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Artificial neural networks (ANNs) are sensitive to perturbations and adversarial

attacks. One hypothesized solution to adversarial robustness is to align

manifolds in the embedded space of neural networks with biologically grounded

manifolds. Recent state-of-the-art works that emphasize learning robust neural

representations, rather than optimizing for a specific target task like classification,

support the idea that researchers should investigate this hypothesis. While works

have shown that fine-tuning ANNs to coincide with biological vision does increase

robustness to both perturbations and adversarial attacks, these works have relied

on proprietary datasets—the lack of publicly available biological benchmarks

makes it di�cult to evaluate the e�cacy of these claims. Here, we deliver a

curated dataset consisting of biological representations of images taken from

two commonly used computer vision datasets, ImageNet and COCO, that can be

easily integrated into model training and evaluation. Specifically, we take a large

functional magnetic resonance imaging (fMRI) dataset (BOLD5000), preprocess it

into representational dissimilarity matrices (RDMs), and establish an infrastructure

that anyone can use to train models with biologically grounded representations.

Using this infrastructure, we investigate the representations of several popular

neural networks and find that as networks have been optimized for tasks, their

correspondence with biological fidelity has decreased. Additionally, we use a

previously unexplored graph-based technique, Fiedler partitioning, to showcase

the viability of the biological data, and the potential to extend these analyses by

extending RDMs into Laplacian matrices. Overall, our findings demonstrate the

potential of utilizing our new biological benchmark to e�ectively enhance the

robustness of models.

KEYWORDS

brain-inspired neural networks, computational neuroscience, deep learning, geometric

analysis, object recognition, functional MRI, Fiedler partitioning, human visual system

1 Introduction

Over the last decade, the landscape of state-of-the-art neural networks has shifted at a

near continuous rate. But, within the last few years, the discourse around how to achieve

the state-of-the-art has shifted from an emphasis on architecture to an emphasis on robust

learned representations. In this work, we note that what constitutes a “good” representation

to optimize for is still a matter of debate—we posit that one promising representation to

strive for is the one employed by the biological brain. Our contributions include the curation

of a new dataset to facilitate measuring the similarity of neural network representations with

biological representations, an investigation of the biological fidelity of several state-of-the-art

models’ representations, and the establishment of a new evaluative benchmark to facilitate

further research into aligning artificial and biological neural representations.
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Investigations into how similar a trained neural network is

to a biological brain have been unfolding since the early days

of the neural network boom (Yamins et al., 2013, 2014; Hong

et al., 2016; Kheradpisheh et al., 2016; Yamins and DiCarlo, 2016).

Prior work has shown that representations closer to the biological

brain are more robust to adversarial attacks (Li et al., 2019), are

adaptable to new tasks in a zero-shot context (Schrimpf et al.,

2018; Blanchard et al., 2019), and have gains in task performance

that emerge quicker than when learning representations without

biological similarity (Blanchard, 2019; Blanchard et al., 2019).

Given this pedigree, one would be remiss not to wonder why

research into these comparisons is so rare. Unfortunately, most

biological datasets are proprietary or too small (Chang et al., 2019)

and without this resource, neither researchers nor practitioners

can further investigate this phenomenon. Further, state-of-the-art

models have traditionally been assessed by their accuracy on key

datasets while evaluations of how well-embedded representations

generalize to new tasks is a relatively recent phenomenon (Radford

et al., 2021).

Additionally, many of these works simply focus on post-

hoc evaluations. There are relatively few works investigating

how to optimize networks to achieve biological representations

(Elsken et al., 2018; Hsu et al., 2018; Liu et al., 2018; Pham

et al., 2018; Bashivan et al., 2019). Even recent efforts to learn

strong representations focus on unsupervised methods that

allow massive amounts of data to be used for training, with

the hope that stronger representations will emerge (Radford

et al., 2021). We hypothesize that a large biological dataset

would facilitate a deeper investigation into the viability of

biological representations for artificial neural networks. Of

particular interest to this community is the potential for deeper

investigations into how to optimize for biologically grounded

manifolds—current methodologies utilize representational

similarity analysis (RSA) (Kriegeskorte et al., 2008), but

recent work has suggested methods to adopt and expand

these methods (Jamil et al., 2023) by redefining the core data

structures of RSA, representational dissimilarity matrices (RDMs),

into weighted graphs.

Following the methodology pioneered by Jamil et al. (2023),

we demonstrate that network representations drift further away

from biological representations when networks are optimized for

task performance. This is in agreement with Kumar et al. (2022),

who found an inverse-U relationship exists between ImageNet

classification accuracy of a network and its perceptual similarity

score (Zhang et al., 2018). We posit that these mirror critiques of

prominent research groups like Google’s DeepMind, where Goh

et al. (2021) identified the viability of an adversarial typographic

attack where simply writing the incorrect word on an object sufficed

for causing misclassifications. In a blog post discussing the attack,

Goh et al. (2021) suggested,

“this attack exploits the way image classification tasks are

constructed. While images may contain several items, only one

target label is considered true, and thus the network must learn

to detect the most ‘salient’ item in the frame. The adversarial

patch exploits this feature by producing inputs much more

salient than objects in the real world. Thus, when attacking

object detection or image segmentation models, we expect a

targeted toaster patch to be classified as a toaster, and not to

affect other portions of the image.”

It is true that assessing state-of-the-art models has always been

important for both practitioners adapting those models to their

own tasks and researchers seeking to understand and push toward

better models (Kingma and Welling, 2013); however, the advent of

works like CLIP, from Radford et al. (2021), have ushered in a new

era driven by evaluating neural networks on how adaptable their

learned representations are to new tasks in a zero-shot context.

This work provides the tools for researchers to take this idea

further providing biologically viable target representations that can

be factored into the optimization of networks. As illustrated in

Figure 1, our contributions include:

• The presentation and re-release of the BOLD5000 dataset

(Chang et al., 2019), which has been fully processed to facilitate

evaluating and optimizing neural networks on biologically

grounded representations of data. Our efforts culminate

in one of the largest biological datasets for vision ever

released, which will facilitate widespread investigations into

optimal representations.

• The application of a previously unexplored graph-based

technique, the Fiedler algorithm, to this preprocessed dataset,

demonstrating its versatility as an evaluation metric.

• The introduction of a framework which allows researchers to

better fine-tune, evaluate, and select models for robustness.

Ultimately, the products of this work will facilitate future

research into how robust representations manifest, and

methods for optimizing networks to achieve trustworthy and

adversarially robust results.

2 Related work

Here, we detail prior works that investigate biological

representation benchmarks. In particular, we focus on methods

that investigate “neuro-similarity,” i.e., the similarity of an artificial

neural network’s (ANN’s) learned representation to a benchmark of

the biological brain. First, we examine metrics of neuro-similarity,

then, efforts to increase neuro-similarity, and conclude with an

investigation of works that link biologically consistent ANNs

and robustness.

2.1 Metrics of neuro-similarity

Representational similarity analysis (RSA) is a popular tool

measuring neuro-similarity where similarity metrics are derived

from representational dissimilarity matrices (RDMs) (Kriegeskorte

et al., 2008). ANN activations and neural data can be abstracted

into RDMs for a set of stimuli. If two RDMs are created using the

same stimuli set, they can be directly compared to one another

by measuring the similarity of the consistency across that stimuli

set. Two established metrics that capitalize on RSA for measuring
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FIGURE 1

In this work, we present a new biologically grounded representation for evaluation and optimization of neural representations. Prior work has shown

such representations correspond with robustness to adversarial attacks and task generalization. The curation of this new benchmark required

preprocessing the BOLD5000 data into representational dissimilarity matrices (RDMs) and establishing a framework for investigating biological

representations. We then investigate the viability of our discovered representation with a novel application of Fiedler partitioning on the data to

demonstrate the potential of the biological representation for adversarial robustness.

the neuro-similarity of ANNs are human-model similarity (HMS)

(Blanchard et al., 2019) and Brain-Score (Schrimpf et al., 2018).

HMS (Blanchard et al., 2019) evaluates the neuro-similarity

between fMRI data and ANNs as the Spearman correlation between

the averaged fMRI RDM and an ANN’s RDM. The metric was

validated on self-supervised predictive coding networks—a form of

ANN composed of convolutional long short-termmemory (LSTM)

units designed to mimic predictive coding employed by biological

visual systems. They found that models with higher HMS exhibited

higher performance on next-frame prediction (the self-supervised

task the networks were trained on) and were more robust to other

tasks that networks were not trained for, such as object matching.

They also found that HMS could be accurately measured early in

the training process, and they proposed that it could be utilized

for “early stopping”, i.e., training could be abandoned before the

weights fully converged.

Similar to HMS, Brain-Score (Schrimpf et al., 2018) is a

composite neural and behavioral benchmark set, which uses

multiple evaluation metrics to score and rank ANNs according to

how brain-like their visual object-recognition mechanisms are. To

accomplish this, the internal representations of ANNs trained on

ImageNet were compared for similarity against neural recordings

taken from the V4 and IT cortical areas of macaque monkeys. From

this, Dense-Net169, COREnet-S, and ResNet-101 were found to be

the most brain-like, though Brain-Score was unable to reveal why.

HMS is the most similar to our methodology because we too

use publicly available fMRI data, but a major limitation of HMS is

that it only utilizes 92 stimuli, making it unsuitable to train with

since networks quickly overfit to the small sample. These metrics

are a great starting point for measuring neural similarity—however,

to improve model robustness, more specific metrics need to be

created. To effectively achieve this, datasets similar to this one

must have as little noise in them as possible, something we address

with BOLD5000.

In addition to RSA, there has also been research into

psychophysical comparison metrics between ANNs and the human

vision system. Jacob et al. (2021) found that ANNs trained for

object recognition tasks were susceptible to some of the same visual

illusions as the human visual system, such as mirror confusion,

while other effects were absent. Gomez-Villa et al. (2020) found

that ANNs trained for low-level visual tasks such as denoising

and deblurring demonstrate human-like contrast similarity, but

noted that deeper, more flexible network architectures did not

demonstrate the same similarity. Human-like contrast similarity

was also found in a variety of ANN architectures trained for

different tasks (Li et al., 2022; Akbarinia et al., 2023).

2.2 Increasing neuro-similarity

Multiple methods have been investigated to affect an increase

in the neuro-similarity of ANNs. One approach is the tailoring of

image training datasets to achieve a distribution of input stimuli

that more closely matches what may be experienced in nature

(Aliko et al., 2020; Mehrer et al., 2021; Roads and Love, 2021; Allen

et al., 2022). This approach is based on observations that training

datasets designed for machine vision applications are crafted for

domain specific applications, or otherwise contain internal biases

in their distribution of subject matter that do not match what is

in nature (Smith and Slone, 2017). A specific example of such a

bias is the fact that ImageNet (Deng et al., 2009), one of the most

widely used image classification datasets in the field, contains 120

categories of dog breeds, but lacks any categories for humans. By

creating datasets withmore natural image distributions, researchers

have been able to significantly improve the neuro-similarity of the

DNNs trained on these datasets.

While this approach does improve neuro-similarity in the

trained models and demonstrates the potential of DNNs to achieve

higher levels of neuro-similarity, it may not always be feasible or

desirable to augment every dataset with a great enough volume of

images, or images of the correct type, to achieve a distribution that

matches the natural world. For example, domain specific datasets,

such as for medical imaging research, don’t have a complementary

input set in nature to draw from. Datasets for machine vision

research are also growing in size constantly and it may not be cost-

effective or efficient to increase their size to a point where a natural

distribution is achieved. However, these domain-specific models

can potentially still benefit from greater neuro-similarity.
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One architectural approach to increasing neuro-similarity is

divisive normalization, which seeks to replicate how neighboring

neurons normalize their activations non-linearly (Miller et al.,

2021; Veerabadran et al., 2021; Hernández-Cámara et al.,

2023).

It has been demonstrated that DNNmodels with greater neuro-

similarity perform better at some tasks than models with lesser

neuro-similarity. One exciting example of this, and the inspiration

for this paper was work done by Li et al. (2019), who improved

the robustness of a deep convolutional neural network (DCNN)

to image noise via fine-tuning with an additional loss function

that favored greater neuro-similarity. These experiments were

conducted using a dataset derived from two-photon excitation

microscopy (2PEF) ofmice brains—they released the code to enable

the fine-tuning but did not release the data itself. The fine-tuning

was enabled via RDM comparisons—however, unlike Brain-Score

and HMS, they approximated complete RDMs during training

by only creating an RDM for a subset of stimuli. Constructing

an entire RDM during training is computationally expensive

because activations for each of the stimuli must be collected

and compared.

2.3 Linking neuro-similarity to robustness

Despite initial findings that improving neuro-similarity could

increase robustness (Li et al., 2019), none of the known evaluation

metrics explicitly measure this improvement. We think this is an

area where some could be created. We propose that robustness

should be measured via psychophysics (RichardWebster et al.,

2018, 2019). This evaluation focuses on evaluating robustness

across a range of different noise levels. It also focuses on explainable

and trustworthy evaluations of networks—by exploring amultitude

of different noise types, the evaluation reveals specific weaknesses

that networks are susceptible to, e.g., in the domain of face

recognition, RichardWebster et al. (2018) found that FaceNet

was surprisingly susceptible to brown noise, while other methods

were not.

3 Materials and methods

3.1 BOLD5000

BOLD5000, one of the largest, publicly available fMRI datasets,

was created to address three areas of neural dataset design: create

a dataset of sufficient size to enable fine-tuning a deep neural

network (DNN), have a greater diversity of images and image

categories than is normally present in a neural study, and provide

an overlap between the stimulus images used in the fMRI trials and

the training image datasets of DNNs to allow for a more direct

comparison of DNN and human brain activations (Chang et al.,

2019).

Similar to most other human fMRI brain scan datasets,

BOLD5000 is composed of stimuli images pulled from existing

machine vision image datasets (Geirhos et al., 2018; Allen et al.,

2022). In total, it consists of fMRI brain scans from four

participants (CSI1-4) who were presented with 4,916 real-world

images from three commonly used computer vision datasets: 1,916

from ImageNet (Deng et al., 2009), 2,000 from Common Objects

in Context (COCO) (Lin et al., 2014), and 1,000 custom images

of scenes from categories inspired by Scene UNderstanding (SUN)

(Xiao et al., 2010). Collectively, these datasets span a wide variety of

categories and consist of images of real-world indoor and outdoor

scenes and objects either centered in or interacting with complex

real-world scenes.

All selected images were resized, cropped to 375 × 375, and

adjusted for even luminance. For each input dataset, exemplar

images were hand-selected by the BOLD5000 authors on a per-

category basis. Subjects then engaged in 15 functionalMRI sessions,

where all images were presented on a single trial basis, except

for a subset of 113, for which unique neural representation data

was collected.

During the original BOLD5000 study, one participant (CSI4)

did not complete the entire experiment. As a result, CSI4 is typically

discarded from studies using the BOLD5000 (Sexton and Love,

2022). However, because there are already only three complete

participants to begin with, and because the majority of the stimuli

images are only presented once, this study incorporates CSI4’s

partial data into a mean subject using the RDMs calculated as part

of the RSA analysis (Section 3.4).

A second release of the BOLD5000 dataset occurred in

2021 (Chang et al., 2021). The major difference with the second

release was the re-processing of the beta values for the fMRI

sessions using the GLMSingle toolbox (Prince et al., 2022). The

goal of the second release was to increase the reliability of the beta

value estimates.

3.2 Preprocessing

All betas were provided in NIfTI format, divided by subject

and session. The image coordinate transforms provided within

the file header did not correspond to the transforms used for

brainmasks, ROI masks, and T1w anatomical images from the

original BOLD5000 release. This transform information is required

for several other processing steps, including the re-application of

the functional region of interest (ROI) masks from the original

release of the BOLD5000 and application of the two new ROI

atlases, vcAtlas (Rosenke et al., 2018) and visfAtlas (Rosenke

et al., 2021), to the four participant brains. We solved this

issue by intuiting that the provided NIfTI files were derived

from the same fMRIPrep (Esteban et al., 2019) derivatives as

the original BOLD5000, thus allowing us to utilize the same

alignments and brainmasks. The affine transforms from the

original BOLD5000 brainmasks were applied to the GLMSingle

beta files and the results were visually checked against both

the original brainmasks and the T1w anatomical scans of the

participants to confirm good alignment. The generation of a

global brainmask intersection was also required for each of the

four subjects across all sessions. RSA analysis calculates distance

metrics for each pair of input stimuli and therefore requires

that the input vectors for each of the stimuli have the same

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Pickard et al. 10.3389/fcomp.2023.1275026

number of dimensions (in the case of fMRI, dimension is a

voxel). The BOLD5000 is somewhat unique in that it is largely

made up of single presentations of each stimulus, and the order

of the stimuli is randomized across multiple sessions for each

participant. This poses a challenge because even very minor

positional changes between sessions can lead to the introduction of

invalid voxel values, especially around the very edge or pial surface

of the brain.

The fMRIPrep pipeline uses a number of advanced tools to

correct for any changes (Esteban et al., 2019), however, it was

found that the participant brain masks provided in the original

BOLD5000 release still resulted in invalid voxels being included for

some trials. To address this issue, a global mask was calculated for

each participant using the intersection of the valid voxels for each

input across all sessions. These global participant brain masks were

applied to every ROI to ensure that no invalid voxel data entered

into the RSA calculations.

3.3 FreeSurfer

FreeSurfer is an incredibly powerful suite of tools originally

developed with the goal of reconstructing cortical surface models

from T1w anatomical scans (Fischl, 2012). A further goal of

this original development in reconstructing the cortical surface

is finding alignments between subject brains based on cortical

folding patterns. It is this alignment functionality that makes the

FreeSurfer a vital component of the fMRIPrep (Esteban et al.,

2019) pipeline used in the original BOLD5000 release (Chang et al.,

2019).

As follow-on researchers, we leverage these FreeSurfer

derivatives to extract additional information from the dataset. We

use FreeSurfer to parcellate a reconstructed cortical surface based

on its folding patterns using specially crafted atlases. We used

this functionality to identify and extract additional areas relevant

to vision based on structural connectivity or functional response

to images using vcAtlas and visfAtlas respectively. Our analysis

is concerned with comparing the BOLD activations of voxels in

volumetric space. Thus, several steps were required to convert these

surface atlases into volumetric ROI masks.

First, the labels from the atlases were resampled from the

standard fsaverage surface to each of the subjects’ cortical surfaces.

This is accomplished using the mri_surf2surf command. With the

labels for each atlas and ROI now resampled onto the subjects’

cortical surfaces, the labels were used to define a volumetric

ROI as the volume of gray matter that makes up the cortex

beneath the cortical surface label. This is accomplished with the

mri_label2vol command with projection fraction set to include

100% of the volume between the pial and white matter surfaces.

The output of this function is a series of volumetric ROI

masks in NIfTI format, similar to the ROI masks from the

original BOLD5000. All ROI masks generated using FreeSurfer

also had the global mask for each participant applied to them

to ensure that only valid voxels would be extracted for a

given ROI.

3.4 RSA

After preprocessing and utilizing FreeSurfer to identify ROIs,

we create RDMs from the neural data. We construct RDMs in

accordance with establishedmethodology (Kriegeskorte et al., 2008;

Blanchard et al., 2019). Here, we briefly summarize the process:

RDM construction. Given a single feature f and a single

stimulus s, v = f (s), where v is the value of feature f in response

to s. Likewise, the vector

Ev =













v1
v2
...

vn













T

=













f1(s)

f2(s)
...

fn(s)













T

(1)

can represent the feature values of a collection of n features,

f1, f2, ..., fn, in response to s. If one expands the representation

of s to a set of m stimuli S = s1, s2, ..., sm, the natural extension

of Ev is the set of feature value collections V = Ev1, Ev2, ..., Evm, in

which si ∈ S is paired with Evi ∈ V for each i = 1, 2, ...,m. The

last step prior to constructing an RDM is to define the dissimilarity

score between any two Evi ∈ V and Evj ∈ V . We use the

symmetric function

ψ(Evi, Evj) : = 1−
(Evi − v̄i) · (Evj − v̄j)

‖Evi − v̄i‖2‖Evj − v̄j‖2
(2)

where v̄ is the mean of the features in Ev. An RDM R may then be

constructed from S, V , and ψ as:

R =

















ψ(Ev1, Ev2) ψ(Ev1, Ev3) . . . ψ(Ev1, Evm)

ψ(Ev2, Ev3) . . . ψ(Ev2, Evm)

. . .
...

ψ(Evm−1, Evm)

















(3)

3.4.1 Biological similarity metric
The methodology for comparing a network to a biologically

constructed RDM is simple: After constructing an RDM R1 for the

network following the procedure outlined in Section 3.4 using the

same stimuli set S, one can compute the similarity to the biological

RDM R2 with the function

biologicalSimilarity = ρ(R̂1, R̂2) (4)

where R̂ is the flattened RDM and ρ corresponds with a similarity

metric, e.g., Pearson’s correlation. Note, many works suggest

estimating the RDM during training by only considering a subset

of the stimuli (Li et al., 2019).

3.4.2 rsatoolbox package
rsatoolbox is a Python package for RSA (Nili et al.,

2014). Originally developed for Matlab, rsatoolbox is under
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TABLE 1 Five supercategories were created by combining the synset

labels from the ImageNet stimuli.

Supercategory Hypernyms Num. images

Vertebrate [animal, person] 646

Invertebrate [invertebrate] 96

Natural object [food, plant, fungus, plant_part] 128

Artifact [artifact] 912

Place [structure, geological_formation] 134

active development and can be used for the generation

and comparison of RDMs, the creation and evaluation of

multiple types of models with various statistical tools, and

visualization tools. All fMRI RDMs, RDM comparisons,

and models were performed with rsatoolbox (Initial

RDM generation for the ANNs were generated using

functionality built into the Net2Brain tool as detailed in

Section 3.7.).

3.5 ImageNet in BOLD5000

The use of images from the ImageNet dataset in the BOLD5000

presents a unique opportunity because the ImageNet Large Scale

Visual Recognition Challenge (ILSVC) benchmark remains the

standard benchmark and training dataset for image classification

models such as those included in this paper. Prior to the BOLD5000

data, representations of neurological data tended to be collected for

simple stripped-back stimuli such as a clearly cut-out image against

a gray background. While these simple stimuli enabled research

comparing biological representations to artificial representations

(e.g., Blanchard et al., 2019), they had limited additional uses. For

example, these stimuli were too simple and too few for fine-tuning

networks to exhibit biologically consistent embeddings. The use

of complex images like those within the ImageNet dataset may be

non-ideal for traditional fMRI research, but they enable a wealth of

experiments examining artificial neural networks (ANNs).

ImageNet classes are based on the WordNet synset hierarchy.

In theory, this synset hierarchy can be used to establish the

relationships between image classes. However, there are known

deficiencies in the WordNet structure and most researchers

resort to creating custom “supercategories” that combine multiple

synsets. The original BOLD5000 paper used four supercategories

for t-SNE analysis: Objects, Food, Living Inanimate, and

Living Animate (Chang et al., 2019). For this work, five new

supercategories were chosen that attempt to create more logical

pairings for comparison. Animate subjects were divided into

“vertebrate” and “invertebrate” supercategories, inanimate classes

were divided into “artifact” (man-made) and “natural object”, and

a final “place” category was included to align with the emphasis on

scenes in the BOLD5000. Table 1 summarizes the supercategories

created for this project and the hypernyms used to define each

supercategory. Each of the ImageNet synset labels were sorted into

a supercategory by matching the synset’s hypernyms to one of the

supercategory hypernyms.

3.6 Categorical model analysis

While the end goal of our RSA analysis is to compare the

biological data from the BOLD5000 fMRI trials to ANNs, RSA

also allows us to leverage other types of dissimilarity models

such as the supercategories within ImageNet as described in

Section 3.5. First, categorical RDMs are generated for each

supercategory as illustrated in Figure 2. These consist of an RDM

where all images of the same category are assigned the minimum

distance/dissimilarity for a given metric and all images from other

categories are assigned the maximum distance/dissimilarity for a

given metric.

Using rsatoolbox’s weighted model functionality, the individual

category RDMs are linearly fit to the Mean Subject RDMs

for the vcAtlas ROIs. The model weights were then used to

predict the final categorical model shown in Figure 3. This

categorical model is a representation of the relative similarities

of each of the supercategories as perceived by the human

brain. Categorical models such as this can act as a reference

point for later RSA analysis because it relies on additional

structural information that is embedded into the ImageNet

image labels.

3.7 Net2Brain

Here, we link our preprocessed data and subsequent

evaluations to Net2Brain, a toolbox for researching the internal

geometric representations of artificial deep neural networks,

particularly convolution neural networks, using RSA. One of the

strengths of Net2Brain is the very extensive set of over 600 models

that it is preconfigured to pull down, extract activations from,

and calculate RDMs for. Net2Brain is able to pull models not

only from the official PyTorch model zoo, but also from timm,

the Pytorch Image Models library created by Ross Wightman.

All of the aforementioned 600+ models available to Net2Brain

come pre-trained and are fully ready for activation extraction.

All of the stimuli from the BOLD5000 are made available to

Net2Brain and once it pulls down the pre-trained model in

question, it presents each of the BOLD5000 images to the model

as input and performs a forward pass. The model activations from

each of the model’s convolutional layers are then extracted and

stored to disk. Once all of the activations have been extracted,

RDMs for each of the convolutional layers are calculated. As of

the time of writing, the toolbox enables creating RDMs using

Pearson’s correlation, and there are plans to add various other

distance metrics.

3.7.1 Model selection
Of the over 600 models available, four were chosen based

on a couple of criteria. First, due to the limitations in the

architecture of both Net2Brain and rsatoolbox, the calculation

of RDMs required substantial amounts of memory given the

number of unique stimuli in the BOLD5000. There was, therefore

a relative size limit to the number of output activations in

a model given the memory limits of available hardware. The
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FIGURE 2

Categorical RDMS for each of the ImageNet supercategories. Categorical RDMs consist of an RDM where all images of the same category are

assigned the minimum distance/dissimilarity for a given metric (i.e., for the 1-r distance metric, 0) and all images from other categories are assigned

the maximum distance/dissimilarity for a given metric (i.e., 1).

FIGURE 3

Predicted output RDM of the weighted categorical model.

second criterion was to achieve a representative sampling of ANN

model architectures that are designed for image classification

tasks and pre-trained on the ImageNet dataset over time. The

four models chosen were: AlexNet (Krizhevsky et al., 2012),

the progenitor of all subsequent deep convolutional neural

networks, ResNet50 (He et al., 2016), which introduced skip

connections to neural network architectures, MobileNetv2 (Sandler

et al., 2018), which was specifically designed to perform well

even on restricted hardware such as mobile devices, and

finally EfficientNet (Pham et al., 2018), which expands on the

same architectural concepts present in MobilNet with efficient

network scaling.

3.8 Fiedler vector partitioning

In this section, we detail how we employ Fiedler partitioning,

a graph-based technique, on the processed data. Fiedler

partitioning aims to partition a graph into two distinct

groups by utilizing the Fiedler vector, which corresponds to

the second smallest eigenvector of the Laplacian (Fiedler, 1973,

1975).

We analyzed individual RDMs for three BOLD5000

participants (CSI1-3), and a mean RDM (averaged subject

data) for fMRI data specific to the Left-Hand Fusiform Gyrus

3 (LHFG3). Each RDM is composed of the supercategories

described in Table 1. From these supercategories, we first

extracted subsets of each class pairing. We then applied

Fiedler partitioning to these RDMs and recorded the

classification accuracy for each class in a pair. The pseudo

code for finding the Fiedler partitioning accuracy for

an RDM is detailed in Algorithm 1. Bias corrected and

accelerated (BCa) bootstrap intervals were calculated for each

binary classification.
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4 Results

4.1 Categorical model analysis

Each of the vcAtlas ROIs from the mean subject was

compared back against the predicted categorical model to

determine which ROI best represents the supercategorical

structure of the data. Figure 4 shows the correlation of

each of the ROIs to the categorical model. In the case of

the BOLD5000 data, the LHFG3 is the best exemplar of the

categorical model.

Figure 5 shows the RDM for LHFG3 from the mean

subject with the images sorted by supercategory. Comparing

LHFG3 Figure 5 to the categorical model Figure 3, is it clear

how the supercategory representations cluster in a similar

way. This can be explored further through the comparison of

RDM correlations.

Figure 6 shows the RDMs of the layer with the highest

correlation to the categorical model for each of the four ANNs

Require: Representational Dissimilarity Matrix R

Ensure: Classification Accuracy

1) Get a subset Ri of R with two categories.

2) Compute Adjacency Matrix A = 1− Ri.

3) Compute Degree matrix from A.

4) Compute Laplacian matrix: L = D− A.

5) Get second smallest eigen vector e2 for L.

6) Compute Fiedler partitioning: P1 = {i ∈ N : e2(i) <

0} and P2 = {i ∈ N : e2(i) > 0}.

7) Compute Accuracy = (|P1| + |P2|)/len(e2)

Algorithm 1. Fiedler partitioning classifier.

investigated. When visually comparing the categorical model,

Figure 3, the mean subject fMRI response, Figure 5 and the ANN

responses, Figure 6, a correspondence between the representation

of the supercategories is evident.

FIGURE 5

RDM of the Left-Hand Fusiform Gyrus 3 (LHFG3) ROI calculated

from the mean subject using the correlation distance metric. Image

inputs are sorted by their ImageNet supercategory. Clustering of

similar images within supercategories is visible, as is dissimilarity

between supercategories.

FIGURE 4

An exemplar ROI is chosen from the available vcAtlas ROIs by comparing its Pearson correlation to the categorical model (Figure 3). The Left-Hand

Fusiform Gyrus 3 (LHFG3) (highlighted in red), was found to have the highest correlation with the categorical model.
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FIGURE 6

RDMs from each of the four ANNs ordered by ImageNet supercategory. Each RDM is taken from the ANN layer with the highest correlation to the

categorical model calculated in Section 3.6.

4.1.1 ANN vs. human fMRI RDM comparison
Direct comparison of RDMs can be accomplished through

a number of similarity measures. Here, we report Pearson

correlation, an established standard for use in RSA (Kriegeskorte

et al., 2008). Table 2 presents the Pearson correlation between the

categorical model and each of the four ANNs under test. Bootstrap

resampling of the input stimuli was performed to assess that all

results were statistically significant (p < 0.001). All comparisons

and statistical evaluations were performed using the rsatoolbox

package (Section 3.4.2).

An unexpected result of this analysis is the inverse relationship

between model age and its biological similarity. AlexNet

(Krizhevsky et al., 2012), the model that kicked off the deep

convolutional neural network revolution in machine vision,

has the highest biological similarity of the models tested,

and EfficientNet (Tan and Le, 2019), the most modern and

highest performing classification model, has by far the lowest

biological similarity.

4.1.2 Comparing human fMRI ROIs to individual
ANN layers

In Figure 7, we break down our evaluation layer by layer in

order to provide fine-grained details on which components of the

trained network best exhibits biological similarity.

One of the goals in reprocessing the BOLD5000 dataset using

the vcAtlas (Rosenke et al., 2018) and visfAtlas (Rosenke et al.,

2021) maps was to enable future research into comparing how

various components of an ANN, such as individual convolutional

layers, can be compared to specialized structures in biological

representations. For example, consider the theoretical concept

behind the ventral visual stream in the human brain is that

visual information flows from the early visual cortex at the

back of the brain forward into the Fusiform Gyrus. Along the

way, the visual stimuli is decoded in increasingly higher order

representations. Our findings give credence to the observation that

deep convolutional neural networks mimic some of what occurs

with this process.
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TABLE 2 Comparison of mean subject LHFG3 ROI RDM to categorical

model and ANN RDMs with bootstraped p-values.

Model Pearson correlation p (against 0)

Categorical 0.165 <0.001

AlexNet 0.054 <0.001

MobileNet v2 0.023 <0.001

ResNet50 0.031 <0.001

EfficientNet b0 0.015 <0.001

The human brain also has a number of very specialized areas for

certain tasks such as facial recognition in the Fusiform Face Area

(FFA) (Kanwisher et al., 1997), one of the ROIs included in the

visfAtlas. The goal is to provide the data so that these specialized

areas of the brain can be used to analyze and train equivalently

specialized components of ANNs.

4.2 Fiedler partitioning

Figure 8 displays the Fiedler partitioning accuracies for each

of the four ANNs from our experiments, and Figure 9 shows the

partition accuracy for the biological data. All accuracies illustrate

the separability of class pairs—the results indicate that the human

subjects consistently achieved higher classification accuracy when

discriminating between the vertebrate class and the invertebrate,

natural object, and place categories. This shows that the feature

embeddings in the LHFG3 are well-clustered for those categories.

Bonferroni-corrected BCa confidence intervals are also

reported in Figures 8, 9. Because Fiedler partitioning is applied

against supercategory pairs, the null hypothesis corresponds to

an accuracy of 0.50. An interesting phenomenon that can be seen

in the results is that even if the Fiedler partitioning achieves high

levels of accuracy, we may not be able to reject the null hypothesis

due to the lower bootstrap confidence interval being at or near

0.50. This can be seen both in the fMRI subject results and the

ANN results. Analysis of the bootstrap sample distribution shows

this is sometimes the result of a bimodal distribution of results,

where a small cluster of failed partitions will be present at or near

0.5 accuracy, with the rest scoring much higher. This effect is likely

due to a combination of label noise in the BOLD5000 dataset and

how the Fiedler vector is calculated.

Label noise arises when the two ImageNet images selected for

each synset category contains more than just the intended subject,

or when other factors, such as the crop of the image that was used

for presentation obscure or make the intended subject unclear.

An example of this is the fact that many of the stimuli images

in the BOLD5000 which fall under the supercategory “artifact”

depict people holding the object with a full human face visible in

the image. The presence of human faces in images that are meant

to depict inanimate objects causes significant unintended brain

activation in areas such as the FFA (Kanwisher et al., 1997).

The second factor contributing to this phenomenon is the fact

that Fiedler partitioning is not an operation that is performed on

individual stimuli, but on the RDM as a whole. The Fiedler vector

is calculated as the second smallest eigenvector of the Laplacian of

the RDM. Therefore, if a bootstrap sample is composed of a set of

images with sufficient label noise, the Fiedler vector will partition

the entire RDM orthogonal to the intended supercategories. An

example of this was found with the above “artifact” supercategory

example. When applied solely to the stimuli images from the

“artifact” supercategory in an unsupervised manner, the Fiedler

partitioning algorithm spontaneously partitions the images into a

group that contains humans in the image and a group that contains

just inanimate objects in the frame.

Overall, our findings indicate that Fiedler partitioning

effectively identifies supercategory clusters in the RDMs of human

fMRI subjects and ANNs. Similar to our findings with the RDM

comparisons, a surprising trend emerges with the ANNs. AlexNet,

the oldest of the ANNs, produces a far higher Fiedler partitioning

accuracy than the newer models. EfficientNet-b0, in particular,

does not produce results significantly above noise for most of the

supercategory pairings.

5 Discussion and future work

ANNs have long suffered from decreased performance as a

result of their sensitivity to random noise and adversarial attacks.

Recent works have shown that fine-tuning a network representation

to align with a biological standard fortifies networks against both

noise and adversarial corruptions of images (Blanchard et al., 2019;

Li et al., 2019). However, exploration of these ideas has been limited

by the unavailability of public datasets: prior works have relied

on private datasets (Li et al., 2019) or datasets with a limited

number of stimuli (Blanchard et al., 2019). The BOLD5000 dataset

has always been a promising resource for investigating just this,

but the data was not packaged for use by researchers without a

strong neuroscience background. Here, we eliminate this barrier—

our curation and investigations of the BOLD5000 data will now

enable the broader community to explore the viability of biological

representation in networks.

An important result of our analysis is that recent, more

advanced, neural networks such as EfficientNet (Tan and Le, 2019)

have lower neuro-similarity to human fMRI responses than the

much older and simpler AlexNet, despite also performing much

better on the standard ImageNet Large Scale Visual Recognition

Challenge (ILSVRC).

The discovery that ANNs are diverging from their biological

inspiration is not, in and of itself, surprising and is supported

by other recent research (Gomez-Villa et al., 2020; Kumar et al.,

2022). It does emphasize the fundamental question of whether or

not neuro-similarity is an asset, a hindrance, or simply a non-

factor. Are these newer models performing better on an, admittedly

artificial, metric because of their neuro-dissimilarity or in spite

of it? Humans are not susceptible to the same adversarial attacks

that ANNs have been shown to be susceptible, so it’s possible this

divergence in the geometry of ANN embedding spaces from their

human counterparts is opening up new avenues of attack.

To put a finer point on it, are more advanced models achieving

higher accuracy by focusing on minutia instead of the complete

composition, e.g., the features being extracted from an image of

one of ImageNet’s many dog breed classes focused on things like fur

texture and color as a way to correctly classify the breed, the source
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FIGURE 7

Pairwise analysis of each of the layers of AlexNet to ROIs of the new vcAtlas and visfAtlas cortical atlases. In the vcAtlas comparison it can be seen

that while the LHFG3 ROI does dominate the comparison, there is a correlation between the first two layers of AlexNet with the early visual cortex in

Oc1 and Oc2.
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FIGURE 8

Fiedler partitioning accuracy for ANNs. Partitioning is performed on the RDM of the layer with the highest correlation to the categorical model

developed in Section 3.6. Accuracy is reported along with Bonferroni-corrected BCa bootstrap intervals (CIs) (accuracy [lower CI bound, upper CI

bound]). AlexNet and ResNet demonstrate significantly higher accuracy and significance across all supercategory comparisons.

of the image classification, or on the fact that the image depicts a

four-legged creature with two eyes and other mammalian features?

Having a fragmented embedding space that emphasizes minutia is

likely to make a model more susceptible to adversarial attacks. To

use the example above, a model that has been overfit to the point

where it only focuses on fur pattern features to identify something

as a dog, could be tricked into misidentifying a common artifact

such as a box, by covering it with a fake fur texture or image.

We expect images containing similar features to elicit

activations that are closer together within the embedding space

while dissimilar activations should exist further apart—Goh et al.

(2021) investigated the presence of this phenomenon, finding

certain neuron groups in CLIP activated or deactivated in response

to similar concepts. Fiedler partitioning of an RDM should be able

to exploit this clustering of like embeddings to get us in the ballpark

of a reasonable classification by selecting an appropriate class

category regardless of whether or not there is a strong correlation

between the ANN and the biological benchmark. By demonstrating

that this works well for a model like AlexNet, but not for a model

like EfficientNet, we imply that these more advanced models are

not creating the expected clusters within their embedding space.

This leads to the question of how these new ANNs are actually

structuring their feature space or whether they are extracting a

similar set of features at all. Our work shows that ANNs trained for

classification performance are evolving internal embedding space

geometries more dissimilar from the human vision system and

that these embedding spaces lack a geometry that clusters like

image subjects together. We can either conclude that state-of-the-

art ANNs are creating a novel way to learn and store image feature

representations, or we must conclude that embedding spaces are

becoming more disjoint because of the singular push to maximize

classification accuracy.

Since learned representations like (Goh et al., 2021) do seem

to demonstrate this phenomenon with CLIP embeddings, and

since CLIP embeddings match or surpass the performance of the

models we evaluate (Radford et al., 2021), it seems likely that
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FIGURE 9

Fiedler partitioning accuracy for fMRI subjects. Partitioning is performed on the RDM of the LHFG3 ROI. Accuracy is reported along with

Bonferroni-corrected BCa bootstrap intervals (CIs) (accuracy [lower CI bound, upper CI bound]). The mean subject demonstrates both higher

accuracy and statistical significance when compared to each of the three complete participants.

the biological ideal does correspond with robustness. However,

a full investigation of the viability of the biological benchmark

is beyond the scope of this work—and likely beyond the scope

of any singular work. Instead, a wealth of future research is

needed to tease out the intricacies of what kinds of representations

correspond with robustness. The most impactful outcome of

this work is the facilitation of these future research projects via

a shared, publicly available dataset that allows researchers and

practitioners to scrutinize the evidence for a biologically grounded

representation, and investigate alternatives.

Finally, the curation of this data also facilitates additional uses

of the data: modeling neural processes and creating new biologically

consistent architectures. Neural networks are the premier means

for modeling neural data. However, it has also been shown that

current architectures have largely plateaued (Storrs et al., 2021)

and that all networks are equally predictive of the human inferior

temporal cortex. This is problematic because these models still

fail to predict certain properties of visual processing (Storrs et al.,

2021). Our data could facilitate the creation of neural network

designs that are biologically grounded. Previously, work has shown

that networks deliberately modeled on neural phenomena exhibit

higher biological consistency than traditional CNNs (Blanchard,

2019), which corresponds with higher performance. However,

even this work would vastly benefit from expanding methods

for comparing with biological benchmarks via novel techniques

like extending RDMs into Laplacian matrices (Jamil et al., 2023).

6 Conclusion

Here, we establish a new biological benchmark for embedded

representations. Our experiments on our benchmark establish the

viability of utilizing this data to enhance the robustness of learned

representations to inputs like adversarial attacks. Specifically, our

experiments with Fiedler partitioning showcase how biologically
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grounded representations facilitate interwoven separability and

clustering of data. As part of this work, we release our curated data

and a framework to facilitate further investigation.
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