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Software techniques for training
restricted Boltzmann machines
on size-constrained quantum
annealing hardware

Ilmo Salmenperä* and Jukka K. Nurminen

Department of Computer Science, University of Helsinki, Helsinki, Finland

Restricted Boltzmann machines are common machine learning models that can

utilize quantum annealing devices in their training processes as quantum samplers.

While this approach has shown promise as an alternative to classical sampling

methods, the limitations of quantum annealing hardware, such as the number

of qubits and the lack of connectivity between the qubits, still pose a barrier to

wide-scale adoption. We propose the use of multiple software techniques such

as dropout method, passive labeling, and parallelization techniques for addressing

these hardware limitations. The study found that using these techniques along

with quantum sampling showed comparable results to its classical counterparts in

certain contexts, while in others the increased complexity of the sampling process

hindered the performance of the trained models. This means that further research

into the behavior of quantum sampling needs to be done to apply quantum

annealing to training tasks of more complicated RBM models.

KEYWORDS

machine learning, quantum annealing, restricted Boltzmann machines, quantum

sampling, dropout method

1. Introduction

When training a well-known machine learning model called restricted Boltzmann
machine (RBM), the gradient estimation process for the weights and biases requires the
taking samples from a probability distribution called the Boltzmann distribution. While
there are classical methods for this process, such as the Contrastive Divergence (CD)
algorithm, they are known to grow computationally expensive as the model grows in size
(Adachi and Henderson, 2015). An interesting alternative for this classical sampling process
is generating these samples using quantum computation devices called quantum annealers
(Hauke et al., 2020). While most of the contemporary use cases for these devices are focused
on finding low-energy states for quantum systems, these devices have shown promise for
sampling data points from the Boltzmann distribution of Hamiltonian energy functions
(Adachi and Henderson, 2015; Dixit et al., 2021). This feature of quantum annealing
devices has wide applicability in training of classical machine learning models, such as
RBM (Restricted Boltzmann Machine) or layer-wise pretraining of more complicated deep
learning algorithms. While these models are not on par with the leading industry-level
machine learning models, they provide a task where it is quite simple to compare the
performance of these quantum techniques with classical techniques, which are of high
academic interest.

Quantum sampling have some advantages, such as being faster on large layer sizes
or showing improved performance on learning tasks, over the conventional sampling
algorithms, such as Gibbs sampling or the contrastive divergence algorithm (Hinton, 2002).
These algorithms, especially Gibbs sampling, are relatively slow and do not produce accurate
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estimations of the underlying probability distribution (Carreira-
Perpiñán and Hinton, 2005). While these algorithms have been
deemed good enough for classical use cases, it is still vital to
compare them with novel quantum sampling-based approaches to
determine whether the switch from classical to quantum can be
deemed practical.

The quantum sampling approach does have its own set of
issues as follows: (1) The accuracy of the technique is highly
dependent on device parameters related to the annealing
process, and no known way of determining these parameters
exists properly yet; (2) it is not known whether the technique
can even produce proper samples from the Boltzmann
distribution; and (3) size limitations imposed on the machine
learning model by the hardware itself cause the problem
space to be limited to toy examples, instead of actually useful
real-world problems.

This article will focus mostly on the last issue and proposes
and evaluates several techniques to circumvent some obstacles
caused by hardware limitations. First of these is the use of extreme
rates of unit dropout to reduce the effective layer width of RBMs
during the sampling process. The second technique is to use passive
labeling schemes to reduce the total width of the visible layer, by
disabling all labeling units during the training and adding their
influence to the hidden layer as a modifier to the bias of the
hidden unit during sampling. Finally, the article will take a look
into the inherent parallelism of the quantum annealing device
and provide insight into how this technique can have wide use
cases on quantum sampling. It is important to note that this
last technique does not allow training our models in smaller
hardware, but it shows ways that RBMs could take advantage of
hypothetical future hardware, especially in tandem with the unit
dropout method.

The study shows that while classical methods require fewer
epochs for well-behaving models, the end result after a longer
period of training can be closely the same, or sometimes even
better, which is in line with previous research. The unit dropout
method further accentuates this effect and, in our experiments,
performs demonstrably worse compared with classical dropout
techniques. The reasons for this are analyzed in the Section 7
of the article. The parallelization schemes seem to somewhat
lower the performance of the training but decrease the time-
to-solution of each round of estimating the model distribution
drastically. Finally, the passive labeling strategy shows promise for
evaluating the performance of quantum sampling, without any
hardware-related costs.

The key contributions of this article are as follows:

• Proposing these techniques for alleviating the
presented hardware-related issues and evaluating
the effects and the limitations to use a theoretical
setting (Section 4).

• Developing an experimental setup to evaluate how these
techniques perform when training RBMs against classical
methods in similar contexts and showing their benefits and
restrictions (Sections 5, 6).

• Providing discussion on the results and how current
generation quantum annealing hardware needs to scale to be
usable in these sampling tasks (Section 7).

2. Related research

Restricted Boltzmann machine has been studied extensively
for a very long time (Hinton and Sejnowski, 1983), but their
usefulness has become more apparent in the last decade (Hinton,
2012). Research on classical sampling methods gained traction
when the Contrastive Divergence algorithm was discovered, which
allowed RBMs to be trained more efficiently compared with the
older sampling methods (Carreira-Perpiñán and Hinton, 2005).
The dropout algorithm featured in this article has been researched
quite extensively, showing improvements on performance and also
working as a weight regularization method for many different
machine learning models (Srivastava et al., 2014).

The use of quantum annealing in sampling tasks has been
researched widely, and it has shown some advantages over classical
sampling methods, despite the stated issues. In the study by Adachi
and Henderson (2015), quantum annealing was used to pretrain
a deep belief network, which showed increased performance over
classical sampling methods on a Bars and Stripes dataset. In the
study by Dixit et al. (2021) quantum annealing was shown to be
as effective as classical sampling methods when training the RBM
on a cybersecurity ISCX dataset. Pelofske et al. (2022) presented the
technique for parallelizing QUBO problems for quantum annealing
devices, which is particularly useful for training RBMs as presented
in this study.

There is also a study conducted on a purely quantum version
of the more general Boltzmann Machines that are called QBMs
(QuantumBoltzmannMachines) (Amin et al., 2018). There are also
Quantum Born Machines, which have shown quite a bit of promise
in various generativemachine learning tasks, that share a lot of their
underlying math with Boltzmann Machines (Coyle et al., 2020). It
is important to note that these quantum machine learning models
are most often implemented in gate-based quantum hardware, as
opposed to quantum annealing hardware.

3. Theoretical background

Restricted Boltzmann Machines are simple neural networks
that can be applied to various machine learning tasks (Hinton,
2012). In practice, they are mostly used in the pretraining phase
of more complex machine learning models such as deep belief
networks (Hinton et al., 2006). They are characterized by a visible
and a hidden layer of units connected bilaterally, and the units are
activated using the sigmoid function.

These models are based on the Ising model: a mathematical
representation of ferromagnetic system, where the stochastic
behavior of the system is governed by a Hamiltonian energy
function E. With this function, the probability P, often also referred
to as the Boltzmann distribution, of a system being in a certain
configuration can be computed using the following equations:

E(v, h) = −
∑

i

bihi −
∑

i

civi −
∑

i,j

wi,jvihj (1)

P(v, h) = Z−1eE(v,h)/T (2)

where σ is the collection of units in an RBM with possible states
{0, 1}. bi and ci are the bias values of the hidden and visible units
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FIGURE 1

Restricted Boltzmann machines have a hidden and a visible layer of units with biases bi and ci, connected by weights wij.

hi and vi. wi,j is the weight of the connection between units vi
and hj. Z is the partition function over all possible combinations
of σ that normalizes the probability to be between 0 and 1. T is
the temperature of the system, which is often normalized as 1. The
structure of a RBM is visualized in the Figure 1.

Training these models requires finding a set of parameters
θ , which makes the model distribution P mimic an unknown
data distribution Q that characterizes the problem. These
parameters can be found by minimizing the Kullback-Leibler
divergence between these two distributions, which, in turn, can be
approximated by minimizing the average negative log-likelihood of
the model distribution (Joyce, 2011; Hinton, 2012). This ultimately
results in the following training rules for weights and biases which
can be used for gradient descent:

∂wij = η
(〈

vihj
〉

data
−

〈

vihj
〉

model

)

(3)

∂bi = η
(〈

hi
〉

data
−

〈

hi
〉

model

)

(4)

∂ci = η (〈vi〉data − 〈vi〉model) (5)

where η is the learning rate and < .. >data and < .. >model,
respectively, are the data and model distributions of the system.

The important thing to notice here is the fact that estimating
the data distribution of an RBM can be done easily using classical
algorithms, but estimating the model distribution is considered to
be analytically intractable. This is due to the partition function,
which requires the algorithm to compute the total energy of the
system for all possible configurations of σ . This requires O(2n)
computations where n is the number of units in the system, which
means that alternative methods for estimating this distribution
are needed.

Instead of computing an exact solution for the model
distribution, sampling methods are used to get an estimate of
the model distribution. If it is possible to draw accurate samples
from the probability distribution P, the average of these samples
can form a proper estimate of the model distribution. This is
usually done using the Contrastive Divergence (CD) algorithm,
where the states of the visible and hidden layers are inferred
repeatedly from each other, starting from the initial data vector
v assigned to the visible units (Carreira-Perpiñán and Hinton,
2005). The number of cycles in this process can influence the
accuracy of the resulting model depending on the problem at hand.
Even one iteration has been found to converge toward the correct

solution, more iterations can result in improved accuracy of the
resulting model (Carreira-Perpiñán and Hinton, 2005). Increasing
the number of cycles is a very expensive process, which is why
more efficient sampling methods can provide more benefits in tasks
that require training RBMs. Contrastive divergence is often marked
by appending the number of cycles after the CD abbreviation, i.e.,
contrastive divergence with one cycle becomes CD-1.

3.1. Sampling from the Boltzmann
distribution using quantum annealing

Quantum annealing is a novel alternative to universal quantum
computing, where, instead of using gate operations to modify
the states of the qubits in the device, it implements a physical
system that corresponds to the Ising Model (Hauke et al., 2020).
Mathematically, the quantum annealing process implements a
Hamiltonian function as follows:

H(τ ) = A(τ )HD + B(τ )HP (6)

HD = −
∑

i∈V

σ x
i (7)

HP =
∑

ij∈E

Jijσ
z
i σ z

j +
∑

i∈V

hiσ
z
i (8)

where HD is the initial Hamiltonian of the system, and HP is the
target Hamiltonian which describes the problem at hand. σ x

i and
σ z
i are Pauli matrices localized to qubit i, A(τ ) and B(τ ) are time-

dependent monotonic functions, which describe the schedule in
whichHD is transformed intoHP, when normalized annealing time
τ moves from 0 to 1. Ji,j and hi are the parameters that describe the
interactions between the qubits of the system.

Quantum annealing devices are capable of finding ground
states for Hamiltonian systems, due to the adiabatic theory of
quantum mechanics. While this has been contested before, after
years of research, it has become quite evident that these devices
can be also used to sample from the Boltzmann distribution of the
given Hamiltonian (Benedetti et al., 2016). This could benefit the
process of training RBMs drastically, as the model distribution of
an RBM can be approximated by an average of samples taken from
the Boltzmann distribution of the model.
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Sampling from the Boltzmann distribution of the model
requires small changes to the quantum annealing process. The
control parameters of the system have to be scaled down by a
parameter called the effective temperature Beff , which allows the
system to thermalize more freely during the annealing (Benedetti
et al., 2016). Choosing the correct value for this parameter can
be difficult, as it seems to be dependent on multiple factors,
like the size of the system and the parameters of the system
itself. This choice is often done before the training process by
evaluating the performance of the parameter against classical
methods on similarly sized models and keeping it constant during
the training process.

There is also research suggesting that only using Beff to scale the
parameters of the model can be insufficient while using alternative
annealing schedules provided by current generation quantum
annealing devices can help to alleviate these issues (Marshall et al.,
2019). For example, pausing the annealing in the middle of the
process can improve the accuracy sampling process, provided that
the pause happens on a correct region, which is again dependent
on the model parameters. The process of reverse annealing has also
shown promise for improving the sampling accuracy.

While the sampling capabilities of quantum annealing devices
are promising, the limited device sizes and the constraint they
impose on the layer sizes of RBMs are still the key limiting factors
on applying quantum annealing to machine learning problems
(Dumoulin et al., 2013). As the connectivity between qubits
is very limited in the current generation quantum annealing
devices, embedding fully connected RBMs requires chaining qubits
together. This imposes a maximum layer width on the trained
RBMs, which is still far away from conventionally used layer
sizes, which can have easily over 1,000 units in a single layer.
The quantum annealing device DWave 2000Q has a theoretical
maximum layer width of 64 units, and while DWave Advantage
does not yet have a known theoretical maximum layer width, the
modern embedding heuristics are capable of finding embeddings
with a layer width of 128 units.

4. Materials and methods

This section describes various methods which can be used
to circumvent limitations that arise due to maximum layer sizes
imposed by the small qubit counts and the effects of limited
topology of current generation quantum annealing hardware.

4.1. The unit dropout method

Unit Dropout is a widely adopted weight regularizationmethod
for neural networks, originally developed for RBMs (Srivastava
et al., 2014). In this method, during training, units from the model
are dropped out with probability p, usually referred to as the
dropout rate. It is also possible to keep the amount of dropped-out
units constant, in which case we can describe the dropout process
using a variable called Smax, which is the amount of units kept in
the RBM Layer. This process is presented in Figure 2. The training
will, then, resume for the pruned network for the duration of a
single batch, and the parameter updates will be computed for the

pruned network. After this, the units that were dropped out are
returned to normal, and the process can repeat until the training
has been completed. This has been shown to regularize the weights
very efficiently and to be resilient against overfitting during training
(Srivastava et al., 2014).

This method is very convenient for the purpose of training
Restricted Boltzmann Machines using quantum annealing, as it
automatically prunes the model to a smaller subset of the original
one. This means that the new model will be easier to fit inside
a contemporary quantum annealing device. The dropout rate can
also be tweaked to control the size of the model that will be
embedded into the quantum annealing device, allowing for a lot
of control over the resulting model.

When using this method in tandem with quantum annealing,
small modifications need to be made to the original algorithm to
take into account the limits imposed by the quantum annealing
device. Instead of using a probabilistic dropout rate p, constant Smax

number of units should be picked from the model with uniform
probability. In this way, it is easier to ensure that the model can still
be embedded into the device, and it also allows us to reuse the same
embedding scheme for the duration of the training, which is useful
as computing an embedding scheme for a problem is an expensive
process (Cai et al., 2014). If Smax/Nunits ≤ 0.5, multiple subsets
of size Smax can be chosen from the units of the model, making
the training more efficient, as these models can be sampled in
parallel. Existing research places the optimal value for the dropout
rate approximately 0.5, but this rate can be pushed further to allow
larger layer sizes to be trained using existing quantum annealing
devices, as shown in Section 5.

4.2. Passive labeling

While RBMs are often used for unsupervised learning tasks,
they are also capable of supervised learning by adding predictive
label units to the hidden layer of the network. Because these
additional units can be treated as additional visible units in the
system, it is often convenient to use different activation functions,
like the softmax activation function, for them, as this can improve
the predictive capabilities of the network. Though this works quite
well for classical sampling algorithms, the core assumption of
quantum annealing assumes the likelihood of a unit coming from
the Boltzmann distribution. This means that alternative activation
functions are not viable for quantum-sampled RBMs.

Adding labeling units into the RBM is useful, as they provide
a clear metric for the fitness of the training process, as opposed to
measuring the reconstruction error of the model or evaluating the
generative capabilities of the model by eye. For quantum sampled
RBMs, this can be difficult, as adding labels to the system takes
valuable space in the embedding map, increases total chain length
of the system, and breaks the symmetry of the total area required
by the model. We have developed a novel technique of adding
labels to RMBs called the passive labeling technique to address
these inconveniencies.

In passive labeling, an average influence of the label units on
the hidden units is computed classically before the sampling starts
using any activation function. This influence can, then, be added
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FIGURE 2

Example of the dropout process. Here, the total layer width is 4 units and before sampling half of the units are dropped out from the model. The

remaining weights are shown using bolded lines between the units.

to the bias of the hidden unit for the duration of the sampling
procedure, while all the labeling units are kept out from the
sampling process.

h
passive
i = hi + softmax(

∑

k∈l

lkw
label
i,k ) (9)

where l is the set of labeling units, andwlabel
i,k is the weight associated

with the hidden unit hi and labeling unit lk.
After the states of the units are sampled, the states of the

labeling units can be inferred from the hidden states classically,
and these states can be used to compute the parameter gradients
of the label units. This should cause only a slight cost for the
accuracy of the learning process, with no requirements imposed on
the sampling compared with the unsupervised learning methods. If
the purpose of the labeling is to evaluate the effectiveness of the
sampling techniques for the quantum annealing algorithms, this
cost should be more than reasonable, compared with the apparent
cost of adding multiple label units to the system.

4.3. Inherent parallelism of quantum
annealing

Whenever quantum annealing is used for sampling from
systems, it is possible that many of the qubits that are not connected
to the embedded model are left unused during the sampling. This
is especially wasteful when the problem size is much smaller than
the maximum allowed. As shown in the study mentioned in the
reference (Pelofske et al., 2022), smaller problems can be embedded
into quantum annealing device multiple times, as shown in
Figure 3, which reduces the time-to-solution of the problem greatly.
This technique is especially interesting for quantum sampling, as
using novel annealing control techniques, such as mid-annealing
pauses, can increase the overall sampling time by a large margin.
This means that the overhead of embedding the problem multiple
times into the annealing device will become quite negligible, as the
time of taking each sample can increase from the default value of
20µs to even 1, 000µs.

There are two main ways in which this parallelism technique
can help in the process of quantum sampling. The first one is
reducing the number of samples to 1/N of the original size,
where N is the number of times in which the problem will fit
into the sampling device (Pelofske et al., 2022). The other way

is an intersection between using the dropout technique and the
inherent parallelism of the quantum annealing device, taking the
pruned networks from the dropout process, embedding them all
into the quantum annealing device, and producing samples for
them in parallel. This method of parallelism should outperform the
original one in relation to time, as the time-consuming calls to the
quantum sampling device will be reduced to the 1/N of the original
amount, negating a lot of unnecessary networking overhead while
also increasing the amount of work that can be now done in parallel
by the classical processes.

While this technique does not address the issue of limited
hardware, a reasonable assumption is that if these techniques
become viable in future, the growth of the possible hardware will
allow us to further take advantage of the computational resources
we have. Even on current generation hardware, this technique
managed to save a lot of computational resources and time, as
shown in the Section 6 of the article.

5. Experimental setup

The techniques presented were evaluated by training restricted
Boltzmann machines on a custom-made generated bars and stripes
dataset, which is presented in Figure 4. This allowed for strict
control over the overall sizeNproblem of the dataset and the difficulty
of the machine learning task itself, as a variable amount of noise
was introduced to the dataset to make the task more difficult. Using
these rules, a labeled training set of 10,000 images, a prediction set
of 2,000 images, and an evaluation set of 2,000 images were created.
The training dataset is, then, divided into 20 batches for training,
and the relatively large batch size was chosen to save computational
resources. Two distinct datasets were created for evaluating the
different qualities of the algorithm: the 64-pixel dataset and the
256-pixel dataset.

The 64-pixel bars and stripes problem was formulated for
testing out how embedding one RBM multiple times into the
quantum annealing device compares to embedding it a single
time performance-wise. This dataset allowed us to also test how
parallel embedding of RBMs affects the performance of the training
algorithm.

The 256-pixel bars and stripes problem was formulated for
looking into the effects of drastic rates of dropout used in tandem
with quantum annealing. Multiple RBMs were trained with various
rates of unit dropout, using the CD-1 sampling and quantum
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FIGURE 3

Example of problem parallelization on quantum annealing devices: On the left, a single 64 × 64 RBM is embedded into the device, leaving many of

the qubits unused during sampling. On the right, the 64 × 64 RBM has been embedded into the device four times, allowing these RBMs to be

sampled simultaneously. These RBMs can be identical or distinct from one another depending on the use case. An image is created using DWave

visualization tools.

FIGURE 4

Examples 8x8 images generated for testing the learning methods of this study from noise level p = 0.0 to p = 1.0. The dataset is divided into images

of bars (vertical stripes) and stripes (horizontal stripes), after which noise is introduced to the image by randomizing each pixel with the probability of

p. The choice of this probability p determines how di�cult this learning task will be. These images for the study were created with p = 0.7.

annealing. The effects of embedding multiple RBMs into the device
and sampling them at the same time were also tested.

The RBM implementation was written in python, and
the quantum sampling was implemented using the APIs of
the DWave Leap platform and AWS platform. The quantum
sampling implementation targeted the DWave Advantage quantum
annealing device, for which the embedding schemes were
precomputed using the DWave MinorMiner tool (Cai et al., 2014).
The parameters of the annealing procedure were chosen manually
by evaluating the L1 distance between the gradients of the quantum
sampling approach and classical Gibbs sampling with 1,000 cycles.
Additional evaluation of techniques was done by classical means.

An effective temperature of 1.0 was chosen for annealing by
evaluating the accuracy of the gradient estimation for different
values. A pause of 10µs was introduced in the middle of the
annealing process, which improved the sampling accuracy by a

sizeable margin. Five spin reversal transforms were used to ensure
that the device-specific errors would not affect the learning process
that much. Each gradient update was computed from 100 samples
taken from the annealer. Finally, the strength of the chain between
logically coupled qubits was set to 1, which was essential for
achieving well-trained models during the training.

Classical machine learning parameters were chosen by training
various models classically and picking the best one for quantum
sampling approaches. This was hardly the ideal method for
choosing parameters, as there is no guarantee that the ideal classical
parameters for the quantum sampling method mirror the classical
methods, but as training the models using quantum annealing
was very time-consuming and expensive, this way was chosen due
to convenience.

The experimental setup was affected by the fact that while
the process of sampling from the quantum annealer itself is very

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1286591
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Salmenperä and Nurminen 10.3389/fcomp.2023.1286591

fast, the API calls to the cloud platforms for each of the quantum
annealing tasks were very slow, as most of the time was spent on
queues waiting to get access to the annealing device.

6. Results

Figure 5 shows results for training multiple RBMs using
different sampling approaches. As can be seen, quantum sampling
performs similarly or worse than classical sampling approaches. It
has to be noted that this performance could be improved with more
careful choices for the annealing parameters.

In the 64-pixel dataset, quantum annealing managed to achieve
higher prediction rates compared to the classical approach, but the
training process required more epochs. This result is in line with
previous findings on the performance of the quantum annealing
in these sampling tasks (Adachi and Henderson, 2015; Benedetti
et al., 2016; Dixit et al., 2021). Initially, the parallel and non-parallel
sampling approaches were in line with one another, but in the end,
the non-parallel approach outperformed the parallel one. In the
classical training case, the passive labeling scheme was completely
identical compared to the traditional sampling approach, but in
othermore complex problems, it showed consistent slight decreases
in accuracy. Parallelizing sampling reduced the time that it took to
generate the samples from around 98 ms to 84 ms, which is not
a huge decrease, but this gap could widen, if advanced annealing
control schemes would be used during the annealing.

In the 256-pixel dataset, the classical sampling methods
outperformed the quantum ones quite consistently. Only one of
the classical sampling methods with the largest rate of the dropout
was in line with the quantum sampling approach. The results of
these quantum-sampled RBMs also were a lot noisier compared
to classical RBMs. The effects of dropout on the prediction rates
were quite consistent with existing research for about halfway into
the training (Srivastava et al., 2014), as the lower dropout rates
seemed to outperform the higher ones until the quantum sampling
approaches seemed to converge into the same region of prediction
rates. The parallel and non-parallel quantum sampling approaches
were again very similar to the 64-pixel dataset until the difference
converged in the end. Here the real difference is in the time-to-
solution of the parallel and non-parallel sampling methods, which
is quite drastic. Taking 100 samples for four different RBMs at
the same time would take about 110 ms, compared to about 390
ms when taken subsequently. This does not take into account the
overhead from networking-related tasks with the communication
with the classical computer and quantum platforms, which could
take anywhere from a couple of seconds to a couple of minutes
of real-time when conducting this study, further widening the gap
between the parallel and non-parallel sampling methods.

7. Discussion

Quantum sampling seems to perform similarly to classical
sampling methods in the 64-pixel bars and stripes problem.
While classical sampling methods find the well-performing model
parameters faster, quantum sampling seems to catch up with the
classical methods after some additional training. The prediction

rates of quantum sampled RBMs seem to be sometimes more
unstable during training, probably due to the noisiness of the
gradient estimation. These results indicate that quantum sampling
can at least be considered to be a good alternative for estimating
the model distribution of a Hamiltonian energy function, to the
contemporary classical method of CD-1.

The largest issue with using the quantum sampling approach
comes from the larger parameter space, which needs to be
controlled for the duration of the training (Benedetti et al., 2016).
Device parameters need to be chosen well enough for the training
to be effective and there are no known heuristics for choosing them
correctly, other than applying some commonly used default values
for them. The optimal values for these parameters can be dependent
on the embedded problem, which makes constantly evaluating new
values for them during the training an intractable task. Finding
a heuristic for estimating these parameters could be vital for the
commercial viability of the quantum sampling approach.

The passive labeling strategy seemed to perform well in this
learning task when comparing the prediction rates for conventional
classical training methods and using the passive labeling scheme
classically, though its performance can suffer when using it onmore
complicated machine learning tasks. This means that this method
of attaching labels without any increase to the effective size of the
embedded problem can be used to evaluate the performance of
quantum sampling methods. As most often RBMs are used only
for pretraining more complicated deep neural networks like deep
belief networks (Hinton et al., 2006), attaching labels this way is
probably not needed in industry-level machine learning tasks. It
provides a more concrete way of looking into the effectiveness of
quantum sampling, compared to reconstruction rate or evaluating
generated sampled images out of the network.

The dropout method, when used in tandem with quantum
sampling, seems to produce more volatile results as shown in
Figure 5B. As both techniques introduce some noise in the gradient
estimation process, the resulting quantum sampled models ended
up performing worse than their classical counterparts. This could
be because of poor parameter choices for many of the quantum
annealed RBMs, as the only model that behaved similarly to the
classical equivalent was the Smax = 64 model, which was also
incidentally the model size which was used for determining the
hyperparameters for the training. It is also possible that the use
of the dropout technique is not compatible with these quantum
sampling techniques. Further research on the topic of unit dropout
and quantum annealing should be done, but this was not possible
to do here due to a lack of access to quantum hardware. The key
takeaway is that better heuristics for device parameters could allow
introducing dropout into quantum sampling in actual use cases.

Parallelizing quantum sampling tasks into the quantum
annealing device showed a slight decrease in performance but
lowered the time-to-solution of the problem by a good margin.
This is especially true when using these parallelization techniques
in tandem with the dropout technique, allowing us to sample
from all the sub-RBMs at the same time. Likely, the upper limit
of the number of different RBMs that could be embedded into
the quantum annealing device is two, as the optimal value for
the dropout rate dictates that going beyond 0.5 will only hinder
the training process. This can still give us results about two
times faster than normal, and these two distinct sub-RBMs can
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FIGURE 5

Prediction rates of RBMs that have been trained for 20 epochs. QS indicates quantum sampling and CD-1 contrastive divergence with one sampling

step (A) results of 8 × 8 Bars and Stripes problem trained on RBM with 64 visible and hidden units. (B) Results of 16 × 16 Bars and Stripes problem

trained on RBM with 256 visible and hidden units with various rates of dropout.

be further parallelized, assuming that the device size itself is
large enough.

Quantum annealing devices have already grown quite large
from the point of view of qubit counts, and further advances in
hardware will bring us new ways quantum computing can be used
to benefit existing computational methods. The importance of this
study can be seen at two points in time in relation to hardware
advancements: (1) in the near term these techniques can be used to
train up to two or three times wider networks than normally would
be possible due to hardware limitations and (2) in long term these
techniques allow for parallelizing the training process of pruned
networks, reducing the number of API calls or samples needed for
completing quantum sampling tasks. Both of these possibilities are
dependent on whether exploring the rather large hyperparameter
space of quantum sampled RBMs becomes convenient in the future.

8. Conclusion

While the current generation quantum annealing devices are
still quite small in the context of using them for quantum
sampling, the industry leader of quantum annealing devices
DWave has already envisioned creating larger devices with more
advanced connectivity schemes (DWave, 2021). But despite the
rapid development of hardware, it is still important to try to bridge
the gap between it and the software side, as reaching applicability
as early as possible can be vital for adoption on larger scales. It
also has to be noted that whether quantum annealing can provide
a proper quantum advantage in computational problems is still a
highly debated topic (Hauke et al., 2020).

The unit dropout method can be seen as a convenient
way of pruning RBM layers into more palatable chunks
for next-generation quantum annealing devices, while the

parallelization techniques can be used to compute these chunks
in parallel on the same annealing device, saving precious
computational time, especially on the classical side of things.
The passive labeling scheme instead should be thought of as
a convenient way of adding labels to RBMs without having to
think about their effect on the embedding of the RBM into the
hardware itself.

Some possible pitfalls of adopting quantum sampling as
a method of evaluating the model distribution function of a
Hamiltonian is the increased parameter space caused by the device
parameters related to the annealing process. Quite a lot of work
shows that choosing the effective temperature of the model can be
an intractable task, which is why a lot of research ends up choosing a
fiat default value for the duration of the training. Also moving away
from the API model of quantum computing to a more integrated
model, where the classical computer and the quantum computer
work closely together will be vital for any of these speed-ups
to matter.
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