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The adversarial risk of a machine learning model has been widely studied. Most

previous studies assume that the data lie in the whole ambient space. We

propose to take a new angle and take themanifold assumption into consideration.

Assuming data lie in a manifold, we investigate two new types of adversarial risk,

the normal adversarial risk due to perturbation along normal direction and the in-

manifold adversarial risk due to perturbation within the manifold. We prove that

the classic adversarial risk can be bounded from both sides using the normal and

in-manifold adversarial risks. We also show a surprisingly pessimistic case that

the standard adversarial risk can be non-zero even when both normal and in-

manifold adversarial risks are zero. We finalize the study with empirical studies

supporting our theoretical results. Our results suggest the possibility of improving

the robustness of a classifier without sacrificing model accuracy, by only focusing

on the normal adversarial risk.
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1 Introduction

Machine learning (ML) algorithms have achieved astounding success in multiple

domains such as computer vision (Krizhevsky et al., 2012; He et al., 2016), natural language

processing (Wu et al., 2016; Vaswani et al., 2017), and robotics (Levine and Abbeel, 2014;

Nagabandi et al., 2018). These models perform well on massive datasets but are also

vulnerable to small perturbations on the input examples. Adding a slight and visually

unrecognizable perturbation to an input image can completely change the prediction of the

model. Many studies have been published, focusing on such adversarial attacks (Szegedy

et al., 2013; Carlini and Wagner, 2017; Madry et al., 2017). To improve the robustness of

these models, various defense methods have been proposed (Madry et al., 2017; Shafahi et al.,

2019; Zhang et al., 2019). These methods mostly focus on minimizing the adversarial risk,

i.e., the risk of a classifier when an adversary is allowed to perturb any data with an oracle.

Despite the progress in improving the robustness of models, it has been observed

that compared with a standard classifier, a robust classifier often has a lower accuracy on

the original data. The accuracy of a model can be compromised when one optimizes its

adversarial risk. This phenomenon is called the trade-off between robustness and accuracy.

Su et al. (2018) observed this trade-off effect on a large number of commonly used

model architectures. They concluded that there is a linear negative correlation between the

logarithm of accuracy and adversarial risk. Tsipras et al. (2018) proved that adversarial risk

is inevitable for any classifier with a non-zero error rate. Zhang et al. (2019) decomposed

the adversarial risk into the summation of standard error and boundary error. The
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decomposition provides the opportunity to explicitly control the

trade-off. They also proposed a regularizer to balance the trade-off

by maximizing the boundary margin.

In this study, we investigate the adversarial risk and the

robustness-accuracy trade-off through a new angle. We follow

the classic manifold assumption, i.e., data are living in a low

dimensional manifold embedded in the input space (Cayton,

2005; Niyogi et al., 2008; Narayanan and Mitter, 2010; Rifai

et al., 2011). Based on this assumption, we analyze the adversarial

risk with regard to adversarial perturbations within the manifold

and normal to the manifold. By restricting to in-manifold and

normal perturbations, we define the in-manifold adversarial risk

and normal adversarial risk. Using these new risks, together with

the standard risk, we prove an upper bound and a lower bound

for the adversarial risk. We also show that the bound is tight by

constructing a pessimistic case. We validate our theoretical results

using synthetic and real-world datasets.

Our study sheds light on a new aspect of the robustness-

accuracy trade-off. Through the decomposition into in-manifold

and normal adversarial risks, we might find an extra margin to

exploit without confronting the trade-off.

A preliminary version of this study, which mainly focuses

on the theoretical results, was published in the study mentioned

in the reference (Zhang et al., 2022). The major differences

between this article and Zhang et al. (2022) include the adding

of experimental validation on real-world datasets to verify our

theoretical discoveries. To realize this validation process, we

employ the Tangent-Normal Adversarial Regularization algorithm

(TNAR) by Yu et al. (2019), which obtain the normal and in-

manifold directions within real data. This strategic utilization of

Tangent-Normal Adversarial Regularization algorithm not only

strengthens the empirical foundation of our research but also

indicates our commitment to bridging the gap between theoretical

insights and practical applicability. By integrating this experimental

result, we not only refines the theoretical framework but also

provides an empirical verification, enhancing the overall credibility

and relevance of our research findings.

1.1 Related works

Robustness-accuracy trade-off: It was believed that a classifier

cannot be optimally accurate and robust at the same time. Different

articles study the trade-off between robustness and accuracy (Su

et al., 2018; Tsipras et al., 2018; Dohmatob, 2019; Zhang et al., 2019).

One main question is whether the best trade-off actually exists.

Tsipras et al. (2018) first recognized this trade-off phenomenon

by empirical results and further proved that the trade-off exists

under the infinite data limit. Dohmatob (2019) showed that a high

accuracy model can inevitably be fooled by the adversarial attack.

Zhang et al. (2019) gave examples showing that the Bayes optimal

classifier may not be robust.

However, others have different views on this trade-off or even

its existence. In contrast to the idea that the trade-off is unavoidable,

according to these studies, the drop of accuracy is not due to

the increase in robustness. Instead, it is due to a lack of effective

optimization methods (Shaham et al., 2018; Awasthi et al., 2019;

Rice et al., 2020) or better network architecture (Fawzi et al., 2018;

Guo et al., 2020). Yang et al. (2020) showed the existence of both

robust and accurate classifiers and argued that the trade-off is

influenced by the training algorithm to optimize the model. They

investigated distributionally separated dataset and claimed that the

gap between robustness and accuracy arises from the lack of a

training method that imposes local Lipschitzness on the classifier.

Remarkably, in the study mentioned in the reference (Carmon

et al., 2019; Gowal et al., 2020; Raghunathan et al., 2020), it was

shown that with certain augmentation of the dataset, one may be

able to obtain a model that is both accurate and robust.

Our theoretical results upperbound the adversarial risk using

differentmanifold-derived risks plus the standard Bayes risk (which

is essentially the accuracy). This quantitative relationship provides

a pathway toward an optimal robustness-accuracy trade-off. In

particular, our results suggest that, by adversarial training, the

model against perturbations in the normal direction can improve

robustness without sacrificing accuracy.

Manifold assumption: One important line of research focuses on

the manifold assumption on the data distribution. This assumption

suggests that observed data are distributed on a low dimensional

manifold (Cayton, 2005; Narayanan and Mitter, 2010; Rifai et al.,

2011), and there exists a mapping that embeds the low dimension

manifold in some higher dimension space. Traditional manifold

learning methods (Tenenbaum et al., 2000; Saul and Roweis, 2003)

that try to recover the embedding by assuming the mapping

preserves certain properties such as distances or local angles.

Following this assumption, on the topic of robustness, Tanay and

Griffin (2016) showed the existence of adversarial attack on the

flat manifold with linear classification boundary. It was proved

later (Gilmer et al., 2018) that in-manifold adversarial examples

exist. They stated that high-dimension data are highly sensitive to

l2 perturbations and pointed out that the nature of adversarial is

the issue with potential decision boundary. Later, Stutz et al. (2019)

showed that with the manifold assumption, regular robustness is

correlated with in-manifold adversarial examples, and therefore,

accuracy and robustness may not be contradictory goals. Further

discussion (Xie et al., 2020) even suggested that adding adversarial

examples to the training process can improve the accuracy of the

model. Lin et al. (2020) used perturbation within a latent space

to approximate in-manifold perturbation. Most existing studies

only focused on in-manifold perturbations. To the best of our

knowledge, we are the first to discuss normal perturbation and

normal adversarial risk. We are also unaware of any theoretical

results proving upper/lower bounds for adversarial risk in the

manifold setting.

We also note a classic manifold reconstruction problem,

i.e., reconstructing a d-dimensional manifold given a set of

points sampled from the manifold. A large group of classical

algorithms (Edelsbrunner and Shah, 1994; Dey andGoswami, 2006;

Niyogi et al., 2008) are probably good, i.e., they give a guarantee of

reproducing the manifold topology with a sufficiently large number

of sample points.

Under data manifold assumption, Stutz et al. (2019) and

Shamir et al. (2021) first reconstruct the data manifold using

Generative Networks. Then, with the approximation of manifold,
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the authors explored different approaches for computing in-

manifold attack examples under manifold assumption. Stutz et al.

(2019) approximate the data manifold using VAE models and

then directly perturbed the latent space without considering the

perturbed distance in the original space, making it difficult to

bound their on-manifold examples. On the other hand, Shamir

et al. (2021) first perturbed the latent code to generate a set of basis

in the tangential space, using these basis vectors to generate on-

manifold directions and search for in-manifold attack examples. In

the study by Lau et al. (2023), the author employs generativemodel-

based methods to simultaneously perturb the input data in both the

original space and the latent space. This dual perturbation process

results in in-manifold perturbed data even on high-resolution

datasets.

The Tangent-Normal Adversarial Regularization (TNAR)

algorithm (Yu et al., 2019) distinguishes itself by finding tangential

directions along the data manifold through power iteration and

conjugate gradient algorithms. Subsequently, we perform a targeted

search along these tangential directions to find valid Lp norm-based

adversarial examples while ensuring effective perturbation bounds

on the in-manifold examples.

2 Manifold-based risk decomposition

In this section, we state our main theoretical result

(Theorem 1), which decomposes the adversarial risk into

normal adversarial risk and in-manifold (or tangential) adversarial

risk. We first define these quantities and set up basic notations.

Next, we state the main theorem in Section 2.3. For the sake of

simplicity, we describe our main theorem in the setting of binary

labels, {−1, 1}. Informally, the main theorem states that under mild

assumptions, (1) the adversarial risk can be upper-bounded by

the sum of the standard risk, normal adversarial risk, in-manifold

adversarial risk, and another small risk called nearby-normal-risk;

(2) when the normal adversarial risk is zero, the adversarial risk

can be upper-bounded by the standard risk and the in-manifold

adversarial risk. Finally, we show in Theorem 2 that the bounds are

tight by constructing pessimistic cases.

2.1 Data manifold

Let (RD, ||.||) denote the D dimensional Euclidean space with

ℓ2-norm, and let p be the data distribution. For x ∈ R
D, let Bǫ(x) be

the open ball of radius ǫ in R
D with center at x. For a set A ⊂ R

D,

define Bǫ(A) = {y : ∃x ∈ A, d(x, y) < ǫ}.
Let M ⊂ R

D be a d-dimensional compact smooth manifold

embedded in R
D. Thus, for any x ∈ M, there is a corresponding

coordinate chart (U, g), where U ∋ x is an open set of M and g is

a homeomorphism from U to a subset of Rd. Let TxM and NxM

denote the tangent and normal spaces at x. Intuitively, the tangent

space TxM is the space of tangent directions or equivalence classes

of curves in M passing through x, with two curves considered

equivalent if they are tangent at x. The normal space NxM is the

set of vectors in R
D that are orthogonal to any vector in TxM.

Since M is a smooth d-manifold, TxM and NxM are d and

(D − d) dimensional vector spaces, respectively (see Figure 1 for

an illustration). For detailed definitions, we refer the reader to the

study mentioned in the reference (Bredon, 2013).

We assume that the data and (binary) label pairs are drawn

fromM×{−1, 1}, according to some unknown distribution p(x, y).

Note that M is unknown. A score function f (x) is a continuous

function from R
D to [0, 1]. We denote by 1A the indicator function

of the event A that is 1 if A occurs and 0 if A does not occur and will

use it to represent the 0-1 loss.

2.2 Robustness and risk

Given data from M × {−1, 1} drawn according to data

distribution p and a classifier f onRD, we define three types of risks.

The first, adversarial risk, has been extensively studied in machine

learning literature:

Definition 1 (Adversarial risk). Given ǫ > 0, define the adversarial

risk of classifier f with budget ǫ to be

Radv(f , ǫ) : = E(x,y)∼p1(∃x′ ∈ Bǫ(x) : f (x
′)y ≤ 0)

Notice that Bǫ(x) is the open ball around x in R
D (the ambient

space).

Next, we define risk that is concerned only with in-manifold

perturbations. Previously, Gilmer et al. (2018) and Stutz et al.

(2019) showed that there exist in-manifold adversarial examples

and empirically demonstrated that in-manifold perturbations are

a cause of the standard classification error. Therefore, in the

following, we define the in-manifold perturbations and in-manifold

adversarial risk.

Definition 2 (In-manifold Adversarial Risk). Given ǫ > 0, the in-

manifold adversarial perturbation for classifier f with budget ǫ is

the set

Binǫ (x) : = {x′ ∈ M : ‖x− x′‖ ≤ ǫ}

The in-manifold adversarial risk is

Rinadv(f , ǫ) : = E
(x,y)∼p

1(∃x′ ∈ Binǫ (x) : f (x
′)y ≤ 0)

We remark that while the above perturbation is on the

manifold, many manifold-based defense algorithms use generative

models to estimate the homeomorphism (the manifold chart)

z = g(x) for real-world data. Therefore, instead of in-manifold

perturbation, one can also use an equivalent η-budget perturbation

in the latent space. However, for our purposes, the in-manifold

definition will be more convenient to use. Finally, we define the

normal risk:

Definition 3 (Normal adversarial risk). Given ǫ > 0, the normal

adversarial perturbation for classifier f with budget ǫ is be the set

Bnorǫ (x) : = {x′ : x′ − x ∈ NxM, |‖x− x′‖ ≤ ǫ}

Define the normal adversarial risk as

Rnoradv(f , ǫ) : = E
(x,y)∼p

1(∃x′ 6= x ∈ Bnorǫ (x) : f (x′)y ≤ 0)
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FIGURE 1

Tangent and normal spaces of a manifold. Here, x is the original data point on the data manifold M. TxM is the tangent space along the data

manifold M at point x. x′ is the in-manifold adversarial example on the data manifold M. NxM denotes the normal space perpendicular to TxM. x∗

is an adversarial perturbation along NxM.

Notice that the normal adversarial risk is non-zero if there is an

adversarial perturbation x′ 6= x in the normal direction at x. Finally,

we have the usual standard risk: Rstd(f ) : = E(x,y)∼p 1(f (x)y ≤ 0).

2.3 Main result: decomposition of risk

In this section, we state our main result that decomposes the

adversarial risk into its tangential and normal components. Our

theorem will require a mild assumption on the decision boundary

DB(f ) of the classifier f , i.e., the set of points x where f (x) = 0.

Assumption [A]: For all x ∈ DB(f ) and all neighborhoods U ∋ x

containing x, there exist points x0 and x1 in U such that f (x0) < 0

and f (x1) > 0.

This assumption states that a point that is difficult to classify

by f has points of both labels in any given neighborhood around

it. In particular, this means that the decision boundary does not

contain an open set. We remark that both Assumption A and the

continuity requirement for the score function f are implicit in

previous decomposition results such as Equation 1 in the study by

Zhang et al. (2019). Without Assumption A, the “neighborhood”

of the decision boundary in the study by Zhang et al. (2019)

will not contain the decision boundary, and it is easy to give a

counterexample to Equation 1 in the study by Zhang et al. (2019) if

f is not continuous.

Our decomposition result will decompose the adversarial risk

into the normal and tangential directions: however, as we will show,

an “extra term” appears, which we define next:

Definition 4 (NNR Nearby-Normal-Risk). Fix ǫ > 0. Denote by

A(x, y) the event that ∀x′ ∈ Bnorǫ (x), f (x′)y > 0, i.e., the normal

adversarial risk of x is zero.

Denote by B(x, y) the event that

∃x′ ∈ Bin2ǫ(x) :(∃z ∈ Bnorǫ (x′) : f (z)f (x′) ≤ 0),

i.e., x has a point x′ near it such that x′ has non-zero normal

adversarial risk.

Denote by C(x, y) the event ∀x′ ∈ Bin2ǫ(x), f (x
′)y > 0, i.e., x has

no adversarial perturbation in the manifold within distance 2ǫ.

The Nearby-Normal-Risk (denoted as NNR) of f with budget ǫ

is defined to be

E
(x,y)∼p

1(A(x, y) ∧ B(x, y) ∧ C(x, y)),

where ∧ denotes “and”.

We are now in a position to state our main result.

Theorem 1. [Risk Decomposition] Let M be a smooth compact

manifold inRD and let data be drawn fromM×{−1, 1}, according
to some distribution p. There exists a 1 > 0 depending only onM

such that the following statements hold for any ǫ < 1. For any

score function f satisfying assumption A,

(I)

Radv(f , ǫ) ≤ Rstd(f )+ Rnoradv(f , ǫ)+ Rinadv(f , 2ǫ)

+ NNR(f , ǫ). (1)

(II) If Rnor
adv

(f , ǫ) = 0, then

Radv(f , ǫ) ≤ Rstd(f )+ Rinadv(f , 2ǫ)

Remark:

1. The first result decomposes the adversarial risk into the standard

risk, the normal adversarial risk, the in-manifold adversarial

risk, and an “extra term”—the Nearby-Normal-Risk. The NNR

comes into play when a point x does not have normal adversarial

risk, and the score function on all points nearby agrees with y(x),

yet there is a point near x that has non-zero normal adversarial

risk.

2. The second result states that if the normal adversarial risk is zero,

the ǫ-adversarial risk is bounded by the sum of the standard risk

and the 2ǫ in-manifold adversarial risk.

3. Our bound suggests that there may be “free lunch” in

robustness-accuracy trade-off. There is an extra margin one

can exploit without confronting the trade-off. Specifically,

this corollary suggests that by solely minimizing the normal

adversarial risk, we can govern the difference between

adversarial risk and standard accuracy by focusing exclusively

on in-manifold adversarial risk. This insight provides a pathway
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to navigating the trade-off under the condition of zero normal

adversarial risk, wherein the key lies in minimizing the in-

manifold risk. This strategic approach opens up ways for

fine-tuning and optimizing the robustness-accuracy trade-

off, shedding light on potential methods for achieving better

performance on robust models.

One may wonder if a decomposition of the form Radv(f , ǫ) ≤
Rstd(f ) + Rnor

adv
(f , ǫ) + Rin

adv
(f , 2ǫ) is possible. We prove that this is

not possible. The complete proof of Theorem 1 is technical and is

provided in the Supplementary material. Here, we provide a sketch

of the proof first.

2.3.1 Proof sketch of theorem 1
We first address the existence of the constant 1 that only

depends on M in the theorem statement. Define a tubular

neighborhood of M as a set N ⊂ R
D containing M such that

any point z ∈ N has a unique projection π(z) onto M such that

z − π(z) ∈ Nπ(z)M. Thus, the normal line segments of length ǫ at

any two points x, x′ ∈ M are disjoint.

By Theorem 11.4 in the study by Bredon (2013), we know that

there exists 1 such that N : = {y ∈ R
D
: dist(y,M) < 1} is a

tubular neighborhood ofM. The1 guaranteed by Theorem 11.4 is

the 1 referred to our theorem, and the budget ǫ is constrained to

be at most 1.

For simplicity, we first sketch the proof of the case when y

is deterministic (the setting of Corollary 1). Considering a pair

(x, y) ∼ p, x has an adversarial perturbation x′ within distance ǫ.

We show that one of the four cases must occur:

• x′ = x (standard risk).

• x′ 6= x, x′ ∈ NxM, and f (x)y > 0 (normal adversarial risk).

• Let x′′ = π(x′) (the unique projection of x′ onto M), then

d(x′′, x) ≤ 2ǫ and either

* f (x′′)y ≤ 0 and x have an 2ǫ in-manifold adversarial

perturbation (in-manifold adversarial risk) or

* f (x′′)f (x′) ≤ 0, which implies that x is within 2ǫ of a point

x′′ ∈ M that has non-zero normal adversarial risk (NNR:

nearby-normal-risk).

The second of these sets is Znor(f , ǫ) in the setting of

Corollary 1. One can observe that the four cases correspond to the

four terms in Equation 2.

For the proof of Theorem 1, one has to observe that since y

is not deterministic, the set Znor(f , ǫ) is random. One then has to

average over all possible Znor(f , ǫ) and show that the average equals

NNR.

For the second part of Theorem 1 and Corollary 1, we observed

that if the normal adversarial risk is zero, in the last case, x′′

has non-zero normal adversarial risk, with normal adversarial

perturbation x′. Unless x′′ is on the decision boundary, by

continuity of f one can show that there exists an open set around

x′′ such that all points have non-zero normal adversarial risk.

This contradicts the fact that the normal adversarial risk is zero,

implying that case 4 happens only on a set of measure zero

(recalling that by assumption A, the decision boundary does not

contain any open set). This completes the proof sketch.

Theorem 2. [Tightness of decomposition result]

For any ǫ < 1/2, there exists a sequence {fn}∞n=1 of continuous

score functions such that

(I) Rstd(f ) = 0 for all n ≥ 1,

(II) Rin
adv

(fn, 2ǫ) = 0 for all n ≥ 1, and

(III) Rnor
adv

(fn, ǫ) → 0 as n goes to infinity,

but Radv(f , ǫ) = 1 for all n > 1√
3ǫ
.

Thus, all three terms, except the NNR term, indicate zero, but

the adversarial risk (the left side of Equation 2) indicates one.

Here, we provide a sketch of the proof of Theorem 2. Then, we

give the complete proof in the Supplementary material.

2.3.2 Proof of theorem 2
Let M = [0, 1] and fix ǫ < 1/2 and n ≥ 1. We will think of

data as lying in the manifold M and R
2 as the ambient space. The

true distribution is simply η(x) = 1 for all x ∈ M, hence y ≡ 1 (all

labels onM are 1).

Let ℓ1 = n−1
n(n+1)

and ℓ2 = 1
n2
. Note that (n + 1)ℓ1 + nℓ2 = 1.

Consider the following partition ofM = A0 ∪B1 ∪A1 ∪B2 ∪ · · · ∪
Bn ∪ An, where Ai (0 ≤ i ≤ n) is of length ℓ1 and Bi (1 ≤ i ≤ n) is

an interval of length ℓ2. The interval A0,B1,A1, · · · ,Bn,An appears

in this order from left to right.

For ease of presentation, we will consider {0, 1} binary labels

and build score functions fn, taking values in [0, 1] that satisfy the

conditions of the Theorem.

For an x ∈ Ai for some 0 ≤ i ≤ n, define gn(x) = 1. For x ∈ Bi
for some 1 ≤ i ≤ n, define gn(x) = ǫ/2. Observe that ǫ/2 < 1/4.

We now define the decision boundary of fn as the set of points

in R
2 on the “graph” of gn and−gn. That is,

DB(fn) =
{

(x, cgn(x)) : x ∈ [0, 1], c ∈ {−1, 1}
}

.

(see Figure 2 for a picture of the upper decision boundary).

Now, let fn be any continuous function with decision boundary

DB(fn) as above. That is, fn :R
2 → [0, 1] is such that fn(x, t) > 1/2

if |t| < gn(x), fn(x, t) < 1/2 if |t| > gn(x) and fn(x, y) = 1/2 if

|t| = gn(x).

In-manifold adversarial risk is zero: Observe that since η(x) =
1 on [0, 1], the in-manifold adversarial risk of fn is zero, since

fn(x, 0) > 1/2, and so sign(2fn − 1) equals 1, which is the same as

the label y at x. This means that there are no in-manifold adversarial

perturbations, no matter the budget. Thus, Rin
adv

(fn, ǫ) = 0 for all

n ≥ 1.

Normal adversarial risk goes to zero: Next, we consider the

normal adversarial risk. If x ∈ Ai for some i, a point in the normal

ball with budget ǫ is of the form (x, t) with |t| < ǫ < 1/2 but

fn(x, t) > 1/2 for such points and thus sign (2fn − 1) = y(x).

Thus, x ∈ Ai does not contribute to the normal adversarial risk.

If x ∈ Bi for some i then fn(x, ǫ) < 1/2 while fn(x, 0) > 1/2,

and hence such x contributes to the normal adversarial risk. Thus,
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FIGURE 2

Lower bound illustration.

Rnor
adv

(fn, ǫ) =
∑n

i=1 µ(Bi) =
∑n

i=1 ℓ2 = 1/n, which goes to zero as

n goes to infinity.

Adversarial risk goes to one:Now, we show that Radv(fn, ǫ) goes to

one. In fact, we will show that as long as n is sufficiently large, the

adversarial risk is 1. Consider n such that ℓ1 : = n−1
n(n+1)

<
√
3ǫ.

Note that such an n exists simply because ℓ1 goes to zero as n goes

to infinity and n > 1√
3ǫ

works.

Clearly, points in Bi contribute to adversarial risk as they have

adversarial perturbations in the normal direction. However, if we

consider x ∈ Ai (which does not have adversarial perturbations

in the normal direction or in-manifold), we show that there still

exists an adversarial perturbation in the ambient space: that is, there

exists a point x′ such that a), the distance between (x′, ǫ/2) and

(x, 0) is at most ǫ and b) sign(2fn(x, ǫ/2)) 6= sign(2fn(x, 0)). Let x
′

be the closest point in B : = ∪Bi to x. Then, |x′ − x| ≤ ℓ1/2 <√
3ǫ/2. Thus, the distance between (x′, ǫ/2) and (x, 0) is at most

√

(
√
3ǫ/2)2 + (ǫ/2)2 = ǫ. Since x′ ∈ B, fn(x

′, ǫ/2) < 1/2, whereas

fn(x, 0) < 1/2, (x′, ǫ/2) is a valid adversarial perturbation around x.

Thus, for all x ∈ [0, 1], there exists an adversarial perturbation

within budget ǫ and therefore Radv(fn, ǫ) = 1 as long as n > 1√
3ǫ
.

This completes the proof.

2.4 Decomposition when y is deterministic

Let η(x) = Pr(y = 1|x). We consider here the simplistic setting

when η(x) is either 0 or 1, i.e., y is a deterministic function of x. In

this case, we can explain our decomposition result in a simpler way.

Let Znor(f , ǫ) : = {x ∈ M : f (x)y > 0 and ∃x′ 6= x ∈
Bnorǫ (x), f (x′)y(x) ≤ 0}. That is, Znor(f , ǫ) is the set of points with

no standard risk but with a non-zero normal adversarial risk under

a positive but less than ǫ normal perturbation. Let Znor(f , ǫ) =
M \ Znor(f , ǫ) be the complement of Znor(f , ǫ). For a set A ⊂ M,

let µ(A) denote the measure of A.

Corollary 1. Let M be a smooth compact manifold in R
D, and let

η(x) ∈ {0, 1} for all x ∈ M. There exists a 1 > 0 depending only on

M such that the following statements hold for any ǫ < 1. For any

score function f satisfying assumption A,

(I)

Radv(f , ǫ) ≤ Rstd(f )+ Rinadv(f , 2ǫ)+ Rnoradv(f , ǫ)

+ µ(Znor(f , ǫ)) ∩ B2ǫ(Z
nor(f , ǫ)) (2)

(II) If Rnor
adv

(f , ǫ) = 0, then

Radv(f , ǫ) ≤ Rstd(f )+ Rinadv(f , 2ǫ).

Therefore, in this setting, the adversarial risk can be

decomposed into the in-manifold adversarial risk and the measure

of a neighborhood of the points that have non-zero normal

adversarial risk.

3 Experiment: synthetic dataset

In this section, we verify the decomposition upper bound

in Theorem 1 on synthetic data sets. We train different

classifiers and empirically verify the inequalities on these

classifiers.

In our experiments, instead of using L2 norm to evaluate

the perturbation, we search the neighborhood under L∞ norm,

which would produce a stronger attack than L2 norm one. The

experimental results indicate that our theoretical analysis may hold

for an even stronger attack.
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3.1 Toy data set and perturbed data

We generate four different data sets where we study both the

single decision boundary case and the double decision boundary case.

The first pair of datasets are in 2D space and the second pair is in

3D. We aim to provide empirical evidence for the claim i) in the

Theorem 1 using the single and double decision boundary data.

For the 2D case, we sample training data uniformly from a unit

circle C1 : x
2
1 + x22 = 1. For the single decision boundary data set,

we set

y = 21(x1 > 0)− 1 (Single Decision Boundary)

y = 21(x1x2 > 0)− 1 (Double Decision Boundary)

The visualization of the dataset is shown in Figures 3A, B). In

particular, we set unit circle C1 has 1 = 1, we set the perturbation

budget to be ε ∈ [0.01, 0.3]. Moreover, the normal direction is alone

the radius of the circle.

In the 3D case, we set the manifold to be M : x3 = 0 and

generate training data in region [−π ,π]× [−π ,π] on x1x2-plane.

We set

y = 21
[

x1 > sin(x2)
]

− 1(Single)

y = 21
[

(x1 − sin(x2))x2 > 0
]

− 1(Double)

Figures 3C, D show these two cases. For the single decision

boundary example, due to the manifold being flat, we have 1 =
∞, and we explore the ǫ value in range [0.1, 0.8]. For the double

decision boundary, the distance to the decision boundary is half of

the distance in the single boundary case. Therefore, we set the range

of perturbation to be [0.1, 0.4].

3.2 Algorithm for estimating di�erent risks

To empirically estimate the decomposition of adversarial risk,

we need to estimate the normal adversarial risk Rnor
adv

, the in-

manifold adversarial risk Rin
adv

, the classic adversarial risk Radv,

and the standard risk Rstd. The standard risk is obtained by

evaluating on the standard classifier f trained by the original

training data set. For the classic adversarial risk Radv, we follow

the classic approach and train the adversarial classifier f adv

following the classic adversarial training Algorithm (Madry et al.,

2017). The risk is evaluated on perturbed example xadv computed

by the classic Projected Gradient Descent Algorithm (Madry

et al., 2017). To estimate the other two risks, Rnor
adv

and Rin
adv

,

we generate adversarial perturbations along normal and in-

manifold directions and use these perturbations to train different

robust classifiers.

To compute the in-manifold perturbation, we design two

methods. The first one is using grid search to go through all the

perturbations in the manifold within the ǫ budget and return

the point with maximum loss as in-manifold perturbation xin.

Although this seems to be the best solution, it is quite expensive

due to the grid-search procedure. Therefore, we resort to a second

method in our experiments using Projected Gradient Descent

(PGD) method to find a general adversarial point xadv in ambient

space and then project xadv back to the data manifold M.

In Supplementary material, we will further compare these two

methods.

Next, we explain how to obtain normal direction perturbations

xnor . Note that in both the 2D and 3D toy datasets, the dimension

of the normal space is 1. Therefore, the normal space at point x can

be represented by NxM = {x + t · v|0 < t < ǫ}. Here, v is the

unit normal vector and can be computed exactly in close-form in

our toy data.

We list the Radv and RHS value for 2D and 3D datasets for all

classifiers in Tables 1, 2.

3.3 Empirical results and discussion

2D dataset: We generate 1,000 2D training data uniformly.

The classifier is a two-layer feed-forward network. Each classifier

is trained with Stochastic Gradient Descent (SGD) with a learning

rate of 0.1 for 1,000 epochs. In addition, since 1 = 1

for the unit circle, the upper bound of ǫ value is up to

1. Hence, we run experiments for ǫ from 0.01 to 0.3. We

leave more discussion and visualization of this phenomenon

in Supplementary material. The right hand side values of the

inequality for all three classifiers are presented in Table 1. We could

observe that the upper bounds hold for 2D data, at least for all

these classifiers.

3D dataset: We generate 1,000 training data from the data set.

The classifier is a four-layer feedforward network. We use SGD

with a learning rate of 0.1 and weight decay of 0.001 to train the

network. The total training epoch is 2,000. In Table 2, we list same

classifiers trained on the 3D dataset. Similar to the 2D dataset, for

all classifiers, inequality 1 holds. Due to the limit of the space, we

provide additional empirical results in Supplementary material.

4 Experiment: real-world datasets

In this section, we verify our theoretical results on real-

world dataset experiments. The challenge is to find a manifold

representation and generate in-manifold/normal perturbations.

We use an Autoencoder to represent the manifold. Next, we use

the TNAR algorithm to generate in-manifold perturbations. We

also extend TNAR to generate normal perturbations. These in-

manifold/normal perturbations allow us to estimate different risks.

In Section 4.1, we explain how to learn the manifold

representation. In Sections 4.2 and 4.3, we provide details

on finding in-manifold and normal adversarial perturbation,

respectively. Finally, in Section 4.4, we validate our theoretical

bound.

Datasets: We utilize three commonly used datasets, two of

which are grayscale: MNIST and FashionMNIST. Both of these

datasets comprise 28×28 pixel images. MNIST dataset contains

handwritten digits ranging from 0 to 9, each labeled accordingly.

The dataset is divided into 60,000 training samples and 10,000

testing samples. FashionMNIST dataset consists of images of

clothing items, with each item labeled into one of ten different

categories. It includes 60,000 training samples and 10,000 testing

samples. In addition to the grayscale datasets, we also incorporate

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Zhang et al. 10.3389/fcomp.2023.1274695

FIGURE 3

In this figure, we show our four toy data set. On the left side, 2D data is set on a unit circle. The single decision boundary data are linearly separated

by the y-axis. Moreover, in the double decision boundary case, the circle is separated into four parts with x-axis and y-axis. On the right side, the 3D

data is set. The data are distributed in a square area on x1x2-plane. In the single decision boundary example, the data are divided by the curve

x1 = sin(x2). Moreover, in the double decision boundary situation, we add the y-axis as the extra boundary. (A) 2D single decision boundary. (B) 2D

double decision boundary. (C) 3D single decision boundary. (D) 3D double decision boundary.

TABLE 1 2D adversarial risk comparison.

Single boundary f f adv Double boundary f f adv

ǫ Radv RHS Radv RHS ǫ Radv RHS Radv RHS

0.01 0.0110 0.022 0.0110 0.022 0.01 0.0080 0.0286 0.0060 0.0296

0.02 0.0130 0.0449 0.0130 0.0449 0.02 0.0240 0.0694 0.0230 0.2525

0.03 0.0230 0.063 0.0250 0.0671 0.03 0.0510 0.1333 0.0460 0.1363

0.05 0.0280 0.0794 0.0300 0.0784 0.05 0.0620 0.1810 0.0620 0.1640

0.1 0.0709 0.1652 0.0699 0.1645 0.1 0.1170 0.3398 0.1169 0.3071

0.15 0.0979 0.2831 0.1009 0.2886 0.15 0.1850 0.6059 0.1860 0.4895

0.2 0.128 0.3951 0.126 0.3971 0.2 0.242 0.8763 0.247 0.8002

0.25 0.1660 0.4966 0.1630 0.4931 0.25 0.3139 1. 0.3169 0.9971

0.3 0.1979 0.4509 0.1979 0.5613 0.3 0.386 0.9615 0.379 1

TABLE 2 3D adversarial risk comparison.

Single boundary f f adv Double boundary f f adv

ǫ Radv RHS Radv RHS ǫ Radv RHS Radv RHS

0.1 0.0450 0.0992 0.0410 0.092 0.1 0.0649 0.1654 0.0789 0.153

0.2 0.1139 0.2297 0.0999 0.229 0.2 0.1700 0.3858 0.1370 0.3341

0.3 0.1550 0.3106 0.136 0.3216 0.3 0.2159 0.4740 0.1810 0.4208

0.4 0.2089 0.3765 0.1680 0.3889 0.4 0.3000 0.6051 0.2069 0.5325

one color dataset. SVHN dataset contains 10 different classes of

digit images, each with 3×32×32 pixels.

Classifier: We selected ResNet18 as our classifier and employed

the Adam optimizer with learning rate to be 0.001 for our

experiments. To train the ResNet18 network for each dataset, we

continued training until the training accuracy reached 99%. On

the MNIST dataset, our trained classifier achieved an test accuracy

of 99.24%. When applied to the FASHIONMNIST dataset, the

classifier demonstrated a test accuracy of 94.78%. Moreover, the

SVHN dataset obtain a test accuracy of 96.74%.

Classic adversarial training: To evaluate the robustness of the

classifier, we generated Projected Gradient Descent (PGD) (Madry

et al., 2017) attacks using L2 norms. For creating an adversarial

attack, we set the L2 attack budget to 1.5 for the MNIST and

FASHIONMNIST datasets and 0.25 for SVHN. For L∞ attacks, the

perturbation budget was set to 0.3 for grayscale datasets and 8/255

for color images.

4.1 Approximation of data manifold

We employed an autoencoder structure consisting of 7

VGG blocks to approximate the underlying data manifold. The

autoencoder was trained using Mean Square Loss of 400 epochs.

The output of the trained autoencoder is presented in Figure 4.

We observe that for MNIST and FASHIONMNIST datasets, the

reconstruction results are very close to the input data. For the

SVHNdataset, while the reconstruction images are reasonably close
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FIGURE 4

The manifold reconstruction from VGG-like Autoencoder Network on (A) MNST, (B) FASHIONMNST, and (C) SVHN datasets. For each dataset, we

randomly sampled 12 examples. We plot the reconstructed images in the first row, the original input images in the middle row, and the di�erence

between them in the last row.

to the input images, the reconstruction error is relatively large. We

provide quantitative measures of the reconstruction quality in the

Supplemental material.

4.2 Generating in-manifold perturbations

We use TNAR (Yu et al., 2019) to generate in-manifold

examples. TNAR formulates the in-manifold adversarial attack as a

linear optimization problem. Using power iteration and conjugate

gradient algorithms, the tangent direction along the data manifold

is identified. Next, a search along the tangent direction is performed

to find valid Lp-norm adversarial perturbations.

Figure 5 shows the in-manifold perturbations generated using

the TNAR method. Similar to commonly believed, the in-manifold

perturbations are mainly “semantical”. We observe that the

perturbations mainly occur at the edges of the image content for

datasets such as MNIST or inside the items to change their texture

or details, as observed in FASHIONMNIST. In the case of SVHN,

the perturbations are primarily focused on the background part of

the images to reshape the meaning of the digits.

4.3 Generating normal perturbations

We extend TNAR to compute the normal direction

perturbation. In the original TNAR, a single random normal

direction is generated without fully exploring the vast ambient

space. However, by nomeans, the normal space is one-dimensional.

We need to explore the whole normal space to find good normal

perturbations. To this end, we employ an iterative process to

repeatedly generate normal vectors. Along each normal vector,

we perform a search until the perturbation limit is reached.

This iterative process is crucial, and it enables us to explore

the whole normal space, test a broader range of perturbation

patterns, and increase the chance of obtaining better normal

adversarial perturbations.

Sample normal perturbations are presented in Figure 6.

Consistent with our initial expectations, the normal perturbations

do not directly modify the meaning of the image. Instead, they

add noise to various parts of the images, effectively deceiving

the classifier.

For the MNIST dataset, we observed that the normal

perturbations primarily occur in the background, an area that

in-manifold attacks would not typically alter. Similarly, in the

FASHIONMNIST dataset, the attack expands to the background
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FIGURE 5

We present the in-manifold examples in the first row, followed by the original images in the second row, and the di�erences are shown in the last

row. Clearly, for MNIST (A) and FASHIONMNIST (B) datasets, the attacks only a�ect the object part. As for SVHN (C), visualizing the di�erence

between attacks on the object and the background is challenging. Nonetheless, when comparing with Figure 6, we can discern that the

perturbations contain some information about the target object. For instance, in the eighth example, the attack mainly targets the object

representing the number five and modifies it to be the number three. Moreover, in cases where multiple numbers are present in the image, such as

the fifth example, the attack first merges the number two into the background and alters the appearance of the number six to be an eight.

areas as well. On the other hand, for SVHN, the noise covers the

entire images, not restricted to the background of the digits as the

in-manifold perturbations.

4.4 Validate our theoretical findings

In this section, we validate the inequality on the classifiers. We

focus on L2 normal attacks. We employ PGD attack with 40 search

steps. As shown in Table 3, we report in column 1 the adversarial

risk, which is the left-hand side (LHS) of Inequality 2. In columns 2,

3, and 4, we report the standard risk, in-manifold perturbation risk

(evaluated on in-manifold perturbations), and normal adversarial

risk (evaluated on normal perturbations). In column 5, we report

their sum. Unfortunately, we have no close-form solution of the

NNR term (the forth term in RHS). So, we know that column 5 is

smaller than the actual RHS of the inequality.

Upon examining the table, we find that our theoretical findings

hold for the FASHIONMNIST and SVHN datasets; the first column

is smaller than the fifth column, which is smaller than the RHS.

These results validate our theoretical result.

We do not observe similar trend in MNIST; the fifth column is

smaller than the first column. This could be due to two potential

reasons: (1) the missing term NNR is very large, causing the fifth

column to be small while the actual RHS is still larger than LHS;

(2) we underestimated the in-manifold and normal adversarial

risks, as we are unable to find good quality in-manifold/normal

perturbations. The second potential issue might be related to the

separation of classes in MNIST.
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FIGURE 6

In this plot, we display the normal examples using the same visualization approach as the in-manifold examples. From the observation, it is evident

that the attacks primarily occur in the background and lack substantial information about the target object. (A) MNIST. (B) FASHIONMNIST. (C) SVHN.

TABLE 3 In the table, we validate our theoretical findings using L2 norm.

Dataset L2 attack risk Standard risk In-manifold
adversarial risk

Normal adversarial
risk

Sum of RHS

MNIST 0.856 0.0076 0.0702 0.5109 0.5887

FASHIONMNIST 0.98 0.0522 0.1047 0.8647 1.0216

SVHN 0.55 0.0326 0.1715 0.4783 0.6824

We report different risk terms in the Inequality 1 in separate columns. The first column (L2 attack risk) is the adversarial risk Radv , corresponding to the LHS of the inequalities. In the last

column, we report RHS of 1, which is approximately the sum of the standard risk, in-manifold adversarial risk, and normal adversarial risk.

4.5 Limitations and future work

Our empirical experiments are limited to low-dimensional

datasets due to the computational complexity of the TNAR

algorithm, which is used to find the normal and in-manifold

directions. The TNAR algorithm employs power iteration to

compute the approximation of the largest eigenvector of the

Jacobian matrix of the network. As the dimension of input images

increases, the computation complexity of generating the normal

and in-manifold directions grows quadratically. This would be

costly to compute for high-resolution datasets, as the computations

are performed on CPU instead of GPU. Therefore, addressing the

application of our approach to high-dimensional datasets is a future

direction worth exploring further.
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Extending our experiments to high-dimensional datasets

for future studies would provide valuable insights into the

generalizability and effectiveness of our approach in real-world

scenarios. Additionally, investigating the behavior of the normal

and in-manifold directions in high-dimensional spaces could shed

light on the robustness of the proposed method against more

complex and diverse adversarial attacks.

5 Conclusion

In this study, we study the adversarial risk of the machine

learning model from the manifold perspective. We report

theoretical results that decompose the adversarial risk into the

normal adversarial risk, the in-manifold adversarial risk, and the

standard risk with the additional Nearby-Normal-Risk term. We

present a pessimistic case suggesting that the additional Nearby-

Normal-Risk term can not be removed in general. Our theoretical

analysis suggests a potential training strategy that only focuses on

the normal adversarial risk.
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