adamsky et  al., 2018). These essential roles of astrocytes at the 
synapse have led to the notion that synapses are not bipartite, 
composed of the presynaptic and postsynaptic neuronal terminals, 
but tripartite, composed of the pre- and postsynaptic terminals as 
well as one or multiple perisynaptic astrocytic processes (PAP; 
“process” here is used in the sense of an appendage or branch) 
(Figure 8A) (Araque et al., 1999). PAP geometry varies depending 
on brain regions and the neurons that compose the target synapse. 
PAPs are also motile, shifting and remodelling depending on the 
activity of their synapse and the circuitry in which it is embedded 
(Haber et al., 2006; Bernardinelli et al., 2014; Henneberger et al., 
2020). A key question pertaining to PAP geometry is whether and to 

what extent they encircle the synaptic cleft (i.e., the space between 
the pre- and post-synaptic terminals). Some studies suggest that, 
following synaptic strengthening, PAPs withdraw to allow 
neurotransmitters to spill over to other synapses (Medvedev et al., 
2014; Henneberger et al., 2020), while others suggest that PAPs wrap 
strengthened synapses more thoroughly to limit neurotransmitter 
spillover (Genoud et  al., 2006; Bernardinelli et  al., 2014). PAP 
coverage of synapses is thus an important variable in understanding 
astrocytic function, and several computational approaches have 
been proposed to measure it. A naive approach is to directly measure 
Euclidean distance between nearest points on synapses and 
associated PAPs (Dmin) (Medvedev et al., 2014; Salmon et al., 2023) 
(Figure 8B), however this does not provide a direct measurement of 
coverage, and is mainly useful for identifying the general location of 
PAPs on the astrocyte surface. A more sophisticated alternative is to 
measure Dmin from all points on a synapse to any astrocytic surface 
point within a certain maximum distance (Medvedev et al., 2014). 
Distributions and averages of Dmin across all points on a synapse 
can then be used as measurements of coverage. This approach can 
be given further biological relevance by weighting individual Dmin 
values with a function describing the drop in neurotransmitter 
concentration as distance from the synapse increases (Medvedev 
et  al., 2014). An alternative definition of coverage considers the 
volume, and/or surface area of astrocyte in the vicinity of a synapse. 
By measuring the volume and surface area of PAPs encompassed by 
concentric volumes centered on the synapse, one can estimate the 
capacity of the astrocyte to absorb ions and neurotransmitters to 
regulate that synapse’s function (Figure 8C) (Gavrilov et al., 2018; 
Stephensen et al., 2021; Villanueva et al., 2023).

Surprisingly, the most direct measures of astrocytic coverage of 
synapses have thus far only been performed manually. Manual 
segmentation allows for labelling the synaptic membrane that is directly 
apposed by a PAP (Figure 8D) (Genoud et al., 2006; Thomas et al., 2023). 
Alternatively, one can consider only the axon-spine interface (ASI), the 
roughly disc-shaped interface between the pre- and postsynaptic terminal 
(Figure 8E) where neurotransmitter is released, and from where it is either 
absorbed by astrocytes or escapes into the wider extracellular space (ECS) 
(Genoud et  al., 2006; Witcher et  al., 2007, 2010; Ostroff et  al., 2014; 
Thomas et al., 2023). Manually tracing the ASI perimeter and classifying 
the sections that are and are not contacted by the astrocyte gives a direct 
measure of the extent to which the functional interface of the synapse is 
encompassed (Figure 8E). These manual approaches are labour-intensive, 
and so automated measurement of synapse and ASI coverage by PAPs is 
a much-needed tool.

Astrocytes encompass tens of thousands of synapses, and so a 
future challenge with the above methods will be  efficient 
implementation. Most of the automated methods mentioned use 
brute force measurement of all point-to-point Euclidean distances 
within a circumscribed region, or deformation of concentric spheres 
to generate “equidistant surfaces” from synapses for quantifying the 
volume of neighboring PAPs. An alternative efficient solution could 
be to directly compute the time of arrival at the astrocytic surface of 
the fast-marching front from the ASI or PSD. This approach can 
easily incorporate other cellular structures, if a saturated 
segmentation is available, thus considering the route(s) through the 
ECS by which the astrocyte interacts with the synapse (Figure 8F). 
The transmitters and ions through which astrocytes modulate 
synaptic function move primarily through the ECS, whether 

https://doi.org/10.3389/fcomp.2024.1156204
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Syed et al. 10.3389/fcomp.2024.1156204

Frontiers in Computer Science 11 frontiersin.org

astrocytes directly contact the synapse or are blocked from doing so 
by other cellular components (Kinney et al., 2013; Arizono et al., 
2021). Therefore, ECS is the most relevant space for measuring 
astrocytic access to synapses.

Ultimately, combining measures of synapse and ASI coverage with 
those of volume of astrocytes in the synaptic vicinity will give a clearer 
picture of astrocyte structure at synapses. However, these considerations 
may be  trumped by the fact that the chemical fixation generally 
required for EM imaging may significantly alter fine astrocyte shape 
and ECS volume (Korogod et al., 2015). To fully understand astrocyte-
synapse structure-function relationships, both EM and computational 
methodology must be further developed and tested.

3.4 Mapping distance and object distribution 
in convoluted intracellular space

Astrocytes contain many points of interest relevant to 
neuroscientists throughout their convoluted branching structure. 
Aside from the constrictions, expansions, cores, branches, 
branchlets, leaflets and PAPs mentioned above, astrocytes, like all 
cells, contain organelles (mitochondria, endoplasmic reticulum, 
etc.) distributed throughout their cytoplasm. All these components 
have interconnected roles in astrocyte and brain function. They 
also generally perform their functions locally, sometimes being 
actively transported to or sequestered in areas of higher need 
(Jackson et  al., 2014; Jackson and Robinson, 2018). Thus, 
neuroscientists are interested in their distributions and spatial 
relationships. Accurately measuring the distances between these 
points of interest is therefore of great importance. However, the 
convoluted anatomy of astrocytes makes distance measurements 
within the cell difficult (Arizono et al., 2020; Salmon et al., 2023). 
Historically, in EM studies, such measures have predominantly 
been performed by manual tracing, often not in 3D. More recently, 
the Python Blender plugin, NeuroMorph, provides tools for 
making local Euclidean distance measurements between points, 
and an implementation of Dijkstra’s algorithm for measuring 
distances along meshes (Jorstad et  al., 2014). This allows for 
relatively accurate distance measurements in neurons, as dendrites 
and axons are approximately tubular and easy to measure by 
clicking along a path or measuring between points on their 

FIGURE 8

Methodology for measuring PAP coverage of synapses. (A) A 
schematic of an EM section containing perisynaptic astrocytic 

processes (PAPs, yellow); an incoming axon (magenta) forming a 
synapse with a dendritic spine (blue); a post synaptic density (PSD, 
seafoam), which is a dark-staining marker of synapses in EM images 
and is the location of neurotransmitter receptors that allow for 
synaptic transmission; and other cellular components surrounding 
the elements of interest (grey). (B) Measurement of shortest 
distances (Dmin) from the PSD to the nearest points (red dots) on 
surrounding PAPs. (C) A 2D depiction of concentric spheres of 
increasing radius used to map the volume and surface area of PAPs 
in the vicinity of a synapse. (D) Direct labelling of the surface of the 
synaptic unit that is directly opposed by PAPs. (E) Depiction of the 
axon-spine interface (ASI, curved arrow) with the portion of it 
contacted by the PAP indicated in yellow. Right, a top down view of 
the dendritic spine (blue) and PSD (seafoam) showing the extent 
(yellow) of the ASI circumference contacted by the PAP. (F) Shortest 
paths (dotted lines) from the PSD through the extracellular space to 
the nearest PAPs.

FIGURE 8 (Continued)

(Continued)
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surface. However, this is not the case for astrocytes. We therefore 
recently implemented a fast-marching-based distance 
measurement for defining geodesics within, outside, or along an 
astrocyte’s, or any cell’s surface. Using this approach, we showed 
that geodesic distances based on astrocytic geometry can reveal 
higher order organization of synapses and organelles in astrocytic 
space (Salmon et al., 2023).

Mapping simple distances between points of interest can 
be useful for biological questions, however, a major motivation for 
measuring distances between subcellular elements is to assess 
clustering of those elements at locations where they may perform 
a specific function. Such distance mapping has been used for 
identifying local clusters of energy-storing glycogen granules in 
small subregions of astrocytes (Agus et  al., 2018; Mohammed 
et  al., 2018; Calì et  al., 2019b). Using fast marching distance 
mapping can extend cluster search to larger regions or whole cells. 
We  recently used this approach to map spatial relationships 
between >1,500 synapses contacted by portions of astrocytes, 
however, computing all pairwise PAP-to-PAP distances required 
run times of over a week (Salmon et al., 2023). While it is possible 
to naively parallelize the distance computations from multiple 
sources, with larger datasets becoming available, analyzing the 
>100,000 synapses (Bushong et al., 2002) contacted by a whole 
astrocyte will require new computational strategies. Fast 
marching, which uses a heap to store the entire wavefront, is a 
serial algorithm not easily parallelizable on modern multicore 
processors or GPUs. Using parallel algorithms for eikonal 
equations (Hong and Jeong, 2016) could make such analyses 
feasible for peta-scale connectomic datasets.

3.5 Spatial clustering

Following mapping of object location and inter-object distances, 
clusters must be identified. The abovementioned spatial clustering 
of glycogen granules used DBSCAN (Ester et al., 1996; Mohammed 
et al., 2018; Calì et al., 2019b). This, combined with projections of 
artificial imprints of granules emitted onto nearby cellular structures, 
demonstrated that clusters of glycogen granules can be found near 
synapses (Agus et  al., 2018). DBSCAN can, however, fail when 
clusters have variable object density, and generally requires tuning 
of 3 parameters to obtain expected grouping of objects (Malzer and 
Baum, 2020). Several successful alternatives have been proposed, 
based around construction of a hierarchical organization of the data 
to simplify the problem before cluster identification (Ankerst et al., 
1999; Sander et  al., 2003; Gupta et  al., 2010; Hou et  al., 2014; 
Dockhorn et al., 2015; McInnes and Healy, 2017; Khan et al., 2018; 
Malzer and Baum, 2020). Of these, the most popular appears to 
be  HDBSCAN (Campello et  al., 2013), which has a scikit-learn 
Python implementation (McInnes et  al., 2017). These updated 
algorithms require less parameter tuning to obtain an expected 
clustering solution. Distribution of cellular components, particularly 
when constrained to a complex 3D shape like that of an astrocyte, 
do not necessarily provide an a priori notion of what clusters 
“should” look like. HDBSCAN and associated algorithms require 
only minimum cluster size (i.e., number of objects in a cluster) as 
parameter input. These algorithms should therefore be tested for 

clustering objects or points of interest in astrocytes and otherwise 
complex cellular space. Another alternative, Dominant sets 
clustering (D-Sets), originally designed for image segmentation, is a 
completely parameter-free approach (Pavan and Pelillo, 2003, 2006). 
This algorithm generalizes the notion of a maximal clique to 
weighted graphs and defines clusters based solely on a similarity 
matrix without the need to specify number or extent of clusters. 
Basing element similarity solely on inter-element distance defines 
dominant sets which are also spatial clusters (Rota Bulò and Pelillo, 
2017). Each cluster thus extracted is defined by a notion of average 
local support which results in clusters with small intra-cluster 
distances compared to distances between elements of different 
clusters. We recently used D-Sets to identify clusters of synapses 
surrounding subregions of astrocytic branches, ultimately suggesting 
that subregions of astrocytes may regulate synapses in groups 
(Salmon et al., 2023). The utility of D-Sets for this clustering problem 
suggests that other clustering approaches in use (Hou et al., 2014), 
or in development, for more typical CV problems may warrant 
testing and extension for specific cell biology contexts.

4 Future directions: bridging structure 
and function

Thus far we have presented recent progress in our understanding of 
astrocyte structure, the CV tools that have made progress possible, and 
open questions that require further application and development of 
computational approaches. While understanding astrocyte structure at 
the nanoscale is interesting in itself, biological structure has many 
functional implications. Bridging the structure-function gap in astrocyte 
biology is a challenging problem in which CV tools are also essential.

Like neurons, astrocytes are excitable cells that alter their 
properties in response to stimulation or behavioral state of the animal 
and its nervous system (Verkhratsky et al., 2020). However, unlike 
neurons, which mainly transmit information through all-or-none 
electrochemical signals, astrocytes display complex and dynamic 
patterns of intracellular Ca2+ signalling events, which are essential for 
astrocytic function (Shigetomi et al., 2016). These Ca2+ signals can 
be visually monitored with fluorescent Ca2+ indicators (Figure 9), 
which change their fluorescence intensity in response to changing Ca2+ 
concentration (Figure 9B). Development of new Ca2+indicators over 
the past decade has allowed neurobiologists to image Ca2+ signals in 
unprecedented detail. Importantly, diffusion of Ca2+ and the shape and 
localization Ca2+ signals are likely intimately linked to astrocyte 
morphology (Denizot et al., 2019, 2022).

Ca2+ signals occur in different patterns and shapes, they can occur 
spontaneously or in direct response to neuronal or sensory 
stimulation, and they have been shown to be necessary for various 
astrocytic functions, including regulation of synapse function (Araque 
et al., 2014), energy supply, and blood circulation in the brain (Mishra, 
2017). However, precisely how Ca2+ signals are involved in astrocytic 
functions in the brain is not understood (Semyanov et al., 2020), and 
so they are an extremely active area of investigation. Most (85%) 
astrocytic Ca2+ signals are small and confined to subregions of the 
astrocytic branch network (Figure 9B) (Bindocci et al., 2017; Wang 
et al., 2019). These types of signals are commonly referred to as Ca2+ 
microdomains (Shigetomi et  al., 2010), which we  refer to as 
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“microdomain events” for clarity. The nanometer scale of thin 
astrocyte branches is believed to constrain the diffusion of Ca2+ and to 
help restrict the size of microdomain events (Rusakov, 2015; Denizot 
et al., 2022). However, clear evidence linking microdomain events to 
physical sub-compartments has yet to be shown (Lia et al., 2021). 
Furthermore, the exact definition of a microdomain event is not 
established. Microdomain events can recur locally but their center of 
mass, size, shape, and intensity can vary (Bazargani and Attwell, 2016). 
They also appear to be capable of propagating between compartments, 
fusing (Wang et al., 2019), and also pushing the cell past a threshold 
that results in a cell-wide “Ca2+ transient,” which in turn can propagate 
across a population of cells (Bazargani and Attwell, 2016). Accurately 
tracking and making sense of these ill-defined Ca2+ signals is a 
complex task. CV techniques thus play a critical role in analyzing Ca2+ 
signalling, and further development of robust algorithms for detecting, 
tracking and categorizing Ca2+ signals are needed.

In recent years, several algorithms and tools have been developed 
to quantify astrocyte Ca2+ signals. Initially, region of interest (ROI)-
based signal analysis toolboxes were introduced for tracking 
astrocytic events. For example, GECIquant (Srinivasan et al., 2015) 
developed a semi-automatic ImageJ plugin to detect and analyze 
Ca2+ events. Agarwal et al. (2017) then introduced CaSCaDE (Ca2+ 
Signal Classification and Decoding) MATLAB scripts, which use 
support vector machines for classifying Ca2+ signals. Both methods 
restrict analysis to fixed ROIs and identify relevant ROIs using an 
intensity-threshold based criterion. However, due to the very 
dynamic nature of microdomain events, static ROIs cannot capture 
their dynamic nature in full. To address this, AQuA was introduced 
for “event-based” analysis (Wang et al., 2019). This MATLAB-based 
GUI tool involves a multi-step image processing pipeline for 
detection and tracking of Ca2+ events using a dynamic threshold 
based on running means and noise variance in the signal. The 
authors define different criteria for tracing astrocytic events in time 

and extract various features such as area, amplitude, and duration of 
events. Event detection and tracking are not based on a single ROI, 
but rather on measured intensity values across entire imaged regions. 
This allows AQuA to track changes in shape, size, and position of 
events over time, in addition to the intensity values to which ROI 
measurements are limited. One of the drawbacks of AQuA is the 
implicit assumption in the analysis pipeline of a spatio-temporal 
flow and propagation of Ca2+ events. This may be at odds with more 
recent evidence suggesting that astrocyte shape compartmentalizes 
calcium diffusion (Denizot et al., 2019, 2022; Arizono et al., 2020; 
Salmon et al., 2023). Two alternatives to AQuA, Begonia (Bjørnstad 
et  al., 2021) and STARDUST (Wu et  al., 2024), address this by 
tracking “Regions of Activity” independently of both event 
coherence and the assumption of event propagation made in 
AQuA. Lastly, Astral was designed for analyzing larger scale Ca2+ 
signals across networks of astrocytes, providing a visualization and 
processing pipeline accessible through a web browser (Dzyubenko 
et  al., 2021). Critically, all these tools are developed for 
2(space) + 1(time)D movies. However, Bindocci et al. (2017) show 
that 2D planes recover less that 12% of total Ca2+ activity in an 
astrocytic volume. There is a lack of tools for visualizing 3D events 
in time as well as detecting and tracking events in 3D. Adapting 
existing tools and techniques from 3D CV can be very beneficial. In 
addition, analyzing the heterogeneous spatio-temporal data will also 
require developing new tools which should be able to handle and 
analyze the data in its native dimensionality. Such analysis will 
be critical in answering basic questions about astrocytic Ca2+ events 
and also make the link between structure and function concrete. 
Recently, Sun et al. (2022) developed a pipeline for visualizing (3 + 1)
D volumetric movies recorded from anesthetized and awake mice. 
A suite of three ImageJ plugins for pre-processing (3 + 1)D colored 
data, which is otherwise not straightforward in ImageJ, has also been 
released (Savtchouk et al., 2018). However, further development is 

A B

FIGURE 9

Astrocytic Ca2+ microdomains. (A) An average intensity projection over time of Ca2+ signals, recorded from an astrocyte expressing the genetically 
encoded Ca2+ indicator, GCaMP6f. Scale bar, 20  μm. (B) A series of frames extracted from a video of the astrocyte in A, each showing a variety of 
different Ca2+ microdomain events detected by AQuA event-based software (Wang et al., 2019). Ca2+ microdomain events are indicated by red 
arrowheads (top and bottom rows), and the events as segmented by AQuA are shown in multiple colors (bottom row). Scale bar, 20  μm. Ca2+ imaging 
video publicly available in the GitHub repository associated with Wang et al. (2019).
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required for easy and effective analysis of Ca2+ events in (3 + 1)D. For 
instance, tracking the origins, spread in space and time, and 
relationships between different astrocytic Ca2+ events in 3D are still 
open problems. It should, however, be noted that the main bottleneck 
in studying (3 + 1)D Ca2+ signals is the quality of the volumetric 
timelapse video data. Due to issues such as slow 3D scan time and 
low Ca2+ indicator fluorescence intensity, microscopes cannot yet 
acquire 3D data fast enough to image microdomain events efficiently 
in (3 + 1)D. Microscope design must therefore advance before 
computational tools can be  used effectively (Sun et  al., 2022). 
However, this also means that computational tools that consider low 
image quality, potentially through advanced deconvolution, noise 
reduction, or by modelling of stereotypical microdomain shape, 
should be pursued.

Imaging astrocytic Ca2+ dynamics has parallels to functional 
magnetic resonance imaging (fMRI). While relatively few tools exist for 
decoding the nature of Ca2+ signals, decades of work has been put into 
creating a rich set of tools to study (3 + 1)D fMRI signals from human 
brains (Smith et  al., 2004; Cohen et  al., 2017). It is therefore worth 
exploring whether fMRI computer vision tools can be repurposed. For 
instance, fMRI studies avoid using ROIs by using statistical parametric 
mapping (SPM), which models spatial statistical processes to identify 
groups of voxels that are active above background noise levels (Penny 
et  al., 2011). SPM may allow for improvement over the dynamic 
thresholds approach used in AQuA and Begonia. In fMRI, SPM data can 
be used concurrently with dynamic causal modelling (DCM) approaches 
to determine correlation and causation between spatially separate areas 
of brain activity (Stephan et al., 2010). DCM may thus be useful for 
studying correlation and causation between microdomain events in 
different subregions of an astrocyte. A variety of toolboxes in Python, 
MATLAB and C are already available for SPM, DCM, and many more 
fMRI algorithms. Examples of toolboxes that could be  mined for 
functions to be ported and built on for analyzing astrocyte Ca2+ include 
FMRIB Software Library, which provides a suite of methods for statistical 
modelling and inference and visualization for (3 + 1)D data amenable to 
be used on computation clusters (Jenkinson et al., 2012); and analysis of 
functional neuro imaging (AFNI) (Cox, 2012). While techniques 
developed for fMRI data analysis such as motion correction, slice time 
correction and spatio-temporal filtering have clear analogs in astrocytic 
Ca2+ data, the artifacts from temporal interpolation could be exacerbated 
in astrocytic data due to variability in speed, spread and duration of 
events. Additionally, the analysis of shape and spread of Ca2+ events and 
the nature of diffusion do not directly translate to computational 
problems dealt with in fMRI. Further, fMRI signals indirectly measure 
the average activity in entire brain regions containing hundreds of 
thousands of cells. The modelling assumptions that hold for fMRI signals 
may therefore not hold for diffusion of micromolar concentrations of 
Ca2+ in nanoscale regions. Further, measurement of Ca2+ dynamics using 
fluorescent Ca2+ indicators is, of course, fundamentally different from 
measurements of blood oxygenation level made by fMRI. This will also 
impact the modelling choices and therefore require fine tuning when 
trying to port relatively mature fMRI methods.

Finally, as microscopy of live cells cannot yet adequately resolve 
either Ca2+ signals or nanostructure, computational modelling of 
astrocytic Ca2+ dynamics will likely be essential to understanding their 
roles in health and disease. Recent reviews provide a comprehensive 
taxonomy of various models of Ca2+ signals in astrocytes and examine 

models of astrocyte function that have been used to date (Manninen 
et al., 2018; Denizot et al., 2020; Covelo et al., 2022). Importantly, 
Manninen et  al. (2018) highlight that most models of astrocytic 
function are based on just a handful of neuronal models, suggesting 
new and updated models are needed. Modelling will provide key 
insights into the cellular and biochemical mechanisms of astrocyte 
physiology and help to better understand how astrocytes contribute 
to brain computation, but to do so, accurate models of astrocyte 
morphology must be incorporated (Covelo et al., 2022).

5 Conclusion

Computational approaches and CV methods are essential for 
detailed quantitative analysis of biological structure. This is 
particularly relevant in cellular neuroscience, where large, high-
resolution nanoscale datasets from multiple species and brain areas 
are becoming available. Improving our ability to comprehensively and 
efficiently quantify cellular nanostructure will aid in defining brain cell 
and tissue function under various physiological conditions and in 
disease contexts. Moreover, it will allow for better integration of 
cellular, tissue, and systems level analysis across the full range of 
spatial resolution to provide a more unified understanding of 
brain function.

In Sections 2 and 3 of this review we dissected what is known 
of astrocytic form, and the tools used for analyzing it. We  then 
considered the implications of form for astrocytic function as 
exemplified by the poorly understood array of astrocytic Ca2+ 
signals. We hope to have demonstrated that CV-based elucidation 
of the nanostructural details of astrocytes is expanding our 
understanding of highly complex astrocytic nanostructure, and also 
that there are many avenues for further application and development 
of astrocyte-tailored CV tools. Elucidating the nanoscale details of 
astrocyte structure and studying their implications in models of 
astrocyte function will allow for more accurate hypotheses to 
be generated with regards to the roles of astrocytes in vivo, and will 
ultimately provide a clearer understanding of how astrocytes are 
involved in healthy brain function and in disease.

Author contributions

TAS: Conception, Design, Acquisition, Analysis, Interpretation, 
Writing, Critical revision. MY: Conception, Design, Critical revision. 
YK: Conception, Design, KKM: Conception, Design, Writing, Critical 
revision. CKS: Conception, Design, Acquisition, Analysis, 
Interpretation, Writing, Critical revision. ALS: Acquisition, Analysis, 
Interpretation.

Funding

This work was supported by Funding CIHR (PJT148569, 156247, 
KKM); CIHR (PJT180573 KKM); NSERC (408044-2011 and 69404, 
KKM, RGPIN-2018-06323); an FRQS Dual Chair in AI and Brain 
Health (KKM); and a Joint Canada-Israel Research Program Award 
from IDRC/ISF/CIHR/Azrieli Foundation.

https://doi.org/10.3389/fcomp.2024.1156204
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Syed et al. 10.3389/fcomp.2024.1156204

Frontiers in Computer Science 15 frontiersin.org

Acknowledgments

The authors would like to thank Dr. Kaleem Siddiqi for comments 
on numerous versions of the manuscript, as well as Jeannie Mui, Lee 
Ann Monaghan, Dr. Weawkamol Leelapornpisit, Dr. Kelly Sears, Dr. 
Hojatollah Vali, Dr. Joaquin Ortega, and Dr. Craig Mondato at the 
Facility for Electron Microscopy Research at McGill for their aid in 
tissue processing and FIBSEM imaging.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fcomp.2024.1156204/
full#supplementary-material

References
Achterberg, H. C., van der Lijn, F., den Heijer, T., Vernooij, M. W., Ikram, M. A., 

Niessen, W. J., et al. (2014). Hippocampal shape is predictive for the development of 
dementia in a normal, elderly population. Hum. Brain Mapp. 35, 2359–2371. doi: 
10.1002/hbm.22333

Acosta, C., Anderson, H. D., and Anderson, C. M. (2017). Astrocyte dysfunction in 
Alzheimer disease. J. Neurosci. Res. 95, 2430–2447. doi: 10.1002/jnr.24075

Adamsky, A., Kol, A., Kreisel, T., Doron, A., Ozeri-Engelhard, N., Melcer, T., et al. 
(2018). Astrocytic activation generates de novo neuronal potentiation and memory 
enhancement. Cell 174, 59–71.e14. doi: 10.1016/j.cell.2018.05.002

Agus, M., Boges, D., Gagnon, N., Magistretti, P. J., Hadwiger, M., and Calí, C. (2018). 
GLAM: glycogen-derived lactate absorption map for visual analysis of dense and sparse 
surface reconstructions of rodent brain structures on desktop systems and virtual 
environments. Comput. Graph. 74, 85–98. doi: 10.1016/j.cag.2018.04.007

Agarwal, A., Wu, P.-H., Hughes,, E. G., Fukaya, M., Tischfield, M.A., Langseth, A. J., 
et al. (2017). Transient Opening of the Mitochondrial Permeability Transition Pore 
Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron. 93, 587–605. 
doi: 10.1016/j.neuron.2016.12.034

Andreux, M., Rodolà, E., Aubry, M., and Cremers, D. (2015). Anisotropic Laplace–
Beltrami operators for shape analysis. L. Agapito, M. M. Bronstein and C. Rother. Computer 
Vision—ECCV 2014 Workshops. Cham. Springer International Publishing. 299–312.

Ankerst, M., Breunig, M. M., Kriegel, H. P., and Sander, J. (1999). OPTICS: ordering 
points to identify the clustering structure. ACM SIGMOD Rec. 28, 49–60. doi: 
10.1145/304181.304187

Araque, A., Carmignoto, G., Haydon, P. G., Oliet, S. H. R., Robitaille, R., and 
Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron 81, 728–739. doi: 
10.1016/j.neuron.2014.02.007

Araque, A., Parpura, V., Sanzgiri, R. P., and Haydon, P. G. (1999). Tripartite synapses: 
glia, the unacknowledged partner. Trends Neurosci. 22, 208–215. doi: 10.1016/
S0166-2236(98)01349-6

Arizono, M., Inavalli, V. V. G. K., Bancelin, S., Fernández-Monreal, M., and 
Nägerl, U. V. (2021). Super-resolution shadow imaging reveals local remodeling of 
astrocytic microstructures and brain extracellular space after osmotic challenge. Glia 69, 
1605–1613. doi: 10.1002/glia.23995

Arizono, M., Inavalli, V. V. G. K., Panatier, A., Pfeiffer, T., Angibaud, J., Levet, F., et al. 
(2020). Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun. 
11, 1906–1915. doi: 10.1038/s41467-020-15648-4

Aswath, A., Alsahaf, A., Giepmans, B., and Azzopardi, G. (2022). Automated image 
analysis in large-scale cellular electron microscopy: a literature survey. arXiv. 
Available at: http://arxiv.org/abs/2206.07171 (Accessed January 26, 2023).

Aten, S., Kiyoshi, C. M., Arzola, E. P., Patterson, J. A., Taylor, A. T., Du, Y., et al. (2022). 
Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse 
contacts, intracellular vesicle-like structures, and mitochondrial network. Prog. 
Neurobiol. 213:102264. doi: 10.1016/j.pneurobio.2022.102264

Bae, A. (2023). skeletonization. seung-lab. Available at: https://github.com/seung-lab/
skeletonization. (Accessed September 25, 2023).

Bazargani, N., and Attwell, D. (2016). Astrocyte calcium signaling: the third wave. Nat. 
Neurosci. 19, 182–189. doi: 10.1038/nn.4201

Benarroch, E. E. (2016). Astrocyte signaling and synaptic homeostasis: I: membrane 
channels, transporters, and receptors in astrocytes. Neurology 87, 324–330. doi: 10.1212/
WNL.0000000000002875

Berger, D. R., Seung, H. S., and Lichtman, J. W. (2018). VAST (Volume Annotation 
and Segmentation Tool): efficient manual and semi-automatic labeling of large 3D image 
stacks. Front. Neural Circuits 12:88. doi: 10.3389/fncir.2018.00088

Berman, J., Chklovskii, D. B., and Wu, J. (2022) Bridging the gap: point clouds for 
merging neurons in connectomics. Proceedings of the 5th International Conference on 
Medical Imaging with Deep Learning: International Conference on Medical Imaging 
with Deep Learning (PMLR). 150–159. Available at: https://proceedings.mlr.press/v172/
berman22a.html (Accessed September 21, 2023).

Bernardinelli, Y., Randall, J., Janett, E., Nikonenko, I., König, S., Jones, E. V., et al. 
(2014). Activity-dependent structural plasticity of perisynaptic astrocytic domains 
promotes excitatory synapse stability. Curr. Biol. 24, 1679–1688. doi: 10.1016/j.
cub.2014.06.025

Bindocci, E., Savtchouk, I., Liaudet, N., Becker, D., Carriero, G., and Volterra, A. 
(2017). Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. 
Science 356:eaai8185. doi: 10.1126/science.aai8185

Bishop, C., Matelsky, J., Wilt, M., Downs, J., Rivlin, P., Plaza, S., et al. (2021). 
CONFIRMS: a toolkit for scalable, black box connectome assessment and investigation. 
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & 
Biology Society (EMBC). Mexico: IEEE. 2444–2450.

Bjørnstad, D. M., Åbjørsbråten, K. S., Hennestad, E., Cunen, C., Hermansen, G. H., 
Bojarskaite, L., et al. (2021). Begonia—a two-photon imaging analysis pipeline for 
astrocytic Ca2+ signals. Front. Cell. Neurosci. 15:681066. doi: 10.3389/fncel.2021.681066

Blum, H. (1973). Biological shape and visual science (part I). J. Theor. Biol. 38, 
205–287. doi: 10.1016/0022-5193(73)90175-6

Boergens, K. M., Berning, M., Bocklisch, T., Bräunlein, D., Drawitsch, F., 
Frohnhofen, J., et al. (2017). webKnossos: efficient online 3D data annotation for 
connectomics. Nat. Methods 14, 691–694. doi: 10.1038/nmeth.4331

Bouix, S., Pruessner, J. C., Louis Collins, D., and Siddiqi, K. (2005). Hippocampal 
shape analysis using medial surfaces. NeuroImage 25, 1077–1089. doi: 10.1016/j.
neuroimage.2004.12.051

Bouvier, D. S., Jones, E. V., Quesseveur, G., Davoli, M. A., Ferreira, T., Quirion, R., 
et al. (2016). High resolution dissection of reactive glial nets in Alzheimer’s disease. Sci. 
Rep. 6:24544. doi: 10.1038/srep24544

Brancaccio, M., Patton, A. P., Chesham, J. E., Maywood, E. S., and Hastings, M. H. 
(2017). Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via 
glutamatergic signaling. Neuron 93, 1420–1435.e5. doi: 10.1016/j.neuron.2017.02.030

Briggman, K. L., and Denk, W. (2006). Towards neural circuit reconstruction with 
volume electron microscopy techniques. Curr. Opin. Neurobiol. 16, 562–570. doi: 
10.1016/j.conb.2006.08.010

Briggman, K. L., Helmstaedter, M., and Denk, W. (2011). Wiring specificity in the 
direction-selectivity circuit of the retina. Nature 471, 183–188. doi: 10.1038/nature09818

Brusini, I., Lindberg, O., Muehlboeck, J. S., Smedby, Ö., Westman, E., and Wang, C. 
(2020). Shape information improves the cross-cohort performance of deep learning-
based segmentation of the hippocampus. Front. Neurosci. 14:15. doi: 10.3389/
fnins.2020.00015

Bushong, E. A., Martone, M. E., Jones, Y. Z., and Ellisman, M. H. (2002). Protoplasmic 
astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 
22, 183–192. doi: 10.1523/JNEUROSCI.22-01-00183.2002

Calì, C., Agus, M., Kare, K., Boges, D. J., Lehväslaiho, H., Hadwiger, M., et al. (2019a). 
3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from 

https://doi.org/10.3389/fcomp.2024.1156204
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1156204/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1156204/full#supplementary-material
https://doi.org/10.1002/hbm.22333
https://doi.org/10.1002/jnr.24075
https://doi.org/10.1016/j.cell.2018.05.002
https://doi.org/10.1016/j.cag.2018.04.007
https://doi.org/10.1016/j.neuron.2016.12.034
https://doi.org/10.1145/304181.304187
https://doi.org/10.1016/j.neuron.2014.02.007
https://doi.org/10.1016/S0166-2236(98)01349-6
https://doi.org/10.1016/S0166-2236(98)01349-6
https://doi.org/10.1002/glia.23995
https://doi.org/10.1038/s41467-020-15648-4
http://arxiv.org/abs/2206.07171
https://doi.org/10.1016/j.pneurobio.2022.102264
https://github.com/seung-lab/skeletonization
https://github.com/seung-lab/skeletonization
https://doi.org/10.1038/nn.4201
https://doi.org/10.1212/WNL.0000000000002875
https://doi.org/10.1212/WNL.0000000000002875
https://doi.org/10.3389/fncir.2018.00088
https://proceedings.mlr.press/v172/berman22a.html
https://proceedings.mlr.press/v172/berman22a.html
https://doi.org/10.1016/j.cub.2014.06.025
https://doi.org/10.1016/j.cub.2014.06.025
https://doi.org/10.1126/science.aai8185
https://doi.org/10.3389/fncel.2021.681066
https://doi.org/10.1016/0022-5193(73)90175-6
https://doi.org/10.1038/nmeth.4331
https://doi.org/10.1016/j.neuroimage.2004.12.051
https://doi.org/10.1016/j.neuroimage.2004.12.051
https://doi.org/10.1038/srep24544
https://doi.org/10.1016/j.neuron.2017.02.030
https://doi.org/10.1016/j.conb.2006.08.010
https://doi.org/10.1038/nature09818
https://doi.org/10.3389/fnins.2020.00015
https://doi.org/10.3389/fnins.2020.00015
https://doi.org/10.1523/JNEUROSCI.22-01-00183.2002


Syed et al. 10.3389/fcomp.2024.1156204

Frontiers in Computer Science 16 frontiersin.org

serial block-face electron microscopy of juvenile rat. Prog. Neurobiol. 183:101696. doi: 
10.1016/j.pneurobio.2019.101696

Calì, C., Tauffenberger, A., and Magistretti, P. (2019b). The strategic location of 
glycogen and lactate: from body energy reserve to brain plasticity. Front. Cell. Neurosci. 
13:82. doi: 10.3389/fncel.2019.00082

Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013). “Density-based clustering 
based on hierarchical density estimates” in Advances in knowledge discovery and data 
mining: lecture notes in computer science. eds. J. Pei, V. S. Tseng, L. Cao, H. Motoda and 
G. Xu (Berlin: Springer), 160–172.

Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M., 
et al. (2012). TrakEM2 software for neural circuit reconstruction. PLoS One 7:e38011. 
doi: 10.1371/journal.pone.0038011

Celii, B., Papadopoulos, S., Ding, Z., Fahey, P. G., Wang, E., Papadopoulos, C., et al. 
(2023) NEURD: automated proofreading and feature extraction for connectomics. 
bioRxiv. doi: 10.1101/2023.03.14.532674 [Epub ahead of preprint].

Chen, J., Song, S. K., Liu, W., McLean, M., Allen, J. S., Tan, J., et al. (2003). Remodeling of 
cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am. J. 
Phys. Heart Circ. Phys. 285, H946–H954. doi: 10.1152/ajpheart.00889.2002

Cohen, J. D., Daw, N., Engelhardt, B., Hasson, U., Li, K., Niv, Y., et al. (2017). 
Computational approaches to fMRI analysis. Nat. Neurosci. 20, 304–313. doi: 10.1038/
nn.4499

Covelo, A., Badoual, A., and Denizot, A. (2022). Reinforcing interdisciplinary 
collaborations to unravel the astrocyte “calcium code”. J. Mol. Neurosci. 72, 1443–1455. 
doi: 10.1007/s12031-022-02006-w

Cox, R. W. (2012). AFNI: what a long strange trip it’s been. NeuroImage 62, 743–747. 
doi: 10.1016/j.neuroimage.2011.08.056

Curreli, S., Bonato, J., Romanzi, S., Panzeri, S., and Fellin, T. (2022). Complementary 
encoding of spatial information in hippocampal astrocytes. PLoS Biol. 20:e3001530. doi: 
10.1371/journal.pbio.3001530

de Belen, R. A. J., Bednarz, T., Sowmya, A., and del Favero, D. (2020). Computer 
vision in autism spectrum disorder research: a systematic review of published 
studies from 2009 to 2019. Transl. Psychiatry 10, 333–320. doi: 10.1038/
s41398-020-01015-w

De Pittà, M., and Berry, H. (2019). Computational glioscience. Switzerland: 
Springer Nature.

DeFelipe, J., Hendry, S. H. C., and Jones, E. G. (1986). A correlative electron 
microscopic study of basket cells and large gabaergic neurons in the monkey sensory-
motor cortex. Neuroscience 17, 991–1009. doi: 10.1016/0306-4522(86)90075-8

Denizot, A., Arizono, M., Nägerl, U. V., Berry, H., and de Schutter, E. (2022). Control 
of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses. Glia 70, 
2378–2391. doi: 10.1002/glia.24258

Denizot, A., Arizono, M., Nägerl, U. V., Soula, H., and Berry, H. (2019). Simulation of 
calcium signaling in fine astrocytic processes: effect of spatial properties on 
spontaneous activity. PLoS Comput. Biol. 15:e1006795. doi: 10.1371/journal.pcbi.1006795

Denizot, A., Berry, H., and Venugopal, S. (2020). “Computational modelling of 
intracellular calcium signals in astrocytes” in Encyclopedia of computational 
neuroscience. eds. D. Jaeger and R. Jung (New York, NY: Springer), 1–12.

Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron microscopy 
to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2:e329. doi: 10.1371/
journal.pbio.0020329

Dileep, D., Syed, T. A., Sloan, T. F., Dhandapany, P. S., Siddiqi, K., and Sirajuddin, M. 
(2023). Cardiomyocyte orientation recovery at micrometer scale reveals long-axis fiber 
continuum in heart walls. EMBO J. 42:e113288. doi: 10.15252/embj.2022113288

Dockhorn, A., Braune, C., and Kruse, R. (2015). An alternating optimization approach 
based on hierarchical adaptations of DBSCAN. 2015 IEEE Symposium Series on 
Computational Intelligence. 749–755

Dorkenwald, S. (2023) sdorkenw/MeshParty. Available at: https://github.com/
sdorkenw/MeshParty. (Accessed September 25, 2023)

Dorkenwald, S., Matsliah, A., Sterling, A. R., Schlege, P., Yu, S.-c., McKellar, C. E., et al. 
(2023) Neuronal wiring diagram of an adult brain. bioRxiv. doi: 
10.1101/2023.06.27.546656 [Epub ahead of preprint].

Dorkenwald, S., McKellar, C. E., Macrina, T., Kemnitz, N., Lee, K., Lu, R., et al. (2022). 
FlyWire: online community for whole-brain connectomics. Nat. Methods 19, 119–128. 
doi: 10.1038/s41592-021-01330-0

Drawitsch, F., Karimi, A., Boergens, K. M., and Helmstaedter, M. (2018). FluoEM, 
virtual labeling of axons in three-dimensional electron microscopy data for long-range 
connectomics. eLife 7:e38976. doi: 10.7554/eLife.38976

Dzyubenko, E., Prazuch, W., Pillath-Eilers, M., Polanska, J., and Hermann, D. M. 
(2021). Analysing intercellular communication in astrocytic networks using “Astral”. 
Front. Cell. Neurosci. 15:689268. doi: 10.3389/fncel.2021.689268

Endo, F., Kasai, A., Soto, J. S., Yu, X., Qu, Z., Hashimoto, H., et al. (2022). Molecular 
basis of astrocyte diversity and morphology across the CNS in health and disease. 
Science 378:eadc9020. doi: 10.1126/science.adc9020

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based 
algorithm for discovering clusters in large spatial databases with noise. KDD’96: 
Proceedings of the Second International Conference on Knowledge Discovery and 
Data Mining

Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. J. Microsc. 
218, 52–61. doi: 10.1111/j.1365-2818.2005.01466.x

Fukatsu, R., Obara, T., Baba, N., Kanaya, K., Garruto, R., Hayashishita, T., et al. (1988). 
Ultrastructural analysis of neurofibrillary tangles of Alzheimer’s disease using computerized 
digital processing. Acta Neuropathol. 75, 519–522. doi: 10.1007/BF00687141

Funke, J. (2022). skeletopyze. Available at: https://github.com/funkey/skeletopyze 
(Accessed September 25, 2023)

García-Cáceres, C., Quarta, C., Varela, L., Gao, Y., Gruber, T., Legutko, B., et al. (2016). 
Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 
166, 867–880. doi: 10.1016/j.cell.2016.07.028

Gavrilov, N., Golyagina, I., Brazhe, A., Scimemi, A., Turlapov, V., and Semyanov, A. 
(2018). Astrocytic coverage of dendritic spines, dendritic shafts, and axonal boutons in 
hippocampal neuropil. Front. Cell. Neurosci. 12:248. doi: 10.3389/fncel.2018.00248

Genoud, C., Quairiaux, C., Steiner, P., Hirling, H., Welker, E., and Knott, G. W. (2006). 
Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse 
cortex. PLoS Biol. 4, e343–e2064. doi: 10.1371/journal.pbio.0040343

Gonda, F., Wang, X., Beyer, J., Hadwiger, M., Lichtman, J. W., and Pfister, H. (2021). 
VICE: visual identification and correction of neural circuit errors. Comput. Graph. 
Forum 40, 447–458. doi: 10.1111/cgf.14320

Grenander, U., and Miller, M. I. (1998). Computational anatomy: an emerging 
discipline. Q. Appl. Math. 56, 617–694. doi: 10.1090/qam/1668732

Grosche, A., Grosche, J., Tackenberg, M., Scheller, D., Gerstner, G., Gumprecht, A., 
et al. (2013). Versatile and simple approach to determine astrocyte territories in mouse 
neocortex and hippocampus. PLoS One 8:e69143. doi: 10.1371/journal.pone.0069143

Grosche, J., Matyash, V., Möller, T., Verkhratsky, A., Reichenbach, A., and 
Kettenmann, H. (1999). Microdomains for neuron-glia interaction: parallel fiber 
signaling to Bergmann glial cells. Nat. Neurosci. 2, 139–143. doi: 10.1038/5692

Gupta, G., Liu, A., and Ghosh, J. (2010). Automated hierarchical density shaving: a 
robust automated clustering and visualization framework for large biological data sets. 
IEEE/ACM Trans. Comput. Biol. Bioinform. 7, 223–237. doi: 10.1109/TCBB.2008.32

Haber, M., Zhou, L., and Murai, K. K. (2006). Cooperative astrocyte and dendritic 
spine dynamics at hippocampal excitatory synapses. J. Neurosci. 26, 8881–8891. doi: 
10.1523/JNEUROSCI.1302-06.2006

Haehn, D., Kaynig, V., Tompkin, J., Lichtman, J. W., and Pfister, H. (2018). Guided 
proofreading of automatic segmentations for connectomics. Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR). 9319–9328. 
Available at: https://openaccess.thecvf.com/content_cvpr_2018/html/Haehn_Guided_
Proofreading_of_CVPR_2018_paper.html. (Accessed January 25, 2023)

Halassa, M. M., Fellin, T., Takano, H., Dong, J. H., and Haydon, P. G. (2007). Synaptic 
islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477. doi: 
10.1523/JNEUROSCI.1419-07.2007

Halassa, M. M., Florian, C., Fellin, T., Munoz, J. R., Lee, S. Y., Abel, T., et al. (2009). 
Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. 
Neuron 61, 213–219. doi: 10.1016/j.neuron.2008.11.024

Hama, K., Arii, T., Katayama, E., Marton, M., and Ellisman, M. H. (2004). Tri-
dimensional morphometric analysis of astrocytic processes with high voltage electron 
microscopy of thick Golgi preparations. J. Neurocytol. 33, 277–285. doi: 
10.1023/B:NEUR.0000044189.08240.a2

Hayworth, K. J., Xu, C. S., Lu, Z., Knott, G. W., Fetter, R. D., Tapia, J. C., et al. (2015). 
Ultrastructurally smooth thick partitioning and volume stitching for large-scale 
connectomics. Nat. Methods 12, 319–322. doi: 10.1038/nmeth.3292

Helmstaedter, M. (2013). Cellular-resolution connectomics: challenges of dense neural 
circuit reconstruction. Nat. Methods 10, 501–507. doi: 10.1038/nmeth.2476

Henneberger, C., Bard, L., Panatier, A., Reynolds, J. P., Kopach, O., Medvedev, N. I., 
et al. (2020). LTP induction boosts glutamate spillover by driving withdrawal of 
perisynaptic astroglia. Neuron 108, 919–936.e11. doi: 10.1016/j.neuron.2020.08.030

Henneberger, C., Papouin, T., Oliet, S. H. R., and Rusakov, D. A. (2010). Long-term 
potentiation depends on release of d-serine from astrocytes. Nature 463, 232–236. doi: 
10.1038/nature08673

Hong, S., and Jeong, W.-K. (2016). A multi-GPU fast iterative method for Eikonal 
equations using on-the-fly adaptive domain decomposition. Procedia Comput. Sci. 80, 
190–200. doi: 10.1016/j.procs.2016.05.309

Hou, J., Sha, C., Chi, L., Xia, Q., and Qi, N.-M. (2014). Merging dominant sets and 
DBSCAN for robust clustering and image segmentation. 2014 IEEE International 
Conference on Image Processing (ICIP). 4422–4426.

Ivanov, V., and Michmizos, K. (2021). Increasing liquid state machine performance 
with edge-of-chaos dynamics organized by astrocyte-modulated plasticity. M. Ranzato. 
Advances in Neural Information Processing Systems. Curran Associates, Inc. 
25703–25719. Available at: https://proceedings.neurips.cc/paper_files/paper/2021/file/
d79c8788088c2193f0244d8f1f36d2db-Paper.pdf

https://doi.org/10.3389/fcomp.2024.1156204
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.1016/j.pneurobio.2019.101696
https://doi.org/10.3389/fncel.2019.00082
https://doi.org/10.1371/journal.pone.0038011
https://doi.org/10.1101/2023.03.14.532674
https://doi.org/10.1152/ajpheart.00889.2002
https://doi.org/10.1038/nn.4499
https://doi.org/10.1038/nn.4499
https://doi.org/10.1007/s12031-022-02006-w
https://doi.org/10.1016/j.neuroimage.2011.08.056
https://doi.org/10.1371/journal.pbio.3001530
https://doi.org/10.1038/s41398-020-01015-w
https://doi.org/10.1038/s41398-020-01015-w
https://doi.org/10.1016/0306-4522(86)90075-8
https://doi.org/10.1002/glia.24258
https://doi.org/10.1371/journal.pcbi.1006795
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.15252/embj.2022113288
https://github.com/sdorkenw/MeshParty
https://github.com/sdorkenw/MeshParty
https://doi.org/10.1101/2023.06.27.546656
https://doi.org/10.1038/s41592-021-01330-0
https://doi.org/10.7554/eLife.38976
https://doi.org/10.3389/fncel.2021.689268
https://doi.org/10.1126/science.adc9020
https://doi.org/10.1111/j.1365-2818.2005.01466.x
https://doi.org/10.1007/BF00687141
https://github.com/funkey/skeletopyze
https://doi.org/10.1016/j.cell.2016.07.028
https://doi.org/10.3389/fncel.2018.00248
https://doi.org/10.1371/journal.pbio.0040343
https://doi.org/10.1111/cgf.14320
https://doi.org/10.1090/qam/1668732
https://doi.org/10.1371/journal.pone.0069143
https://doi.org/10.1038/5692
https://doi.org/10.1109/TCBB.2008.32
https://doi.org/10.1523/JNEUROSCI.1302-06.2006
https://openaccess.thecvf.com/content_cvpr_2018/html/Haehn_Guided_Proofreading_of_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Haehn_Guided_Proofreading_of_CVPR_2018_paper.html
https://doi.org/10.1523/JNEUROSCI.1419-07.2007
https://doi.org/10.1016/j.neuron.2008.11.024
https://doi.org/10.1023/B:NEUR.0000044189.08240.a2
https://doi.org/10.1038/nmeth.3292
https://doi.org/10.1038/nmeth.2476
https://doi.org/10.1016/j.neuron.2020.08.030
https://doi.org/10.1038/nature08673
https://doi.org/10.1016/j.procs.2016.05.309
https://proceedings.neurips.cc/paper_files/paper/2021/file/d79c8788088c2193f0244d8f1f36d2db-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d79c8788088c2193f0244d8f1f36d2db-Paper.pdf


Syed et al. 10.3389/fcomp.2024.1156204

Frontiers in Computer Science 17 frontiersin.org

Jackson, J. G., O’Donnell, J. C., Takano, H., Coulter, D. A., and Robinson, M. B. (2014). 
Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes 
and position mitochondria near glutamate transporters. J. Neurosci. 34, 1613–1624. doi: 
10.1523/JNEUROSCI.3510-13.2014

Jackson, J. G., and Robinson, M. B. (2018). Regulation of mitochondrial dynamics in 
astrocytes: mechanisms, consequences, and unknowns. Glia 66, 1213–1234. doi: 
10.1002/glia.23252

Jain, V., Murray, J. F., Roth, F., Turaga, S., Zhigulin, V., Briggman, K. L., et al. (2007). 
Supervised learning of image restoration with convolutional networks. 2007 IEEE 11th 
International Conference on Computer Vision. 1–8

Januszewski, M., Kornfeld, J., Li, P. H., Pope, A., Blakely, T., Lindsey, L., et al. (2018). 
High-precision automated reconstructions of neurons with flood-filling networks. Nat. 
Methods 15, 605–610. doi: 10.1038/s41592-018-0049-4

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith, S. M. 
(2012). FSL. NeuroImage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Jorstad, A., Nigro, B., Cali, C., Wawrzyniak, M., Fua, P., and Knott, G. (2014). 
NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models 
derived from electron microscopy image stacks. Neuroinformatics 13, 83–92. doi: 
10.1007/s12021-014-9242-5

Joshi, S. H., Espinoza, R. T., Pirnia, T., Shi, J., Wang, Y., Ayers, B., et al. (2016). Structural 
plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major 
depression. Biol. Psychiatry 79, 282–292. doi: 10.1016/j.biopsych.2015.02.029

Joyce, J., Chalavadi, R., Chan, J., Tanna, S., Xenes, D., Kuo, N., et al. (2023). A novel 
semi-automated proofreading and mesh error detection pipeline for neuron extension. 
bioRxiv. doi: 10.1101/2023.10.20.563359. [Epub ahead of preprint].

Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A., 
Knowles-Barley, S., et al. (2015). Saturated reconstruction of a volume of neocortex. Cell 
162, 648–661. doi: 10.1016/j.cell.2015.06.054

Khakh, B. S., and Deneen, B. (2019). The emerging nature of astrocyte diversity. Annu. 
Rev. Neurosci. 42, 187–207. doi: 10.1146/annurev-neuro-070918-050443

Khakh, B. S., and Sofroniew, M. V. (2015). Diversity of astrocyte functions and 
phenotypes in neural circuits. Nat. Neurosci. 18, 942–952. doi: 10.1038/nn.4043

Khan, M. M. R., Siddique, M. A. B., Arif, R. B., and Oishe, M. R. (2018) ADBSCAN: 
adaptive density-based spatial clustering of applications with noise for identifying 
clusters with varying densities. 2018 4th International Conference on Electrical 
Engineering and Information & Communication Technology (iCEEiCT). Dhaka, 
Bangladesh: IEEE, pp. 107–111

Kim, J. G., Suyama, S., Koch, M., Jin, S., Argente-Arizon, P., Argente, J., et al. (2014). 
Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. 
Neurosci. 17, 908–910. doi: 10.1038/nn.3725

Kinney, J. P., Spacek, J., Bartol, T. M., Bajaj, C. L., Harris, K. M., and Sejnowski, T. J. 
(2013). Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal 
neuropil. J. Comp. Neurol. 521, 448–464. doi: 10.1002/cne.23181

Knott, G., Marchman, H., Wall, D., and Lich, B. (2008). Serial section scanning 
electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 
28, 2959–2964. doi: 10.1523/JNEUROSCI.3189-07.2008

Kohl, S. A. A., Romera-Paredes, B., Meyer, C., De Fauw, J., Ledsam, J. R., 
Maier-Hein, K. H., et al. (2018). A probabilistic U-Net for segmentation of ambiguous 
images. Advances in Neural Information Processing Systems Curran Associates, Inc. 
Available at: https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd
7e96172575f48dca3b-Abstract.html. (Accessed February 1, 2023).

Korogod, N., Petersen, C. C. H., and Knott, G. W. (2015). Ultrastructural analysis of 
adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife 4:e05793. 
doi: 10.7554/eLife.05793

Kosaka, T., and Hama, K. (1986). Three-dimensional structure of astrocytes in the rat 
dentate gyrus. J. Comp. Neurol. 249, 242–260. doi: 10.1002/cne.902490209

Kozachkov, L., Kastanenka, K. V., and Krotov, D. (2023). Building transformers from 
neurons and astrocytes. Proc. Natl. Acad. Sci. U.S.A. 120:e2219150120. doi: 10.1073/
pnas.2219150120

Kremer, J. R., Mastronarde, D. N., and McIntosh, J. R. (1996). Computer visualization 
of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76. doi: 10.1006/
jsbi.1996.0013

Kreshuk, A., Straehle, C. N., Sommer, C., Koethe, U., Cantoni, M., Knott, G., et al. 
(2011). Automated detection and segmentation of synaptic contacts in nearly isotropic 
serial electron microscopy images. PLoS One 6, 1–8. doi: 10.1371/journal.pone.0024899

Lee, T. C., Kashyap, R. L., and Chu, C. N. (1994). Building skeleton models via 3-D 
medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56, 
462–478. doi: 10.1006/cgip.1994.1042

Lee, K., Turner, N., Macrina, T., Wu, J., Lu, R., and Seung, H. S. (2019). Convolutional 
nets for reconstructing neural circuits from brain images acquired by serial 
section electron microscopy. Curr. Opin. Neurobiol. 55, 188–198. doi: 10.1016/j.
conb.2019.04.001

Lia, A., Henriques, V. J., Zonta, M., Chiavegato, A., Carmignoto, G., 
Gómez-Gonzalo, M., et al. (2021). Calcium signals in astrocyte microdomains, a decade 
of great advances. Front. Cell. Neurosci. 15, 1–7. doi: 10.3389/fncel.2021.673433

Lin, C., Liu, L., Li, C., Kobbelt, L., Wang, B., Xin, S., et al. (2022). SEG-MAT: 3D shape 
segmentation using medial axis transform. IEEE Trans. Vis. Comput. Graph. 28, 1–2444. 
doi: 10.1109/TVCG.2020.3032566

Malandain, G., Bertrand, G., and Ayache, N. (1993). Topological segmentation of 
discrete surfaces. Int. J. Comput. Vis. 10, 183–197. doi: 10.1007/BF01420736

Malzer, C., and Baum, M. (2020). A hybrid approach to hierarchical density-based 
cluster selection. 2020 IEEE International Conference on Multisensor Fusion and 
Integration for Intelligent Systems (MFI). 223–228

Manninen, T., Havela, R., and Linne, M. L. (2018). Computational models for 
calcium-mediated astrocyte functions. Front. Comput. Neurosci. 12:14. doi: 10.3389/
fncom.2018.00014

Marín, O., and Gleeson, J. G. (2011). Function follows form: understanding brain 
function from a genetic perspective. Curr. Opin. Genet. Dev. 21, 237–239. doi: 10.1016/j.
gde.2011.04.007

Matelsky, J. K., Johnson, E. C., Wester, B., and Gray-Roncal, W. (2022) Scalable graph 
analysis tools for the connectomics community. bioRxiv. doi: 10.1101/2022.06.01.494307. 
[Epub ahead of preprint].

Mathiisen, T. M., Lehre, K. P., Danbolt, N. C., and Ottersen, O. P. (2010). The 
perivascular astroglial sheath provides a complete covering of the brain microvessels: 
an electron microscopic 3D reconstruction. Glia 58, 1094–1103. doi: 10.1002/
glia.20990

Maynard, E. A., Schultz, R. L., and Pease, D. C. (1957). Electron microscopy of the 
vascular bed of rat cerebral cortex. Am. J. Anat. 100, 409–433. doi: 10.1002/
aja.1001000306

McHugh, T. L., Saykin, A. J., Wishart, H. A., Flashman, L. A., Cleavinger, H. B., 
Rabin, L. A., et al. (2007). Hippocampal volume and shape analysis in an older adult 
population. Clin. Neuropsychol. 21, 130–145. doi: 10.1080/13854040601064534

McInnes, L., and Healy, J. (2017). Accelerated hierarchical density based 
clustering. 2017 IEEE International Conference on Data Mining Workshops 
(ICDMW). 33–42.

McInnes, L., Healy, J., and Astels, S. (2017). Hdbscan: hierarchical density based 
clustering. J. Open Source Softw. 2:205. doi: 10.21105/joss.00205

Medvedev, N., Popov, V., Henneberger, C., Kraev, I., Rusakov, D. A., and Stewart, M. G. 
(2014). Glia selectively approach synapses on thin dendritic spines. Phil. Trans. R. Soc. 
B 369, 20140047–20140046. doi: 10.1098/rstb.2014.0047

Meijering, E., Carpenter, A. E., Peng, H., Hamprecht, F. A., and Olivo-Marin, J. C. 
(2016). Imagining the future of bioimage analysis. Nat. Biotechnol. 34, 1250–1255. doi: 
10.1038/nbt.3722

MICrONS ConsortiumBae, J. A., Baptiste, M., Bodor, A. L., Brittain, D., 
Buchanan, J., Bumbarger, D. J., et al. (2021) Functional connectomics spanning 
multiple areas of mouse visual cortex. bioRxiv. doi: 10.1101/2021.07.28.454025. 
[Epub ahead of preprint].

Mishra, A. (2017). Binaural blood flow control by astrocytes: listening to synapses and 
the vasculature. J. Physiol. 595, 1885–1902. doi: 10.1113/JP270979

Mohammed, H., Al-Awami, A. K., Beyer, J., Cali, C., Magistretti, P., Pfister, H., et al. 
(2018). Abstractocyte: a visual tool for exploring nanoscale astroglial cells. IEEE Trans. 
Vis. Comput. Graph. 24, 853–861. doi: 10.1109/TVCG.2017.2744278

Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M., Loomba, S., et al. 
(2019). Dense connectomic reconstruction in layer 4 of the somatosensory cortex. 
Science 366:eaay3134. doi: 10.1126/science.aay3134

Murphy-Royal, C., Ching, S., and Papouin, T. (2023). A conceptual framework for 
astrocyte function. Nat. Neurosci. 26, 1848–1856. doi: 10.1038/s41593-023-01448-8

Naik, H., Chan, A. H. H., Yang, J., Delacoux, M., Couzin, I., Kano, F., et al. (2023). 
3D-POP—an automated annotation approach to facilitate markerless 2D–3D tracking 
of freely moving birds with marker-based motion capture. 2023 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR). IEEE. 21274–21284.

Neville, A. C. (1993). Biology of fibrous composites: development beyond the cell 
membrane. Cambridge, UK: Cambridge University Press.

Nguyen, T. M., Thomas, L. A., Rhoades, J. L., Ricchi, I., Yuan, X. C., Sheridan, A., et al. 
(2023). Structured cerebellar connectivity supports resilient pattern separation. Nature 
613, 543–549. doi: 10.1038/s41586-022-05471-w

Ostroff, L. E., Manzur, M. K., Cain, C. K., and Ledoux, J. E. (2014). Synapses lacking 
astrocyte appear in the amygdala during consolidation of Pavlovian threat conditioning. 
J. Comp. Neurol. 522, 2152–2163. doi: 10.1002/cne.23523

Papouin, T., Ladépêche, L., Ruel, J., Sacchi, S., Labasque, M., Hanini, M., et al. (2012). 
Synaptic and extrasynaptic NMDA receptors are gated by different endogenous 
coagonists. Cell 150, 633–646. doi: 10.1016/j.cell.2012.06.029

Patrushev, I., Gavrilov, N., Turlapov, V., and Semyanov, A. (2013). Subcellular location 
of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication. Cell 
Calcium 54, 343–349. doi: 10.1016/j.ceca.2013.08.003

Pavan, M., and Pelillo, M. (2003). Dominant sets and hierarchical clustering. 
Proceedings 9th IEEE International Conference on Computer Vision (ICCV). 362–369.

Pavan, M., and Pelillo, M. (2006). Dominant sets and pairwise clustering. IEEE Trans. 
Pattern Anal. Mach. Intell. 29, 167–172. doi: 10.1109/TPAMI.2007.250608

https://doi.org/10.3389/fcomp.2024.1156204
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.1523/JNEUROSCI.3510-13.2014
https://doi.org/10.1002/glia.23252
https://doi.org/10.1038/s41592-018-0049-4
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1007/s12021-014-9242-5
https://doi.org/10.1016/j.biopsych.2015.02.029
https://doi.org/10.1101/2023.10.20.563359
https://doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.1146/annurev-neuro-070918-050443
https://doi.org/10.1038/nn.4043
https://doi.org/10.1038/nn.3725
https://doi.org/10.1002/cne.23181
https://doi.org/10.1523/JNEUROSCI.3189-07.2008
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html
https://doi.org/10.7554/eLife.05793
https://doi.org/10.1002/cne.902490209
https://doi.org/10.1073/pnas.2219150120
https://doi.org/10.1073/pnas.2219150120
https://doi.org/10.1006/jsbi.1996.0013
https://doi.org/10.1006/jsbi.1996.0013
https://doi.org/10.1371/journal.pone.0024899
https://doi.org/10.1006/cgip.1994.1042
https://doi.org/10.1016/j.conb.2019.04.001
https://doi.org/10.1016/j.conb.2019.04.001
https://doi.org/10.3389/fncel.2021.673433
https://doi.org/10.1109/TVCG.2020.3032566
https://doi.org/10.1007/BF01420736
https://doi.org/10.3389/fncom.2018.00014
https://doi.org/10.3389/fncom.2018.00014
https://doi.org/10.1016/j.gde.2011.04.007
https://doi.org/10.1016/j.gde.2011.04.007
https://doi.org/10.1101/2022.06.01.494307
https://doi.org/10.1002/glia.20990
https://doi.org/10.1002/glia.20990
https://doi.org/10.1002/aja.1001000306
https://doi.org/10.1002/aja.1001000306
https://doi.org/10.1080/13854040601064534
https://doi.org/10.21105/joss.00205
https://doi.org/10.1098/rstb.2014.0047
https://doi.org/10.1038/nbt.3722
https://doi.org/10.1101/2021.07.28.454025
https://doi.org/10.1113/JP270979
https://doi.org/10.1109/TVCG.2017.2744278
https://doi.org/10.1126/science.aay3134
https://doi.org/10.1038/s41593-023-01448-8
https://doi.org/10.1038/s41586-022-05471-w
https://doi.org/10.1002/cne.23523
https://doi.org/10.1016/j.cell.2012.06.029
https://doi.org/10.1016/j.ceca.2013.08.003
https://doi.org/10.1109/TPAMI.2007.250608


Syed et al. 10.3389/fcomp.2024.1156204

Frontiers in Computer Science 18 frontiersin.org

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., and Nichols, T. E. (Eds.) 
(2011). Statistical parametric mapping: the analysis of functional brain images. London, 
Burlington MA, San Diego: Elsevier.

Petzold, G. C., Albeanu, D. F., Sato, T. F., and Murthy, V. N. (2008). Coupling of neural 
activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 
58, 897–910. doi: 10.1016/j.neuron.2008.04.029

Plaza, S. M. (2016). “Focused proofreading to reconstruct neural connectomes from 
EM images at scale” in Deep learning and data labeling for medical applications. ed. G. 
Carneiro (Cham: Springer International Publishing), 249–258.

Polykretis, I., and Michmizos, K. P. (2022). The role of astrocytes in place cell 
formation: a computational modeling study. J. Comput. Neurosci. 50, 505–518. doi: 
10.1007/s10827-022-00828-6

Punjani, A., Rubinstein, J. L., Fleet, D. J., and Brubaker, M. A. (2017). cryoSPARC: 
algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 
290–296. doi: 10.1038/nmeth.4169

Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., and Spagnuolo, M. (2009a). Discrete 
Laplace–Beltrami operators for shape analysis and segmentation. Comput. Graph. 33, 
381–390. doi: 10.1016/j.cag.2009.03.005

Reuter, M., Wolter, F.-E., Shenton, M., and Niethammer, M. (2009b). Laplace–Beltrami 
eigenvalues and topological features of eigenfunctions for statistical shape analysis. 
Comput. Aided Des. 41, 739–755. doi: 10.1016/j.cad.2009.02.007

Rolnick, D., Meirovitch, Y., Parag, T., Pfister, H., Jain, V., Lichtman, J. W., et al. (2017). 
Morphological error detection in 3D segmentations. arXiv. doi: 10.48550/
arXiv.1705.10882. [Epub ahead of preprint].

Rota Bulò, S., and Pelillo, M. (2017). Dominant-set clustering: a review. Eur. J. Oper. 
Res. 262, 1–13. doi: 10.1016/j.ejor.2017.03.056

Rusakov, D. A. (2015). Disentangling calcium-driven astrocyte physiology. Nat. Rev. 
Neurosci. 16, 226–233. doi: 10.1038/nrn3878

Saalfeld, S. (2019). Computational methods for stitching, alignment, and artifact 
correction of serial section data. Methods Cell Biol. 152, 261–276. doi: 10.1016/bs.
mcb.2019.04.007

Salmon, C. K., Syed, T. A., Kacerovsky, J. B., Alivodej, N., Schober, A. L., Sloan, T. F. 
W., et al. (2023). Organizing principles of astrocytic nanoarchitecture in the mouse 
cerebral cortex. Curr. Biol. 33, 957–972.e5. doi: 10.1016/j.cub.2023.01.043

Sanchez, M., Moore, D., Johnson, E. C., Wester, B., Lichtman, J. W., and 
Gray-Roncal, W. (2022). Connectomics annotation metadata standardization for 
increased accessibility and queryability. Front. Neuroinform. 16, 1–7. doi: 10.3389/
fninf.2022.828458

Sander, J., Qin, X., Lu, Z., Niu, N., and Kovarsky, A. (2003). Automatic extraction of 
clusters from hierarchical clustering representations. K.-Y. Whang, J. Jeon, K. Shim and 
J. Srivastava Advances in Knowledge Discovery and Data Mining. Berlin: Springer. 
75–87.

Sarasua, I., Pölsterl, S., and Wachinger, C. (2022). Hippocampal representations for 
deep learning on Alzheimer’s disease. Sci. Rep. 12:8619. doi: 10.1038/s41598-022-12533-6

Sato, M., Bitter, I., Bender, M. A., Kaufman, A., and Nakajima, M. (2000). 
TEASAR: tree-structure extraction algorithm for accurate and robust skeletons. 
Proceedings the 8th Pacific Conference on Computer Graphics and Applications. 
281–449.

Savtchouk, I., Carriero, G., and Volterra, A. (2018). Studying axon-astrocyte functional 
interactions by 3D two-photon Ca2+ imaging: A practical guide to experiments and “big 
data” analysis. Front. Cell. Neurosci. 12:98. doi: 10.3389/fncel.2018.00098

Schlegel, P., and Kazimiers, T. (2021). “schlegelp/skeletor: version 1.1.0” in Zenodo. 
Available at: https://zenodo.org/records/5138552

Schmidt, M., Motta, A., Sievers, M., and Helmstaedter, M. (2024). RoboEM: 
automated 3D flight tracing for synaptic-resolution connectomics. Nat. Methods 21, 
908–913. doi: 10.1038/s41592-024-02226-5

Semyanov, A., Henneberger, C., and Agarwal, A. (2020). Making sense of astrocytic 
calcium signals—from acquisition to interpretation. Nat. Rev. Neurosci. 21, 551–564. 
doi: 10.1038/s41583-020-0361-8

Shapson-Coe, A., Januszewski, M., Berger, D. R., Pope, A., Wu, Y., Blakely, T., 
et al. (2021). A connectomic study of a petascale fragment of human cerebral cortex. 
bioRxiv. doi: 10.1101/2021.05.29.446289. [Epub ahead of preprint].

Shen, K., Fripp, J., Mériaudeau, F., Chételat, G., Salvado, O., Bourgeat, P., et al. (2012). 
Detecting global and local hippocampal shape changes in Alzheimer’s disease using 
statistical shape models. NeuroImage 59, 2155–2166. doi: 10.1016/j.neuroimage.2011. 
10.014

Shigetomi, E., Kracun, S., and Khakh, B. S. (2010). Monitoring astrocyte calcium 
microdomains with improved membrane targeted GCaMP reporters. Neuron Glia Biol. 
6, 183–191. doi: 10.1017/S1740925X10000219

Shigetomi, E., Patel, S., and Khakh, B. S. (2016). Probing the complexities of astrocyte 
calcium signaling. Trends Cell Biol. 26, 300–312. doi: 10.1016/j.tcb.2016.01.003

Siddiqi, K., Bouix, S., Tannenbaum, A., and Zucker, S. W. (2002). Hamilton–Jacobi 
skeletons. Int. J. Comput. Vis. 48, 215–231. doi: 10.1023/A:1016376116653

Silversmith, W., Zlateski, A., Bae, J. A., Tartavull, I., Kemnitz, N., Wu, J. (2022). 
Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and 
hierarchical downsampling. Front. Neural Circuits, 16, 977700. doi: 10.3389/
fncir.2022.977700

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., 
Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image 
analysis and implementation as FSL. NeuroImage 23, S208–S219. doi: 10.1016/j.
neuroimage.2004.07.051

Spacek, J. (1985). Three-dimensional analysis of dendritic spines III. Glial sheath. 
Anat. Embryol. 171, 245–252. doi: 10.1007/BF00341419

Spacek, J., and Lieberman, A. R. (1974). Ultrastructure and three-dimensional 
organization of synaptic glomeruli in rat somatosensory thalamus. J. Anat. 117, 
487–516

Srinivasan, R., Huang, B. S., Venugopal, S., Johnston, A. D., Chai, H., Zeng, H., et al. 
(2015). Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle 
responses in vivo. Nat. Neurosci. 18, 708–717. doi: 10.1038/nn.4001

Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E. M., Daunizeau, J., and 
Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage 49, 
3099–3109. doi: 10.1016/j.neuroimage.2009.11.015

Stephensen, H. J. T., Svane, A. M., Villanueva, C. B., Goldman, S. A., and Sporring, J. 
(2021). Measuring shape relations using r-parallel sets. J. Math. Imaging Vis. 63, 
1069–1083. doi: 10.1007/s10851-021-01041-3

Stevens, J. K., and Trogadis, J. (1984). “Computer-assisted reconstruction from serial 
electron micrographs: a tool for the systematic study of neuronal form and function” in 
Advances in cellular neurobiology. ed. S. Fedoroff (Amsterdam, Netherlands: Elsevier), 
341–369.

Sun, Q., Hu, Y., Deng, S., Xiong, Y., and Huang, Z. (2022). A visualization pipeline for 
in vivo two-photon volumetric astrocytic calcium imaging. J. Biomed. Res. 36, 358–367. 
doi: 10.7555/JBR.36.20220099

Thomas, C. I., Ryan, M. A., McNabb, M. C., Kamasawa, N., and Scholl, B. (2023) 
Astrocyte coverage of excitatory synapses correlates to measures of synapse structure 
and function in primary visual cortex. bioRxiv. doi: 10.1101/2023.12.01.569664. [Epub 
ahead of preprint].

Thompson, D. W. (1917). On growth and form. Cambridge, UK: Cambridge 
University Press.

Tønnesen, J., Hrabĕtová, S., and Soria, F. N. (2023). Local diffusion in the 
extracellular space of the brain. Neurobiol. Dis. 177:105981. doi: 10.1016/j.
nbd.2022.105981

Troidl, J., Warchol, S., Choi, J., Matelsky, J., Dhanyasi, N., Wang, X., et al. (2024). 
ViMO—visual analysis of neuronal connectivity motifs. IEEE Trans. Vis. Comput. 
Graph. 30, 748–758. doi: 10.1109/TVCG.2023.3327388

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., 
et al. (2010). Convolutional networks can learn to generate affinity graphs for 
image segmentation. Neural Comput. 22, 511–538. doi: 10.1162/neco.2009.10- 
08-881

Turner, N. L., Macrina, T., Bae, J. A., Yang, R., Wilson, A. M., Schneider-Mizell, C., 
et al. (2022). Reconstruction of neocortex: organelles, compartments, cells, circuits, and 
activity. Cell 185, 1082–1100.e24. doi: 10.1016/j.cell.2022.01.023

Urakubo, H., Bullmann, T., Kubota, Y., Oba, S., and Ishii, S. (2019). UNI-EM: an 
environment for deep neural network-based automated segmentation of neuronal 
electron microscopic images. Sci. Rep. 9:19413. doi: 10.1038/s41598-019-55431-0

van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., et al. (2013). Co-hierarchical 
analysis of shape structures. ACM Trans. Graph. 32, 1–10. doi: 10.1145/2461912.2461924

Ventura, R., and Harris, K. M. (1999). Three-dimensional relationships between 
hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906. doi: 10.1523/
JNEUROSCI.19-16-06897.1999

Verkhratsky, A., Parpura, V., Vardjan, N., and Zorec, R. (2019). “Physiology of 
astroglia” in Neuroglia in neurodegenerative diseases. eds. A. Verkhratsky, M. Ho, R. 
Zorec and V. Parpura (Singapore: Springer), 45–91.

Verkhratsky, A., Semyanov, A., and Zorec, R. (2020). Physiology of astroglial 
excitability. Function 1:zqaa016. doi: 10.1093/function/zqaa016

Villanueva, C. B., Stephensen, H. J. T., Mokso, R., Benraiss, A., Sporring, J., and 
Goldman, S. A. (2023). Astrocytic engagement of the corticostriatal synaptic cleft is 
disrupted in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. U.S.A. 
120:e2210719120. doi: 10.1073/pnas.2210719120

Vizcarra, J. C., Gearing, M., Keiser, M. J., Glass, J. D., Dugger, B. N., and 
Gutman, D. A. (2020). Validation of machine learning models to detect amyloid 
pathologies across institutions. Acta Neuropathol. Commun. 8:59. doi: 10.1186/
s40478-020-00927-4

von Deuster, C., Sammut, E., Asner, L., Nordsletten, D., Lamata, P., Stoeck, C. T., et al. 
(2016). Studying dynamic myofiber aggregate reorientation in dilated cardiomyopathy 
using in vivo magnetic resonance diffusion tensor imaging. Circ. Cardiovasc. Imaging 
9:e005018. doi: 10.1161/CIRCIMAGING.116.005018

https://doi.org/10.3389/fcomp.2024.1156204
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.1016/j.neuron.2008.04.029
https://doi.org/10.1007/s10827-022-00828-6
https://doi.org/10.1038/nmeth.4169
https://doi.org/10.1016/j.cag.2009.03.005
https://doi.org/10.1016/j.cad.2009.02.007
https://doi.org/10.48550/arXiv.1705.10882
https://doi.org/10.48550/arXiv.1705.10882
https://doi.org/10.1016/j.ejor.2017.03.056
https://doi.org/10.1038/nrn3878
https://doi.org/10.1016/bs.mcb.2019.04.007
https://doi.org/10.1016/bs.mcb.2019.04.007
https://doi.org/10.1016/j.cub.2023.01.043
https://doi.org/10.3389/fninf.2022.828458
https://doi.org/10.3389/fninf.2022.828458
https://doi.org/10.1038/s41598-022-12533-6
https://doi.org/10.3389/fncel.2018.00098
https://zenodo.org/records/5138552
https://doi.org/10.1038/s41592-024-02226-5
https://doi.org/10.1038/s41583-020-0361-8
https://doi.org/10.1101/2021.05.29.446289
https://doi.org/10.1016/j.neuroimage.2011.10.014
https://doi.org/10.1016/j.neuroimage.2011.10.014
https://doi.org/10.1017/S1740925X10000219
https://doi.org/10.1016/j.tcb.2016.01.003
https://doi.org/10.1023/A:1016376116653
https://doi.org/10.3389/fncir.2022.977700
https://doi.org/10.3389/fncir.2022.977700
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1007/BF00341419
https://doi.org/10.1038/nn.4001
https://doi.org/10.1016/j.neuroimage.2009.11.015
https://doi.org/10.1007/s10851-021-01041-3
https://doi.org/10.7555/JBR.36.20220099
https://doi.org/10.1101/2023.12.01.569664
https://doi.org/10.1016/j.nbd.2022.105981
https://doi.org/10.1016/j.nbd.2022.105981
https://doi.org/10.1109/TVCG.2023.3327388
https://doi.org/10.1162/neco.2009.10-08-881
https://doi.org/10.1162/neco.2009.10-08-881
https://doi.org/10.1016/j.cell.2022.01.023
https://doi.org/10.1038/s41598-019-55431-0
https://doi.org/10.1145/2461912.2461924
https://doi.org/10.1523/JNEUROSCI.19-16-06897.1999
https://doi.org/10.1523/JNEUROSCI.19-16-06897.1999
https://doi.org/10.1093/function/zqaa016
https://doi.org/10.1073/pnas.2210719120
https://doi.org/10.1186/s40478-020-00927-4
https://doi.org/10.1186/s40478-020-00927-4
https://doi.org/10.1161/CIRCIMAGING.116.005018


Syed et al. 10.3389/fcomp.2024.1156204

Frontiers in Computer Science 19 frontiersin.org

Wang, Y., DelRosso, N. V., Vaidyanathan, T. V., Cahill, M. K., Reitman, M. E., 
Pittolo, S., et al. (2019). Accurate quantification of astrocyte and neurotransmitter 
fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci. 22, 
1936–1944. doi: 10.1038/s41593-019-0492-2

White, E. L., and Rock, M. P. (1980). Three-dimensional aspects and synaptic 
relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin 
sections. J. Neurocytol. 9, 615–636. doi: 10.1007/BF01205029

Witcher, M. R., Kirov, S. A., and Harris, K. M. (2007). Plasticity of perisynaptic 
astroglia during synaptogenesis in the mature rat hippocampus. Glia 55, 13–23. doi: 
10.1002/glia.20415

Witcher, M. R., Park, Y. D., Lee, M. R., Sharma, S., Harris, K. M., and Kirov, S. A. 
(2010). Three-dimensional relationships between perisynaptic astroglia and human 
hippocampal synapses. Glia 58, 572–587. doi: 10.1002/glia.20946

Wu, Y., Dai, Y., Lefton, K. B., Holy, T. E., and Papouin, T. (2024) STARDUST: a 
pipeline for the unbiased analysis of astrocyte regional calcium dynamics. bioRxiv. doi: 
10.1101/2024.04.04.588196

Xenes, D., Kitchell, L. M., Rivlin, P. K., Brodsky, R., Gooden, H., Joyce, J., et al. (2022) 
NeuVue: a framework and workflows for high-throughput electron microscopy 
connectomics proofreading. bioRxiv. doi: 10.1101/2022.07.18.500521

Zhao, T., Olbris, D. J., Yu, Y., and Plaza, S. M. (2018). NeuTu: software for collaborative, 
large-scale, segmentation-based connectome reconstruction. Front. Neural Circuits 
12:101. doi: 10.3389/fncir.2018.00101

Zung, J., Tartavull, I., Lee, K., and Seung, H. S. (2017). An error detection and 
correction framework for connectomics. I. Guyon. Advances in Neural Information 
Processing Systems. Curran Associates, Inc. Available at: https://proceedings.
neurips.cc/paper_files/paper/2017/file/4500e4037738e13c0c18db508e18d483-Paper.pdf

https://doi.org/10.3389/fcomp.2024.1156204
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.1038/s41593-019-0492-2
https://doi.org/10.1007/BF01205029
https://doi.org/10.1002/glia.20415
https://doi.org/10.1002/glia.20946
https://doi.org/10.1101/2024.04.04.588196
https://doi.org/10.1101/2022.07.18.500521
https://doi.org/10.3389/fncir.2018.00101
https://proceedings.neurips.cc/paper_files/paper/2017/file/4500e4037738e13c0c18db508e18d483-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/4500e4037738e13c0c18db508e18d483-Paper.pdf

	Beyond neurons: computer vision methods for analysis of morphologically complex astrocytes
	1 Introduction
	1.1 Applying computer vision methods to study astrocyte nanostructure
	1.2 The problem of astrocytic form

	2 Segmentation and reconstruction of astrocytic nanostructure
	2.1 Automated segmentation in the brain
	2.2 Unique challenges of astrocytic ultrastructure
	2.3 Segmentation of astrocytes
	2.4 Proofreading

	3 Analysis of astrocytic shape and nanostructure
	3.1 Shape analysis for understanding astrocytic structure
	3.2 Medial representations for parsing astrocytic shape and topology
	3.3 Spatial relationships between astrocytes and synapses
	3.4 Mapping distance and object distribution in convoluted intracellular space
	3.5 Spatial clustering

	4 Future directions: bridging structure and function
	5 Conclusion
	Author contributions
	Funding

	References

