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Adiabatic quantum computing
impact on transport optimization
in the last-mile scenario

Juan Francisco Ariño Sales*† and Raúl Andrés Palacios Araos*†

Higher Technical School of Computer Systems Engineering (ETSISI), Polytechnic University of Madrid

(UPM), Madrid, Spain

In the ever-evolving landscape of global trade and supply chain management,

logistics optimization stands as a critical challenge. This study takes on the Vehicle

Routing Problem (VRP), a variant of the Traveling Salesman Problem (TSP), by

proposing a novel hybrid solution that seamlessly combines classical and quantum

computing methodologies. Through a comprehensive analysis of our approach,

including algorithm selection, data collection, and computational processes, we

provide in-depth insights into the e�ciency, and e�ectiveness of our hybrid

solution compared to traditional methods. The results after analysis of 14 datasets

highlight the advantages and limitations of this approach, demonstrating its

potential to address NP-hard problems and contribute significantly to the field of

optimization algorithms in logistics. This research o�ers promising contributions

to the advancement of logistics optimization techniques and their potential

implications for enhancing supply chain e�ciency.
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quantum computing, quantum annealing, quadratic unconstrained binary optimization

(QUBO), vehicle routing problem (VRP), traveling salesman problem (TSP), supply chain,

last mile

1 Introduction

The quantum computing industry is in a bustling emerging phase, and many around the

world are determining its applicability in real-life business scenarios. Enthusiasts, startups,

academia, and governments are rushing to find “quantum advantage” and funding mid-

to long-term research and development in this area. Many companies are working hard to

develop and mature current quantum hardware, plus there is an increasing growth in areas

related to software and services aiming to reap the benefits of quantum computing.

We have been investigating how to bridge the gap between scientific developments and

current industry trends and needs. The process we followed is shown in Figure 1.

Current quantum computing technology is focused on problems such as simulation,

optimization, factorization, linear algebra, andmachine learning. Through these, it promises

to deliver value in many different areas: life sciences, transport and logistics, financial

services, and telecommunications, just to name a few.

2 Market analysis

The case for quantum computing in transport optimization is quite compelling. Current

world trade is based on a strong and healthy supply chain, where logistics plays a key role

in producing and providing key assets and goods to keep societies and economies going.

One facet of the transport optimization problem is the vehicle routing problem (VRP). This
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FIGURE 1

Research flowchart.

problem attempts to find an optimal set of routes for a fleet of

vehicles to service a given set of customers; the business impact of

the VRP is well measured.

The goal of last-mile delivery is to transport an item to its

recipient in the quickest way possible. This has been driven by

the continuously evolving market and demand for a convenient

customer experience across industries such as e-commerce, food,

retail, and many more. The last-mile delivery market has been

steadily growing in the last decade, and the forecast opportunity

follows the same path. The last-mile delivery market in Europe is

expected to grow from USD 677.0 Mn in 2018 to USD 2,491.8 Mn

by the year 2027, with a compound annual growth rate of 16.1%

from 2019 to 2027,1 while in Latin America, the level of investment

for the last five years is close to USD 300 Mn, leaving countries

like Mexico, Colombia, Chile, and Argentina without a leading

independent last-mile logistics company, where 60% of the last-

mile delivery market is dominated by small, informal companies.

This results in inefficiencies due to a lack of technologies such as

route optimization as well as a lack of operating scale. These issues

are quickly becoming more pronounced as e-commerce in Latin

America has taken off at a compound annual industry growth rate

of 16% over the past five years. In the case of Latam, the biggest

e-commerce companies and retailers have made last-mile logistics

the key value differentiator for growth, leveraging the technology

tools and analytics processes to make investments and plans in

advance.2 The situation for Europe is quite similar, given the

importance of optimization in last-mile transportation. Key factors

driving the region’s market growth include rapid industrialization,

the growth of the e-commerce sector, and the presence of large

and established logistics players. While Germany is a predominant

player in the European market, the main segment responsible for

its growth is the business-to-consumer (B2C) sector. In Spain, the

last-mile market is mainly indexed to the B2C sector, which is

accountable for over USD 40 Bn e-commerce market size, where

last-mile represents around 40% of total costs of logistics operations

1 https://techcrunch.com/2021/07/22/last-mile-delivery-in-latin-

america-is-ready-to-take-o�/

2 https://www.mundomaritimo.cl/noticias/mercado-libre-amplia-

brecha-con-falabella-y-se-prepara-para-enfrentar-la-irrupcion-de-

amazon

in a market dominated up to 80% by small or micro-enterprises

(Deloitte, 2020).

The fact that there are common components in the last-

mile market makes the proposal in this paper appealing for

a close-term application of the technology and solution. In a

rough estimate, for a market of USD 27 billion in Spain, with

an average of 10% margin, where the Last Mile may represent

something between 30 and 40% of the total cost, we aim for

a USD 15 billion market, split in a granular small to micro

enterprise sector, with close to 2,000 companies (de los Mercados

y la Competencia, 2021). Any 1% savings in optimization can prove

to be worth a very competitive return on investment; this is shown

in Table 1.

Our work is focused on the applicability of transport

optimization for the last-mile scenario. Transport optimization

is the process of finding the best way to move assets from

one place (the source location) to another (the destination). It

is impacted by many distinct factors, like shipment analysis,

transport cost structures, rates, and schedules, cargo, routes,

delivery requirements and needs, etc. Combining all these different

factors makes this problem extraordinarily complex and demands

high computing power to find viable solutions. The problem

is categorized as an NP-hard problem. Transport optimization,

may be rephrased as finding the optimal value for a transport

function; this is where it becomes a high-prospect match for current

quantum technologies, specifically quantum annealing (Farhi et al.,

2000).

3 Implementation

In order to find the best approach in terms of technology

and time-to-market applicability, we solve the VRP using a hybrid

approach (Feld et al., 2019), which exploits both classical and

quantum techniques to find an optimized solution. The hybrid

algorithm models the VRP problem using a 2-phase approach: first

clustering or grouping the customers, and then finding the optimal

routes inside each cluster. This approach is known as a cluster-first,

route-second algorithm. For each of the two phases, we developed

both a quantum and a classical algorithm to compare them and

determine the most effective combination. The algorithms used are

shown in Table 2.
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TABLE 1 Preliminary return on investment estimations.

Annual market size $ 27,000,000,000

Estimated costs $ 810,000,000

Gross yearly inv. estimate $ 5,000,000

Return on investment ≈ 62%

TABLE 2 Algorithms developed for solving the VRP problem with a

cluster-first, route-second approach.

Clustering Routing

Classical K-Medoids Combinatorial optimization

Quantum QUBO clustering QUBO routing

3.1 Clustering phase

During the clustering phase, the objective is to find clusters

of customers such that the intra-cluster distances are minimized.

The clustering problem has additional constraints imposed so the

sum of the demand of each customer inside each cluster does

not exceed the available transport capacity of the vehicles; thus,

the problem is a constrained clustering problem with cluster-

level constraints. To solve it, we developed a modified version

of the K-Medoids algorithm that takes into account the capacity

constraints as the classical approach and a quadratic unconstrained

binary optimization (QUBO) formulation of the problem as the

quantum approach.

The QUBO formulation (Bauckhage et al., 2019; Date et al.,

2021; Matsumoto et al., 2022) for the clustering phase shown

below (Equation 4) is composed of the main objective function

M (Equation 1) subject to two additional constraints. The main

formula M tries to find an assignment of customers in clusters

such that the total distance between customers inside each cluster

is minimized. The first constraint C1 (Equation 2) adds a penalty

for each customer not included in a cluster; the second constraint

C2 (Equation 3) adds a penalty for each cluster in which the total

customer demand is greater than the available vehicle capacity.

M =
∑

k∈K

∑

i,j∈Ij>i

disti,j ∗ xi,k ∗ xj,k (1)

C1 =
∑

k∈K

xi,k = 1 ∀i ∈ I (2)

C2 =
∑

i∈I

di ∗ xi,k ≤ C ∀k ∈ K (3)

H = M + C1 ∗M1 + C2 ∗M2 (4)

K is the total number of clusters, while I indicates the customer

nodes. distij represents the distance matrix between all the possible

customer nodes; this matrix is pre-computed beforehand. xik is a

binary decision variable that indicates if the customer i is assigned

to cluster k. C represents the available vehicle capacity, and di is

the demand of customer i. The multipliers M1 and M2 are used

to assign the weight of the corresponding penalty for each of the

two constraints.

The developed K-Medoids algorithm is based on the

Partitioning Around Medoids algorithm with an added capacity

constraint. The steps of the algorithm are the following:

1. Select K data points with the highest demand as the medoids.

2. Determine the clusters by associating each data point to its

closest medoid.

3. Compute the initial cluster costs by adding the distances from

every point in each cluster to their medoid, add a penalty cost if

the total demand of the cluster exceeds the vehicle capacity.

4. While the cluster costs decrease and the maximum number of

iterations has not been reached:

(a) For each medoidm and for each non-medoid data point: n

i. Swapm and o and recompute the cluster costs.

ii. If the new cluster cost is higher than the previous one,

undo the swap.

(b) Increase number of iterations.

5. Return the clusters.

3.2 Routing phase

Once the clusters have been established, the routing phase

attempts to find the shortest routes starting from the depot, which

travel through all the nodes and finally return to the depot. This

problem is very similar to the Traveling Salesman Problem.

To solve the routing phase, we developed a combinatorial

optimization algorithm as the classical approach and a QUBO

formulation of the problem as the quantum approach. The

QUBO formulation (Lucas, 2014), shown below (Equation 10), is

composed of two different QUBO equations. The first equation

(8) attempts to solve the Hamiltonian cycle problem, while the

second equation (9) minimizes the route distances, thus solving the

Traveling Salesman problem.

C1 =
∑

j∈N+1

(1−
∑

i∈N+1

xi,j) (5)

C2 =
∑

i∈N+1

(1−
∑

j∈N+1

xi,j) (6)

C3 = (1− x0,0) (7)

HA = C1 + C2 + C3 (8)

HB =
∑

h∈N+1

∑

i∈N+1,h6=i

∑

j∈N

dh,ixj,hxj+1,i (9)

H = HA ∗mA +HB ∗mB (10)

xi,j is a binary variable where i represents the order and j

represents the customer. xi,j is equal to 1 if the customer with index

j is visited in position i in the cycle, i, j ∈ 0, . . . ,N where N is

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1294564
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ariño Sales and Palacios Araos 10.3389/fcomp.2023.1294564

FIGURE 2

Silhouette score and number of demand errors obtained with

K-Medoids and QUBO clustering algorithms on the CMT 01-14

data-sets. (A) Silhouette score and dip P value. (B) Number of

demand errors.

equal to the total number of customers. d is the distance matrix,

which contains the distance between every customer; the depot is

included as customer 0. The multipliers mA and mB are used to set

the penalties for the distinct parts of the equation.

The first constraintC1 (Equation 5) ensures that every customer

can only appear once in the cycle. The second constraint C2

(Equation 6) ensures that each position in the cycle must be

assigned to only one customer. The third constraint C3 (Equation

7) is added so that every cycle starts at the depot.

The combinatorial optimization algorithm models the

Traveling Salesman Problem using Google’s OR-Tools framework.3

The search strategy used to find the solution is a meta-heuristic

strategy called Guided Local Search (GLS). It is built on top of a

local search algorithm while gradually adding penalties to certain

features of the solutions to help the local search escape from local

minima and plateaus.

3 https://acrogenesis.com/or-tools/documentation/user_manual/

manual/tsp/routing_library.html

FIGURE 3

Total distance obtained with OR-Tools and QUBO routing

algorithms on the CMT 01-14 data-sets.

4 Analysis

The experiments conducted in this study involved the

utilization of a diverse range of datasets (Mendoza et al.,

2014), featuring varying numbers of customers and vehicles.

It is noteworthy that these datasets exhibit a wide spectrum

of clusterability (Ackerman et al., 2016) rates regarding

customer positions.

To evaluate the performance of our clustering algorithms, we

employed two different metrics: the silhouette score (Rousseeuw,

1987) and the error count. The silhouette scoremeasures the quality

of the generated clusters by comparing the similarity of objects with

their own cluster and with the other clusters. Its value ranges from

–1 to +1; a higher value indicates the elements are well clustered.

The number of errors generated by each clustering algorithm is the

number of clusters where the total demand of its members exceeds

the available vehicle capacity. The results, presented in Figure 2,

focus on the application of these metrics to the datasets presented

by Christofides, Mingozzi, and Toth (CMT) (Christofides et al.,

1979).

In Figures 2A, B, we observe that both algorithms perform

comparably when the data exhibits a high level of clusterability

(as indicated by a low dip P value Hartigan and Hartigan,

1985). However, in scenarios where the data exhibits a lower

rate of clusterability, the QUBO formulation generally excels

in producing more robust clusters when contrasted with the

traditional K-Medoids algorithm. This success can be attributed

to the enhanced flexibility inherent in the QUBO formulation

compared to the classical K-Medoids algorithm. Furthermore,

the quantum approach typically demonstrates a lower error rate,

underscoring its adaptability and efficiency.

To assess the quality of the routing algorithms, we focused on

measuring the total route distance generated by each algorithm.

Figure 3 presents a comparison of the results obtained by both

algorithms when applied to the CMT datasets used in the

clustering phase.
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Figure 3 highlights a notable trend, specifically that the QUBO

formulation for the routing problem typically yields longer route

distances when compared to those produced by the combinatorial

optimization algorithm. This observation underscores the need

for further refinement of the quantum approach to match the

optimization efficiency demonstrated by the classical algorithm.

The experiments with the quantum algorithms were performed

using D-Wave’s Advantage System 6.1 quantum annealer, offered

by Amazon Braket. The size of the QUBO formula generated by the

clustering algorithm is too large to embed on the available quantum

annealers, so QBSolv (Booth et al., 2017) is used to split it into

smaller sub-problems.

All the code necessary to run the experiments is available at

https://github.com/punkyfer/vrpc.

5 Conclusions

During our research, we found that classical algorithms

typically perform better than their quantum counterparts. This is

not a totally fair comparison since, on the one hand, we have fine-

tuned algorithms running on classical computing hardware, and on

the other hand, we have QUBO formulations running on quantum

annealers in noisy intermediate-scale quantum era hardware. Both

technologies are on wildly different edges of the technology

maturity ladder. Despite this disadvantageous situation, we have

found that under certain circumstances, the quantum clustering

algorithm presents an advantage over its classical counterpart,

mainly in scenarios where the clusterability rate of the data is

lower. When the data presents a lower rate of clusterability or a

higher degree of randomness, the quantum clustering approach

delivers better results than the K-Medoids algorithm. This is

an outstanding finding, as it proves the potential for quantum

computing in real business scenarios and sets the basis for future

research into developing quantum algorithms for the constrained

clustering problem. A bigger advantage may be achievable in future

versions of quantum hardware, where more qubits and a more

interconnected topology may provide better results at larger scales.

For the business analysis, we identified the potential for a

cost-effective relationship between the cost of running a quantum

algorithm and the quality of the results obtained. This cost-

effectiveness is especially true when the data shows a higher

degree of randomness, as is usually the case with real customer

location data. This demonstrates a theoretical advantage for the

quantum computing approach when applied to the constrained

clustering problem.
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