
TYPE Original Research

PUBLISHED 08 January 2024

DOI 10.3389/fcomp.2023.1263386

OPEN ACCESS

EDITED BY

Rafael Magdalena Benedicto,

University of Valencia, Spain

REVIEWED BY

Rafael Cabañas De Paz,

University of Almeria, Spain

Evdoxia Taka,

University of Glasgow, United Kingdom

*CORRESPONDENCE

David Cruz

david.cruz@isr.uc.pt

RECEIVED 19 July 2023

ACCEPTED 28 November 2023

PUBLISHED 08 January 2024

CITATION

Cruz D and Batista J (2024) Causality and

tractable probabilistic models.

Front. Comput. Sci. 5:1263386.

doi: 10.3389/fcomp.2023.1263386

COPYRIGHT

© 2024 Cruz and Batista. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Causality and tractable
probabilistic models

David Cruz1* and Jorge Batista1,2

1Institute of Systems and Robotics, Coimbra University, Coimbra, Portugal, 2Department of Electrical and

Computer Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal

Causal assertions stem from an asymmetric relation between some variable’s

causes and e�ects, i.e., they imply the existence of a function decomposition of

a model where the e�ects are a function of the causes without implying that

the causes are functions of the e�ects. In structural causal models, information

is encoded in the compositions of functions that define variables because

that information is used to constraint how an intervention that changes the

definition of a variable influences the rest of the variables. Current probabilistic

models with tractable marginalization also imply a function decomposition

but with the purpose of allowing easy marginalization of variables. In this

article, structural causal models are extended so that the information implicitly

stored in their structure is made explicit in an input–output mapping in higher

dimensional representation where we get to define the cause–e�ect relationships

as constraints over a function space. Using the cause–e�ect relationships as

constraints over a space of functions, the existing methodologies for handling

causality with tractable probabilistic models are unified under a single framework

and generalized.

KEYWORDS

causality, tractable probabilistic models, structural causal models, function

decompositions, probabilistic models

1 Introduction

Probabilistic inference is a problem in the complexity class #P, and computing an

approximate solution for it better than a factor of 0.5 is NP-hard (Koller and Friedman,

2009). Nevertheless, there are classes of models called tractable probabilistic model (TPM)

(Darwiche, 2002; Poon and Domingos, 2011; Kisa et al., 2014; Zhang et al., 2021) (see

Section 3) where computing evidence and marginal queries can be guaranteed to have a cost

bounded by a polynomial in its size. They can be used to model any probability distribution

defined over categorical variables, and, as expected due to the hardness of approximation

of inference1, their size requirements can be exponential in the problem specification size.

Inference is a subroutine in learning and approximations used when learning can have

an impact on what is learned (Koller and Friedman, 2009; Poon and Domingos, 2011).

Moreover, different approximate inference procedures used over a learned model can yield

different results for the same queries (Koller and Friedman, 2009). Using TPM where

inference is guaranteed to have a bounded cost enables the utilization of exact inference

procedures for learning and usage of the learned model. In that scenario, all approximations

are done when choosing the structure and size of the TPM.

1 Assuming P 6= NP 6= P#P .

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1263386
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1263386&domain=pdf&date_stamp=2024-01-08
mailto:david.cruz@isr.uc.pt
https://doi.org/10.3389/fcomp.2023.1263386
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1263386/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

While probabilistic models capture co-occurrences of events

in observed environments, in causal models, it is assumed that

the behavior of models can change when we choose to act on

the world via an yet unmnodeled process (Pearl, 2009). An

intervention on a variable changes the function that was used to

define the value of that variable (Pearl, 2009). Without further

assumptions on how each change in an intervened variable

influences the rest of the variables, the effects of an intervention

are undefined (Pearl, 2009). The growth of the space of functions

that is needed to model probabilistic relations in the scenarios

with interventions, in tandem with the potential disruption of

parameter level dependence relationships exploited to get modern

compressed TPM (Darwiche, 2022), poses challenges in tying TPM

and causality while avoiding large TPMmodels.

Research in causality is built around the proposition that it

is useful to think about causes and effects while modeling the

world. The study of cause–effect relationships in models is relevant

due to tools it provides to its user (Pearl, 2019). It is central in

many aspects of modeling such as: (1) missing data imputation

(Mohan and Pearl, 2021), (2) identifiability of parameters and

learnability (Tikka et al., 2019; Xia et al., 2021), (3) transportability

(Bareinboim and Pearl, 2013; Pearl and Bareinboim, 2014), or

(4) out-of-distribution generalization (Jalaldoust and Bareinboim,

2023). At the core of these tools are statements about inter-

dependency among variables in the presence of interventions.

An effect is naturally defined as a function of its causes but

not the other way around. This asymmetry, already present in

structural equation modeling (SEM) described in Wright (1921), is

the cornerstone of the structural causal model framework (SCMF)

approach to causality advocated in Pearl (2009). A key point in this

article is the expression of causality through function compositions.

Under this framework, a cause–effect statement is equivalent to

a statement that a function can be decomposed in a specific

form. Specifically, parent–child relations exist in the function

decomposition through the input–output relations. However, the

existence of a function decomposition that, when exploited, allows

us to correctly compute the global function does not imply its

explicit use.

A structural causal model (SCM) (Pearl, 2009; Bareinboim

et al., 2022) is defined as a 4-tuple (V,U,F ,P(U)) where: (1) F

is a set of functions that is used to define “endogenous” variables

in SCM in the absence of interventions on them; (2) V is a

set of variables that are “endogenous” to the model by virtue of

being, in the absence of interventions, defined as the outputs of

functions in F ; (3) U is a set of “exogenous” variables whose

value determines, at an individual level, every factor of variation in

functions in F ; and (4) P(U) stands for a probabilistic distribution

over all exogenous variables. An intervention is a replacement of

a function that defines an endogenous variable in structural causal

models by another, yet undefined, function whose output provides

the new definition of that endogenous variable (Pearl, 2009;

Bareinboim et al., 2022). This implies that exogenous variables do

not characterize the uncertainty over interventions, and, in that

regard, they are outside of what is (explicitly) modeled by an SCM.

Nevertheless, the way they influence the set of endogenous variables

is well defined in that an algorithm that takes as input F and the

interventions can output a new set of functions can be used to

answer queries containing interventions. Therefore, some of the

information in an SCM is encoded in its structure.

There are three approaches to model causality with TPM:

(1) using variable elimination over a SCM to get a TPM structure

(Darwiche, 2022), (2) using a transformation between a TPM

and a causal Bayesian network (CBN) (Papantonis and Belle,

2020) to support cause–effect claims in a TPM, and (3) using

separate parameters for each interventional case, which was used in

interventional sum product network (iSPN) (Zečević et al., 2021).

The two first approaches rely on the existence of a class of

models like CBN or SCM on which causality has been studied

(Pearl, 2009; Bareinboim et al., 2022). TPM research was sprung in

the context of efforts to accelerate inference in Bayesian networks

(Chavira and Darwiche, 2005); therefore, there is good reason to

ask if compilation of CBN would provide a good way to introduce

causality into TPM. In Darwiche (2022) a SCM used to describe

some phenomenon is compiled into a TPM via an algorithm akin

to variable elimination. Similarly to SCM, an algorithm that takes as

input both the structure of the computation graph (CG) (Erikssont

et al., 1998; Trapp et al., 2019; Peharz et al., 2020) of a TPM and

information about interventions will adjust the CG so that queries

pertaining to interventions can be answered (Darwiche, 2022). The

structure of TPM is used as a source of information; therefore, not

all information in the TPM [in the approach taken in Darwiche

(2022)] is encoded explicitly in the input–output mapping. This

limits the set of structures that can be used by the TPM to those

in which the algorithm that adapts the TPM to respond to queries

pertaining to interventions works as intended.

The second approach depends on the ability to transform

a probabilistic distribution expressed in a sum product network

(SPN) or probabilistic sentential decision diagram (PSDD) (both

TPM) as a bayesian Network (BN) (Papantonis and Belle, 2020). In

that work, the transformations from SPN to BN described in Zhao

et al. (2015) and a transformation from PSDD into BN developed

in Papantonis and Belle (2020) were used for that purpose. From

the BN that is obtained, in Papantonis and Belle (2020), a set of

cause effect statements regarding the initial model is discussed

under the assumption that the directed acyclic graph (DAG) of

the BN encodes a set of cause–effect relationships. In either the

CBN, SCM, or TPM in Papantonis and Belle (2020), variables

that specify the interventions are not explicitly mentioned. This

is problematic because the transformation they use preserves only

the input–output relationships obtained with the variables that are

explicitly declared. As a result, the information in the structure that

is used as input to the algorithm that modifies the models to answer

interventional queries can be lost.

The third approach avoids referencing CBN or TPM explicitly

by making every parameter in an SPN with random structure a

function of the adjacency matrix (pertaining to a CBN with the

cause–effect relationships) that one would get after applying the

algorithm that replaces the variable definition given by its modeled

causes by an intervention (external definition) (Zečević et al., 2021).

All information about all interventions can potentially influence all

parameters, and the locality of interventions is lost in the sense

that an intervention that, in SCM only replaced a function in a

set of functions, in iSPN (Zečević et al., 2021) acts globally in

the parameters of all functions. By changing all parameters due to

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

interventions, no specific structure in the CG of a iSPN is required

in order for an algorithm that adjusts the model like the one

used in Darwiche (2022) to respond to interventions. However,

this does not prevent us from using information about cause–

effect relationships to create the structure of a iSPN-like model,

which raises the research question: “Is it useful to still consider

cause–effect relationships when building iSPN-like models?”.

A CG of either TPM and SCM describes a set of operations

that implement the model. As long as the CG has depth >1,

the operations can be described in a series of steps. A function

that implements the input–output mapping of a model can be

decomposed according to a CG that describes it. In SCM, functions

that define causes of a variable with index i, or interventions that

replace them, are sub-functions of the function used to define that

variable (with index i). Therefore, there exists a CG that implements

a SCM according to which the computations are ordered from

causes to effects. In TPM, the function decomposition has a

different purpose: minimizing the number of operations required

for queries pertaining to marginalization of variables. There is

a mismatch between the function decomposition pertaining to

a TPM where all variables appear at the inputs of a CG and

the function decomposition implied by cause–effect relationships

where endogenous variables are functions of each other. A

discussion of causality in TPM benefits from a different foundation

where both functional descriptions of a model can be described

and compared. Toward this end, SCM are extended to extended

structural causal model (ESCM) where all information is encoded

in the input–output mapping.

Based on ESCM, cause–effect statements are expressed as

constraints over a space of functions. In order to be able to express

all interventions through the input–output mapping of a model,

a set of variables that can express them (in the input space) has

to be added. Simply adding variables referring to interventions as

inputs of functions in the set F changes the meaning of the U

that, in SCM, does not characterize factors of variation pertaining

to interventions. The meaning of exogenous variables is tightly

coupled with functions in the set F so, in this study a distinct

set of functions G is considered for the implementation of the

interventions, resulting in the approach described in Section 2.This

approach involves declaring that the information regarding an

“endogenous” variable is computed in two steps:(1) In the first step,

the corresponding function in F is used to compute what we can

estimate about the variable given its modeled causes and U; (2) in

the second step, a function in G takes as input both the value of the

previous step and information about interventions on the variable.

The output of the functions of the second step is used as input to

the functions that reference the respective variable in a function F

as it contains the most information about it.

The causality expressed as constraints over a function space is

an unifying framework for expressing causality with TPM, in that,

the three approaches that are described can be analyzed within

it. A problem they all face is how to deal with information that

is encoded only implicitly in the model’s structure. Expressing

cause–effect statements as constraints over a space of functions

allows discussing how to incorporate those statements in a model

and still: (1) discuss different structures in the model, avoiding a

structureless approach used in iSPN, (2) without imposing a set of

structures over the TPM [as is the case of Darwiche (2022)], and

(3) without relying on transformations between models that can

lose information [as is the case in Papantonis and Belle (2020)]. The

expression of cause–effect statements as constraints over a space of

functions is applicable to any model that can be described by a set

of functions and not just to TPM for which it was developed.

In this study, we make the following contributions:

1. Define an ESCM, an extension of SCM with further sets

of variables and functions. In an ESCM, every cause–

effect relationship is modeled in the input–output relation

in a higher dimensional space. With this, all cause–effect

relationships are translated into constraints over the space of

functions we consider for our whole model;

2. Use the ESCM for generalizing the approach taken in

Darwiche (2022) in three ways: (a) Making it applicable

to semirings, (b) adding to the TPM the ability to model

observations and interventions jointly without needing an

external algorithm, which has the corollary of (c) relaxing the

constraints that are imposed from the compilation process

that preserves the applicability of the external algorithm;

3. Establish a relation between the information in layers of TPM

and the cause–effect relationships. It is empirically shown that

not structuring a smooth and decomposable TPM according

to known cause–effect relationships can lead to substantially

bigger models.

1.1 Notation

Within this article, the following notation is used:

• Upper case bold letters are used to represent sets of variables.

When referring to single variables, lower case bold letters are

used.

• For boolean variables, a lower case letter is used as shorthand

for asserting that its value is true and a bar over is used to

denote negation, i.e., xi stands for xi = False.

• The letters f , g, and l are reserved for functions. Upper case,

curly letters are used to define the sets of functions.

• The letter d is used to refer to interventions in ESCM (see

Section 2). The symbol��7di
∅ is used as shorthand to state that

the variable di takes a value that signals that the i
th variable has

not been intervened upon (��7di
∅ ⇒ ti = ci). The symbols��7di

T

and��7di
F are used as shorthand for an intervention that sets the

value of the ith variable to true (��7di
T ⇒ ti = True) and false

(��7di
F ⇒ ti = False), respectively. The reference to multiple

states in the exponent preceded by a number is used to signal

a (probabilistic) distribution over the interventions where the

number that precedes each state indicates its likelihood, e.g.,

��7di
0.5F,0.5T signals that P(ti = True) = 0.5 and P(ti = False) =

0.5 due to an intervention that sets their value.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

• The following nomenclatures will be used as shorthand of the

following functions:

◦ Pa(Xi,...,j,F(X)) stands for parents of a set of variables

Xi,...,j according to the set of functions F(X). x1 ∈

Pa(x2,F(X)) H⇒ ∃f1(x1, ...) ∈ F(X) : x2 ← f1(x1, ...).

Sets of variables in subscript are used to refer to subsets

of parents, i.e., PaXk (Xi,...,j,F(X)) = Pa(Xi,...,j,F(X)) ∩

Xk.

◦ Val(x) stands for the set of values that x can take,

e.g., Val(x) = {True, False}. When used over a set of

variables, it means the set of all combinations of values;

◦ ⊕ and ⊗ are used as reference for the summation and

multiplication operations in a semiring that is used to

generalize the results pertaining to TPM.

◦ L() stands for a layer of functions applied to the inputs.

When the subscripts are ⊕ or ⊗, the operations used

are ⊕ and ⊗. L∗() stands for the composition of two

layers: L⊕ ◦ L⊗.

◦ If (Xi,...,j) stands for indicator function(s) over the

state(s) of variables Xi,...,j.

◦ P() is used to refer to a probability distribution over the

(sets of) variable(s) inside the parenthesis.

2 Causality and constraints over a
space of functions

Definition 2.1. An ESCM is a 7-tuple
(

U,C,T,D,F ,G,P(U,D)
)

.

All information a SCM depends on is declared explicitly in an

ESCM while making minimal changes to the definitions of SCM

(Pearl, 2009; Bareinboim et al., 2022). The exogenous variables

U, the probability distribution over them P(U), and the set of

functions F keep the meaning they have in SCM. The changes

of definitions of variables in SCM (interventions) are carried out

explicitly by functions in G. For each variable vi in SCM, there is a

variable ci,di, and ti in an ESCM (see Figure 1). These three types

of variables correspond to different types of information about a

variable in SCM. A variable ci corresponds to what we can infer

from its modeled causes, i.e., it contains information about the

corresponding variable in V (in SCM) which can be inferred from

computing the corresponding function inF (in SCM). A variable di
corresponds to sources of information outside of what is modeled

(interventions on the model) that impact the information we have

regarding a variable. A variable ti corresponds to information about

the corresponding variable in V (in SCM) given an intervention

or its absence. Every ci is a function of the full information of its

modeled causes and background factors, hence: ci = fi(PaT,U(ci)).

A variable di encodes the information pertaining to interventions

on the endogenous variable i that is present in ti and missing in ci,

therefore: ti = gi(ci, di). In order to be able to express uncertainty

over the set of functions G, the object that modeled uncertainty

in SCM (P(U)) was extended to P(U,D). In ESCM, it can be

stated that D and U alone capture all information over the model,

i.e., C and T are derived from them. Therefore, all uncertainty

in the model can be attributed to P(U,D), and characterizing

the uncertainty over the other sets of variables is redundant. An

algorithm for generating an ESCM from a SCM is provided in the

Supplementary material along with an example.

The link between variables in the ESCM and SCM is established

through the functions that are used. In SCM, there is no explicit

mention of a set of functions (like G in ESCM) that implements a

change of definition of variables in V and no set of variables (like

D in ESCM) that characterizes the behavior of those functions. It is

the usage of F and G that motivates the replacement of V in SCM

by C and T in ESCM. In ESCM, the functions in F and in G take

distinct sets of variables as inputs (a function in F takes variables

in the sets U and T while a function in G takes variables in the sets

C and D), and their output values are attributed to distinct sets of

variables (the outputs of functions in F are assigned to variables in

C and the outputs of functions in G are assigned to variables in T).

An asymmetric causal relation between variables in SCM is easier to

express in ESCM because: (1) the sets of variables in the inputs and

outputs of both F and G are disjoint and (2) there is asymmetry in

the information in C and T.

For two variables {ve, vc} ∈ V in a SCM that correspond to the

sets {cc, dc, tc} and {ce, de, te} in an ESCM, we have that vc
Causes
−−−→

ve ⇒ ce = fe(tc, ...) which expresses an asymmetric relation in

the sense that it is different from cc = fc(te, ...). This contrasts with

SCMwhere a single variable v refers to both information pertaining

to the respective c and t, and for that reason, arrows in a graphical

model (see Figure 1) are necessary to express the asymmetry of

causal relationships. The asymmetry in models is further discussed

in the Supplementary material.

A causal relation in ESCM is defined by setting which variables

in T are arguments in a function that outputs the value of a variable

in C and hence:

Lemma 2.1. A causal relation in a model implies the existence of a

constraint of the type expressed in Equation 1.

Proof. Cause–effect relationships define the arguments of

functions in a model, and by definition, a function only depends

on its inputs. This essentially derives from the independence

assumption of a variable’s output from the non-causes of this

variable in the SCM.

Corollary 2.1.1. The zero sensitivity of a causal model to some

variable can be assessed through cause–effect relationships using the

chain rule for derivatives, without needing to specify the functions the

model decomposes to.

∀vk /∈ Pa(ve, fe()) :
∂fe(Pa(ve))

∂vk
= 0 (1)

3 Tractable probabilistic models

Current TPMs, namely, probabilistic generating circuit (PGC)

(Zhang et al., 2021) ⊃ SPN (Poon and Domingos, 2011) ⊃

arithmetic circuit (AC) (Darwiche, 2002) ⊃ PSDD (Kisa et al.,

2014), are defined as recursive calls of functions defined over a

semiring with operations ⊕, ⊗ (Friesen and Domingos, 2016) and

get their properties via structural constraints (Shen et al., 2016;

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

FIGURE 1

A cause–e�ect relationship that is modeled with a directed graphical model between variables v in SCM can (it is not required to) be modeled using

an undirected graphical model over variables c, d, and t in ESCM. The exogenous variables are not displayed in this figure. They are inputs to

functions that output the values of variables, and in that regard, they would be on the cause side (in that, inputs can be argued to cause outputs of a

function). No changes in U are made in an intervention, so they do not contribute to the understanding of the relationships between the modeled

causes. (A) SCM case. (B) ESCM case.

Choi and Darwiche, 2017). A clear example appears in the PSDD

literature. The structure of PSDD is based on Sentential Decision

Diagrams (SDD) (Darwiche, 2011). SDD are defined with⊕ and⊗

as ∨ and ∧ over Boolean values. Despite PSDD being functions in

R
+ where⊕ is + and⊗ is×, it is common in PSDD-like structures

to draw analogies between the two different semirings. The least

amount of structural constraints that is imposed in order to

ensure the construction2 of a model with tractable marginalization

contains the properties:

1. Decomposability (Friesen and Domingos, 2016), that imposes

that the scope of each function under a product node is

disjoint from the rest. Decomposability allows summation

operations of marginalization at the output to be pushed,

through the product operations using only properties of

operations in a semi-ring. For two disjoint sets of variables

A and B and two functions fa and fb, we have that
∫ (

fb(B) ×

fa(A)
)

=
(∫

fa(A)
)

×
(∫

fb(B)
)

. Decomposability allows an

integration operation, at the output node of the CG of the

TPM, to be implemented at the input nodes of the CG of the

TPM.

2. Smoothness (Friesen and Domingos, 2016), that imposes that

the scope of each function under a summation node is the

same. In a smooth and decomposable model, marginalization

of variables can be done with integration at either the output

or input nodes of the CG of the TPM (Choi and Darwiche,

2017). This relation between integration and marginalization

is not guaranteed in models that are decomposable and not

smooth (Choi and Darwiche, 2017).

It will be assumed that all computations are performed

explicitly, that is, there are no edge weights in the CG. This does

not affect the size more than a constant factor as every such input

could be replaced by one multiplication. The structural properties

2 Although not strictly required to get a model with tractable

marginalization they are commonplace appearing in construction processes

from PGC (Zhang et al., 2021) to PSDD (Kisa et al., 2014).

of current TPM depend on scope partitions; hence, the question

of how to handle scope arising from the parameters is pertinent.

When the parameters are not outputs of functions, it is considered

that they do not contribute to the scope which enables us to rule

out smoothness and decomposability related issues arising from

parameters in that case.When the parameters are functions of some

variables in the model, they contribute to the scope of the overall

model. In that case instead of thinking of the TPM as a model

over the initial variables, we should think of it as a model over the

augmented set of variables that includes the parameter variables.

3.1 Orders and causality in TPM

As a consequence of imposing smoothness and

decomposability to a CG3 of a TPM and by construction in the case

of PGC (Zhang et al., 2021), we get that all variables that appear at

the input layer and the internal nodes of the CG are functions of

increasing scope; thus, we do not have explicit statements that any

variable is defined as a function of any other variable. In ESCM,

the cause–effect relationships are defined over derived variables;

hence, they imply the existence of a decomposition over functions

whereby a cause–effect relationship fcause()
Causes
−−−→ feffect() means

the cause is an argument to the effect function. In TPM, we can

represent a decomposition over functions of increasing scope,

e.g., f1(v1)
Causes
−−−→ f2(v1, v2)

Causes
−−−→ ...

Causes
−−−→ fm(v1, ..., vn).

When a variable enters the CG alongside or after its causes, a

function decomposition that does not contradict the cause–effect

constraints is encoded in the CG. In order to apply the notion

of functions that replace information of the modeled causes by

information pertaining to an intervention (see Section 2) in a

3 A directed graph (N, E) where nodes (N) correspond to operations to

be performed and edges (E) pointing from a node ni to a node nj indicate

that the output of ni is an input of the operation nj. Nodes without edges

pointing toward them are input nodes, and the operation they perform is

data acquisition.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

smooth and decomposable TPM, the following strategy, illustrated

in Figure 2, can be used:

1. Combine information pertaining to a variable, its modeled

causes, and the exogenous variables it depends on. In the

example from Figure 2, this corresponds to P(tc, ce) =

P(tc)⊗ P(ce);

2. Combine the information obtained as output from the last

step with information pertaining indicator functions for the

different interventional cases. In Figure 2, those indicator

functions are represented by: (a) ��7de
T that stands for an

intervention that sets the value of de to true, (b) ��7de
F that

stands for an intervention that sets the value of de to false, and

(c)��7de
∅ that stands for the absence of interventions. This step

is similar to the previous one in that we use the ⊗ operation

so that we can reference each of the combinations of the states

Val(tc, ce, de) individually.

3. Combine each of the ith Val(tc, ce, de) with a parameter

(θi) so that we can: (a) attribute to each of the states a

different likelihood of occurrence and (b) guarantee, via local

normalization (Peharz et al., 2015), that we can make the

output of each ⊕ node to sum up to 1⊗ when the function

they compute is marginalized. These parameters refer to the

likelihoods of the values of endogenous variables and states of

D, so they refer to P(U,D);

4. Combine the information obtained as output from the last

step with indicator functions for the states of te;

5. Merge the information spread across multiple nodes with

the ⊕ operation, e.g., in Figure 2 we have that P(te, tc) =
∑

pstate∈Val(de ,ce)
P(te, tc, pstate)θi where i stands for the index

that identifies the parameter corresponding to the state

representation {te, tc, pstate};

The second step only increases the size of a CG that does

not reference D directly (uses an external algorithm to modify

the model in case of interventions) by a factor that depends

linearly on the number of states of a variable. This procedure can

be implemented one time per variable independently. Therefore,

choosing to represent explicitly the algorithm that changes the

variable definitions when the information pertaining to effects is

not processed before information pertaining to causes yields in the

worst case a CG that is bigger by a factor of the number of variables

and the maximum number of states of a variable in the model. The

procedure present in Figure 2 replaces the information pertaining

to some c by information pertaining to the corresponding t,

provided that we can choose a value for the indicator functions that

depend on d such that:

1. The output of ⊗ is equal to the other input of the operation.

In order for the value to attribute to d be independent of the

other value in the computation that goes on, there should exist

a neutral element of ⊗ (1⊗)
4 and an indicator function that

depends on d should be able to take that value. This ensures

4 a = 1⊗ ⊗ a = a⊗ 1⊗.

that according to the value of d, the other term in ⊗ can pass

unchanged.

2. The output of⊗ is the neutral element of⊕ (0⊕)
5. In order for

the value to attribute to d be independent of the computation

that goes on, there should exist an absorbing element of ⊗

(0⊗)
6 such that the output of⊗ can be made to solely depend

on the indicator function over d and that value should be

equal to the neutral element of⊕, i.e., 0⊗ = 0⊕. This ensures

that according to the value of d, some term in ⊕ can be “cut

off”.

Although the value of t can be indexed with a combination

of c and d, in Figure 2, it can be seen that choosing the nodes

referring to value(s) of de (brown boxes) and referring to value(s)

of ce (blue boxes), multiple queries are necessary to reference the

nodes corresponding to value(s) of te. Due to the scope constraints

of TPM it can be stated that the set of smooth and decomposable

structures allowable for a TPM with U, D, C, and T labels is

not greater than those that use only U and D. Keeping in mind

that tractable marginalization in TPM is only assured for labeled

variables with indicator functions, a decision for including an

indicator function for any derived variable should be weighted with

our intent to use it.

3.2 Causality through constraints and TPM

When modeling causality as constraints over a space of

functions, it is paramount to define those constraints. They are

not required to come from a priori knowledge and, just as the

rest of the parameters of a model, can be learned from data. In

this case, a constraint is given indirectly through the objective

function and the data. Executing all computations of a TPM in

parallel requires exponential size as, to aggregate the probabilities

over a single⊕ node, all combinations of values of variables should

be referenced. This means that in order to get a more compact

model, some order should be imposed over the computations in

the CG. This raises the question of how to choose such an order.

Toward that end, cause–effect relationships can offer a notion of

locality as the set of cause–effect relationships among variables

defines the Markov Blanket of a cluster {c, d, t} of variables. Beyond

that, cause–effect relationships provide a function decomposition

and an implicit order for the execution of computations. The

methodology expressed in Section 3.1 is one example of a process

for describing a TPM where the cause–effect orders are used in

the sense that no effect appears in the scope of a function before

its causes. Performing the computations in an order other than

that implied by a cause–effect relationship does not prevent a

model from computing the correct outputs. Consider that the

cause–effect relationship fc()
Causes
−−−→ fe() should hold for the

model. A CG may have a function decomposition consistent with

fc()
Causes
−−−→ ...

Causes
−−−→ fe() in which case information pertaining to

fc() should be stored until it is used in the estimation of fe() given

5 a = 0⊕ ⊕ a = a⊕ 0⊕.

6 0⊗ = 0⊗ ⊗ a = a⊗ 0⊗.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

FIGURE 2

Illustrative example for the computation of the joint probabilities of full information pertaining to a variable and its modeled causes P(te, tc). This

example corresponds to the asia
Causes
−−−−→ tub situation in Asia dataset (see Section 4). No exogenous variables are declared for that dataset, it is

assumed that they are not referenced, and thus, they are considered to be marginalized. The information pertaining to the multiple sources of

information is combined using ⊗ operation, and we get a layer where we can reference any Val(tc, ce,de, te). Then, the information regarding

Val(tc, te) that is spread across multiple ⊗ nodes is aggregated in ⊕ nodes.

its modeled causes. A CG may also have a function decomposition

consistent with fe()
Causes
−−−→ ...

Causes
−−−→ fc(), then fe(), all its

modeled causes and all its modeled effects should be stored (see

Figure 3) until we get to estimate fc(), after which all computations

regarding fe() that were postponed can be computed exactly, based

on ground truth definitions, followed by the computations of the

effects of fe() whose estimation was also postponed. It should

be noted that the necessity to store the values corresponds to

the worst case where the information of the modeled causes is

required to accurately perform the estimation of its effects and

no information about either the modeled causes or the effects

can be reliably estimated using other sources of information

available to the model. In that scenario, it can be stated that

choosing not to use an order of computations compatible with the

causal order leads to either a non-optimal space requirement or

performance loss.

Due to the distributive properties of a semiring, we have

that ∀xa,b,c : xa ⊗ (xb ⊕ xc) = (xa ⊗ xb) ⊕ (xa ⊗ xc). This

means that the ⊗ operations can be pushed down the CG.

Applying the distributive property to push down a layer of ⊗

operations increases the scope of that layer. This is problematic

in decomposable and smooth TPM (like SPN) as these properties

imply that: (a) the ⊕ operation only merges information with the

same scope; (b) different variables ought to be combined with a ⊗

layer, and (c) the function described by the model is multilinear,

i.e., it is a summation
⊕N

i termi and each term is a product of

states of variables, e.g., c1 ⊗ ... ⊗ tNv . Therefore, introducing a

variable earlier in a smooth and decomposable CG prevents us from

introducing it again later, with an ⊗ operation, in a computation

that already depends on it. Moreover, as the ⊕ operation is used

to aggregate information about the multiple states of the variables

(e.g., x1x2 ⊕ x1x2 captures information about both states of x2),

computations that depend on some ⊕ operation are not able to

discriminate between the states they take as input (individually)

that hinders our ability to “sum out” (to decrease the number

of nodes we can index7 in a layer) from the CG information

that is introduced too early and that we only intend to use later.

4 Experiments

4.1 Experimental goals

The goal of the experiments is to empirically

demonstrate/disprove the assertion made in Section 3.2 that

not using a cause–effect order in smooth and decomposable TPM

can lead to a bigger model for some level of performance. It is

considered that an example of occurrence of the phenomenon

theorized in Section 3.2 is sufficient to show that it exists. The goal

of this section is not to ascertain how likely it is to occur or through

empirical means discuss in depth the cases in which it does occur.

The models ought to be compared with the metric expressed

in Equation 2 where Modeli stands for an arbitrary model, dpnt

to a data point and interventions ∈ dpnt to the intervention

expressed in the data point. It expresses the average logarithm of

7 The combinations of indexes that can be used in a layer in the CG of a

smooth and decomposable TPM determine the size of that layer. The more

ways the information can be indexed the bigger the layer.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

FIGURE 3

Example of “storage” of information about a variable in a CG of a TPM. Each of the blocks represents a layer of operations in a CG, and the dotted

lines are used to reference an arbitrary continuation of the CG. While both Figures refer to the same input–output behavior, they are implemented

with a di�erent CG. The green color is used to highlight the block of information that is introduced earlier in the CG of the right Figure. The relative

sizes of the rectangles represent the size of Val(...). (A) Without “storage”. (B) With “storage”.

FIGURE 4

Decompositions of functions according to the ground truth (A) and Equations (3) (B) and (4) (C). (A) Cause–E�ect Relationships in Asia dataset

(Lauritzen and Spiegelhalter, 1988). Arrows point from causes to e�ects. (B) Structure of a model given by Equation 3. The numbers next to L*
represent the number of ⊕ nodes the layer has. (C) Structure of a model given by Equation (4).

the likelihood of observing each data point given that the specific

intervention of that data point occurred in the test dataset given

a model (with parameters learned from the train dataset). A

model compatible with the correct cause–effect structure is to be

compared to a series of models with increasing parameters and a

wrong “cause–effect” structure.

FitnessModeli =

∣

∣

∣

∣

∣

∑

dpnt∈TestDataset log(PAccording to Modeli (dpnt|interventions ∈ dpnt)
∑

dpnt∈TestDataset 1

∣

∣

∣

∣

∣

(2)

4.2 Experimental methodology

4.2.1 Data
Three datasets are used in the experiments:(1) Asia dataset

(Lauritzen and Spiegelhalter, 1988), (2) a synthetic dataset created

to illustrate the point of this study, and (3) Earthquake dataset

(Korb and Nicholson, 2010). Two of these datasets are used in

the experiments conducted and presented in the main study,

while the results using the third dataset are presented in

Supplementary material.

All variables in the Asia dataset (Lauritzen and Spiegelhalter,

1988) v0) “smoke”, v1) “bronc”, v2) “lung”, v3) “asia”,v4) “tub”,v5)

“either”,v6) “dysp” and v7) “xray” are binary. To the ground

truth distribution interventions over the variables (a) “lung” (d2),

(b) “tub” (d4), (c) “either” (d5) and (d) “dysp” (d6) were added

according to the cause–effect relationships expressed in Figure 4A

where arrows point from causes to effects. Each of the variables

in the set D has three possible values, one corresponding to

the absence of intervention over the corresponding endogenous

variable and two corresponding to setting the value of the

intervened variable to either of the values it can take. Existence

and type of interventions were determined independently for

each variable in D2,4,5,6. To the absence of intervention for each

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

FIGURE 5

Decompositions of functions according to the ground truth (A), and Equations (5) (B) and (6) (C). (A) Cause-e�ect relationships in a synthetic dataset.

Arrows point from causes to e�ects. (B) Structure of a model given by Equation 5. The numbers next to L* represent the number of ⊕ nodes the layer

has. (C) Structure of a model given by Equation (6).

variable was assigned probability 50%. The likelihood over the

rest of the states8 of the variables D2,4,5,6 was determined so that

interventions replaced the probability distribution over the states

of the corresponding variable that depended on the modeled causes

by a value9 sampled from a uniform distribution. The synthetic

dataset was created according to the cause–effect relationships

expressed in Figure 5A where arrows point from causes to effects.

The conditional likelihoods related to the CBN used for generating

the samples are provided in the Supplementary material. Of the

seven binary variables V0,1,2,3,4,5,6, only V1,V3, and V5 were

intervened. For each of the intervened variables, the likelihood of

no intervention was 50%. The likelihood over the rest of the states8

was determined so that interventions replaced the probability

distribution over the states of the corresponding variable that

depended on the modeled causes by a value9 sampled from a

uniform distribution.

For both datasets, 50,000 samples were created, and a random

split was used for separating the training data (80%) from the test

data (20%).

4.2.2 Models
Two types of models using the semiring of summation (+) and

multiplication (×) over the non-negative real numbers were used

in the experiments. In the first type (TypeOrd), we used structures

consistent with the cause–effect relationships in the respective

datasets and can be considered a compilation from the ground

truth ESCM using variable elimination. For the Asia dataset, the

TypeOrd model is expressed in Equation (3) and Figure 4B and for

the synthetic dataset is expressed in Equation (5) and Figure 5B.

For the second type of model (TypeTree), the structure expressed in

8 Corresponding to one of the possible interventions over the variable.

9 Hard interventions that set a variable to one of its possible values were

used. No soft interventions that set a variable to a distribution of its values

were used.

Equation (4) and Figure 4C and Equation (6) and Figure 5C was

used for the Asia and synthetic dataset, respectively. The structure

of TypeTree does not adhere to the cause–effect relationships in the

sense that, according to Section 3.2, for exact output computation

under the worst of cases, some of the structure should act as storage.

The second type of structure, similarly to iSPN, is a tree where

at each layer of ⊗ operations, each input has half of the variables

and the parameters are the outputs of a neural network. The neural

network has three intermediate layers with a constant width of 20,

and the non-linearity used was the LeakyReLU with negative slope

of 0.01. All layers use a bias term. The weights were initialized

with the kaiming_uniform_ (He et al., 2015) implementation from

pytorch. It should be noted that the second type of model, contrary

to iSPN (Zečević et al., 2021), uses discrete indicator functions for

the leaf distributions.

L∗
(

L∗(L∗(L∗(L∗(L∗(If (C3), If (C4)), If (D4)), L∗(L∗(If (C0), If (C1), If (C2)), If (D2)),

If (C5)), If (D5)), If (C6), If (C7)), If (D6)
)

(3)

L∗
(

L∗(L∗(If (V5), If (V6)), L∗(If (V1), If (V7))), L∗(L∗(If (V3), If (V4)),

L∗(If (V0), If (V2)))
)

(4)

L∗
(

L∗(L∗(L∗(L∗(L∗(If (C1), If (D1)), If (C0), If (C3), If (C4)), If (d3)),

If (C2), If (C5)), If (D5)), If (C6)
)

(5)

L∗
(

L∗(L∗(If (V0), If (V6)), L∗(If (V3), If (V4))), L∗(L∗(If (V5), If (V2)), If (V1))
)

(6)

The T labels were omitted in the first type of model as they

were not used to index the data in training or evaluation. In the

second type of model, no cause–effect consistent order is used

in the function decomposition and information pertaining any

intervention can enter everywhere there is a parameter. The joint

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

probabilities over subsets of variables we read at any point along the

respective CG do not necessarily correspond to the partition we get

according to an ESCM under which we can state that in some node

we can read the joint probability of some variable and its modeled

causes.

Three instances of the second type of model (see Equations 4, 6

and Figures 4C, 5C) were used in the experiments for each dataset.

They have 2n nodes in the ⊕ layers, with n = 1, n = 2, and n

= 4, yielding models with 52, 208, and 1,216 parameters that are

outputs of neural networks for the Asia dataset; hence, they are

called Tree52, Tree208, and Tree1216. For the synthetic dataset the

number of parameters is 44, 160, and 800; hence, they are called

Tree44, Tree160, and Tree800.

The implementation of Equation (3) (see Figure 4B) has a

total of 288 parameters of which only 86 are non-zero, so it

was called Ord86. For the synthetic dataset, the implementation

of TypeOrd (see Equation 5 and Figure 5B) the total number

of parameters is 212 of which only 70 are non-zero, so it was

called Ord70.

4.3 Training

The TypeOrd models were trained with the model counting

approach (Kisa et al., 2014; Peharz et al., 2014) that is guaranteed

to provide the maximum likelihood parameters(which corresponds

to a lower loss according to Equation 7). The structure used by

TypeOrd corresponds to the model that generates the data. The

data generation procedure from a SPN (Poon and Domingos,

2011) amounts to choosing at each ⊕ node a branch with

likelihood equal to the respective weight divided by the sum of

FIGURE 6

Absolute value of the average of logarithm of conditional likelihood of observing the test data given that the respective intervention took place (see

Equation 2). That value corresponds to the loss over the test dataset in the case in which the batch size is equal to the size of the test dataset

(Equation 7). Lower is better. (A) Asia dataset. (B) Synthetic dataset.

FIGURE 7

Examples of conditional query responses corresponding to two cases where t2 is true.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

all weights of all the inputs of the ⊕ node. Therefore, it can

be stated that data generated by each of the learned TypeOrd
are indistinguishable from the data generated by the ground

truth model. In this context, the CBN network used to generate

the data for the experiments can be interpreted as a way of

assigning parameters to each of the TypeOrd that could have been

used to generate it. Multiple distinct models with the correct

input–output characteristics can exist, and in Section 3.2, it is

argued that a structure that does not adhere to the cause–effect

relationships can correctly model the input–output relationships

by increasing its size. The comparison between TypeOrd models

built using the cause–effect relations of the CBN and each

FIGURE 8

E�ect of knowledge about v6 in v7 given v5.

FIGURE 9

Conditional likelihood for the queries P(c6 |���d5
F ,���d2

F ,���d4
∅ ,���d6

∅), P(c6 |���d5
T ,���d2

T ,���d4
∅ ,���d6

∅), and P(c6 |���d5
0.5F,0.5T , ���d2

0.5F,0.5T ,���d4
∅ ,���d6

∅).

FIGURE 10

Conditional likelihood for the queries P(c7 |���d5
F ,���d4

F ,���d2
∅ ,���d6

∅), P(c7 |���d5
T ,���d4

T ,���d2
∅ ,���d6

∅), and P(c7 |���d5
0.5F,0.5T , ���d4

0.5F,0.5T ,���d2
∅ ,���d6

∅).

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

of the TypeTree models that do not rely on them empirically

evaluates the impact of structure in the performance of models.

RatioOfCountsTr corresponds to counting the events that occurred

without assuming any structure [e.g., Using some structure

FIGURE 11

Impact in c3 and t4 of knowledge about d2. For Ord86, P(t4, c3,d2) = P(t4, c3)P(d2) so P(t4, c3|d2) = P(t4, c3).

FIGURE 12

Di�erences in responses to queries and impact of interventions in causes and non-causes of a variable. (A) Response to query P(c5, c6|���d1
∅ ,���d3

∅ ,���d5
∅).

(B) Impact of interventions in causes of a variable. The left and right bars for each mode correspond to the queries, P(c6|���d1
F ,���d3

∅ ,���d5
∅) and

P(c6|���d1
T ,���d3

∅ ,���d5
∅), respectively. (C) Impact of interventions in non-causes of a variable. The left and right bars for each mode correspond to the

queries, P(c3|���d5
F ,���d1

∅ ,���d3
∅) and P(c3|���d5

T ,���d1
∅ ,���d3

∅), respectively.

FIGURE 13

Extrapolation from queries not observed during training. (A) Response to query P(c6|���d1
∅ ,���d3

F ,���d5
F). (B) Response to query P(c6|���d1

∅ ,���d3
T ,���d5

T). (C)

Response to query P(c6|���d1
∅ ,���d3

0.5F0.5T ,���d5
0.5F0.5T).

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

according to which P(event1, event2) = P(event1) × P(event2),

the act of counting joint occurrences of event1 and event2 is

replaced by counting their occurrences separately and multiplying

the results]. Both types of models (iSPN-like and TypeOrd) contain

function compositions since they are not implemented as a single

(L∗) layer model where each joint occurrence of events has a

distinct parameter (see Equations 3–6). In the worst of cases,

the argument for correctness of models without a structure that

captures properties of the data generation algorithm calls for

storing all information in the layers leading to one weight per

occurrence of each type of joint events (Section 3.1) which is

embodied in RatioOfCountsTr.

The TypeTree models do not have the structural properties

that ensure the correctness of the training procedure used for

the TypeOrd models; therefore, a training method that does not

have guarantees of reaching an optimal set of parameters was

used. They were trained 10 times for 10 epochs with the Adam

optimizer (Maclaurin et al., 2015) with the default parameters,

batch of 100 with the objective to minimize10 the loss function

defined in Equation (7) where |batch| stands for batch size, and

dpnt stands for a sample. A sample has information pertaining to

C and D. The parameters of the iSPN-like model are dependent on

the interventions, so a single query for the SPN part of model for

P(dpnt) using parameters given by feeding to the neural network

the respective intervention yields P(dpnt|interventions ∈ dpnt).

Loss =
−1

|batch|

∑

dpnt∈batch

log(P(dpnt|interventions ∈ dpnt)) (7)

4.4 Experimental results

The results are shown in Figures 6–13, where the height of

each bar stands for the mean of a value over the repetitions

of the experiments and the error bar has the height of two

standard deviations over the repetitions of the experiments. In

Figure 6, the absolute value of the average of the logarithm of

the likelihood of observing the data in the test dataset given that

the intervention took place is plotted. This value is minimized

during training (for the training dataset that is drawn from the

same statistical distribution as the test dataset), and a lower value

corresponds to better modeling the data. Figures 7–11 present

results obtained using the Asia dataset, while Figures 12, 13

present results using the synthetic dataset. In Figures 7, 8, there

are examples of answers to conditional likelihood queries for

different models. In Figures 9, 10, the queries contain multiple

interventions. The queries P(c6 |���d50.5F,0.5T , ���d20.5F,0.5T ,���d4∅ ,���d6∅) and

P(c7 | ���d50.5F,0.5T , ���d40.5F,0.5T ,���d2∅ ,���d6∅) in Figures 9, 10 correspond to

a soft intervention scenario not observed during training. For

these queries, the height of RatioOfCountsTr is the average of the

likelihoods over four separate interventional cases due to the multi-

linearity of the table-like model that sums over each set of joint

events. In Figure 11, the likelihood of queries pertaining to variables

in the set T is presented for the Ord86 model only as they pertain

10 The lower the value of the loss the higher the likelihood of the data

observed in the test dataset being generated by a model.

to information about both variables in C and variables in D and

cannot be formed only from conditional likelihoods available in

the second type of model. In Figure 12A, an example of different

query responses for the different models used for the synthetic

dataset is presented. Figures 12B, C show queries that highlight

the differences between interventions in a cause or non-cause of a

variable in its c value are presented. In Figure 13, the queries pertain

to multiple interventions.

5 Discussion

In Figure 6, it can be seen that the best results were obtained

with the first type of model (TypeOrd) and that the more parameters

in the second type of model, the better the results. This empirically

validates the argument in Section 3.2 that for smooth and

decomposable TPM, not adhering to an order of computations

expected from the function decomposition implied by a set of

cause–effect relationships can increase the amount of parameters

required to yield some level of accuracy. This is also corroborated

(for the case of the Asia dataset) by the number of parameters used

in iSPN (Zečević et al., 2021) that for each interventional case and

the same dataset ranged from 600 to 3,200 in increments of 600,

which is much bigger than 86 used in Ord86 for all interventional

cases. The first type of model can be seen in light of the second

type as a model where: (a) each of the parameters is a function of a

constant bias term, (b) there exist indicator functions for both the

observations and interventions of variables, and (c) the structure

of the CG is constructed based on cause–effect relationships so that

information about effects is not processed before information about

their causes. While the second type of model behaves as an SPN

for each intervention case, the first type of model is a TPM over

observations and interventions.

A set of cause–effect relationships implies the existence of a

function decomposition (see Section 2) that reduces the number of

parameters for a model but yields no information about the values

of the non-zero parameters. This makes the space of functions

considered for the first type of model used in the experiments

much smaller than that of the second type of model that does

not use a principled way of trimming down the number of

hypothetically good models before looking at the training data.

There is a parallel between the construction of the TPM based

on processing information pertaining to causes before the effects

in a CG and the variable elimination algorithm used in Darwiche

(2022). In both, we have that: (a) information about a cluster

of variables is created with a layer of ⊗ operations, and (b) a

set of conditional independence relations that follow from the

cause–effect relationships allows us to state that the value of some

variable that is yet to be included in the CG does not depend

on some variable already in the CG which in turn allows us to

aggregate information with ⊕ nodes. In the second type of model,

the clusters we make do not rely on the cause–effect relationships

to choose an order by which information is processed. Therefore,

we cannot necessarily use the conditional independence relations

to rule out at each ⊗ layer some of the information. The size

of a cluster of variables increases exponentially with the number

of variables; hence, in the worst of cases, for an exact answer,

the number of states we can have in one layer of the model

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

can become exponentially bigger. It is known that the order of

variable elimination can lead to expressions of different sizes for

the same input–output behavior (Koller and Friedman, 2009).

However, the structure of the second type of model is not amenable

to such an analogy as the clusters we express in the CG do not

capture all the neighbors of a variable in a ground truth undirected

graphical model, which would lead to over-sized clusters before

each “elimination” of a variable. Moreover, it can be stated that

the lack of constraints over the space of functions prevents the

extrapolation of results to cases that are either absent or are rare

in the dataset.

In Figure 12A, it can be verified that the different models

fitted to the synthetic dataset give different answers to queries. In

Figure 12B, it can be seen that an intervention on a cause of a

variable can impact its c value. In Figure 12C, it can be observed by

comparison of the bars RatioOfCountsTr that an intervention on

a non-cause of a variable has nearly the same number of samples

but not exactly the same. This is attributed to random sampling

generation and finite dataset size. TheTypeOrd model is closer to the

RatioOfCountsTr than TypeTree models that also varymore between

the two queries.

As an artifact of random sampling on data generation and finite

dataset size, there is a difference (see Figures 7–10) in the height

of the bars for Ord86 that corresponds to model counting with a

factorization compatible with the data generation and the bars for

RatioOfCountsTr that corresponds to model counting without a

factorization. In Figures 7, 8, the mean responses to queries over

the second type of model are within one standard deviation from

Ord86, but they are far from both Ord86 and RatioOfCountsTr in

the rightmost graphs shown in Figures 9, 10 that correspond to

scenarios with two interventions that set the intervened variables

to a uniform distribution. In TypeOrd models, the structure allows

the extrapolation to be performed correctly but the same cannot

be said for the neural network that provided the parameters for

each of the iSPN-like models. The same issue can be observed

in Figure 13. The neural networks used for the TypeTree models

have only been trained on inputs with values one or zero which

left the function that ought to be learned undefined in between,

that is, no constraints (other than the function being piece-wise

linear due to the activation functions of the neurons) were imposed

on how the outputs of the neural networks should change as

inputs vary from zero to one. More than a problem of lack of

structure in the SPN to which the parameters are assigned, this

is a problem of generalization(extrapolation to cases not observed

during training) as the height of the bar RatioOfCountsTr is close

to TypeOrd.

Another significant difference is that for iSPN-like models,

where interventions are used only for providing the weights

of an SPN, we cannot compute joint likelihoods involving

different interventional cases. An example of such queries is

present in Figure 11 where P(t4, c3|���d2∅) = P(c4,���d4∅ , c3|���d2∅) +

P(c4,���d4T , c3|���d2∅) + P(c4,���d4T , c3|���d2∅). The joint likelihoods of t4
and c3 are computed with L∗(L∗(If (c3), If (c4)), If (d4)) which is

a different branch from where d2 is computed (see Figure 4B).

Therefore, the value of each joint likelihood query over Val(c3, t4)

conditioned on the intervention over d2 does not depend on d2

as P(c3, t4, d2) = P(c3, t4)P(d2) which implies that P(c3, t4|d2) =
P(c3 ,t4)P(d2)

P(d2)
= P(c3, t4).

6 Conclusion

Causal assertions stem from an asymmetric relation between

some variable, its causes, and effects. Both the causes and effects

are correlated with information about the state of a variable.

A variable is only correlated with the partial information about

its effects which does not include factors of variation outside of

the modeled ones (e.g., Interventions). However, by definition, a

variable is correlated with the full information pertaining its causes,

something that is not accessible without simplifying assumptions.

By making those assumptions explicit, structural causal models

are extended and causality is defined as a constraint over the

function space of a higher dimensional model. Current TPM and

cause–effect relationships imply distinct function decompositions.

In the decomposition implied by cause–effect relationships, the

endogenous variables are outputs of functions and in the TPM they

are inputs in the model. The mismatch is only apparent because

it is resolved when taking an input–output perspective as in both

cases exogenous variables exist and all aspects of both models

depend on them. The process of answering queries pertaining to

interventions with SCM uses an algorithm external to the SCM

to adapt its structure for the execution of that intervention. This

is not the case with ESCM where that process is included in

the model through the set of functions G. Therefore, by using

ESCM instead of SCM as a starting point for compilation of

TPM, the usage of an algorithm external to the model that

changes it in order to adapt it to answer questions pertaining

to interventions was avoided. It was shown that implementing

that algorithm explicitly leads to a TPM that in the worst case

has a linear size increase in the number of variables and the

maximum number of states of a variable. Sufficient conditions for

implementing it in a generalization of current classes of TPM to

other semirings are stated. The functional approach is used to

unify under one framework the distinct approaches for modeling

TPM with causality. It enables us to both explain adherence to

cause–effect constraints without explicit structure in a function

decomposition as in iSPN (Zečević et al., 2021) and the role of

structure in compilations from SCM to TPM (Darwiche, 2022)

as an implicit way of imposing constraints over a function space.

It was discussed and shown empirically that choosing not to

adhere to a function decomposition consistent with an order

implied by a set of cause–effect relationships can lead to a big

increase in size requirements for a smooth and decomposable

TPM.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

DC: Conceptualization, Formal analysis, Investigation,

Methodology, Resources, Software, Visualization, Writing—

original draft. JB: Formal Analysis, Supervision, Validation,

Writing—review & editing.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cruz and Batista 10.3389/fcomp.2023.1263386

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

research was supported by the Portuguese Foundation for Science

and Technology (FCT) under grant 2020.09139.BD. This study

was also supported by the Portuguese Foundation for Science and

Technology (FCT) under the project UIDP/00048/2020.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2023.1263386/full#supplementary-material

References

Bareinboim, E., Correa, J. D., Ibeling, D., and Icard, T. (2022). “On pearl’s hierarchy
and the foundations of causal inference,” in Probabilistic and Causal Inference: The
Works of Judea Pearl, eds H. A. Geffner, R. Dechter, and J. Y. Halpern (New York, NY:
Association for Computing Machinery), 507–556. Available online at: https://causalai.
net/r60.pdf

Bareinboim, E., and Pearl, J. (2013). “Meta-transportability of causal effects: a
formal approach,” in Artificial Intelligence and Statistics, eds C. M. Carvalho and P.
Ravikumar (Scottsdale, AZ: PMLR), 135–143.

Chavira, M., and Darwiche, A. (2005). “Compiling bayesian networks with local
structure,” in IJCAI, Vol. 5 (San Francisco, CA: Morgan Kaufmann Publishers Inc.),
1306–1312.

Choi, A., and Darwiche, A. (2017). “On relaxing determinism in arithmetic circuits,”
in Proceedings of the 34th International Conference on Machine Learning-Vol. 70
(JMLR), 825–833.

Darwiche, A. (2002). “A logical approach to factoring belief networks,” in KR, Vol. 2
(San Francisco, CA: Morgan Kaufmann Publishers Inc.), 409–420.

Darwiche, A. (2011). “Sdd: A new canonical representation of propositional
knowledge bases,” in Twenty-Second International Joint Conference on Artificial
Intelligence (AAAI Press).

Darwiche, A. (2022). Causal inference using tractable circuits. arXiv.
doi: 10.48550/arXiv.2202.02891

Erikssont, J., Gulliksson, M., Lindström, P., and Wedin, P.-A. A. (1998).
Regularization tools for training large feed-forward neural networks using automatic
differentiation. Optimiz. Methods Softw. 10, 49–69. doi: 10.1080/105567898088
05701

Friesen, A., and Domingos, P. (2016). “The sum-product theorem: A
foundation for learning tractable models,” in Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, eds M. F. Balcan, and K. Q. Weinberger (New York, NY: PMLR),
1909–1918.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proceedings of
the IEEE International Conference on Computer Vision (IEEE Computer Society),
1026–1034.

Jalaldoust, K., and Bareinboim, E. (2023). Transportable Representations for Out-of-
Distribution Generalization. Technical Report R-99, Causal Artificial Intelligence Lab,
Columbia University.

Kisa, D., Van den Broeck, G., Choi, A., and Darwiche, A. (2014). “Probabilistic
sentential decision diagrams,” in Fourteenth International Conference on the Principles
of Knowledge Representation and Reasoning (AAAI Press).

Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. The MIT Press.

Korb, K. B., and Nicholson, A. E. (2010). Bayesian Artificial Intelligence. CRC Press,
Inc.

Lauritzen, S. L., and Spiegelhalter, D. J. (1988). Local computations with
probabilities on graphical structures and their application to expert systems. J. R. Stat.
Soc. 50, 157–194. doi: 10.1111/j.2517-6161.1988.tb01721.x

Maclaurin, D., Duvenaud, D., and Adams, R. (2015). “Gradient-based
hyperparameter optimization through reversible learning,” in International Conference
on Machine Learning (JMLR), 2113–2122.

Mohan, K., and Pearl, J. (2021). Graphical models for processing missing data. J.
Am. Stat. Assoc. 116, 1023–1037. doi: 10.1080/01621459.2021.1874961

Papantonis, I., and Belle, V. (2020). Interventions and counterfactuals in
tractable probabilistic models: Limitations of contemporary transformations. arXiv.
doi: 10.48550/arXiv.2001.10905

Pearl, J. (2009). Causality. Cambridge: Cambridge University Press.

Pearl, J. (2019). The seven tools of causal inference, with reflections on machine
learning. Commun. ACM 62, 54–60. doi: 10.1145/3241036

Pearl, J., and Bareinboim, E. (2014). External validity: from do-calculus to
transportability across populations. Stat. Sci. 29, 579–595. doi: 10.1214/14-STS486

Peharz, R., Gens, R., and Domingos, P. (2014). “Learning selective sum-product
networks,” in 31st International Conference onMachine Learning (ICML2014) (Beijing).

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A., Trapp, M., et al. (2020).
“Einsum networks: fast and scalable learning of tractable probabilistic circuits,” in
International Conference on Machine Learning (PMLR), 7563–7574.

Peharz, R., Tschiatschek, S., Pernkopf, F., and Domingos, P. (2015). “On theoretical
properties of sum-product networks,” inArtificial Intelligence and Statistics (San Diego,
CA: PMLR), 744–752.

Poon, H., and Domingos, P. (2011). “Sum-product networks: a new deep
architecture,” in 2011 IEEE International Conference on Computer Vision Workshops
(ICCVWorkshops) (IEEE), 689–690.

Shen, Y., Choi, A., and Darwiche, A. (2016). “Tractable operations for arithmetic
circuits of probabilistic models,” in Advances in Neural Information Processing
Systems, D. D. Lee and U. von Luxburg (Red Hook, NY: Curran Associates Inc.),
3936–3944. Available online at: https://papers.nips.cc/paper_files/paper/2016/hash/
5a7f963e5e0504740c3a6b10bb6d4fa5-Abstract.html

Tikka, S., Hyttinen, A., and Karvanen, J. (2019). Identifying causal
effects via context-specific independence relations. Adv. Neural Inf. Process.
Syst. 32. Available online at: https://proceedings.neurips.cc/paper/2019/hash/
d88518acbcc3d08d1f18da62f9bb26ec-Abstract.html

Trapp, M., Peharz, R., Ge, H., Pernkopf, F., and Ghahramani, Z. (2019). Bayesian
learning of sum-product networks. Adv. Neural Inf. Process. Syst. 32. Available online
at: https://arxiv.org/abs/1905.10884

Wright, S. (1921). Correlation and causation. J. Agric. Res. 20, 557–585.

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). “The
causal-neural connection: expressiveness, learnability, and inference,” in
Advances in Neural Information Processing Systems, Vol. 34, 10823–10836.
Available online at: https://proceedings.neurips.cc/paper_files/paper/2021/file/
5989add1703e4b0480f75e2390739f34-Paper.pdf

Zečcević, M., Dhami, D., Karanam, A., Natarajan, S., and Kersting, K. (2021).
“Interventional sum-product networks: causal inference with tractable probabilistic
models,” in Advances in Neural Information Processing Systems, Vol. 34 (Curran
Associates, Inc.), 15019–15031.

Zhang, H., Juba, B., and Van den Broeck, G. (2021). “Probabilistic generating
circuits,” in International Conference on Machine Learning (San Diego, CA: PMLR),
12447–12457.

Zhao, H., Melibari, M., and Poupart, P. (2015). “On the relationship between sum-
product networks and bayesian networks,” in International Conference on Machine
Learning (San Diego, CA: PMLR), 116–124.

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1263386
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1263386/full#supplementary-material
https://causalai.net/r60.pdf
https://causalai.net/r60.pdf
https://doi.org/10.48550/arXiv.2202.02891
https://doi.org/10.1080/10556789808805701
https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
https://doi.org/10.1080/01621459.2021.1874961
https://doi.org/10.48550/arXiv.2001.10905
https://doi.org/10.1145/3241036
https://doi.org/10.1214/14-STS486
https://papers.nips.cc/paper_files/paper/2016/hash/5a7f963e5e0504740c3a6b10bb6d4fa5-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/5a7f963e5e0504740c3a6b10bb6d4fa5-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d88518acbcc3d08d1f18da62f9bb26ec-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d88518acbcc3d08d1f18da62f9bb26ec-Abstract.html
https://arxiv.org/abs/1905.10884
https://proceedings.neurips.cc/paper_files/paper/2021/file/5989add1703e4b0480f75e2390739f34-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5989add1703e4b0480f75e2390739f34-Paper.pdf
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Causality and tractable probabilistic models
	1 Introduction
	1.1 Notation

	2 Causality and constraints over a space of functions
	3 Tractable probabilistic models
	3.1 Orders and causality in TPM
	3.2 Causality through constraints and TPM

	4 Experiments
	4.1 Experimental goals
	4.2 Experimental methodology
	4.2.1 Data
	4.2.2 Models

	4.3 Training
	4.4 Experimental results

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

