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We investigate a framework for binary image denoising via restricted Boltzmann

machines (RBMs) that introduces a denoising objective in quadratic unconstrained

binary optimization (QUBO) form well-suited for quantum annealing. The

denoising objective is attained by balancing the distribution learned by a trained

RBM with a penalty term for derivations from the noisy image. We derive

the statistically optimal choice of the penalty parameter assuming the target

distribution has been well-approximated, and further suggest an empirically

supported modification to make the method robust to that idealistic assumption.

We also show under additional assumptions that the denoised images attained

by our method are, in expectation, strictly closer to the noise-free images than

the noisy images are. While we frame the model as an image denoising model,

it can be applied to any binary data. As the QUBO formulation is well-suited

for implementation on quantum annealers, we test the model on a D-Wave

Advantagemachine, and also test on data too large for current quantum annealers

by approximating QUBO solutions through classical heuristics.

KEYWORDS

denoising, quantum annealing, machine learning, image processing, quadratic

unconstrained binary optimization

1. Introduction

Quantum annealing (QA) (Kadowaki and Nishimori, 1998; Das and Chakrabarti,

2008; Albash and Lidar, 2018) is a promising technology for obtaining good solutions to

difficult optimization problems, by making use of quantum interactions to aim to solve

Ising or quadratic unconstrained binary optimization (QUBO) instances. Since Ising and

QUBO instances are NP-hard, and many other combinatorial optimization problems can be

reformulated as Ising or QUBO instances (see e.g., Glover et al., 2018), QA has the potential

to become an extremely useful tool for optimization. As the capacities of commercially

available quantum annealers continue to improve rapidly, it is of great interest to build

models that are well-suited for this emerging technology. Furthermore, QA has promising

machine learning applications surrounding Boltzmann Machines (BMs), as both QA and

BMs are closely connected to the Boltzmann distribution. Boltzmann Machines are a type of

generative artificial neural network that aim to learn the distribution of some training data

set by fitting a Boltzmann distribution to the data, as described thoroughly in (Goodfellow

et al., 2016, §20). On the other hand, QA aims to produce approximate minimum energy
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(maximum likelihood) solutions to a Boltzmann distribution via

finding the ground state of the associated Hamiltonian that

determines the distribution. Hence, maximum likelihood type

problems on BMs are a natural candidate for applying QA in

a machine learning framework. We contribute to the goal of

furthering useful applications of QA in machine learning in this

paper by building an image denoising model particularly well-

suited for implementation via QA.

The task of image denoising is a fundamental problem in

image processing and machine learning. In any means of collecting

images, there is always a chance of some pixels being afflicted

by noise that we wish to remove; see e.g., Boyat and Joshi

(2015) for a good overview. Accordingly, many classical and data-

driven approaches to the image denoising problem have been

studied in the literature (Greig et al., 1989; Rudin et al., 1992;

Buades et al., 2005; Tang et al., 2012; Cho, 2013). This paper

studies a quantum binary image denoising model using Restricted

Boltzmann Machines (RBMs henceforth) (Goodfellow et al., 2016,

§20.2) that can take advantage of QA by formulating the denoising

problem as a QUBO instance. Specifically, given a trained RBM,

we introduce a penalty-based denoising scheme that admits a

simple QUBO form, for which we derive the statistically optimal

penalty parameter as well as a practically-motivated robustness

modification. The denoising step only needs to solve a QUBO

admitting a bipartite graph representation, and so is well-suited

for QA. As QA has also shown promise for training BMs (Adachi

and Henderson, 2015; Dixit et al., 2021), our full model lends itself

well for denoising images using quantum annealers, and could thus

play a role in the their future applications since QA can then be

leveraged for both the training and denoising steps. The model also

shows promise in absence of QA, and our insights presented are

not limited to the QA framework, as the QUBO formulation of the

denoising problem and its statistical properties we prove may be of

independent interest.

The paper is organized as follows. Section 2 gives a

summary of background on quantum annealing and Boltzmann

Machines. Section 3 describes our main contribution of the image

denoising model for QAs, and Section 4 shows some practical

results obtained.

Remark 1.1. We frame our work as a binary image denoising

method, although the framework does not depend on the data being

images, and can be applied to the denoising of any binary data.

This is because the framework does not use any spatial relationships

between the pixels, and instead treats the image as a flattened vector

whose distribution is to be learned. Hence, the denoising scheme

can be applied as-is to any other binary data setting.

1.1. Contributions and organization

We provide QUBO-based denoising method for binary images

(applicable to general binary data) using restricted Boltzmann

machines in Section 3. This is done by formulating the denoising

objective in equation 6 by combining the energy function of the

distribution learned by the RBM with a (parameterized) penalty

term for deviations from a given noisy image. This objective turns

out to have an equivalent QUBO formulation, which is shown

in claim 1. In Theorem 3.4, we derive the optimal choice for

the penalty parameter under the assumption that the true images

follow the distribution learned by the RBM, which also recovers

the maximum a posteriori estimate per Corollary 3.5, though our

model is more flexible, and this flexibility allows for useful practical

modifications. Theorem 3.6 shows that the denoising method

yields a result that is strictly closer (in expectation) to the true

image than the noisy image is, under some additional assumptions.

Given that these idealistic assumptions won’t be met in reality,

we propose a robustness modification in Section 3.3 that improves

performance empirically. In Section 4, as the method lends itself

well to quantum annealing, we then implement the method on a

D-Wave Advantage 5000-qubit quantum annealer, demonstrating

strong empirical performance. Since only small datasets can be

tested on the D-Wave machine due to the relatively low number

of qubits, we also test the method on a larger dataset, for which

we use simulated annealing on a conventional computer in place

of quantum annealing to find good solutions the QUBO denoising

objective. Though we highlight the method being well-suited for

quantum annealers, we emphasize that it may be of independent

interest to themachine learning and image processing communities

at large.

1.2. Related work

Closely related work of Koshka and Novotny (2021) uses a

similar model as ours for the image reconstruction task, also solving

QUBO formulations via quantum annelaing. In the reconstruction

task, some subset of pixels is unknown (or obscured or missing),

and needs to be restored, whereas our work considers denoising,

where which pixels are noise-afflicted is unknown. Greig et al.

(1989) derives a maximum a posteriori (MAP) estimator for the

noise free image as a denoising method in a particular model of

binary images that is less general than ours, though we would

recover their estimator under a particular choice of our penalty

parameter if we were to apply our framework to their model

(since we recover MAP in a more general setting). Further, RBMS

and quantum annealing have been studied for the classification

problem, for instance in Adachi and Henderson (2015) and

Krzysztof et al. (2021). Other research in the machine learning

communities has also studied handling label noise, such as related

work in Vahdat (2017), which studies the problem of training

models in the presence of noisy labels, whereas our approach

is entirely unsupervised (the data need not have any labels to

begin with).

2. Background

Quantum Annealers make use of quantum interactions with

the primary goal of finding the ground state of Hamiltonian by

initializing and then evolving a system of coupled qubits over

time (Johnson et al., 2011). In particular, we may view QA

as implementing the Ising spin-glass model (Nishimori, 2001)

evolving over time. As the QUBO model is equivalent to the Ising

model (Glover et al., 2018), and QUBO instances can be efficiently

transformed to Ising instances, a QA is well suited to provide good
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solutions to QUBO problems. A QUBO cost function, or energy

function, takes the form

fQ(x) : =
∑

i,j

Qijxixj (1)

where xi ∈ {0, 1}, and Q is a symmetric, real-valued matrix.

We will occasionally refer to Qij as the weight between xi and

xj. QUBO is well-known to be NP hard (Barahona, 1982), and

many combinatorial problems can be reformulated as QUBO

instances. See Lucas (2014) and Glover et al. (2018) for thorough

presentation of QUBO formulations of various problems. A

Boltzmann Distribution using the above QUBO as its energy

function takes the form

Pmodel
Q (x) =

1

z
exp

(

−fQ(x)
)

, (2)

where z is a normalizing constant. Note that a parameter called

inverse temperature has been fixed to unity and is not explicitly

shown in the above expression. In this paper, we will focus on

making use of Boltzmann Machines, a type of generative neural

network that fits a Boltzmann Distribution to the training data via

making use of latent variables. Specifically, we consider Restricted

Boltzmann Machines (RBMs), which have seen significant success

and frequent use in deep probabilistic models (Goodfellow et al.,

2016). RBMs consist of an input layer of visible nodes, and a

layer of latent, or hidden nodes, which each have zero intra-group

weights. Let v ∈ {0, 1}v and h ∈ {0, 1}h denote the visible and

hidden nodes, respectively. It will be convenient for us to write

x = (v, h) ∈ {0, 1}v+h as their concatenation. The probability

distribution represented by a RBM is then

Pmodel
Q ((v, h)) =

1

z
exp

(

−fQ(v, h)
)

(3)

with the restriction that Qij = Qji = 0 if i, j ∈ {1, . . . , v} or

i, j ∈ {v + 1, . . . , v + h}. Hence, we have the simplified energy

function

f ((v, h),Q) =
v+h
∑

i=1

v+h
∑

j=1

2Qij(v, h)i(v, h)j =
v
∑

i=1

v+h
∑

j=v+1

Qijvihj

+

v
∑

i=1

Qiiv
2
i +

v+h
∑

i=v+1

Qiih
2
i

= hTWv + bTv v + bTh h = : fW,bv ,bh (v, h)

(4)

where W is the v × h matrix consisting of the Qij weights between

the visible and hidden nodes, and bv and bh are vectors of the

diagonal entries Qii, i ∈ {1, . . . , v} corresponding to visible nodes,

and Qii, i ∈ {n + 1, ..., v + h} corresponding to hidden nodes,

respectively. We will write the Boltzmann distribution with this

energy function as PW,bv ,bh , noting that this is also Pmodel
Q for the

appropriate Q.

It is well-known that RBMs can universally approximate

discrete distributions (Goodfellow et al., 2016), making them a

powerful model. They are also more easily trained than general

Boltzmann Machines, usually through the contrastive divergence

algorithm as described in Hinton (2002), or variants thereof.

2.1. Training Boltzmann Machines

We first devote some discussion to the training of RBMs.

Subsection 3.1 then describes how to denoise images via QUBO

given a well-trained RBM.

Continuing with the notation as in Equation (4), the probability

distribution represented by a RBM is

Pθ (v, h) =
1

zθ
exp

(

−fθ
)

.

For simplicity, denote θ = (W, bv, bh) as the model parameters

henceforth. The normalizing constant zθ above is

zθ =
∑

v∈{0,1}v

∑

h∈{0,1}h

exp
(

−fθ (v, h)
)

which is becomes intractable quickly even for relatively small values

of v and h. The common training approach aims to maximize

the log-likelihood of the data. At a high-level, this will be done

by approximating gradients and following a stochastic gradient

scheme. However, since our data consists only of the visible nodes,

we need to work with the marginal distribution of the visible nodes.

This is given by

Pθ (v) =
∑

h

Pθ (v, h) =
∑

h

exp
[

−fθ (v, h)
]

zθ

Denote our set training data samples by V : = {v1, ..., vN}. We

will use superscripts to indicate training data samples, and reserve

subscripts to denote entries of vectors. Then the log-likelihood is

given by

lθ (V) =

N
∑

k=1

logPθ (v
k) =

N
∑

k=1

log
∑

h

Pθ (v
k, h)

=

(

∑

k

log
∑

h

exp
(

−fθ (v
k, h)

)

)

− N · log zθ

=

(

∑

k

log
∑

h

exp
(

−fθ (v
k, h)

)

)

− N · log
∑

v

∑

h

exp
(

−fθ (v, h)
)

(5)

Now we can calculate the gradient with respect to θ as

∇lθ (V) =

N
∑

k=1

∑

h exp
(

−fθ (vk, h)
)

∇(−fθ (vk, h))
∑

h exp
(

−fθ (vk, h)
)

− N ·

∑

v,h exp
(

−fθ (v, h)
)

∇(−fθ (v, h))
∑

v,h exp
(

−fθ (v, h)
)

=

N
∑

k=1

EPθ (h|vk)

[

−∇fθ (v
k, h)

]

− N · EPθ (v,h)
[

−∇fθ (v, h)
]

=
1

N

N
∑

k=1

EPθ (h|vk)

[

(vk)Th+ vk + h
]

− EPθ (v,h)

[

vTh+ v + h
]
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The first term can be computed exactly and efficiently from

the data, since the conditional Pθ (h|v) admits the simple form

P(hj = 1|v) = logistic(bh + (vTW)j); we refer the interested

reader to Goodfellow et al. (2016) or Dixit et al. (2021) and will

focus on the second term. Due to its intractability to compute

(one would have to sum over all possibilities of v and h), the
most promising approach is to approximate it by sampling from

Pθ (v, h). Classically, this is done via Gibbs sampling as described

in Hinton (2002). However, recent research has also investigated

using quantum annealers to sample from the relevant Boltzmann

distribution, as suggested in Benedetti et al. (2015) and Dixit et al.

(2021), which would make QAs useful in the training process

since obtaining good Gibbs samples can be expensive. We note

that together with our framework, QAs show promise to become

useful for both the RBM training and the denoising process in the

implementation of our method.

3. Image denoising as quadratic
unconstrained binary optimization

This section is devoted to showing how one can naturally frame

the image denoising problem as a QUBO instance over a learned

Boltzmann Distribution fit to the data.

3.1. Denoising via QUBO

Let us assume we are given a trained Restricted Boltzmann

Machine described in Section 2. The model prescribes to each

vector x ∈ {0, 1}v+h the cost fQ(x) and corresponding likelihood

Pmodel
Q (x) defined in Equations (1) and (3), respectively. We will

here make the assumption that Pmodel
Q describes the distribution of

our data. Hence, high likelihood vectors in Pmodel
Q correspond to

low cost vectors of fQ. In particular, note that finding the maximum

likelihood argument in Equation (2) corresponds to finding a

solution to the QUBO instance in Equation (1).

Now, supposing this model, our goal is to reconstruct an image

that has been affected by noise. The visible portion of our vector

will be considered to be a flattened image with v pixels, black or

white corresponding to 0 or 1, respectively, in the binary entries of

the vector.

3.1.1. Noise model
We now describe the noise assumptions we will conduct our

analysis under.

Definition 3.1. For x ∈ {0, 1}v, we define x afflicted by salt-and-

pepper noise of level σ as the random variable X̃x,σ : = (x+ǫ)mod2,

where ǫi = Bi(p) ∼ Bern(σ ), independently.

In other words, a binary image afflicted by salt-and-pepper

noise has each pixel independently flipped with probability σ . In

particular, we are interested in X̃X,σ , where X ∼ Pmodel
Q , which is

the compound random variable obtained by sampling X from the

learned distribution of the data and then afflicting it with salt-and-

pepper noise. For notational simplicity, will simply write X̃ when

the intended subscripts are clear from context.

We remark here that this salt-and-pepper noise model, also

sometimes called impulse valued noise, is a natural choice for

binary data and can occur in image processing through faulty

sensors or pixel elements in cameras; see e.g., Boyat and Joshi

(2015) for discussion of noise models in digital image processing.

Since the pixels (or binary data entries for non-image binary data)

only take the values 0 or 1, individual entries can only be corrupted

by the value being flipped. Hence, continuous noise models such as

Gaussian noise are not appropriate. Further, since the data we can

work with on currently available quantummachines are very small,

imposing additional structure on the noise does not seem fitting.

However, the related problem of image reconstruction, in which

some known set of pixels is damaged, is another model appropriate

for such data, as studied in Koshka and Novotny (2021). We

emphasize that in our noise model, which pixels are affected by

noise is random and unknown, leading to the denoising problem.

Suppose we are given a realization x̃ ∈ {0, 1}v of X̃X,σ . The

reconstruction process aims to retrieve this original X using x̃ and

the trained model through Q. The approach we will take begins

from the intuition that X is likely to be a high-likelihood image that

is close to x̃. To enforce this “closeness” to x̃ while searching for

higher likelihood images in our model to remove noise, we add to

the cost in Equation (1) a penalty for deviations from x̃ to formulate

the following natural denoising cost function:

fQ,x̃,ρ(x) = fQ(x)+ ρ
∑

i,j

(xi − x̃i)
2 (6)

for some ρ > 0 that determines the penalty level. The intuition is

that the minimizer of this function for a well-chosen ρ will change

a restricted number of pixels to find an image that is similar to the

noisy image, but has a lower cost, i.e., higher likelihood, under the

model, in hopes of removing the noise.

We show next that this minimizing Equation (6) corresponds

to solving a QUBO instance.

Claim 1. Defining Q̃ρ,x̃ ∈ R
(v+h)×(v+h) by setting Q̃

ρ,x̃
ij = Qij if

i 6= j and Q̃
ρ,x̃
ij = Qii + ρ(1− 2x̃) if i = j, we have

argminxfQ,x̃,ρ(x) = argminxfQ̃ρ,x̃ (x). (7)

Proof.

fQ,x̃,ρ(x) = fQ(x)+ ρ
∑

i

(xi − x̃i)
2 =

∑

i,j

Qijxixj

+ ρ
∑

i

x2i − 2xix̃i + x̃2i

=
∑

i6=j

Qijxixj +
∑

i

Qiix
2
i + ρ(x2i − 2x2i x̃i + x̃2)

=
∑

i6=j

Qijxixj +
∑

i

(Qii + ρ(1− 2x̃i))x
2
i + ρx̃2i

= fQ̃ρ,x̃ (x)+
∑

i

ρx̃i

Noting that xi = x2i for the above derivation since they are in {0, 1}

here. Since the x̃i terms do not depend on x, the claim follows.

Hence, solving the QUBO in on the right hand side of Equation

(7) gives us the solution to Equation (6). Claim Equation 1 thus
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tells us that we simply need to modify the diagonal of the original

matrixQ of our model by adding diag(1−2x̃1, ..., 1−2x̃n) and then

solve the resulting QUBO to get the denoised image. We can then

make use of quantum annealing to solve the resulting QUBO of

7, or use classical methods and heuristics like simulated annealing

instead.We formally spell out the denoising procedure in algorithm

QUBO_Denoise.

QUBO_Denoise

Input: A matrix Q, a noisy image x̃ sampled from the

distribution of X̃X,σ with X ∼ Pmodel
Q , and a penalty parameter

ρ > 0.

Output: A denoised image X∗
ρ,x̃,Q.

1. Set Q̃
ρ,x̃
ij = Qij if i 6= j and Q̃

ρ,x̃
ij = Qii + ρ(1− 2x̃) if i = j.

2. Set X∗
ρ,x̃,Q

: = argminxfQ̃ρ,x̃ (x).

For the remainder of the paper, X∗
ρ,x̃,Q will denote the denoised

image obtained by applying QUBO_Denoise with noisy image x̃,

penalty parameter ρ, and the distribution-defining matrix Q.

Remark 3.2. Considering the entire process of sampling a noisy

image and then denoising it, the measurability of X∗

ρ,X̃X,σ ,Q
is

inherited from the measurability of X̃X,σ , which in turn inherits

its measurability as compound random variable of the measurable

noise and original image X ∼ Pmodel
Q .

3.2. Optimal choice of penalty parameter ρ

The choice of the parameter ρ for the proposed image

denoising model is clearly crucial to its success, since different

choices will result in different solutions. If ρ is chosen to be too

small, there is very little cost to flipping a pixel, and then many

pixels may be flipped and the solution may not resemble the noisy

image at all anymore. If ρ is too large, we may be too heavily

penalizing flipping pixels, and thus may not be able to get rid of

noise effectively. Hence, we now turn toward finding the optimal

choice for ρ. We will evaluate the choice of ρ via expected overlap:

Definition 3.3. The expected overlap between two distributions P

and a P′, is defined by

d(P, P′) : = EPEP′
[

n−
∥

∥X − X′
∥

∥

1

]

,

where X ∼ P,X′ ∼ P′.

We will consider X ∼ Pmodel
Q , and X′ as X∗

ρ,X̃X,σ ,Q
the corresponding

denoised image, and will also call d(P, P′) the expected overlap

between X and X′. To keep notation simple, for the remainder of

this section allow us to write X̃ in place of X̃X,σ , with X and σ being

clear from context.

Our main positive result concerning the choice of ρ is

summarized in the following theorem:

Theorem 3.4. Let X ∼ Pmodel
Q as in Equation (2) and X̃ be the noisy

image. Then choosing ρ = log
1− σ

σ
to obtain X∗

ρ,X̃,Q
is optimal

with respect to maximizing the expected overlap between X and

X∗

ρ,X̃,Q
.

Proof. Let X dist Pmodel
Q , and X̃ be X afflicted by salt-and-pepper

noise of level σ . Then since X̃X,σ is obtained by flipping pixels with

probability σ , we have the conditional probability

Pσ (X̃ = x̃|X = x) =

v
∏

i=1

{

σ (x̃i − xi)
2 + (1− σ )[1− (x̃i − xi)

2]
}

=
exp

[

−βσ

∑v
i=1(x̃i − xi)

2
]

(1+ e−βσ )v
,

(8)

where βσ : = log 1−σ
σ

. In order to infer the original image X from

the noisy one X̃, we utilize the Bayes formula and calculate the

conditional probability P
post
βσ ,Q

(X = x|X̃ = x̃).

P
post
βσ ,Q

(x|x̃) =
Pσ (X̃ = x̃|X = x)Pmodel

Q (x)
∑

{x} Pσ (x̃|x)P
model
Q (x)

=
exp

[

−βσ

∑v
i=1(x̃i − xi)

2 −
∑v+h

i,j=1 Qijxixj

]

∑

{x} exp
[

−βσ

∑v
i=1(x̃i − xi)2 −

∑v+h
i,j=1 Qijxixj

] .

(9)

Note that x includes pixels for hidden nodes, which is fine here. Our

approach finds the state which is most likely under this distribution,

which is realized by annealing for the above QUBO with the

βσ term.

The overlap of two vectors x∗ and x is given by

m(x, x∗) : =
1

v+ h

v+h
∑

i=1

(2xi − 1)(2x∗i − 1), (10)

the proportion of shared entries. We consider the average (over the

noise) of solutions, X̄ρ,x̃,Q with

(X̄ρ,x̃,Q)i = θ





∑

{x}

Pmodel
Q̃

(x)xi −
1

2



 , (11)

where θ(x) = 1 if x > 0, otherwise 0, noting that the right hand side

represents the inferred pixel value based on the expectation from

Pmodel
Q̃

. We have formally distinguished Pmodel
Q̃

(x) from P
post
ρ,Q (x|x̃),

but in fact they are the same. Note that

2(X̄ρ,x̃,Q)i − 1 = sign





∑

{x}

Pmodel
Q̃

(x)(2xi − 1)



 , (12)

where sign(x) is the sign of x. Let ασ ,Q : = −βσ

∑

i(x̃i − xi)
2 −

∑

i,j Qijxixj for conciseness. In order to evaluate the statistical

performance of our method with coefficient ρ of penalty term, we

calculate the average of overlap as

Mβσ ,Q(ρ) : =
∑

{x̃},{x}

Pσ (x̃|x)P
model
Q (x)m(X̄ρ,x̃,Q), x)

=
1

(1+ eβσ )v
1

z

1

v+ h

∑

i

∑

{x̃},{x}

eασ ,Q [2(X̄ρ,x̃,Q)i − 1]

(2xi − 1).

(13)
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A sum in the right hand side of the above equation holds

∑

{x}

eασ ,Q [2(E(X∗
ρ,x̃,Q)i − 1](2xi − 1)

≤

∣

∣

∣

∣

∣

∣

∑

{x}

eασ ,Q [2(E(X∗
ρ,x̃,Q)i − 1](2xi − 1)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

{x}

eασ ,Q (2xi − 1)

∣

∣

∣

∣

∣

∣

=
∑

{x}

eασ ,Q (2xi − 1)

∑

{x′} e
−βσ

∑

i(x̃i−x′i)
2−
∑

i,j Qijx
′
ix
′
j (2x′i − 1)

∣

∣

∣

∑

{x′} e
−βσ

∑

i(x̃i−x′i)
2−
∑

i,j Qijx
′
ix
′
j (2x′i − 1)

∣

∣

∣

=
∑

{x}

eασ ,Q (2xi − 1)sign





∑

{x′}

Pmodel
Q̃

(x′)(2x′i − 1)





=
∑

{x}

eασ ,Q [2(X̄ρ,x̃,Q)i − 1](2xi − 1).

(14)

Hence, the averaged overlap holds

Mβσ ,Q(ρ) ≤
1

(1+ eβσ )v
1

Z1,Q

1

v+ h

∑

i

∑

{x̃},{x}

e
−βσ

∑

i(x̃i−xi)
2−
∑

i,j Qijxixj [2(X̄ρ,x̃,Q)i − 1](2xi − 1)

=Mβσ ,Q(βσ ).

(15)

This inequality means that the averaged overlap is maximized when

ρ = βσ = log 1−σ
σ

.

This theorem is based on a known fact in statistical physics

of information processing (Nishimori, 2001) and translates the

fact into the setting of our problem. Notably, the optimal choice

of ρ does not depend on the distribution of the data, but only

on the noise level, for which in many real world cases one may

have good estimates. The proof of the theorem also reveals the

following corollary:

Corollary 3.5. Under the same assumptions of Theorem 3.4,

setting ρ : = log 1−σ
σ

makes X∗

ρ,X̃,Q
the maximum a posteriori

estimator for the original noise-free image X.

The corollary follows from observing that the energy function in

the numerator of the posterior distribution Equation (9) is exactly

Equation (6) with ρ : = 1−σ
σ

, noting that minimizing Equation (6)

is equivalent to maximizing Equation (9). However, this framework

allows for additional flexibility in choosing the ρ parameter that is

absent in standard MAP estimation. In fact, in Sections 3.3 and 4.1

we go on to demonstrate that in practice, choosing a larger ρ may

be beneficial for robustness of the method.

Though Theorem 3.4 derives the optimal choice of ρ, it

does not give any guarantees that the method will yield an

improvement in expected overlap, even under its assumptions.

Next, we prove a theorem to show that in the case of visible units

being independent of one another, our image denoising method

produces in expectation strict denoising improvements with respect

to the expected overlap. For c > 0 and a model distribution Pmodel
Q

as in Equation 2, let Ic be the set of indices i such that |Qii| > c.

These indices correspond to components of X that are either 0 or

1 with probability at least
1

1+ e−c
, depending on whether Qii is

positive or negative, respectively.

Theorem 3.6. Suppose that Q is diagonal, X ∼ PQ, and that X̃ is

X afflicted by salt-and-pepper noise of level σ . With Ic as defined

above for c > 0, setting ρ ≥ log
(

1−σ
σ

)

, and assuming that Iρ 6= ∅,

the expected overlap of the denoised image and the true image is

strictly larger than the expected overlap of the noisy image and the

true image, i.e.,

E

[

∑

I((X∗

ρ,X̃,Q
)i = Xi)

]

> E

[

∑

I(X̃i = Xi)
]

. (16)

Proof. Let I0
c : = {i ∈ Ic :Qii > 0},I1

c : = {i ∈ Ic :Qii < 0}.

Intuitively, these are the indices which are likely to be zero or

one, respectively. Further, letting x† i denote the vector obtained by

flipping entry i of x, we have that |fQ(x) − fQ(x
† i)| = Qii > c if

and only if i ∈ Ic. Hence, this reveals that x∗ solves Equation (6) by

setting x∗i = 1 ∀i ∈ I
1
ρ , x

∗
i = 0 ∀i ∈ I

0
ρ , and x∗i = x̃i otherwise,

since the value of fQ of Equation (1) is reduced by more than ρ, so

that the overall penalized objective Equation (6) improves despite

the ρ penalty accrued by the pixel flips.

Now, let X ∼ Pmodel
Q . Let us compute P((X∗

ρ,X̃,Q
)i = Xi). The cases

where this happens are: i ∈ I0ρ and Xi = 0, i ∈ I1ρ and Xi = 1, or

i /∈ Iρ and pixel i was not flipped by the noise.

We know that if i ∈ I
b
ρ , P(Xi = b) ≥

1

1+ e−ρ
, for b ∈ {0, 1}, so

P((X∗

ρ,X̃,Q
)i = Xi) ≥

1

1+ e−ρ
for these. For i /∈ Iρ , P((X

∗

ρ,X̃,Q
)i =

Xi) = 1 − σ , where σ is the probability that the pixel was flipped

by the noise. On the other hand, P(X̃i = Xi) = 1 − σ ∀i. We

characterize

E

[

∑

I((X∗

ρ,X̃,Q
)i = Xi)

]

> E

[

∑

I(X̃i = Xi)
]

(17)
∑

P((X∗

ρ,X̃,Q
)i = Xi) >

∑

P(X̃i = Xi) = n · (1− σ ) (18)

For the left-hand side, assuming Iρ 6= ∅, we have

∑

P((X∗

ρ,X̃,Q
)i = Xi) >

∑

i∈Iρ

1

1+ e−ρ
+
∑

i/∈Iρ

(1− σ )

= |Iρ | ·
1

1+ e−ρ
+ (n− |Iρ |)(1− σ )

so that Equation (17) holds when

|Iρ | ·
1

1+ e−ρ
+ (n− |Iρ |)(1− σ ) ≥ n(1− σ )

⇐⇒ |Iρ | 6= 0

and
1

1+ e−ρ
≥ 1− σ ⇐⇒ ρ ≥ log(

1− σ

σ
) and Iρ 6= ∅, (19)

and the theorem is proven.

The assumption that matrix Q is diagonal is equivalent to the

components of X being independent, which is not realistic with

real data. However, since in the RBM model the visible units are

independent conditioned on the hidden units, we still consider
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this independent case to be informative to the denoising method.

In fact, if the hidden states were fixed (or known, or recovered

correctly), Theorem 3.6 would apply. We leave it as a tantalizing

open question to generalize this result beyond the independent

case. The assumption of nonemptiness of Iρ is a natural one for

the denoising task; indeed, when Iρ is empty, no entries of Q are

large in magnitude, which is equivalent to the entries of X being

close to uniformly distributed. In that case, intuitively of course it

should not be possible to guarantee that we can denoise an image

well if it looks like noise to begin with.

3.3. Robust choice of ρ

The optimal choice of ρ as derived in Theorem 3.4 relies on

the assumption that the observed data comes from the learned

distribution, or equivalently that the distribution generating our

data has been perfectly learned by the RBM. However, in practice

we will always only approximately learn the data distribution.

Hence, we do not want to rely too heavily on the exact distribution

we have learned when we denoise the images. One may hope to

have a more robust method by only changing the value of a pixel

when there is some confidence in the model that the pixel should

be flipped. We may thus want to penalize flipping pixels slightly

more than we should under the idealistic setting of Theorem 3.4,

which corresponds to choosing a larger ρ value than log 1−σ
σ

, or

equivalently using a smaller σ ′ < σ value when setting ρ : =

log 1−σ ′

σ ′ . We opt for the latter as a means of intentionally biasing

ρ to make the approach more robust for application. Figures 2, 3

in Section 4 show the effect this proposed robustness modification

has, demonstrating indeed that choosing a larger ρ via intentionally

using a smaller σ yields positive results. If the true noise level is σ ,

our experiments demonstrate that setting to roughly ρ : = 1−0.75σ
0.75σ

has a positive effect on performance.

4. Empirical results

This section contains results from implementing the previously

described method and comparing it against other denoising

approaches. Datasets and code are available on the first author’s

GitHub1 for the purpose of easy reproducibility.

4.1. Datasets and setup

In this subsection, we present empirical results obtained

by implementing our model on a quantum annealer, D-

Wave’s Advantage_system4.1, which has 5,000 qubits and enables

embedding of a complete bipartite graph of size 172× 172. Hence,

we use 12 × 12 pixel images here so that the visible layer is of

size 144. We test the method on two different datasets with very

differently structured data.

The first dataset is a 12× 12 version of the well-known MNIST

dataset (LeCun et al., 2010), created by downsizing the original

dataset with nearest-neighbor image downscaling and binarizing

1 https://github.com/PhillipKerger

FIGURE 1

Examples of the denoising process using our method showing the

true, noisy, and denoised images across di�erent noise levels.

pixels. The second dataset we use is a 12×12 pixel Bars-and-Stripes

(BAS) dataset, as has been used in closely related work (Dixit et al.,

2021; Koshka and Novotny, 2021), in which the authors used a

smaller 8×8 version of BAS in order to accommodate a 2,000 qubit

machine, so we implement a larger 12 × 12 version for the 5,000

qubit machine we use. Each image consists of binary pixels with

either each row or each column sharing the same values, so that

each image consists of either “bars” or “stripes”. Some examples of

noise-free, noisy, and denoised images across different noise levels

are presented in Figure 1.

For both datasets we train the RBM by using the classical

Contrastive Divergence algorithm first presented in Hinton (2002),

and as described in Section 2.1. The number of hidden units was set

to 50 and 64 for BAS and MNIST, respectively. For both datasets,

we used learning rate of 0.01, batch size of 50, and 150 epochs

as the training hyperparameters. For the BAS data, 4,000 images

were generated as training data, and 1,000 as test data, while for

MNIST, we simply used the full MNIST provided training set of

60,000 images and test set of 10,000 images. Noisy images were

generated by adding salt-and-pepper noise of level σ to images

from the test dataset. Given a noisy image, we are then able to

embed and solve the resulting denoising QUBO of 7 onto a D-Wave

quantum annealer, Advantage_system4.1. A function of D-Wave’s

Ocean software, find_embedding, is utilized to find appropriate
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mappings from variables in a QUBO to physical qubits onD-Wave’s

Pegasus graph. A variable in QUBO is often mapped to multiple

physical qubits, called chain, that are strongly connected to each

other to behave like a single variable. A mapping can be used for

every noisy images for each dataset, since their QUBO have the

same graph structure. We have prepared in advance 50 sets of the

different mappings for each dataset and choose a mapping from

the pool at random to embed QUBO of each image. This random

selection is done to avoid possible artificial effects on the denoising

performance from using only a particular mapping. Parameters for

embedding and annealing, i.e., chain_strength and annealing_time,

are tuned to maximize the performance. In particular, we set

chain_strength as the product of a coefficient c0 and the maximum

abstract value among the elements of each QUBOmatrix, where we

tune c0. The adopted values of the parameters are different between

MNIST and BAS but the same values for all the range of σ . We

set (c0, annealing_time) = (0.6, 50 µs), (0.5, 40 µs) for BAS and

MNIST, respectively. The number num_reads of reads of annealing

is 100 for each noisy image. We calculate the average of solution of

each pixel over the reads to approximate Equation (11) and use it to

evaluate the overlap that is proportion of pixels in denoised images

that matched the original image. We denoise 200 noisy images for

each σ , which are randomly selected from the pool of test images

for each sigma. Note also that for each value of sigma, the different

methods compared use the same set of (randomly selected) noisy

test images.

4.2. Results with quantum annealing

Figures 2, 3 first investigate the robust choice of ρ as discussed

in Section 3.3. This is done by using a biased value of σ when

setting ρ = log 1−σ
σ

, instead setting ρ : = log 1−bσ
bσ

for some bias

factor b. The denoising performance for b ∈ {1.25, 1, 0.75, 0.5} are

shown, with 95% confidence intervals obtained by bootstrapping.

Note that using a bias factor b = 1 means using the true value of σ

for determining ρ.

Based on the empirical performance, using a bias factor of

around 0.75 seems to give an improved performance compared

to using a bias factor of 1 in both data sets. A bias factor of 0.5

seems to perform quite well-across most noise regimes as well,

with largely overlapping confidence regions to the 0.75 parameter

setting, though in the low-noise setting for the BAS dataset we

observe an adverse effect. The authors thus suggest a setting of 0.75

for the bias factor.

Next, in Figures 4, 5, we compare our method to popular other

denoising methods for binary images on the 12 × 12 MNIST and

bars-and-stripes datasets, respectively, across different noise levels.

When comparing to other methods, a crucial factor is that we

choose ρ based off of σ , but in practice σ may be unknown.

In light of this, we include two versions of our method in these

comparisons. First, we use our method with ρ : = log 1−σ
σ

, using

the true value of σ without introducing the recommended bias

factor. Secondly, we simulate the situation in which the true σ is

unknown, and instead we only have a guess for σ . To simulate

having an approximate guess for σ , for each image afflicted by noise

of level σ , we sample σ ′ uniformly from an interval of size σ/2

FIGURE 2

Proportion of pixels in denoised MNIST images that matched the

original image, for di�erent denoising methods with 95% CI error

bars.

FIGURE 3

Proportion of pixels in denoised BAS images that matched the

original image, for di�erent denoising methods with 95% CI error

bars.

centered at sigma.We then set ρ : = log 1−0.75σ ′

0.75σ ′ , using a bias factor

of 0.75 on with this “guessed” value of σ . This is a significantly

more realistic way of testing our method, since it gives an idea

of how well the method may perform when the true noise level

present in the noisy images is unknown and must be guessed. Our

implementation here only assumes that the practitioner roughly

knows the magnitude of the noise. For example, if the true noise is

σ = 0.2, here we sample σ ′ uniformly from [0.15, 0.25] to simulate

the guess.

We compare our method to Gibbs denoising with an RBM

(Tang et al., 2012, Section 3.2), median filtering (Huang et al.,

1979), Gaussian filtering (Stockman and Shapiro, 2001, Chapter

5), and a graph-cut method (Greig et al., 1989) for denoising.

For the Gibbs denoising, we use the same well-trained RBM as
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FIGURE 4

Proportion of pixels in denoised MNIST images that matched the

original image, for di�erent denoising methods with 95% CI error

bars.

FIGURE 5

Proportion of pixels in denoised BAS images that matched the

original image, for di�erent denoising methods with 95% CI error

bars.

for our QUBO-based method, and parameters of the method

were carefully tuned for best performance to use 20 Gibbs

iterations to then construct the denoised image as the exponentially

weighted average of the samples with decay factor 0.8. Notably,

as Gibbs-based denoising also requires a well-trained RBM, this

method incurs the same computational overhead of training an

RBM as our method does. However, it has the disadvantage of

requiring careful tuning of the hyperparameters of the number of

Gibbs iterations and decay factor to use, whereas our method of

picking ρ is much more straightforward and shows good results

without tuning. For the graph-cut method, the recommended

parameter setting in the reference of β = 0.5 is used. The

median filter, Gaussian filter, and Gibbs denoising (excluding the

overhead of training the RBM) each have complexity O(n), where

n is the number of pixels, whereas the graph-cut method has

complexity O(n3) since a maximum-flow problem is solved on

a graph whose nodes are the pixels of the image. Keeping the

annealing time and number of reads as constant, the scaling of

our method is also O(n). We forego wall-time here, since the

software implementations we compare against are specialized for

large problems, so comparing walltime for the small problems that

can be implemented on current quantum annealers may not be

representative. However, we note that for the QUBO denoising

as we use up to 50µs annealing time and 100 reads per image,

denoising an image only takes a total of 5ms of annealing time in

our case.

Results are summarized in Figures 4, 5. Overall, the QUBO-

based method performs quite strongly. Across all noise regimes

in the MNIST data, and in most noise regimes in the bars-and-

stripes dataset, the method outperforms the others. In particular,

for the MNIST data the 95% confidence region for the QUBO

method entirely dominates the others. Indeed, we see the good

performance that our analysis from Section 3 suggests, even when

the true σ is unknown and instead guessed. Using a guessed σ

and the robustness modification of Section 3.3 makes the method

perform as well (if not slightly better) as knowing the true σ

without the robustness modification. Only in the noise regime

of σ ≥ 0.2 in the BAS data does Gibbs denoising outperform

our method.

4.3. Testing on larger images

Though we see the the straightforward implementability of

our method on quantum annealers as a strong positive, a current

drawback on using QAs is the limited data size that can be handled

to accomodate their still small qubit capacities. Of course we

can still instead test our method on larger datasets by obtaining

solutions to the denoising QUBO 6 using other means. In

Figure 6, we implement our method on a binarized version of the

popular MNIST dataset (LeCun et al., 2010) by using simulated

annealing (Kirkpatrick et al., 1983) to find solutions to (6). We

particularly choose to test on the full-size MNIST dataset since

we could only use a downscaled version on the QA due to size

limitations on the input data, so this experiment serves to test our

method without this downscaling. All methods are implemented

as described in Section 4.1, and again for our method we use a

guessed σ to simulate the unknown σ case and bias the guess

for robustness.

5. Conclusion and future work

We investigated an image denoising framework via a

penalty-based QUBO denoising objective that shows promise

both theoretically through its statistical properties and

practically through its empirical performance together with
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FIGURE 6

Proportion of pixels in denoised images that were correctly

denoised, for di�erent denoising methods on the MNIST dataset,

with 95% confidence intervals shaded.

the proposed robustness modification. The method is well-suited

for implementability on a quantum annealer, providing an

important application of QAs within machine learning through

the fundamental image denoising task. Good results are still

obtained on larger datasets when the QUBO is only classically

approximated by simulated annealing instead, revealing the

approach to be promising even in the absence of QAs. As RBMs

form a core building block of many deep generative models such

as deep Boltzmann machines or deep belief networks (Goodfellow

et al., 2016), a natural next step is to attempt to incorporate

this approach into these more complex models, though current

hardware limitations on existing quantum annealers are restrictive.

Further, since our method takes advantage of QAs for the denoising

step, further research into making use of QAs for the training

process of RBMs would yield a full image denoising model

where both the model training and image denoising make use

of QA.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://github.com/

PhillipKerger/Code_for_figures_of_QUBO_RBM_denoising_

paper.

Author contributions

PK: Conceptualization, Formal analysis, Investigation,

Methodology, Project administration, Software, Validation,

Visualization, Writing—original draft, Writing—review and

editing. RM: Conceptualization, Formal analysis, Funding

acquisition, Project administration, Resources, Software,

Supervision, Writing—review and editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. PK was

supported in part by g-RIPS Sendai, Cyberscience Center at

Tohoku Univ., and NEC Japan, in early stages of the work. PK

is grateful to the USRA Feynman Academy internship program,

support from the NASA Academic Mission Services (contract

NNA16BD14C), and funding from DARPA under DARPA-NASA

agreement SAA2-403688.

Acknowledgments

The early stage of this work is based on the work in the g-RIPS

Sendai 2021 program. The authors thank Y. Araki, E. Escobar, T.

Mihara, V. Q. H. Huynh, H. Kodani, A. T. Lin, M. Shirane, Y.

Susa, and H. Suito for collaboration in the program. The authors

also acknowledge H. Kobayashi and M. Sato for the use of the

computing environment in the program. PK thanks Y. Sukurdeep

for helpful feedback and discussions.

Conflict of interest

RM was employed by NEC Corporation.

The remaining author declares that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Adachi, S. H., and Henderson, M. P. (2015). Application of quantum
annealing to training of deep neural networks. ArXiv. ArXiv:1510.06356.
doi: 10.48550/arXiv.1510.06356

Albash, T., and Lidar, D. A. (2018). Adiabatic quantum computing. Rev. Mod. Phys.
90, 15002. doi: 10.1103/RevModPhys.90.015002

Barahona, F. (1982). On the computational complexity of Ising spin glass
models. J. Phys. A Math. Gen. 15, 3241–3253. doi: 10.1088/0305-4470/15/
10/028

Benedetti, M., Realpe-G’omez, J., Biswas, R., and Perdomo-Ortiz, A. (2015).
Estimation of effective temperatures in quantum annealers for sampling applications:

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1281100
https://github.com/PhillipKerger/Code_for_figures_of_QUBO_RBM_denoising_paper
https://github.com/PhillipKerger/Code_for_figures_of_QUBO_RBM_denoising_paper
https://github.com/PhillipKerger/Code_for_figures_of_QUBO_RBM_denoising_paper
https://doi.org/10.48550/arXiv.1510.06356
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1088/0305-4470/15/10/028
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Kerger and Miyazaki 10.3389/fcomp.2023.1281100

a case study with possible applications in deep learning. Phys. Rev. A 94, 022308.
doi: 10.1103/PhysRevA.94.022308

Boyat, A. K., and Joshi, B. K. (2015). A review paper: noise models in digital image
processing. ArXiv. doi: 10.5121/sipij.2015.6206

Buades, A., Coll, B., and Morel, J.-M. (2005). A review of image
denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530.
doi: 10.1137/040616024

Cho, K. (2013). Boltzmann machines and denoising autoencoders for image
denoising. ArXiv. ArXiv:1301.3468. doi: 10.48550/arXiv.1301.3468

Das, A., and Chakrabarti, B. K. (2008). Colloquium: quantum annealing
and analog quantum computation. Rev. Mod. Phys. 80, 1061–1081.
doi: 10.1103/RevModPhys.80.1061

Dixit, V., Selvarajan, R., Alam, M. A., Humble, T. S., and Kais, S. (2021). Training
restricted boltzmann machines with a d-wave quantum annealer. Front. Phys. 9,
589626. doi: 10.3389/fphy.2021.589626

Glover, F. W., Kochenberger, G. A., and Du, Y. (2018). Quantum bridge
analytics i: a tutorial on formulating and using qubo models. 4OR 17, 335–371.
doi: 10.1007/s10288-019-00424-y

Goodfellow, I. J., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,
MA: MIT Press. Available online at: http://www.deeplearningbook.org (accessed
August 20, 2023).

Greig, D., Porteous, B., and Seheult, A. H. (1989). Exact maximum a posteriori
estimation for binary images. J. R. Stat. Soc. Ser. B Methodol. 51, 271–279.
doi: 10.1111/j.2517-6161.1989.tb01764.x

Hinton, G. E. (2002). Training products of experts by minimizing contrastive
divergence. Neural Comput. 14, 1771–1800. doi: 10.1162/089976602760128018

Huang, T. S., Yang, G., and Tang, G. (1979). A fast two-dimensional median
filtering algorithm. IEEE Transact. Acoust. Speech Signal Process. 27, 13–18.
doi: 10.1109/TASSP.1979.1163188

Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson,
N., et al. (2011). Quantum annealing with manufactured spins. Nature 473, 194–198.
doi: 10.1038/nature10012

Kadowaki, T., and Nishimori, H. (1998). Quantum annealing in the
transverse ising model. Phys. Rev. E 58, 5355–5363. doi: 10.1103/PhysRevE.58.
5355

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization
by simulated annealing. Science 220, 671–680. doi: 10.1126/science.220.45
98.671

Koshka, Y., and Novotny, M. A. (2021). Comparison of use of a 2000 qubit
d-wave quantum annealer and mcmc for sampling, image reconstruction,
and classification. IEEE Transact. Emerg. Top. Comp. Intell. 5, 119–129.
doi: 10.1109/TETCI.2018.2871466

Krzysztof, K., Mateusz, S., Marek, S., and Rafał, R. (2021). Applying
a quantum annealing based restricted boltzmann machine for mnist
handwritten digit classification. Comp. Methods Sci. Technol. 27, 99–107.
doi: 10.12921/cmst.2021.0000011

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist Handwritten Digit Database.
ATT Labs. Available online at: http://yann.lecun.com/exdb/mnist (accessed August 20,
2023).

Lucas, A. (2014). Ising formulations of many NP problems. Front. Phys. 2, 5.
doi: 10.3389/fphy.2014.00005

Nishimori, H. (2001). Statistical Physics of Spin Glasses and Information Processing:
An Introduction. New York, NY: Oxford University Press.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based
noise removal algorithms. Phys. D 60, 259–268. doi: 10.1016/0167-2789(92)90
242-F

Stockman, G., and Shapiro, L. G. (2001). Computer Vision. Upper Saddle River, NJ:
Prentice Hall PTR.

Tang, Y., Salakhutdinov, R., and Hinton, G. E. (2012). “Robust boltzmann machines
for recognition and denoising,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition (Providence, RI), 2264–2271.

Vahdat, A. (2017). “Toward robustness against label noise in training deep
discriminative neural networks,” in NeurIPS Proceedings 2017 (Long Beach, CA).

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1281100
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.5121/sipij.2015.6206
https://doi.org/10.1137/040616024
https://doi.org/10.48550/arXiv.1301.3468
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.3389/fphy.2021.589626
https://doi.org/10.1007/s10288-019-00424-y
http://www.deeplearningbook.org
https://doi.org/10.1111/j.2517-6161.1989.tb01764.x
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1109/TASSP.1979.1163188
https://doi.org/10.1038/nature10012
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/TETCI.2018.2871466
https://doi.org/10.12921/cmst.2021.0000011
http://yann.lecun.com/exdb/mnist
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1016/0167-2789(92)90242-F
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Quantum image denoising: a framework via Boltzmann machines, QUBO, and quantum annealing
	1. Introduction
	1.1. Contributions and organization
	1.2. Related work

	2. Background
	2.1. Training Boltzmann Machines

	3. Image denoising as quadratic unconstrained binary optimization
	3.1. Denoising via QUBO
	3.1.1. Noise model

	3.2. Optimal choice of penalty parameter ρ
	3.3. Robust choice of ρ

	4. Empirical results
	4.1. Datasets and setup
	4.2. Results with quantum annealing
	4.3. Testing on larger images

	5. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


