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Emotion recognition from MIDI
musical file using Enhanced
Residual Gated Recurrent Unit
architecture

V. Bhuvana Kumar and M. Kathiravan*

Computer Science and Engineering, Hindustan Institute of Technology and Science, Chennai, India

The complex synthesis of emotions seen in music is meticulously composed

using a wide range of aural components. Given the expanding soundscape

and abundance of online music resources, creating a music recommendation

system is significant. The area of music file emotion recognition is particularly

fascinating. The RGRU (Enhanced Residual Gated Recurrent Unit), a complex

architecture, is used in our study to look at MIDI (Musical Instrument and Digital

Interface) compositions for detecting emotions. This involves extracting diverse

features from the MIDI dataset, encompassing harmony, rhythm, dynamics, and

statistical attributes. These extracted features subsequently serve as input to

our emotion recognition model for emotion detection. We use an improved

RGRU version to identify emotions and the Adaptive Red Fox Algorithm (ARFA) to

optimize the RGRU hyperparameters. Our suggested model o�ers a sophisticated

classification framework that e�ectively divides emotional content into four

separate quadrants: positive-high, positive-low, negative-high, and negative-low.

The Python programming environment is used to implement our suggested

approach. We use the EMOPIA dataset to compare its performance to the

traditional approach and assess its e�ectiveness experimentally. The trial results

show better performance compared to traditional methods, with higher accuracy,

recall, F-measure, and precision.

KEYWORDS

emotion recognition, Musical Instrument Digital Interface, Enhanced Residual Gated

Recurrent Unit, adaptive Red Fox algorithm, EMOPIA

1 Introduction

The essence of music is deeply intertwined with emotion, as the emotional landscape of a

musical piece can shift dramatically with variations in intensity, speed, and length. According

to numerous studies (Juslin and Timmers, 2010; Ferreira and Whitehead, 2021), the close

connection between musical structures and emotions has received a lot of attention in recent

research, particularly in the fields of affectivemusic composition andmusic emotion analysis.

These investigations underscore the necessity of understanding how music’s structural

components influence emotional expression, a critical aspect for machines to effectively

communicate and interact with human emotions (Koh and Dubnov, 2021). A song’s mood

can elicit a wide range of emotional responses from the listener (Krumhansl, 2002), with

musical conventions like scale modes, dissonance, melody motion, and rhythm consistency

playing a crucial role. The belief that the fundamental structure of music is the key to

eliciting emotion has increased interest in music emotion recognition (MER) research (Chen

et al., 2015; Panda et al., 2018). However, this field still faces numerous challenges and
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unresolved issues, particularly in the identification of emotions in

audio music signals. A significant hurdle in MER is the subjective

nature of emotional interpretation, as individuals may experience

varying emotions when listening to the same piece of music.

Another challenge lies in the need for standardized, high-quality

audio emotion databases. Most musical notation software supports

the MIDI format, which is common in symbolic music (Hosken,

2014; Li et al., 2018) and encapsulates the messages needed

to create music with electronic instruments (Good, 2001; Renz,

2002; Nienhuys and Nieuwenhuizen, 2003). Recognizing emotions

in MIDI musical files is crucial for enhancing the emotional

impact of music, personalizingmusical experiences, enablingmusic

therapy, and advancing our understanding of music’s emotional

components (Luck et al., 2008; Nanayakkara et al., 2013). However,

variations in emotion recognition can occur due to the dependency

on the structure and properties of theMIDI file (Bresin and Friberg,

2000; Modran et al., 2023). MIDI files mostly show technical

things like tempo and musical notation. They might not have the

expressive range that performance dynamics, tone, and nuance can

show. Additionally, the availability and quality of labeled emotional

MIDI datasets may be limited (Shou et al., 2013). To address these

challenges, this study introduces several contributions. We aim to

recognize and extract statistical, harmonic, rhythmic, and dynamic

elements from MIDI files. We use these features to improve a

recognition model that is based on a better residual gated recurrent

unit architecture. This model includes an adaptive algorithm,

’Neurons’, for optimizing hyper-parameters like learning rate and

GRU count. The proposed paradigm categorizes emotions into four

quadrants: positive-high, positive-low, negative-high, and negative-

low. It was implemented on the Python platform and evaluated

using the EMOPIA dataset. The effectiveness of this approach

is assessed using metrics such as accuracy, F-measure, precision,

and recall.

2 Related works

The work at Panda et al. (2018) suggested adding different

audio elements that are emotionally significant to fix the problems

with current technology and get around their limitations. The

researchers analyzed established frameworks and categorized their

often-used audio elements into eight distinct musical groupings.

A public dataset of 900 audio samples with subjective comments

organized according to Russell’s emotion quadrants was generated

to assess their research efforts. Twenty cycles of 10-fold cross-

validation were used to test the audio features that were already

there (baseline) and the new features that were suggested for the

novel. The F1-score was a noticeable 9% higher, or 76.4% higher,

than the F1-score that was obtained using the proposed features

along with the same number of baseline-only characteristics.

The methodology has limitations in properly detecting alterations

in emotional states. The paper Bhatti et al. (2016) advocated

the utilization of brain signals as a means to discern human

emotions in reaction to audio music tracks. The methodology

utilized the readily accessible Narosky E.E.G. equipment to capture

electroencephalogram (EEG) waves. In a controlled environment,

individuals were instructed to engage in passive listening to audio

recordings of music, with each genre lasting for 1min. The main

objectives of this study were to ascertain the age cohorts that

exhibited greater receptivity to music and to assess the influence

of different musical genres on human emotions. To accurately

identify human emotions, the classifier included characteristics

derived from three distinct domains: time, frequency, and wavelet.

These features were retrieved from recorded EEG data. The

study’s findings unequivocally demonstrated that utilizing a multi-

layer perceptron (MLP) model, incorporating a fusion of brain

signal characteristics yielded remarkably high levels of accuracy

in discerning human emotional states in response to audio-music

stimuli. The article Hsu et al. (2017) introduced a computerized

system that utilizes electrocardiogram (ECG) data to detect and

classify human emotions. Firstly, the authors employ a musical

induction technique to elicit the genuine emotional states of

individuals and collect their ECG signals in a non-controlled

laboratory setting. Subsequently, an algorithm was developed to

enable automated detection of emotions by analyzing ECG signals,

specifically targeting the emotional responses evoked in individuals

through music perception. Using time-, frequency-, and non-

linear methods to extract physiological ECG features allowed

for the identification of emotion-relevant components and their

correlation with emotional states. After that, a sequential forward

floating selection-kernel-based class separability-based (SFFS-

KBCS-based) feature selection algorithm is created to effectively

find important ECG features connected to emotions and reduce the

size of the chosen features. Furthermore, generalized discriminant

analysis (GDA) is employed in this process. The research work

Ghatas et al. (2022) introduced a method for automating piano

difficulty estimation in symbolic music using deep neural networks.

The researchers employ a computational model to replicate a piano

recital based on a symbolic music MIDI file. Furthermore, the

components of the piano roll were disassembled. Ultimately, a

model was trained to utilize components assigned to difficulty

labels. Our models were evaluated using both full-track and

partial-track difficulty classification problems. Numerous deep

convolutional neural networks have been both theorized and

empirically examined. Combined with manually crafted features,

the proposed hybrid deep model demonstrated exceptional

performance, achieving a state-of-the-art F1 score of 76.26%.

This achievement represents a significant improvement, with a

relative F1 score gain of over 10% compared to previous studies.

In their publication, Hung et al. (2021) introduced a novel

public dataset called EMOPIA, which consists of a medium-

scale collection of pop piano recordings accompanied by emotion

descriptors. The given dataset includes a variety of types of

data, such as MIDI transcriptions of compositions that only use

piano, as well as emotional annotations at the clip level that are

organized into four separate groups. The authors were provided

with prototypes of models for categorizing musical emotions at

the clip level and generating symbolic music based on emotions.

These models were trained on the dataset and employed state-of-

the-art techniques for their respective tasks. The findings indicated

that the transformer-based model demonstrated a limited ability to

generate music that elicited a predetermined emotional response.

The researchers accurately categorized emotions in both four

quadrant and valence-wise classifications. The workMa et al. (2022)
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proposes a music creation model that incorporates emotional

aspects and structural elements to make music. For making music,

the suggested method used a conditional auto-regressive generative

Gated Recurrent Unit (GRU) model. The authors collaborate to

collectively optimize a perceptual loss and a cross-entropy loss

throughout the training procedure. This optimization aims to

enhance the emotional expression of the generated MIDI samples,

closely resembling the original samples’ emotional qualities. The

results of both subjective and objective tests show that this

model can create emotionally moving musical pieces that are

very close to the structures that were given. Nevertheless, the

system must build a comprehensive framework for evaluating the

emotional impact of music. In the study Abboud and Tekli (2020),

we introduced MUSEC, an innovative algorithmic framework

designed for autonomous music sentiment-based expression and

composition. The system identified six primary human emotions

expressed in MIDI musical files: anger, fear, joy, love, sadness,

and surprise. Subsequently, it generated novel polyphonic (pseudo)

thematic compositions that properly conveyed the emotions above.

The study’s primary objective was to create a music composer

grounded in sentimentality. The effectiveness of MUSEC was

assessed in terms of feature parsing, sentiment expression, and

music composition time. The technique has shown promise across

various domains, such as music information retrieval, music

composition, aided music therapy, and emotional intelligence.

The research Malik et al. (2017) suggested a way to use layered

convolution and recurrent neural networks to continuously predict

emotions in the V-A space, which is only two dimensions. After

setting up a single convolutional neural network (CNN) layer, the

researchers used two separate types of recurrent neural networks

(RNNs). These had each been trained in a different way to deal

with arousal and valence. The methodology was evaluated using

the “Media Eval 2015 Emotion in Music” dataset. To test how well

the proposed Convolutional Recurrent Neural Network (CRNN)

worked, sequences of different lengths were used. The results

indicated that shorter durations exhibited superior performance

compared to longer durations. The CRNN model shows that it can

get information similar to baseline features by only usingMel-band

features. Log Mel-band energy characteristics are suggested as a

substitute for the baseline features.

3 Proposed methodology

In this study, the methodology for detecting emotions from

MIDI musical files begins with extracting features from the dataset,

which is crucial for the model’s analysis, as shown in Figure 1.

These features are fed into a new recognition model called an

augmented residual gated recurrent unit. This model is made to

accurately detect emotions. A key part of this process is optimizing

the GRU’s hyper-parameters using the adaptive Red Fox algorithm,

enhancing the model’s efficiency. The methodology culminates in

classifying emotions into four quadrants: positive-high, positive-

low, negative-high, and negative-low, allowing for a detailed

understanding of the emotional spectrum in the music. This

approach ensures precision in interpreting the emotional content

of MIDI files, significantly contributing to emotion recognition

in music. Enhanced RGRU MIDI musical file Emotion class PH:

Positive-high PL: Positive-low NH: Negative-high NL: Negative-

low Negative-low Feature extraction Hyperparameters Adaptive

Red Fox algorithm.

3.1 Symbolic musical representation

Symbolic musical representation, similar to languagemodeling,

involves converting MIDI files into discrete sequences of notes,

mirroring musical events in a format akin to vocabulary (YGhatas

et al., 2022). Tools like PrettyMIDI are used to extract specific

details, such as each note’s pitch, velocity, and duration. These

details are then shown visually in Figure 2 using a set of pitch,

duration, and hold elements. This is done through one-hot

encoding, which turns complicated musical data into a format

that is easy to understand. This method not only captures basic

note elements but also encompasses key musical structures like

melody, harmony, rhythm, and timbre, which are essential for

understanding the emotional impact of music (Coutinho and

Cangelosi, 2011).

3.1.1 MIDI standard
The Musical Instrument Digital Interface (MIDI) is a symbolic

music format that stands apart by recording musical performances

using high-level music features, diverging from traditional audio

formats that rely on low-level sound features. In MIDI, the focus

is on abstractions like musical keys and chord progressions. A

MIDI file typically consists of multiple tracks, each capable of

independently playing a different instrument, providing a rich,

layered musical experience (Sethares et al., 2005). Central to the

MIDI format is the concept of the “tick,” which serves as the

fundamental time unit. This unit is crucial in regulating all aspects

of timing in a MIDI file, from the phases of notes to the intervals

between them, ensuring a precise and accurate representation of

musical timing.

3.2 Music feature extraction

Initially, the MIDI dataset’s characteristics are extracted.

There are rhythmic characteristics, dynamic characteristics, and

statistical aspects.

3.2.1 Harmony features
Musical tones may be utilized to observe harmonics. The

spectrogram of monophonic music reveals the harmonics with

great clarity (Pickens and Crawford, 2002). In polyphony, where

so many instruments and vocalists are used simultaneously, it

is challenging to detect harmonics. A method for calculating

harmonic distributions is the solution to this conundrum.

Hs(f ) =

Mh
∑

k=1

min
(∥

∥S(f ) ‖,
∥

∥S(kf )
∥

∥

)

(1)

Here, Mh→ the maximum number of harmonics to be

considered. The most prevalent incidence of the phenomenon
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FIGURE 1

Emotion classification workflow for MIDI files.

f→ Key frequency

S→ The source signal’s short-time Fourier transform (STFT).

The min function is applied to the equation so that only the

powerful fundamentals and harmonics produce a significant HS

value. After calculating the average of each frequency using (1), the

standard deviation of each frequency was calculated.

3.2.2 Rhythmic features
Rhythm is a fundamental aspect of music, encompassing

key rhythmic characteristics like tempo and cadence, which

are essential in defining a musical piece’s character. At the

heart of musical cadence lies the beat, serving as the primary

rhythm indicator. Tempo, a critical component of rhythm, is

conventionally measured in beats per minute (BPM). This metric

sets the overall rhythmic framework, dictating the speed and flow

of the music (Fernández-Sotos et al., 2016). In practice, several

techniques are employed to gauge the rate and consistency of

these rhythmic pulses. To accurately determine the regularity

and pace of the tempo, two main metrics are used: the overall

tempo, which is quantified in pulses per minute, and the standard

deviation of the intervals between beats. These measures together

provide a comprehensive understanding of the tempo’s stability and

variation, thereby offering insights into the rhythmic structure that

underpins the musical composition.

3.2.3 Dynamic features
Dynamics in music are deciphered by examining the pitch

salience of every note in relation to others in the composition. Each
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FIGURE 2

Components of MIDI data structure.

FIGURE 3

The structure of enhanced RGRU’s neurons.

note’s intensity and its variation are determined by comparing it

with the mean and standard deviation of all notes. Consequently,

note intensities are classified as high (vigorous), medium, or

low (smooth). Dynamic attributes, including RMS Energy, Low

Energy Rate, Instantaneous Level, Frequency and Phase, Loudness,

Timbral Width, Volume, Sound Balance, Note Intensity Statistics,

and Note Intensity Distribution, encapsulate the essence of

dynamic levels like forte and piano. Further nuances in dynamics

are captured by metrics such as Transition Ratios, Crescendo, and

Decrescendo (Panda et al., 2020).

3.3 Enhanced Residual Gated Recurrent
Unit architecture

The advanced RGRU, a refined version of the GRU, is depicted

in Figure 3, providing a detailed visual representation of its

neural architecture. In this study, the recognition model for

emotion detection in MIDI files employs an RGRU, into which

extracted features are fed. The RGRU is designed to overcome the

limitations of traditional GRU models, such as slow convergence

and inadequate learning efficacy, particularly in handling complex

time series data. Its innovative structure uses feedback from the

reset gate to modify the update gate, enhancing the functionality

and reducing redundant state information. This modification not

only speeds up convergence but also significantly improves the

model’s learning capacity.

Assuming that the input sequence is (x1, x2,..., xt), followed by

an update of the gate at t and a reset of the gate, the formula for

calculating the standard, enhanced RGRU unit output is as follows:

rt = σ
(

Vr ∗
[

ht−1, xt
])

(2)

zt = σ
(

Vz ∗
[

ht−1, xt ∗ rt
])

(3)

nt = tanh
(

V ∗
[

rt ∗ ht−1, xt
])

(4)

ht = (1− zt) ∗ ht−1 + zt ∗ nt (5)

yt = σ
(

V0 ∗ ht
)

(6)

The sigma “σ” typically represents the standard deviation, a

measure of the amount of variation or dispersion in a set of values.

While “V” represents the MIDI volume or velocity “V0” denotes

the initial value of a variable represented by “V”.

The formula’s symbols ztrt have the same significance as

standard GRU—the neurons. According to Figure 3, the enhanced

RGRU neuron differs from the GRU neuron in that it is multiplied

by the previous time at the update gate to conceal the state weight,

allowing the reset gate to rescreen the current input data. In other

words, the output of the reset gate is used to modify the update gate

to optimize the neuron structure and Equation (3), the enhanced

RGRU. The neuron structure of the neural network is more logical

than that of the GRU; the concealed state at each instant can be

made more transparent, and gradient attenuation is moderately

reduced. As a consequence, the RGRU was upgraded. The model’s

learning efficacy and prediction accuracy have improved, and it

can maintain a greater dependence on distance information. The

deep-enhanced RGRU neural network comprises input, output,

and hidden layers. Neurons make up the concealed layers of the

RGRU. Refining the GRU model’s learning mechanism enhances

the recursive transmission of information between neurons and the

capacity to retain information.
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FIGURE 4

Fox and Rabbits interaction simulation.

3.3.1 Adaptive Red Fox algorithm
The ARFA is integrated to fine-tune the RGRU’s

hyperparameters, drawing inspiration from the hunting behavior

of red foxes. This behavior, characterized by searching for prey in

snow, is the foundation of the FOX algorithm (Cervený et al., 2011;

Mohammed and Rashid, 2023). However, the red fox algorithm

tends to converge prematurely, often getting stuck in local

optima. To counter this, the Levy Flight method is incorporated,

introducing diversity among search agents. This addition helps in

avoiding local minima, thus enhancing the overall search efficiency

and effectiveness of the algorithm. Consequently, combining the

Levy Flight mechanism with the Red Fox algorithm enhances the

optimization effectiveness. Figure 4 illustrates the hunting behavior

of the red fox.

The procedural steps are as follows:

• In the snow on the ground obstructing the prey’s vision, the

red fox resorts to random hunting.

• The red fox relies on ultrasonography emitted by the prey to

locate it, followed by a period of approach.

• By listening to the prey’s sounds and analyzing time intervals,

the red fox determines the distance between itself and the prey.

• The establishing the prey’s distance, the red fox calculates the

required jump, proceeding with random walking based on the

shortest distance and optimal position.

The steps involved in Adaptive Red Fox Algorithm are

explained as follows:

(i) Initialization

The population, known as the Y matrix, is initially initialized

by FOX. Red foxes’ positions are represented by a Y. Here,

FIGURE 5

Distribution of di�erent emotions on arousal-valence space.

hyperparameters such as GRU. Neurons (Gn) and the learning rate

(l) should be considered solutions in this study.

(ii) Fitness function

Then, standard benchmark functions are used to assess the

fitness of each search agent after each cycle. In order to find the best

fitness () and matching optimal location, we compare the fitness

values of individual search agents, represented by rows in an X

matrix, to the fitness values of all other agents. The fitness of the

previous rowFiti through the course of iterations is used. Fitness

function (Fitn) can be calculated by using:
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Accuracy, TP - true positive, FP- false positive, TN- true

negative and FN- false negative. These values are crucial for

calculating various performance metrics.

Fit n = Max
(

Accuracy
)

(7)

As an estimation of the accuracy, Accuracy =

TN + TP

TP + FP + TN + FN
(8)

The formula (8) is used to measure the overall correctness

of the model. Similarly, the following metrics are also

successfully calculated:

Precision: TP/(TP+ FP). This indicates the proportion of positive

identifications that were actually correct.

Recall (Sensitivity): TP/(TP + FN). This shows the proportion of

actual positives that were correctly identified.

F-Measure (F1 Score): 2 ∗ (Precision ∗ Recall)/(Precision +

Recall). This is the harmonic mean of precision and recall,

providing a balance between the two.

(iii) Update the solution

Exploitation Phase: This exploitation stage’s random variable value

is [0, 1]. Thus, the red fox’s updated location must be determined

while the random number is more significant than 0.18. Calculate

the fox’s distance from its prey (dpiter), sound’s travel distance

(dsiter), and jumping value (jiter) to update its location. To compute

the distance between the sound and the red fox (dsiter), use

the formula:

dsiter = Senv ∗ tstiter (9)

Sound travels Senv at 343 meters per second in the

atmospheretstiter , a random value between 0 and 1. The iteration

(iter) parameter ranges from 1 to 500. The distance between the fox

(dsiter) and prey is calculated by halving (dpiter) and is given by:

dpiter = dsiter ∗ 0.5 (10)

The red fox must move after estimating the distance between it

and the prey to jump and seize it. The fox must calculate its jump

height (jiter) by:

jiter = 0.5 ∗ 9.81 ∗ T2 (11)

To equal the average sound travel time, 9.81 equals gravitational

acceleration squared by the jump’s up-and-down steps. If a random

value between 0 and 1 is more critical than 0.18, the red fox’s

new location is found using Equations (14) and (15). Only one is

executed per iteration due to the p condition. The revised position

is calculated using equation (14) if it is more significant than

0.18. Equations determine the current position if the result is less

than 0.18 (15). The variable ranges from [0, 0.18] to [0.19, 1].

These values are based on a red fox’s leaps toward or away from

the northeast. The red fox’s new location is estimated using the

equation below.

Y(it+1) = dpiter ∗ jiter ∗ C1 (12)

Y(it+1) = dpiter ∗ jiter ∗ C2 (13)

The value 0.18 was empirically determined to optimize the

algorithm’s performance, ensuring a balanced and effective search

mechanism in the exploitation phase of the Adaptive Red Fox

Algorithm. This threshold value is a key factor in the algorithm’s

ability to accurately and efficiently mimic the strategic hunting

pattern of a red fox.

Exploration Phase: During this phase, a fox randomly pursues

the best location so far to regulate its randomwalking. At this stage,

the fox could not jump because it had to wander throughout the

search area in pursuit of prey. The search is controlled to ensure that

the fox wanders randomly to the ideal location using the minimal

time variable minTv and the variable z. Following that, the average

time t is determined by dividing Tt by 2. Equations (15) and (16)

calculate the minTvz and variables. Equation (14) can be used to

calculate the time transitionTt .

Tt =
sum (tstiter (i, :))

Dimension
(14)

minTv = Min (Tt) (15)

z = 2 ∗

(

iter −

(

1

MaxTiter

))

(16)

Use this method tomake sure that the fox checks out the food in

a randomway. The best answer (Yiter) found significantly affects the

exploration phase. The fox’s approach to exploring the search space

Y(it+1)as it looks for a new place to go is shown in Equation (17).

Y(it+1) = Yit ∗ rand(1,Dimensiom) ∗MinT ∗ z (17)

Levy flight:When Levy Flight (LF) is implemented, it optimizes

the diversity of search agents, ensuring that the algorithm will

effectively explore a position while achieving the lowest local

avoidance possible.

EY(it+1) = EYiter + µ sign
[

rand − 1/2
]

⊕ levy (18)

Here, it represents mean entry-wise multiplication, EYiter is the

ith Fox location at iteration, µ is a uniformly distributed random

value, and finally denotes a random number falling between [0,

1].sign
[

rand − 1/2
]

I only had three values, which were 1, 0, and 1.

The Levy Flight produced the following randomwalk distributions.

levy ∼ u = t−λ , 1 < λ ≤ 3 (19)

Levy flight step lengths sl are as follows:

sl =
µ

|v|
1�β

(20)
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λ is constructed using the formula for λ = 1 + β

whereβ = 1.5 andµ = N(0, σ 2
µ) the identical normal stochastic

distributions with

σµ =

[

Ŵ (1+ β) x sin(π x β/2)

Ŵ
(

((1+ β/2)) x β x2(β−1)/2
)

]

and σv = 1 (21)

Incorporating the Levy Flight mechanism into the search

process introduces a diversity that allows for a more comprehensive

exploration of the solution space, thereby improving the

effectiveness of the overall optimization process.

(iv) Termination

The above phases are continued until the optimal solution or

optimal weights of RGRU are reached. Otherwise, the algorithm

will be terminated. Levy Flight will significantly improve the

Red Fox algorithm’s search capabilities and protect against

local minima.

4 Result and discussion

The implementation of our proposed emotion recognition

technique was carried out using Python. In this study, we focused

on checking how computationally efficient different processing

steps are in the Python environment, such as training and

classification. For the assessment, we utilized the Classical Music

MIDI dataset, featuring works from nineteen renowned composers,

sourced from Piano MIDI. This offered a wide variety of classical

piano MIDI files, some of which had audio versions to accompany

the playing of the scores. In our methodology, 20% of the

dataset was dedicated to evaluating the generation model, with

the remaining 80% used for training. Section 4.2 details the

performance analysis of the model.

4.1 Dataset analysis

The EMOPIA dataset that was used in this study gives a lot of

information about each sample, such as related data, segmentation

annotations, and Jensen-Shannon divergence for different emotion

quadrant pairs. To facilitate the use of MusPy, MIDI data has

been incorporated into the library. However, due to copyright

constraints, audio files are not directly released; instead, YouTube

links are provided for access. The availability of these songs is

subject to the copyright laws of the respective countries and

the decisions of the rights holders regarding their availability on

the platform.

The study delves into an array of musical elements that are

instrumental in shaping the emotions experienced by listeners.

The study aims to find out how the different MIDI features are

distributed across the four emotional quadrants in order to figure

out how these musical features are related to emotions in EMOPIA.

The study picks out and shows the most distinguishing features

of the different aspects that were looked at, giving us information

about the most important parts of music that affect how we feel.

The frequency and intensity of note occurrences serve to

measuremusic arousal, as depicted in Figure 5. This is gauged using

three metrics: note length, note density, and note velocity. Note

density is the number of notes per beat, and note length is the

average duration of a note within a beat. Note velocity, obtained

from MIDI data, reflects the strength of each note. These metrics

are essential in understanding the music’s rhythmic and dynamic

properties, corresponding to the emotional states.

4.2 Performance analysis

The developed model in this study aims to categorize emotions

into four distinct quadrants: positive-high, positive-low, negative-

high, and negative-low. To evaluate its effectiveness, the model

employs the EMOPIA dataset. Key performance indicators used

for assessment include accuracy, precision, recall, and F-score.

A big part of this study is comparing how well the new RGRU

model works with other models like GRU, LSTM, and CNN.

The next part will go into more detail about this comparison by

looking at how well the proposed approach works compared to

these well-known classification models using a number of different

performance metrics.

4.2.1 Performance analysis of positive high
quadrant

Figure 6 presents the confusion matrices for the positive

high quadrant, summarizing the predictive accuracy of different

classification models. The proposed RGRU model correctly

identified 157 instances as Positive High and another 120 instances

as not belonging to this class. This shows how accurate the model is,

with only two false positives and one false negative. This indicates

strongmodel performance with high true positive and true negative

rates, coupled with very few misclassifications.

In contrast, the existing GRU model demonstrates slightly

diminished accuracy, with 143 true positives and 99 true negatives.

It also recorded a higher number of false classifications, with five

false positives and three false negatives. The LSTMmodel follows a

similar trend but with more pronounced inaccuracies, tallying 132

true positives and 110 true negatives, alongside 10 false positives

and eight false negatives. With only 117 true positives and 110

true negatives, the DNN model is the most different from the

proposed RGRU model. It also has the highest error rate, with 13

false positives and 10 false negatives. Overall, the RGRU model

does better than the others because it consistently makes more

correct predictions and fewer mistakes. This suggests that it is the

most reliable model for identifying the Positive High quadrant in

this study.

Figure 7 shows the ROC and AUC graphs for the positive high

quadrant. The ROC curve shows the trade-off between sensitivity

(or TPR) and specificity (1-FPR). Classifiers that give curves closer

to the top-left corner indicate better performance. The AUC

provides an aggregate measure of performance across all possible

classification thresholds. It is the area under the ROC curve, with a

value between 0 and 1. A model with perfect predictive accuracy

would have an AUC of 1, meaning it has a good measure of
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FIGURE 6

Confusion matrix for positive high. (A) Proposed RGRU. (B) Existing GRU. (C) Existing LSTM. (D) Existing DNN.

FIGURE 7

R.O.C. and A.U.C. graph for positive high.
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FIGURE 8

Precision, recall, F-measure and accuracy-based analysis of various models (positive high).

TABLE 1 The performance evaluation of various models (positive high).

Metric

Method Existing DNN Existing LSTM Existing GRU Proposed RGRU

Precision 90 92.95775 96.62162 98.74214

Recall 92.12598 94.28571 97.94521 99.36709

F-measure 91.05058 93.61702 97.27891 99.05363

Accuracy 90.8 93.07692 96.8 98.92857

separability. A model with no discriminative power has an AUC

of 0.5, meaning it does as well as random chance.

From the research work, for the positive high quadrant, the

proposed RGRU has the highest AUC, indicating it outperforms

the other models in distinguishing between the positive high class

and the not-positive high class. Existing GRU performs better than

LSTM and DNN, but the proposed RGRU outperforms them both.

The existing LSTM has a lower AUC than RGRU and GRU but is

higher than DNN, suggesting moderate performance. Likewise, the

existing DNN has the lowest AUC, indicating the least performance

in comparison to the other models. The ROC and AUC graphs

demonstrate that the proposed RGRU model has a superior ability

to classify the positive high quadrant with more accuracy than the

other models.

To see how well the suggested RGRU method works, we

look at important performance indicators like accuracy, precision,

recall, F-measure, and more, which can be seen in Figure 8 and

Table 1. We check how well this method works with the Long

Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and

Deep Neural Network (DNN) classification methods. With a

maximal accuracy of 98.92%, the RGRU technique significantly

outperforms alternative models, including LSTM (5.75%), GRU

(2.18%), and DNN (8.12%). When compared to the alternative

methods, the RGRU strategy exhibits superior performance, as

evidenced by its F-measure (99.05%), precision (98.74%), and recall

(99.36%). The results obtained from the enhanced adaptive red fox

algorithm (ARFA) are superior to those obtained from alternative

methods, specifically when it comes to identifying positive high-

phase emotions, as demonstrated by the table and graph depicted.

This serves as a demonstration of how the proposed approach

surpasses the present condition of affairs.

4.2.2 Performance analysis of positive low
quadrant

The confusion matrix data for the Positive Low quadrant

show that the proposed RGRU model is the most accurate, with

130 true positives and 120 true negatives. This shows that it is

very good at correctly classifying instances. With only two false

positives and a single false negative, it demonstrates remarkable

precision in detection. Comparatively, the existing GRU model

identified 124 true positives and 119 true negatives but had slightly

more misclassifications, with seven false positives and three false

negatives. The LSTM model registered 120 true positives and 115

true negatives, with its accuracy further diminished by 10 false

positives and 8 false negatives. The DNNmodel matched the LSTM

in true positives but fell behind with only 110 true negatives, and

it exhibited the highest error rates, having misclassified 13 false

positives and 10 false negatives. Overall, the RGRUmodel’s superior

performance is evidenced by its higher correct classifications and

minimal errors, affirming its effectiveness in the positive low

quadrant compared to the GRU, LSTM, and DNNmodels.

Figure 9 shows the confusion matrix for the positive low

quadrant, and Figure 10 shows the ROC and AUC graph for the

positive low quadrant.

The ROC and AUC graphs for the positive low quadrant

provide insightful measures of model performance. The ROC

graph illustrates the balance between sensitivity and specificity,
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FIGURE 9

Confusion matrix for positive low. (A) Proposed RGRU. (B) Existing GRU. (C) Existing LSTM. (D) Existing DNN.

with the proposed RGRU model’s curve approaching the ideal

top-left corner more closely than the others, signaling its

superior performance in correctly identifying true positives while

minimizing false positives. The curves of the existing GRU, LSTM,

and DNN models don’t show this optimal balance as clearly. They

lie below that of the RGRU, which means they don’t make the

trade-off as well.

With an AUC of 0.98, the proposed RGRU model gets the

highest score in the AUC graph, which shows how well it

does across all possible classification thresholds. This shows that

it is very good at telling the difference between classes. The

existing models, on the other hand, have lower AUC values-

−0.95 for GRU, 0.92 for LSTM, and 0.89 for DNN—which means

they are less accurate at classifying things. Together, these AUC

scores support what the confusion matrices and the ROC graph

showed: the proposed RGRU model is better than the current

GRU, LSTM, and DNN models at classifying the Positive Low

quadrant with more accuracy and a better ability to tell the

classes apart.

In Figure 11 and Table 2, the study assesses the effectiveness of

the proposed RGRUmethod using metrics such as precision, recall,

F-measure, and accuracy. This method is compared against three

alternative classification methods: GRU, LSTM, and DNN. The

results shown in Figure 11 show that the RGRU method is more

accurate than GRU by 2.77%, LSTM by 5.93%, and DNN by 7.91%.

This demonstrates that the proposed RGRU method achieves the

highest accuracy among the compared methods. Furthermore, the

proposed approach also records the highest precision at 98.48%,

recall at 99.23%, and F-measure at 98.85%. The table unmistakably

demonstrates that the RGRU, with the Adaptive Red Fox Algorithm

(ARFA) enhancement, performs better than the other techniques,

especially in the positive low phase of emotion recognition. This

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305413
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Kumar and Kathiravan 10.3389/fcomp.2023.1305413

FIGURE 10

R.O.C. and A.U.C. graph for positive low.

FIGURE 11

Precision, recall, F-measure and accuracy-based analysis of various models (positive low).

TABLE 2 The performance evaluation of various models (positive low).

Metric

Method Existing DNN Existing LSTM Existing GRU Proposed RGRU

Precision 90.22556 92.30769 94.65649 98.48485

Recall 92.30769 93.75 97.6378 99.23664

F-measure 91.25475 93.02326 96.12403 98.85932

Accuracy 90.90909 92.88538 96.04743 98.81423

highlights the effectiveness of the RGRU method in outperforming

competing approaches.

4.2.3 Performance analysis of negative high
quadrant

The proposed RGRU model stands out in the Negative High

confusion matrix with 154 true positives, which correctly identify

Negative High instances, and 120 true negatives, which correctly

identify non-Negative High instances. It demonstrates a robust

classification capability with only three false positives and an equal

number of false negatives.

The current GRU model has a higher count of 187 true

positives, but it is less accurate with eight false positives and five

false negatives, which means that wrong classifications are more

likely to happen. On the other hand, the LSTM model, with 162

true positives and 120 true negatives, also displays an increased

rate of misclassification, as evidenced by 18 false positives and
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10 false negatives, which underscores a potential compromise in

model reliability.

The DNN model, despite having a commendable number of

130 true negatives, falls short in accuracy, with the lowest true

positive count at 145 and the highest false positive count at 25,

accompanied by 10 false negatives. This indicates a substantial

reduction in its efficacy in the negative high quadrant compared

to the RGRU model.

In essence, the RGRU model’s performance in the negative

high quadrant surpasses that of the GRU, LSTM, and DNN

models, as reflected by its higher correct predictions and lower

misclassifications, showcasing its effectiveness and reliability in

emotion classification within this specific context.

Figure 12 shows the confusion matrix for the negative high

quadrant, and Figure 13 shows the ROC and AUC graph for the

negative high quadrant. The proposed RGRU model demonstrates

superior proficiency, with its curve nearing the top-left corner,

an indication of an excellent balance between sensitivity and

specificity. In comparison, the curves representing the GRU, LSTM,

and DNN models are positioned lower, signifying a less optimal

trade-off and reduced effectiveness in distinguishing the negative

high class.

AUC, measures a model’s accuracy over a broad range of

threshold values. The RGRU model’s AUC value of 0.98 indicates

that it has a significant ability to differentiate classes. The

classification performance of the DNN model is 0.89, whilst the

LSTM model shows a performance of 0.92. With an AUC of 0.95,

however, the GRU model performs better than both.

To assess the effectiveness of the strategy depicted in Figure 14

and Table 3, accuracy, precision, recall, and the F-measure are

used. Using these measures, we compare our proposed RGRU

technique against three distinct classification strategies: GRU,

LSTM, and DNN. Our technique has a maximum accuracy of

98.06%, outperforming GRU by 2.26%, LSTM by 7.1%, and DNN

by 9.36%. Our technique’s improved performance is also visible

in other parameters, such as recall (98.24%), precision (96.39%),

and F-measure (98.39%). Table 3 shows the results of the public

inspection technique that we proposed. The results show that our

strategy was effective throughout the negative high phase; the

improved performance of the RGRU is attributed to the Adaptive

Red Fox Algorithm (ARFA). This contrast highlights the enormous

advances that our proposed methodology offers to the problem of

emotion categorization.

4.2.4 Performance analysis of negative low
quadrant

The proposed RGRUmodel’s confusion matrix does a great job

in the negative low quadrant, with a high number of true positives

(169) and true negatives (90). This means that the classification is

correct, with only a few cases being wrongly labeled (false positives

at 3) or missed (false negatives also at 3). This suggests a precise

model for identifying negative and low emotions. The current GRU

model, on the other hand, has a slightly lower level of accuracy than

the RGRU model, with 162 true positives and 90 true negatives.

This is because it has more false positives (8) and false negatives (5).

Increased misclassifications, with 136 true positives and 100

true negatives, but also a noticeable rise in both false positives

(19) and false negatives (10), highlight the LSTM model’s further

decreased performance and suggest that it is less reliable for

accurate classification of negative low emotions. The DNN model

presents the lowest performance in the group, with the lowest count

of true positives (121) and the highest count of false negatives (15),

coupled with a considerable number of false positives (19). The

DNN model’s confusion matrix clearly illustrates its challenges in

accurately classifying negative emotions, with considerable room

for improvement in its predictive capabilities.

Figure 15 shows the confusion matrix for the negative low

quadrant, and Figure 16 shows the ROC and AUC graph for

the negative low quadrant. For the negative low quadrant, the

ROC and AUC graphs provide insightful measures of each

model’s performance.

The ROC graph for the proposed RGRU model showcases

an optimal balance between the true negative rate and the false

negative rate, with its curve being the closest to the ideal top-left

corner. This shows a better ability to tell the difference between

Negative Low and other classes without labeling instances that

aren’t Negative Low as Negative Low by accident. The ROC curves

for the GRU, LSTM, and DNN models are farther from the ideal

point, which means that their balance between sensitivity and

specificity is not as good. These models have a lower true negative

rate for any given false negative rate, signifying a reduced ability to

accurately classify negative emotions.

The AUC value for the RGRU model stands at 0.98, the

highest among the models, demonstrating its outstanding overall

classification performance. This high AUC value means that the

RGRU model has a good chance of correctly identifying any

given case as either negative or not, for all thresholds. The GRU,

LSTM, and DNN models have lower AUC scores (0.95, 0.92,

and 0.89, respectively), which means they can’t tell the difference

between negative low and non-negative low classes as well-across all

thresholds. The RGRU model, which performs better at classifying

negative low emotions than the GRU, LSTM, and DNN models,

supports the confusion matrix results according to the ROC and

AUC graphs. The RGRU model is better because it is closer to

the ideal points on the graphs, has higher true negative rates,

and has a higher AUC value. These factors show that it is better

at telling the difference between negative and low emotions and

overall performance.

Figure 17 and Table 4 show how well the suggested RGRU-

based method works by checking its precision, recall, F-measure,

and accuracy. This evaluation involves a comparative analysis with

other classification algorithms, namely GRU, LSTM, andDNN.Our

suggested method performs much better than the others, with a

maximum accuracy of 97.73%, which is 2.64% higher than GRU,

8.68% higher than LSTM, and 10.57% higher than DNN. This

makes it the most accurate method we looked at.

Furthermore, the suggested method performs exceptionally

well in important measures, with an F-measure of 98.35%, a

precision rate of 97.25%, and a recall rate of 98.25%. As detailed

in Table 4, these statistics prominently showcase the method’s

superior performance compared to other techniques. Particularly

noteworthy is the method’s performance in the negative low
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FIGURE 12

Confusion matrix for negative high. (A) Proposed RGRU. (B) Existing GRU. (C) Existing LSTM. (D) Existing DNN.

phase, as highlighted in the results section. We think this better

performance is because the Adaptive Red Fox Algorithm (ARFA)

was used to improve the RGRU. This makes it much better at

classifying emotions. I made the right choice by using both RGRU

and ARFA inmy research. Together, they help reach the goals of the

study, specifically by making emotion recognition from MIDI files

more accurate and reliable.

The combination of these advanced methods aligns perfectly

with the research objectives of accurately identifying and classifying

emotions in MIDI musical files. The RGRU’s architecture is well-

suited for the sequential and temporal nature of music data, while

ARFA ensures that the model operates at its highest potential.

They work well together to show that these methods are complete

and accurate for detecting emotions in MIDI files, proving that

they are good for the research goals. The MIDI dataset used

in this study appears reliable, as MIDI files accurately encode

detailed musical information crucial for emotion recognition.

The study’s results were checked using statistical methods like

F-score, accuracy, precision, and recall to measure the model’s

performance in a quantitative way. We found these results to

be even more important by comparing them to results from

well-known models like GRU, LSTM, and DNN. This showed

that the new model was better at recognizing emotions from

MIDI files.

5 Conclusion

This study has introduced a novel approach to discerning the

emotional nuances embedded within each MIDI composition,

utilizing the enhanced RGRU architecture for hyperparameter

optimization through ARFA. We used the EMOPIA dataset

and performance metrics like precision, F-measure, recall,

and accuracy to do a full evaluation of our proposed method

to see how well it worked. In the comparative analysis

against the existence prediction models, including GRU,

LSTM, and DNN, the proposed approach consistently

outperformed them in all four quadrants: positive-high

(98.92%), positive-low (98.91%), negative-high (98.06%),

and negative-low (97.73%). These results underscore our
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FIGURE 13

R.O.C. and A.U.C. graph for negative high.

FIGURE 14

Precision, recall, F-measure and accuracy-based analysis of various models (negative high).

TABLE 3 The performance evaluation of various models (negative high).

Metric

Method Existing DNN Existing LSTM Existing GRU Proposed RGRU

Precision 85.29412 90 95.89744 96.39572

Recall 93.54839 94.18605 97.39583 98.24572

F-measure 89.23077 92.04545 96.64083 98.39572

Accuracy 88.70968 90.96774 95.80645 98.06452

innovative methodologies’ superior predictive accuracy and

overall efficacy.

While emotion recognition in music is a recognized

field, its specific application to MIDI compositions is

relatively less explored. This research adds originality

by focusing on analyzing emotions in MIDI data,

which can have unique challenges compared to other

audio formats.

The research relies on the EMOPIA dataset for evaluation.

If this dataset has biases or limitations regarding diversity

and representation of musical emotions, it can impact the

generalizability of the findings. The study demonstrates
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FIGURE 15

Confusion matrix for negative low. (A) Proposed RGRU. (B) Existing GRU. (C) Existing LSTM. (D) Existing DNN.

TABLE 4 The performance evaluation of various models (negative low).

Metric

Method Existing DNN Existing LSTM Existing GRU Proposed RGRU

Precision 86.42857 87.74194 95.29412 97.25581

Recall 88.97059 93.15068 97.00599 98.25581

F-measure 87.68116 90.36545 96.14243 98.35581

Accuracy 87.16981 89.0566 95.09434 97.73585

the effectiveness of the proposed approach, but it may not

necessarily generalize well to different music genres, styles, or

cultural contexts. It’s important to acknowledge the scope of

its applicability. Emotion recognition in music is inherently

subjective. The model’s interpretation of emotions might not

fully capture the individual listener’s experience, potentially

leading to discrepancies between the model’s classifications and

human perception.

Future research should aim to diversify datasets for broader

genre coverage, develop algorithms for nuanced emotion detection,

ensure hardware scalability, and refine emotion classification

methods. These steps will enhance the model’s accuracy and
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FIGURE 16

R.O.C. and A.U.C. graph for negative low.

FIGURE 17

Precision, recall, F-measure and accuracy-based analysis of various models (negative low).

applicability in diverse musical and cultural settings, ensuring its

effectiveness in real-world scenarios.
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