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Introduction: Healthcare wearables allow researchers to develop various system

approaches that recognize and understand the human emotional experience.

Previous research has indicated that machine learning classifiers, such as Support

Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Tree (DT), can

improve the accuracy of physiological signal analysis and emotion recognition.

However, various emotions can have distinct e�ects on physiological signal

alterations. Therefore, solely relying on a single type of physiological signal analysis

is insu�cient for accurately recognizing and understanding human emotional

experiences.

Methods: Research on multi-modal emotion recognition systems (ERS) has

commonly gathered physiological signals using expensive devices, which required

participants to remain in fixed positions in the lab setting. This limitation restricts

the potential for generalizing the ERS technology for peripheral use in daily life.

Therefore, considering the convenience of data collection from everyday devices,

we propose a multi-modal physiological signals-based ERS based on peripheral

signals, utilizing the DEAP database. The physiological signals selected for analysis

include photoplethysmography (PPG), galvanic skin response (GSR), and skin

temperature (SKT). Signal featureswere extracted using the “Toolbox for Emotional

Feature Extraction from Physiological Signals” (TEAP) library and further analyzed

with three classifiers: SVM, KNN, and DT.

Results:The results showed improved accuracy in the proposed system compared

to a single-modal ERS application, which also outperformed current DEAP multi-

modal ERS applications.

Discussion: This study sheds light on the potential of combining multi-modal

peripheral physiological signals in ERS for ubiquitous applications in daily life,

conveniently captured using smart devices.

KEYWORDS

multi-modalities, physiological signals, emotion recognition, machine learning,

ubiquitous and mobile computing system

1 Introduction

Over the past decade, extensive research efforts have been dedicated to the development

and enhancement of human ERS. Emotions play a central role in the human experience,

exerting a profound influence on both physiological and psychological states. This influence

holds promise for diverse applications, including Internet of Things (IoT) devices (Abdallah

et al., 2020; Fodor et al., 2023), safe driving practices (Ma et al., 2021), software engineering

(Fritz et al., 2014), and beyond. Research in this domain has sought to capture and interpret

emotional states through a variety of signals.

One pivotal aspect of this research involves categorizing human emotion detection

methods into two main groups: physical signals and physiological signals. The study of
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physical signals encompasses various aspects such as facial

expressions (Kuruvayil and Palaniswamy, 2022), speech (Akçay and

Oǧuz, 2020), text (Guo, 2022), and gestures (Zhang et al., 2020).

These signals have received extensive research attention over the

years due to their ease of collection and measurement. In contrast,

physiological signals serve as indicators of individuals’ internal

states and offer a significant advantage in emotion detection due

to their resistance to manipulation. This highlights the challenge

of accurately determining true emotions solely based on physical

signals, as individuals can intentionally conceal their emotional

feelings (Ismail et al., 2022).

Empirical studies (Koelstra et al., 2012; Soleymani et al.,

2012; Abadi et al., 2015; Katsigiannis and Ramzan, 2018; Schmidt

et al., 2018) have extensively employed various physiological

signals, including electroencephalogram (EEG), electromyography

(EMG), electrocardiogram (ECG), PPG, GSR, and SKT, in the

development of ERS. Among these physiological signals, the

analysis of brain activity holds particular significance. Changes

in brain waves provide valuable insights into real-time reactions

during neurological activity, reflecting genuine human responses

(Regan et al., 2010; Lan et al., 2016). While EEG stands out as

the most accurate and reliable physiological signal for recognizing

emotions (Qiu et al., 2018), it does come with certain drawbacks,

such as the requirement of high-end devices that must be worn

on the head. These drawbacks may inconvenience subjects and

potentially hinder their participation in experimental activities.

While EEG has been a valuable tool in emotion recognition

research, it does come with certain drawbacks that can hinder

subjects’ participation in experimental activities. In addition to

EEG, another group of physiological signals closely correlated with

human emotions are cardiac-related signals, specifically the ECG

and PPG. ECG measures the electrical activity within the heart,

while PPG captures changes in blood volume during heart activity.

In addition to signal selection, the methodology employed

for handling single and multi-modal physiological signals in ERS

is a critical factor in understanding and recognizing human

emotions. For instance, a study conducted by Zhang et al. (2021)

proposes an ERS based on multi-modal physiological signals

using the DEAP dataset and DECAF dataset. They employ deep

learning techniques to combine different modalities, such as

EEG, EMG, GSR, and RES (Respiration) from the DEAP dataset,

and MEG (Magnetoencephalography), EMG (Electromyography),

EOG (Electrooculography), and ECG signals from the DECAF

dataset. Similarly, Yan et al. (2022) conducted a study using

multichannel physiological signals from the WESAD dataset,

which included ECG, GSR, EMG, and BVP signals. Both of their

results indicate that multi-modal ERS exhibits a high potential for

achieving superior performance in contrast to single-modal ERS.

Furthermore, as technology advances, the use of advanced

wearable devices equipped with unobtrusive sensors, such as

smartwatches, offers researchers greater flexibility and convenience

in their approach. Notably, previous work by Wang et al.

(2020) proposed an adaptive Emotion Recognition System (ERS)

using a sensor-enriched wearable smartwatch to explore both

physiological and behavioral data across various daily activity

scenes. Similarly, Quiroz et al. (2018) introduced an ERS system

utilizing a smartwatch and a heart rate monitor strap to analyze

human emotional states and behavioral responses. In both studies,

the utilization of smartwatches demonstrated high accuracy and

convincing performance in developing ERS.

Therefore, through this research, we aim to contribute to the

development of an ERS model based on signals commonly found

in most smartwatches, specifically the PPG, SKT, and GSR signals.

We analyze the publicly available DEAP dataset, which includes

these three signals, and extract relevant features. Subsequently,

we apply classification to the ERS model using simple machine

learning algorithms such as SVM, KNN, and DT. This choice

of algorithms is made to minimize the system’s footprint and

processing power, especially for devices with limited resources. We

evaluate the system’s performance based on average accuracy and

the F1 score.

The subsequent section presents a comprehensive review of

previous research on ERS. Section 3 introduces the DEAP dataset,

and the methodology for feature extraction and classification is

explained in detail. The analyzed results are presented in Section

4. In Section 5, the discussion of findings is briefly discussed, while

Section 6 serves as the conclusion of the paper.

2 Related work

In recent years, there has been a surge of research focused on

understanding and recognizing user emotions by leveraging the

advancements in augmented reality, virtual reality, and human-

computer interaction technologies. Numerous studies have been

conducted in various areas, including the development of emotion

models, data collection methods, and peripheral signal-based ERS.

These efforts collectively contribute to a deeper understanding

of user emotions and pave the way for more effective and

comprehensive emotion recognition approaches.

2.1 Emotion model

To accurately recognize emotions, it is crucial to have a well-

defined and quantifiable concept of emotion. Over the past decades,

psychologists from various disciplines havemade attempts to define

emotion. However, there is still no universally acknowledged theory

of emotion. In most emotion recognition research, two common

approaches have been used to define the emotion model: the

discrete emotion model and the multi-dimensional emotion space

model (Picard, 2000).

In the discrete emotion model, human emotional experiences

are described using words rather than quantitative analysis. This

approach presents limitations in analyzing complex emotions,

as individuals from different backgrounds may have different

emotional sensitivities (Shu et al., 2018). Therefore, it is essential

for an emotion model to have a quantitative standard, especially

when applied in conjunction with machine learning analysis.

To address this limitation, researchers have endeavored to

develop a multi-dimensional emotion space model, which enables

the measurement of emotions along different dimensions and

facilitates easy comparison of varying intensities of emotional

experiences (Bota et al., 2019). One notable example is the two-

dimensional emotional model proposed by Lang (1995), which

classifies emotions based on valence and arousal. The valence
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dimension axis categorizes human emotional experiences from

negative (unpleasant) to positive (pleasant), while the arousal

dimension axis ranges from low (passive) to high (active). Building

upon this framework, Mehrabian (1997) extended the model to

a three-dimensional emotion model by introducing an additional

dimension axis known as dominance. This additional axis aids in

identifying emotions such as fear and anger more effectively.

2.2 Emotion recognition data collection
methods

Data collection methods for emotion recognition have

employed various technologies. Miranda et al. (2014) conducted

anxiety detection research by combining spontaneous eye-blink

rate and heart rate signals using wireless wearable products, namely

the Google Glass and Zephyr HxM Bluetooth band. Similarly,

Koelstra et al. (2012) utilized a high-end technology device,

the Biosemi Active Two System, along with a recording PC to

collect a multi-modal dataset comprising EEG signals, peripheral

physiological signals, and facial video signals.

In addition to these approaches, researchers have extensively

utilized open-source datasets such as the DEAP dataset (Koelstra

et al., 2012), MAHNOB-HCI dataset (Soleymani et al., 2012),

WESADdataset (Schmidt et al., 2018), DECAF dataset (Abadi et al.,

2015), DREAMER dataset (Katsigiannis and Ramzan, 2018), and

SEED dataset (Zheng and Lu, 2015) for various types of research in

the field of emotion recognition. These databases provide valuable

resources for studying and analyzing emotional data.

2.3 Single-modality and multi-modalities
ERS

Peripheral signals play a significant role in emotion recognition

research. These signals are derived from physiological processes

and provide valuable information about an individual’s emotional

state. Researchers have explored both single-modal and multi-

modal peripheral signal-based emotion recognition systems.

In single-modal peripheral signal-based emotion recognition,

researchers analyze a specific type of peripheral signal in isolation

to recognize human emotions. For instance, Susanto et al. (2020)

introduced an ERS based on deep hybrid neural networks that

utilized GSR signals. Their study demonstrated the effectiveness

of GSR in recognizing human emotions. Similarly, Zhu et al.

(2019) conducted a review focused on the application of heart rate

variability (HRV) in human emotion recognition. They highlighted

the potential of HRV-related approaches and their prospects for

broader applications in emotion recognition.

Multi-modal peripheral signal-based emotion recognition

involves integrating various types of peripheral signals to gain a

more comprehensive understanding of emotions. This approach

combines signals such as EEG, GSR, PPG, EMG, ECG, and

respiratory signals. The fusion of information from different

modalities aims to improve the accuracy and robustness of emotion

recognition systems. For example, Stajic et al. (2021) conducted

emotion recognition research utilizing the DEAP database. They

employed multiple physiological signals and analyzed them using

three different machine learning algorithms: SVM, boosting

algorithms, and artificial neural networks. By integrating these

signals and employing advanced algorithms, their study aimed to

enhance the recognition of emotions. Additionally, Lima et al.

(2020) presented their research on mental stress prediction. They

combined PPG and GSR signals, which were collected using their

own prototype equipped with PPG and GSR sensors. Their findings

indicated that simultaneously considering PPG and GSR baseline

features achieved an accuracy of 77% in predicting mental stress.

These studies exemplify the application of multi-modal

peripheral signals in emotion recognition and mental stress

prediction. By combining different types of signals and utilizing

advanced analytical techniques, researchers strive to improve the

understanding and detection of emotions.

3 Method

The ERS models in this study follow the flowchart presented

in Figure 1. The input data used for the models is obtained

from the publicly available DEAP dataset. The data undergoes

a comprehensive process, starting with feature extraction and

culminating in the classification stage.

During the feature extraction stage, specific features are

extracted from each physiological signal. These features (Soleymani

et al., 2017) capture relevant information related to the emotional

state. All the extracted features are then combined and divided into

two sets: training data and testing data. The training data is utilized

to train the classifiers, enabling them to learn and make predictions

based on the provided features.

Three classifiers, namely SVM, KNN, and DT, are employed in

this study. Each classifier uses the training data to build a model

that can classify emotional states based on the extracted features.

To enhance the robustness of the classification performance,

we incorporated GridSearch Cross Validation and KFold Cross

Validation techniques in our study. These approaches help optimize

the model’s hyperparameters and ensure that the performance

evaluation is reliable and generalized across different subsets of the

dataset.

To evaluate the performance of the models, the testing data is

used. The models are applied to the testing data, and their accuracy

and effectiveness in recognizing emotions are assessed. This

evaluation provides insights into the performance and suitability

of each classifier in the context of the ERS models developed in this

study.

3.1 Public dataset—DEAP dataset

For this research, the PPG, GSR, and SKT signals from the

publicly available DEAP dataset (Koelstra et al., 2012) were utilized.

The DEAP dataset, developed by Koelstra et al., encompasses a

wide range of physiological signals, including EEG, EOG, EMG,

GSR, Respiration, PPG, and SKT. It consists of recordings from

32 subjects who were exposed to a set of 40 audio videos. The

subjects provided ratings for each video in terms of arousal, valence,

dominance, and familiarity levels. However, for the purpose of this
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FIGURE 1

Workflow of emotion recognition model.

specific study, the focus was solely on the GSR, PPG, and SKT

signals, narrowing down the scope of analysis to these specific

modalities.

3.2 Feature extraction

The GSR, PPG, and SKT signals underwent pre-processing and

feature extraction using PyTEAP, a Python implementation of the

TEAP library. TEAP, initially introduced by Soleymani et al. (2017),

is a comprehensive toolbox for analyzing various physiological

signals, including EEG, GSR, PPG, and EMG. Over time, TEAP

has expanded its capabilities to support additional signals such as

BVP, ECG,HST, and RES. Additionally, TEAP offers pre-processing

functionalities, including the application of low-pass filters to raw

data.

Using PyTEAP, a total of seventeen features were extracted from

the PPG signal, including mean, inter-beat interval (IBI), HRV,

multiscale entropy, power spectral density, tachogram power, and

the energy ratio between power spectral density and tachogram

power. For the GSR signal, five features were extracted, which

include the number of GSR peaks per second, average peak

amplitude, average peak rise time, average GSR value, and GSR

variance. Additionally, six features were extracted from the SKT

signal, consisting of mean temperature, standard deviation of

temperature, kurtosis of temperature, skewness of temperature,

spectral power in the 0–0.1 Hz range, and spectral power in the

0.1–0.2 Hz range.

3.3 Classification

Optimizing these parameters is crucial to prevent the

underfitting or overfitting of the DT model. By carefully selecting

the appropriate splitting criterion, maximum depth, and minimum

samples per leaf, the DT algorithm can achieve better performance

and effectively capture patterns and decision rules from the data.

The selection of these three machine learning algorithms for

this study was based on their specific advantages. Firstly, all three

algorithms, SVM, KNN, and DT, possess versatility in handling

both classification and regression problems, making them suitable

for a wide range of tasks. Secondly, these algorithms demonstrate

scalability, allowing them to efficiently handle smaller datasets

such as the DEAP dataset used in this study. This scalability

ensures that computational resources are used effectively and

results can be obtained within a reasonable timeframe. Thirdly,

these algorithms have relatively few hyperparameters, simplifying

the parameter-tuning process. This advantage allows for greater

control over the model’s performance and generalization. With

fewer hyperparameters to optimize, it becomes easier to find the

best parameter settings that fit the model.

Additionally, in this study, the train and test data were split

into an 80:20 ratio, ensuring a proper evaluation of the model’s

performance. Furthermore, the application of gridSearchCV in

the classifier was used to systematically search for the best

hyperparameter combination, optimizing the model’s performance

based on the given data.

By considering these advantages and employing appropriate

methodologies for data splitting and hyperparameter tuning, the

study aims to effectively apply these machine learning algorithms

to achieve accurate and robust emotion recognition results.

3.4 Parameter tuning

Themulti-modal ERS test and training sets were analyzed using

the DEAP dataset and evaluated with grid-search cross-validation

(GridSearchCV). The data were divided into training and testing

sets, with a training size of 0.2, and the optimal hyperparameters

were determined through the grid-search process.

To ensure the robustness of the classification performance, a

KFold Cross-Validation technique with a specified number of folds,

in this case, 2, was applied. This approach allows for the evaluation

of the model’s performance on different subsets of the data.
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3.5 Performance metrics

Performance metrics are quantitative measurements that offer

valuable insights into the effectiveness and accuracy of machine

learning models. In this study, two performance metrics, namely

accuracy and F1 score, were utilized to evaluate the models.
Accuracy can be expressed below:

Acc =
(Truepositive+ TrueNegative)

(Truepositive+ Truenegative+ Falsepositive+ Falsenegative)

(1)

It reflects the model’s capability to correctly classify emotions,

providing an overall measure of its correctness in predicting

the emotional state. It represents the ratio of correctly classified

instances to the total number of instances.

On the other hand, the F1 score is a metric that considers both

precision and recall.

F1 score = 2 ∗
(precision ∗ recall)

(precision+ recall)
(2)

It is the harmonic mean of precision and recall, providing a

balanced assessment of the model’s accuracy. The F1 score takes

into account both the model’s ability to minimize false positives

(precision) and its ability to capture true positives (recall).

In this study, the average accuracy and F1 score were calculated

as metrics for assessing the performance of the multi-modal ERS.

By averaging these metrics, a more comprehensive and robust

evaluation of the model’s accuracy and overall performance can be

obtained.

Acck−fold =

∑k
i=1 Acci

k
(3)

F1 scorek−fold =

∑k
i=1 F1 scorei

k
(4)

4 Result

By conducting experiments with both single-modality and

multi-modalities signal combinations, this study seeks to compare

the performance and effectiveness of different approaches in

recognizing and understanding emotions based on the PPG, GSR,

and SKT signals from the DEAP database. Three classification

algorithms are applied for the PPG, GSR, and SKT signals and

analyzed using two different types of signal combinations: single-

modality and multi-modalities.

In the single-modality approach, each physiological signal

(PPG, GSR, SKT) is analyzed independently, focusing on the

unique information contained in each signal. This allows for an

understanding of the individual contributions of these signals in

emotion recognition. In contrast, the multi-modalities approach

integrates multiple physiological signals (PPG, GSR, SKT) to create

a more comprehensive representation of the emotional state. By

combining information from multiple modalities, the aim is to

capture a richer and more accurate understanding of human

emotions.

The classifier performance results for both single-modality and

multi-modalities are shown in Table 1 and the next section presents

a detailed comparison of the classification performance achieved

by individual modality signals. Subsequently, a comprehensive

analysis is conducted to compare the performance of single-

modality signals with that of multi-modalities. Finally, a

comparison is made with prior works focusing on multi-modal

ERS to highlight the advancements and contributions of our study

in this context.

4.1 Comparisons among single modality
and dual modality

In the single-modality approach, SVM excelled in recognizing

arousal, valence, and liking, while DT performed better for

dominance. Among the three modalities, HRV signal classification

with SVM achieved the highest accuracy: 64.5% for arousal and

65.4% for valence. For dominance, SKT signal with DT classifier

reached the highest accuracy at 69.0% and HRV signals with DT

classifier achieved an accuracy of 72.0% for liking.

These findings affirm the effectiveness of the SVM algorithm

in single-modality emotion recognition and stress the importance

of selecting the appropriate physiological signal for each emotional

dimension. Specifically, the HRV signal is effective in recognizing

arousal, valence, and liking emotions, while the SKT signal shows

potential for dominance emotion.

In the dual-modality approach, overall accuracy improved

compared to single-modality approaches, except for liking.

The combination of HRV and SKT signals exhibited the

highest performance with the SVM algorithm, surpassing other

combinations like HRV+GSR and SKT+GSR. Notably, the HRV

and SKT signal combination, with SVM, achieved accuracies of

64.7% for arousal, 65.6% for valence, 69.1% for dominance, and

71.4% for liking.

4.2 Comparisons with multi-modalities

Among the classifiers used in the multi-modalities approach,

SVM exhibited the best accuracy performance compared to other

classifiers, followed by DT. The multi-modalities model achieved

accuracies of 66.0% for All-arousal, 66.0% for All-valence, 69.3%

for All-dominance, and 71.1% for All-liking.

It is important to highlight that the multi-modalities approach

demonstrated an overall performance improvement compared

to the single-modality or dual-modality approaches, except for

liking. By combining multiple physiological signals, the model

benefitted from the complementary information provided by

different modalities, resulting in enhanced accuracy in emotion

recognition. Specifically, accuracy increased from 64.5% to 66.0%

for arousal, from 65.4% to 66.0% for valence, and from 69.0% to

79.5% for dominance. However, the accuracy for liking slightly

decreased from 72.0% to 71.1%.

Indeed, these findings emphasize the effectiveness of combining

multi-modal physiological data with the SVM classifier, which
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TABLE 1 The classifier performance results for both single-modality and multi-modalities.

Emotion Arousal Valence Dominance Liking

Modalities Classifier Accuracy F1
score

Accuracy F1
score

Accuracy F1 score Accuracy F1
score

HRV SVM 0.645 0.784 0.654 0.791 0.681 0.810 0.720 0.837

KNN 0.616 0.743 0.610 0.739 0.645 0.774 0.681 0.804

DT 0.637 0.778 0.651 0.788 0.688 0.815 0.712 0.832

GSR SVM 0.644 0.783 0.651 0.788 0.671 0.803 0.703 0.826

KNN 0.602 0.739 0.587 0.715 0.623 0.751 0.679 0.805

DT 0.631 0.773 0.640 0.780 0.680 0.809 0.701 0.824

SKT SVM 0.634 0.783 0.646 0.785 0.684 0.812 0.709 0.830

KNN 0.606 0.719 0.634 0.756 0.643 0.772 0.675 0.799

DT 0.647 0.786 0.653 0.790 0.690 0.816 0.702 0.825

HRV + GSR SVM 0.646 0.785 0.652 0.789 0.684 0.812 0.710 0.830

KNN 0.607 0.730 0.610 0.735 0.652 0.780 0.682 0.807

DT 0.648 0.787 0.651 0.788 0.686 0.814 0.711 0.831

HRV + SKT SVM 0.647 0.786 0.656 0.792 0.691 0.817 0.714 0.833

KNN 0.606 0.735 0612 0.743 0.661 0.787 0.684 0.807

DT 0.647 0.786 0.653 0.790 0.686 0.814 0.712 0.832

SKT + GSR SVM 0.638 0.779 0.646 0.785 0.679 0.809 0.713 0.833

KNN 0.609 0.736 0.615 0.742 0.647 0.774 0.676 0.804

DT 0.640 0.780 0.650 0.788 0.689 0.816 0.705 0.827

ALL SVM 0.660 0.795 0.660 0.795 0.693 0.813 0.708 0.829

KNN 0.619 0.743 0.615 0.738 0.655 0.783 0.685 0.809

DT 0.643 0.783 0.653 0.790 0.691 0.817 0.711 0.831

Bold values indicate highest accuracy in single modality, double modalities and multi-modalities.

results in leveraging the combined information to achieve

improved performance in emotion recognition.

4.3 Comparisons with prior work

Prior research investigating multi-modal ERS and utilizing the

DEAP dataset consistently reveals superior performance compared

to single-modality ERS. Koelstra et al. (2012) demonstrated that

combining multiple modalities, which include EEG, peripheral

physiological signals, and multimedia content analysis, resulted in

higher performance when compared to using a single modality

alone. In their study, a comprehensive comparison of F1 scores

among single, double, and triple modalities combinations clearly

indicated that the triple-modalities combination exhibited the most

optimal performance across all emotions. These findings provide

strong evidence for the effectiveness and advantage of leveraging

multiple modalities in ERS for accurate and comprehensive

emotion recognition.

Meanwhile, Zhang et al. (2021) conducted research by

exploring different combinations of physiological signals,

encompassing single, double, triple, and quadruple modalities

combinations. Notably, their findings indicated that in the triple

modalities, the combination of EEG, EMG, and GSR signals

(EEG+EMG+GSR) demonstrated the highest performance. For

the Arousal dimension, this combination achieved an accuracy of

59.0% and an F1 score of 66.2%, an accuracy of 59.5% and an F1

score of 63.1% in the Valence dimension (Table 2).

In comparison, our study utilizes a cost-effective multi-

modal approach that outperforms Zhang et al.’s (2021) results.

Importantly, our chosen signal combination is more accessible

and practical than EEG and EMG, which require expensive

medical-grade devices. This advantage enhances the feasibility of

implementing ERS in real-world scenarios.

5 Discussion

In previous studies, extensive research has been conducted

in the field of multi-modal ERS. For instance, Qiu et al. (2018)

proposed an ERS model that leveraged deep learning techniques,

incorporating EEG signals and eye movement data from the DEAP

database. Similarly, Abadi et al. (2015) introduced the DECAF

dataset, which included a diverse range of modalities such as

MEG signals, physiological signals, face videos, and multimedia

signals. Both of these studies employed advanced techniques

to develop complex multi-modal ERS, resulting in improved

accuracy for emotion classification. However, their studies required
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TABLE 2 Comparison with prior work.

Method Dataset Modalities Classifier Arousal Valence

Accuracy F1 score Accuracy F1 score

Zhang et al. (2021) DEAP EEG + EMG +

GSR

RDFKM 0.590 0.662 0.595 0.631

Our study DEAP HRV + GSR +

SKT

SVM 0.660 0.795 0.660 0.795

the use of highly graded medical devices to measure these

signals, and conducting experiments with such devices demanded

controlled environments. These requirements imposed constraints

on the experimental design and might have limited the practical

applicability of their findings to more general situations. Therefore,

in this study, we sought to explore the potential of multi-modal ERS

by leveraging PPG, GSR, and SKT signals commonly obtained from

wearable devices.

By utilizing these accessible and practical physiological signals,

we aimed to develop an ERS that can be applied more widely

in real-world scenarios. The TEAP library was employed to

extract seventeen features from the PPG signal, five features

from the GSR signal, and six features from the SKT signal.

We utilized three machine learning algorithms, namely SVM,

KNN, and DT, to analyze the DEAP dataset and train the

models to recognize arousal, valence, dominance, and liking

emotional states.

Upon comparing the performance of single-modality and

multi-modalities ERS in our study, we observed improved accuracy

in the multi-modalities approach. Specifically, for arousal, the

accuracy increased from 63.4 to 63.9%, for valence, it improved

from 62.8 to 63.1%, and for dominance, it rose from 66.6 to 66.9%.

However, the accuracy for liking remained consistent at 69.5%.

These results highlight the potential benefits of utilizing multi-

modal physiological signals in Emotion Recognition Systems, as

it leads to enhanced accuracy in recognizing various emotional

states. While, among the machine learning algorithms, the

SVM classifier exhibited the highest accuracy performance in

the multi-modalities ERS. It proved to be the most suitable

algorithm for leveraging the combined information from multiple

modalities. This result aligns with the findings reported by Verma

and Tiwary (2014) in their study, where they also observed

that the SVM classifier achieved the highest accuracy in their

proposed multi-modalities Emotion Recognition System utilizing

the DEAP database. The consistent performance of the SVM

classifier across different multi-modal approaches highlights its

effectiveness in handling complex emotional data from various

physiological signals.

Nevertheless, it is important to note that the accuracy

performance for all emotional states, especially for dimensional

emotions like dominance and liking, still fell short of being

satisfactory. In the study conducted by Bǎlan et al. (2019),

they aimed to remap the VAD (Valence-Arousal-Dominance)

emotion dimensional space to the six basic emotions, namely

anger, joy, surprise, disgust, fear, and sadness. They developed

an ERS using the DEAP database and explored various

probabilities and approaches for analyzing and featuring these

emotions. Their study provided valuable insights into the

complexities of emotion recognition and offered diverse methods

for understanding and categorizing emotions based on the

VAD dimensions.

Our study highlights the significant potential and reliability

of the multi-modalities ERS model, with the SVM classifier

demonstrating the highest accuracy performance among

the tested algorithms. These findings are consistent with

prior research (Koelstra et al., 2012; Verma and Tiwary,

2014; Liu et al., 2019; Zhang et al., 2021) in the field of

multi-modalities ERS, further validating the effectiveness

of combining multiple physiological signals for emotion

recognition. Additionally, insights from studies conducted by

Shu et al. (2018) and Bǎlan et al. (2019) shed light on the

important features and relationships between the six basic

emotions and physiological signals, contributing valuable

knowledge for developing more efficient and high-performance

ERS models.

5.1 Limitations and future works

Our study has identified several potential limitations. The

small dataset size constrained our options for training and

validating the classifier algorithm, particularly when employing

deep learning techniques that often require larger volumes of data

for optimal performance. The integrity of data signals collected

from smartwatches or smart devices (Quiroz et al., 2018; Ismail

et al., 2022) posed another limitation due to noise resulting from

bodymovement. Future research should prioritize the development

of smart devices with improved noise resilience and explore

data processing methods that can effectively handle noise while

preserving the signal’s integrity.

To address these limitations, several avenues for future research

can be considered. Firstly, exploring deep learning techniques

holds promise for enhancing the accuracy of the ERS model.

Secondly, future studies should focus on building customized

datasets using smart devices to mitigate the limitations of the

DEAP dataset. Lastly, developing pre-processing techniques and

noise elimination algorithms specifically tailored for commercially-

used smart devices would improve the overall quality of collected

data.

By addressing these limitations, significant progress can be

made in the field of emotion recognition, leading to more robust

and accurate results in real-world applications. The exploration

of larger datasets, advancements in noise-resistant smart devices,

and the utilization of effective data processing techniques will

collectively contribute to the advancement and reliability of

research in this area.
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6 Conclusion

This paper presents a multi-modal emotion recognition system

utilizing peripheral PPG, EDA, and SKT signals from the DEAP

dataset. The signals underwent feature extraction using the TEAP

library andwere analyzed using threemachine-learning algorithms:

SVM, KNN, and DT. The results of our study demonstrate

improvements in accuracy performance in the multi-modal ERS

compared to the single-modal approach. This highlights the

viability of constructing an ERS model using this combination

of multiple modalities. Additionally, the SVM classifier exhibited

superior performance in accurately classifying emotions. We

also discussed several areas that warrant further attention and

improvement. We contribute to the field of emotion recognition

and develop more robust and accurate models for real-world

applications.
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