AUTHOR=Bejarano Jorge , Barón Daniel , González-Rojas Oscar , Camargo Manuel TITLE=Discovering optimal resource allocations for what-if scenarios using data-driven simulation JOURNAL=Frontiers in Computer Science VOLUME=5 YEAR=2023 URL=https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2023.1279800 DOI=10.3389/fcomp.2023.1279800 ISSN=2624-9898 ABSTRACT=Introduction

Data-driven simulation allows the discovery of process simulation models from event logs. The generated model can be used to simulate changes in the process configuration and to evaluate the expected performance of the processes before they are executed. Currently, these what-if scenarios are defined and assessed manually by the analysts. Besides the complexity of finding a suitable scenario for a desired performance, existing approaches simulate scenarios based on flow and data patterns leaving aside a resource-based analysis. Resources are critical on the process performance since they carry out costs, time, and quality.

Methods

This paper proposes a method to automate the discovery of optimal resource allocations to improve the performance of simulated what-if scenarios. We describe a model for individual resource allocation only to activities they fit. Then, we present how what-if scenarios are generated based on preference and collaboration allocation policies. The optimal resource allocations are discovered based on a user-defined multi-objective optimization function.

Results and discussion

This method is integrated with a simulation environment to compare the trade-off in the performance of what-if scenarios when changing allocation policies. An experimental evaluation of multiple real-life and synthetic event logs shows that optimal resource allocations improve the simulation performance.