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In materials informatics, searching for chemical materials with desired properties

is challenging due to the vastness of the chemical space. Moreover, the high cost

of evaluating properties necessitates a search with a few clues. In practice, there is

also a demand for proposing compositions that are easily synthesizable. In the real

world, such as in the exploration of chemical materials, it is common to encounter

problems targeting black-box objective functions where formalizing the objective

function in explicit form is challenging, and the evaluation cost is high. In recent

research, a Bayesian optimization method has been proposed to formulate the

quadratic unconstrained binary optimization (QUBO) problem as a surrogate

model for black-box objective functions with discrete variables. Regarding this

method, studies have been conducted using the D-Wave quantum annealer to

optimize the acquisition function, which is based on the surrogate model and

determines the next exploration point for the black-box objective function. In this

paper, we address optimizing a black-box objective function containing discrete

variables in the context of actual chemicalmaterial exploration. In this optimization

problem, we demonstrate results obtaining parameters of the acquisition function

by sampling from a probability distribution with variance can explore the solution

space more extensively than in the case of no variance. As a result, we found

combinations of substituents in compositions with the desired properties, which

could only be discovered when we set an appropriate variance.

KEYWORDS

quantum annealing, quantum computing, black-box optimization, combinatorial

optimization problem, materials informatics

1 Introduction

Black-box optimization is a method to optimize a function that does not have an

explicit objective function in the mathematical form. In the real world, this optimization

problem appears in various fields, including material informatics, robotics (Deisenroth,

2011), machine learning (Snoek et al., 2012), and recommendation systems (Vanchinathan

et al., 2014). Bayesian optimization is one of the solutions for black-box optimization

problems (Jones et al., 1998). Taking the exploration of chemical materials as an example, a

surrogate model is constructed using an existing dataset to predict the relationship between

the combinations of substituents in the chemical materials and the corresponding property
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values. Based on this surrogate model, an acquisition function

is defined. The combination of substituents obtained through

optimizing this acquisition function is then used as the next input

point for the black-box objective function, enabling the evaluation

of the actual property values. The relationship between the inputted

combination of substituents and the actual property value is

then added to the existing dataset, then updating the surrogate

model. Repeating this process is to explore the combinations

of substituents that yield the desired property values. Especially

for black-box optimization problems involving discrete variables,

discrete variables are included in both the surrogate model

and the acquisition function. Therefore, even optimizing the

acquisition function often proves to be NP-hard, and the solutions

obtained through optimization are generally approximate. In a

previous study, Bayesian optimization of combinatorial structures

(BOCS) was proposed as the promising algorithm for such

problems (Baptista and Poloczek, 2018). In this algorithm, the

acquisition function was assumed as quadratic unconstrained

binary optimization (QUBO) problem.

Quantum annealing (Kadowaki and Nishimori, 1998) is

a heuristic algorithm to solve QUBO problems by driving

binary variables through quantum fluctuations. Many well-

known combinatorial optimization problems can be encoded into

QUBO problems (Lucas, 2014). Practical applications of quantum

annealing can be found in various fields, including traffic flow

optimization (Neukart et al., 2017; Inoue et al., 2021; Shikanai

et al., 2023), manufacturing (Ohzeki et al., 2019; Haba et al., 2022),

finance (Rosenberg et al., 2016; Venturelli and Kondratyev, 2019),

steel manufacturing (Yonaga et al., 2022), decoding problems

(Ide et al., 2020; Arai et al., 2021), and algorithms in machine

learning (Amin et al., 2018; O’Malley et al., 2018; Urushibata

et al., 2022; Goto and Ohzeki, 2023; Hasegawa et al., 2023).

Furthermore, quantum annealing, which utilizes the quantum

tunneling effect, is expected to find the optimal solution for

several combinatorial optimization problems more rapidly than

algorithms such as simulated annealing (Kirkpatrick et al., 1983).

This advantage is investigated from the perspective of energy

landscape characteristics (Das and Chakrabarti, 2008) and through

numerical computation (Denchev et al., 2016). In addition, there

are discussions about the characteristics of solutions obtained

in cases where multiple optimal solutions exist (Yamamoto

et al., 2020; Maruyama et al., 2021). With these backgrounds,

quantum annealing has recently attracted attention, both for its

potential applications and for validating the fundamental aspects

of quantum effects.

Studies that employ quantum annealing in some algorithms

for black-box optimization problems involving discrete variables

exist. These include benchmark tests (Koshikawa et al., 2021) that

have examined the presence or absence of quantum superiority in

optimizing acquisition functions. In terms of practical applications,

there are case studies that have achieved significant screening in

the exploration of chemical materials within the search chemical

space (Hatakeyama-Sato et al., 2021; Tanaka et al., 2023), as well as

instances of designing complex metamaterials (Kitai et al., 2020).

In the exploration of chemical materials, it is necessary not only

to discovermolecules with the desired property values but also to be

concerned about scenarios in actual synthesis wheremolecules with

specific substructures may become entirely unfeasible to synthesize.

Drawing inspiration from previous studies and practical needs,

we demonstrate a method for proposing diverse compositions

of chemical materials with desired properties, targeting a black-

box optimization problem that includes discrete variables in

actual chemical material exploration. In more detail, we show

results that by obtaining parameters of the surrogate model and

acquisition function from sampling a probability distribution with

an appropriate variance and optimizing the acquisition function,

we explored the solution space more extensively while optimizing

the black-box objective function. The method used in this paper

is generally referred to as Thompson sampling (Thompson, 1933;

Chapelle and Li, 2011). In this sense, it can be said that our research

results evaluate the impact of the magnitude of the variance of the

posterior probability distribution in Thompson sampling.

The remaining sections of this paper are organized as follows:

In the next section, Section 2, we explain the problem setting in this

paper and the method we propose. In Section 3, we demonstrate

the results of the experiments related to the actual exploration of

chemical materials. Finally, Section 4 summarizes our research and

discusses this paper and future research directions.

2 Materials and methods

In this section, we introduce the problem settings based on

the search for chemical materials, which is the focus of this

paper. Subsequently, in Bayesian optimization, we explain the

construction of the surrogate model in the QUBO form, which is

well-known in prior research, along with the construction of the

acquisition function. We provide this explanation in conjunction

with our method aim.

2.1 Problem settings

In this paper, we define the binding of substituents to specific

sites of the molecular frame as the composition of chemical

materials. We aim to propose various combinations of substituents

through Bayesian optimization while maximizing a target material

property value. To align our description with other literature

focusing on black-box optimization problems, we define our goal

as a minimization problem, utilizing the fact that maximization

and minimization problems can be transformed into each other by

reversing the sign of the objective function.

2.2 Methods

We express the assignment of substituents using a binary

vector. In particular, for substituents that can bind to each

site, we encode them by converting the 0-indexed substituent

number to binary. Thus, we set a binary vector Ex(µ) ∈ {0, 1}N

as input, and the corresponding target material property value

y(µ) as output. We aim to find Ex that minimizes a black-box

objective function. Since we cannot know an explicit form of the

black-box objective function, we construct a surrogate model as
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QUBO form following the previous studies. We utilize an existing

dataset D = {Ex(µ), y(µ)}Dµ=1 to sample the parameters of the

surrogate model from a probability distribution we discuss later

and construct it. Based on the surrogate model, we construct an

acquisition function and propose a combination of substituents

that optimize the acquisition function using the D-Wave quantum

annealer. Subsequently, we input the proposed combination of

substituents as the next exploration point Ex(new) and obtain output

y(new) from the black-box objective function. Then we append

{Ex(new), y(new)} to the existing dataset as new data and reconstruct

the surrogate model. By repeating this process, we aim to obtain

diverse combinations of substituents with desired target material

property values.

2.2.1 Construction of surrogate model function
We construct the surrogate model fsurrogate(Ex) in the QUBO

form in this paper.

fsurrogate(Ex) = α0 +
∑

i

αixi +
∑

i<j

αijxixj (1)

For simplicity, we set the surrogate model parameters {αi,αij} =

Eα ∈ R
p. Note that p = 1 + N + N(N − 1)/2. Defining X ∈

{0, 1}D×p as the design matrix and denoting the µ-th row in the

design matrix X as X(µ), we have the following expression X(µ) =
(

1, x
(µ)
1 , ..., x

(µ)
N , x

(µ)
1 x

(µ)
2 , x

(µ)
1 x

(µ)
3 , ..., x

(µ)
N−1x

(µ)
N

)

. Furthermore, we

set the output vector Ey ∈ R
D and I as the identity matrix. Then,

we assume a prior distribution of surrogate model parameters

P(Eα) with a variance σ 2
α I and a likelihood function over the

surrogate model parameters Eα with a variance σ 2
y I. We give the

prior distribution and likelihood function as following multivariate

Gaussian distributions.

P(Eα) = N (E0, σ 2
α I) (2)

P(Ey|Eα,X) = N (XEα, σ 2
y I) (3)

At this time, the posterior distribution of the surrogate

model parameters Eα is computed and given by a multivariate

Gaussian distribution, similar to the prior distribution and the

likelihood function.

Eα|Ey,X ∼ N ( Eµ,6) (4)

Eµ = (XTX + λI)−1XTEy

6 = σ 2(XTX + λI)−1

s.t. σ 2 = σ 2
y , λ =

σ 2
y

σ 2
α

We sample the surrogate model parameters Eα ∈ R
p from

the multivariate Gaussian distribution described in (4). σ 2 is a

hyperparameter indicating the magnitude of fluctuations from the

mean vector Eµ when sampling the surrogate model parameters. λ

is also a hyperparameter. Note that λ corresponds to the coefficient

of the regularization term during ridge regression.

2.2.2 Construction of acquisition function
The acquisition function facquisition(Ex) is constructed in the same

QUBO form as the surrogate model, and the next exploration point

Ex(new) is proposed by optimizing the acquisition function.

Ex(new) = argmin
Ex

{facquisition(Ex)} (5)

facquisition(Ex) is a function with modified specific parameters

from the surrogate model fsurrogate(Ex) described in 2.2.1. This

modification is like a penalty method, designed to ensure that

binary vectors with substituent numbers that do not exist at

each site do not become the optimal points of the acquisition

function. Parameters that are not modified are identical to those

in the surrogate model fsurrogate(Ex). For example, when six potential

substituents can bind at a specific site, representing the 0-indexed

substituent numbers in binary requires three bits (x1, x2, x3). In

this context, x1x2x3 = (000, 001, 010, 011, 100, 101)2 corresponds

to valid substituent numbers from 0 to 5 in decimal. However,

each combination x1x2x3 = (110, 111)2 is equivalent to substituent

numbers 6–7 in decimal, rendering them inappropriate as optimal

point candidates. To prevent the substituent combinations with

substituent numbers 6–7 at this site from being proposed as the

optimal points of the acquisition function, we adjust the surrogate

model parameters. In this example, we modify the coefficient of

x1x2 in the surrogate model function to a positive constant C, and

the other coefficients are kept the same as in the surrogate model.

The next exploration point of the black-box objective function

is determined by the optimization of the acquisition function

facquisition(Ex).

The search space explored varies greatly depending on how

the acquisition function is constructed and how the acquisition

function is optimized. As described, our method samples the

parameters of the surrogate model and the acquisition function

from a probability distribution with variance. The hyperparameter

σ 2 indicates the magnitude of the variance. The larger this

hyperparameter σ 2 is, the more significant the variance of the

acquisition function, potentially allowing for exploration across

a broader solution space and avoiding resampling the previously

explored points.

3 Results

In this section, we describe detailed problem settings and

experimental conditions and then show the experimental results

obtained by applying our method. In particular, we compare and

discuss based on the magnitude of the hyperparameter σ 2. Our

discussion centers on two main points of interest in this paper.

The first point is whether our method has brought diversity to the

proposed substituent combinations. The second point is whether

our method has optimized the black-box objective function.

3.1 Detailed problem settings and
experimental conditions

We set the number of substituent binding sites as four, and

for convenience in the description, we call each binding site R1,
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R2, R3, and R4, respectively. The number of possible substituents

that can bind at each site is R1: 6, R2: 29, R3: 64, and R4: 64,

respectively. Therefore, the size of the chemical space is calculated

as 6 × 29 × 64 × 64 = 712704. Moreover, the number of bits

necessary to represent the number of each substituent is R1: 3, R2:

5, R3: 6, and R4: 6. Consequently, the binary vector Ex dimension

is calculated as N = 3 + 5 + 6 + 6 = 20. The substituent

number at R1 is represented in 0-indexed form using x1 to x3,

similarly, x4 to x8 represent the substituent number at R2, x9 to x14
represent the substituent number at R3, and x15 to x20 represent the

substituent number at R4. To illustrate with a concrete encoding

example, suppose the substituent numbers at each site are R1: 0,

R2: 2, R3: 10, and R4: 63. In this case, the binary vector Ex would be

represented as Ex = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1).

We set the hyperparameter λ at 10−2 and the hyperparameter σ 2,

which indicates the magnitude of fluctuation from the mean vector

Eµ when sampling surrogate model parameters, to {0, 4× 10−3, 8×

10−3, 12×10−3}.We set the surrogatemodel’s parameter correction

for R1 in the acquisition function as C = α12 = 2 × max(Eα)

at each after sampling Eα. We used D-Wave Advantage 4.1 as the

quantum annealer, setting the annealing time to 2,000 µs, and the

number of samples is 300. The quantum adiabatic theorem ensures

that it is possible to find the nontrivial ground state at the end of the

quantum annealing if the transverse field changes sufficiently slowly

(Suzuki and Okada, 2005; Morita and Nishimori, 2008; Ohzeki and

Nishimori, 2011). On the other hand, when quantum annealing

is carried out on a physical device D-wave quantum annealer, it

operates at a finite temperature and is subject to external noise. Due

to these factors, the annealing time is often short in many studies.

Considering these theoretical and experimental backgrounds, we

set the annealing time to be longer in our setting because we

observed a tendency for the results to stabilize, possibly due to the

effects of ambient temperature. The number of samples in the initial

dataset is 992. For comparison as a baseline, we also conducted an

experiment where the optimization part of the acquisition function

was replaced with random sampling. Due to the nature of this

study, which is conducted in the context of actual chemical material

exploration, the computational cost of the black-box objective

function is exceptionally high, resulting in an experiment of only

one instance. We defined one loop as carrying out the following

steps (i) through (v), and we performed 20 loops.

(i) By sampling the surrogate model parameters Eα from a

multivariate Gaussian distribution N ( Eµ,6) described in (4),

construct the surrogate model.

(ii) Construct the acquisition function by partially correcting the

surrogate model parameters as explained in 2.2.2

(iii) Optimize the acquisition function by quantum annealing and

select the top 10 points of the acquisition function as the next

exploration points for the black-box objective function. In the

random sampling used as a baseline, 10 sampling points are

randomly selected. Note that at this time, the top 10 points

exclude combinations of substituents that are already present

in the existing dataset and combinations of substituents that

include non-existent substituent numbers, such as substituent

numbers 6-7 in R1 and substituent numbers 29–31 in R2,

through screening.

(iv) Take the next exploration points obtained in (iii) as inputs

and get outputs, carrying out the evaluation of target material

property values, which is the computation of the black-box

objective function, through DFT (Density Functional Theory)

calculations. The detailed calculation method is described in

the Additional Requirements.

(v) Append the new samples {Ex(new), y(new)} obtained in (iv) to the

existing dataset and return to (i).

3.2 Experimental results

3.2.1 Histogram of substituent numbers in
combinations added by end of the experiment

We show the histogram of substituent numbers at the binding

sites R1, R2, R3, and R4 for the combinations of substituents

added to the dataset by the end of the experiment in Figure 1.

In the case of σ 2 = 0, we observed a tendency in R3

and R4 where specific substituent numbers were frequently

proposed. However, as σ 2 increases, it can be observed that

diversity is brought into the combinations of substituents proposed

for R3 and R4. This difference is particularly pronounced

when comparing σ 2 = 0 and σ 2 = 12 × 10−3. From

these results, we can infer that we realized the proposal of

various combinations of substituents by sampling parameters

of the surrogate model and the acquisition function from

probability distributions with variance. By sampling parameters

from probability distributions with larger variances, the optimal

points and the shape of the acquisition function change

significantly in each loop. We believe that this approach allowed

us to explore the solution space without getting trapped by

some specific approximate solutions and without resampling the

previously explored points.

3.2.2 Relationship between the number of loops
and the R

2 of the surrogate model
We show the transition of the coefficient of determination R2

in the surrogate model at each loop in Figure 2. The coefficient

of determination R2 is calculated from the initial dataset sample

points, 992 points, and the sample points appended up to each loop.

Note that R2, plotted in Figure 2, represents the results of mean-

based regression. This result is equivalent to the regression of the

maximum a posteriori (MAP) estimation. As σ 2 becomes larger, a

tendency for R2 at each loop to become smaller was observed. We

speculate that we can attribute this result to the tendency shown in

Figure 1, where the larger σ 2 is, the more diverse the combinations

of substituents that the optimization of the acquisition function

proposes become. When σ 2 is small, R2 improves by fitting to

similar input vectors and outputs. However, to improve R2 when

σ 2 is large, it is necessary to fit diverse input vectors and outputs.

We speculate that this difficulty is why there was the tendency

for the coefficient of determination, R, to be smaller when σ 2

is larger.
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FIGURE 1

Histogram of substituent numbers for combinations of substituents added to the dataset by the end of the experiment each σ 2. Top left is σ 2 = 0, top

right is σ 2 = 4× 10−3, bottom left is σ 2 = 8× 10−3, bottom right is σ 2 = 12× 10−3.

3.2.3 Analysis of target material property values
Finally, we show the target material property values evaluated

by DFT calculations, corresponding to the combinations of

substituents proposed through the optimization of the acquisition

function as the next exploration point of the black-box objective

function in Figures 3, 4. In Figure 3, we plot the transition of the

best target material property values in the existing dataset up to

each loop. Although we could only experiment once because of

the extremely high computational cost of the black-box objective

function, in the case of optimizing the acquisition functions,

we confirm that it is possible to search for combinations of

substituents with higher target material property values than the

best value in the initial dataset. Under the conditions set in

this study, using random sampling in the optimization part of

the acquisition function, we could not find any combination of

substituents that exhibited a property value exceeding the best

target material property value in the initial dataset. In Figure 4, we

show the histograms of the target material property values for all

combinations of substituents in the initial dataset and those added

to the dataset by the end of each experiment.

To reiterate, the objective of black-box optimization in

this study was to maximize the target material property value

while bringing diversity to the combinations of substituents.

Therefore, we listed the combinations of substituents whose

target material property values exceeded our criteria of 0.880 or

higher in Tables 1–4. From the perspective of the number of

combinations of substituents with property values that exceed

our criteria, the number of proposed combinations was the

highest at 25 combinations when σ 2 = 0. However, considering

the diversity of proposed combinations of substituents, which

is one of the aims of this paper, the advantage can be found

when σ 2 6= 0. Especially in the case of σ 2 = 4 × 10−3,

it was possible to discover combinations of substituents with

the property values that exceed our criteria, which have the

substituent number of R4:0, a combination not discovered in case

of σ 2 = 0.
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FIGURE 2

Relationship between the number of loops and the coe�cient of determination R2 in the surrogate model each σ 2 and random sampling.

FIGURE 3

The transition of the best target material property values in the existing dataset up to each loop.
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FIGURE 4

The histogram of the target material property values for the combinations of substituents in the initial dataset and those added to the dataset by the

end of each experiment. The red dotted line shows the cuto� value (0.880), which we defined as a desired target material property value.

4 Discussion

In this study, we achieved the exploration of diverse

approximate solutions in black-box optimization, which has the

background of new chemical material discovery, by considering

appropriate fluctuations in the parameters of the surrogate model

and the acquisition function. Although the validity of the result

is debatable because of the one-instance experiment, our result

indicates that quantum annealing can accelerate the discovery of

diverse chemical materials with desired material property values

in materials informatics. More generally, our results demonstrate

the advantages and disadvantages of varying the magnitude of

the variance when sampling the parameters of the surrogate

model from a probability distribution in optimizing a black-

box objective function. In this paper, we explored a broader

solution space by devising the construction of the surrogate model

and the acquisition function. As an alternative approach, we are

considering optimizing the acquisition function using a different

method from quantum annealing, such as simulated annealing. Our

method in this paper, which encodes combinations of substituents

as a binary vector, can be applied even in a more vast chemical

space. Future challenges include verifying the performance in such

cases and investigating the computational time advantage of using

quantum annealing.

5 Additional requirements

5.1 DFT (Density Functional Theory)
calculations

For the proposed substituents by the D-Wave quantum

annealer, the energy value of ground and excited states were

calculated by optimizing the geometry based on DFT calculation.

DFT calculations were performed using the supercomputer

TSUBAME 3.0 with Gaussian16, Revision C.01 software (Frisch
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TABLE 1 Desired target material property value in σ
2

= 0.

R1 R2 R3 R4 Target material property value

2 5 0 15 0.881

4 7 8 15 0.889

4 5 8 15 0.889

4 5 0 14 0.902

0 5 0 14 0.897

4 6 8 15 0.894

0 5 8 15 0.887

2 5 8 15 0.902

1 5 0 14 0.905

0 7 8 14 0.882

0 6 0 14 0.898

0 7 0 14 0.905

0 5 14 14 0.911

2 5 0 14 0.88

4 6 0 14 0.915

2 7 0 14 0.888

2 7 8 15 0.892

1 6 0 14 0.91

2 6 0 14 0.89

3 6 0 14 0.884

3 5 8 15 0.894

1 7 8 14 0.887

1 6 8 14 0.891

3 7 8 15 0.891

1 7 0 14 0.914

TABLE 2 Desired target material property value in σ
2

= 4 × 10−3.

R1 R2 R3 R4 Target material property value

0 5 0 15 0.894

3 5 0 14 0.882

3 5 0 15 0.88

2 5 0 15 0.881

4 7 0 0 0.895

3 5 0 0 0.882

1 5 0 14 0.909

0 5 0 14 0.901

3 6 8 15 0.899

3 7 0 0 0.881

2 7 0 0 0.883

et al., 2019), with the functional B3LYP and basis functions

6-31G.19 parameters from the DFT calculation were used to

reproduce the experimental values.Here, a prediction model was

created using random forest regression.

TABLE 3 Desired target material property value in σ
2

= 8 × 10−3.

R1 R2 R3 R4 Target material property value

2 5 0 15 0.881

2 5 0 14 0.88

4 5 0 15 0.88

4 5 8 15 0.886

0 5 0 14 0.897

1 5 0 14 0.906

TABLE 4 Desired target material property value in σ
2

= 12 × 10−3.

R1 R2 R3 R4 Target material property value

2 7 14 14 0.901
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