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Tutorial: calibration refinement in
quantum annealing

Kevin Chern, Kelly Boothby, Jack Raymond, Pau Farré and

Andrew D. King*

D-Wave, Burnaby, BC, Canada

Quantum annealing has emerged as a powerful platform for simulating and

optimizing classical and quantum Ising models. Quantum annealers, like other

quantum and/or analog computing devices, are susceptible to non-idealities

including crosstalk, device variation, and environmental noise. Compensating

for these e�ects through calibration refinement or “shimming” can significantly

improve performance but often relies on ad-hocmethods that exploit symmetries

in both the problem being solved and the quantum annealer itself. In this

tutorial, we attempt to demystify these methods. We introduce methods

for finding exploitable symmetries in Ising models and discuss how to use

these symmetries to suppress unwanted bias. We work through several

examples of increasing complexity and provide complete Python code. We

include automated methods for two important tasks: finding copies of small

subgraphs in the qubit connectivity graph and automatically finding symmetries

of an Ising model via generalized graph automorphism. We conclude the

tutorial by surveying additional methods, providing practical implementation

tips, and discussing limitations and remedies of the calibration procedure.

Code is available at: https://github.com/dwavesystems/shimming-tutorial.

KEYWORDS

quantum computing, quantum annealing, D-Wave, calibration, quadratic unconstrained

binary optimization, Ising

1. Background

1.1. Introduction to quantum annealing

Quantum annealing (QA; Kadowaki and Nishimori, 1998; Johnson et al., 2011) is a

computing approach that physically realizes a system of Ising spins in a transverse magnetic

field. A common application of QA is to find low-energy spin states of the Ising problem

Hamiltonian as follows:

HP =
∑

i

hiσ
z
i +

∑

i<j

Jijσ
z
i σ

z
j . (1)

Here, {σ z
i }Ni=1 ∈ {−1, 1}N is a set of Pauli z-operators, which can be thought of as a

vector of classical±1 Ising spins; hi denotes a longitudinal field (bias) on spin i, and Jij (used

interchangeably with Ji,j depending on context) denotes a coupling (quadratic interaction)

between spins i and j. MinimizingHP is intractable, i.e., NP-hard (Barahona, 1982).

QA adds toHP to an initial driving Hamiltonian as follows:

HD = −
∑

i

σ x
i . (2)

The ground state of HD, which is a uniform quantum superposition of all classical states, is

easy to prepare. QA guides a time-dependent HamiltonianH(s) fromHD toHP by linearly

combiningHD andHP as follows:

H(s) = Ŵ(s)HD + J(s)HP, (3)
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FIGURE 1

Annealing schedule for Hamiltonian (3) in a D-WaveTM AdvantageTM

processor. Ŵ(s) and J(s) control the magnitude of quantum

fluctuations and the Ising energy scale, respectively. These values

vary from one processor to another.

where s is a unitless annealing parameter ranging from 0 to 1.

Unless stated, s is simply t/ta: time normalized by annealing time.

The functions Ŵ(s) and J(s) define the annealing schedule: Ŵ(s)

decreases toward 0 as a function of s, and J(s) increases as a

function of s; Ŵ(0) ≫ J(0). Units are GHz, convertible to Joules

by multiplication by h̄ (reduced Planck constant). An example is

shown in Figure 1.

1.2. Calibration imperfections and
refinement

Quantum processing units (QPUs, in this case quantum

annealers) are typically made available with a single one-size-fits-

all calibration. Non-idealities in the calibration can arise from

a number of sources. For example, small fluctuations in the

magnetic environment can bias qubits in one direction or the

other. Moreover, crosstalk, in which a Hamiltonian term, e.g., a

programmed coupler Jij, can cause an undesired perturbation in

another Hamiltonian term corresponding to a physically nearby

device, e.g., a bias field hi.

In short, no calibration is perfect. Oftentimes, in-depth studies

of a single system (Isingmodel) or ensemble of systems (e.g., a set of

realizations of a spin-glass model) can be improved by suppressing

crosstalk and other non-idealities. This is achieved by “shimming:”

inferring statistical features of an ideal annealer and tuning the

Hamiltonian to produce these features. An ideal annealer, in this

study, is defined simply as one that respects symmetries in the

Hamiltonian—each qubit behaves identically and each coupler

behaves identically.

Variations on the methods described herein have been used in

many studies (King et al., 2018, 2021a,b,c, 2022, 2023; Kairys et al.,

2020; Nishimura et al., 2020). Often, when behavior of the system

relies on precise maintenance of energy degeneracy between states,

or energy splitting from the transverse field, the results are highly

sensitive to these tunings. Particularly for the simulation of exotic

magnetic phases, calibration refinement is an essential ingredient

of successful experiments. However, so far the discussion of these

methods has mostly been relegated to Supplementary material.

Here, our aim is to provide an accessible guide that will encourage

the use of these powerful but simple methods.

Specific visual demonstrations of the benefit of these methods

“in the wild” include:

• Frustrated 2D lattice, King et al. (2018), Extended Data

Figure 7.

• Diluted ferromagnet, Nishimura et al. (2020), Figures 34–35.

• 1D quantum Ising chain, King et al. (2022), Supplementary

Figures S3, S4.

• 3D quantum spin glasses, King et al. (2023), Supplementary

Figures S8–S9.

The tutorial is organized as follows. In the remainder of this

section, we introduce concepts that form the bases of the QPU

calibration procedure. In Section 2, we illustrate the essence of

our approach through a toy example. In Section 3, we extend

the method and improve calibration efficiency by exploiting

symmetries in a given model. In Section 4, we introduce a non-

trivial system to demonstrate additional concepts useful for realistic

applications. Collectively, these sections provide a comprehensive

walkthrough of the calibration procedure. In Section 5, we survey

additional methods for narrower use cases of the QPU. Finally, we

provide practical tips and considerations in Section 6 and conclude

the tutorial in Section 7.

1.3. Inferring statistical features: qubit and
coupler orbits

The approach described in this tutorial can be stated simply

and generically. In theory, two observables of a QPU output are

expected to be identical due to symmetries in the Ising model

being studied. In experiment, they can differ systematically. We

tune Hamiltonian terms to reduce these differences. In theory,

symmetries in an Ising model admit identical expectation values of

observables.1 However, empirical averages over many realizations

of these observables (from a QPU) may differ systematically.2

We tune Hamiltonian terms to reduce the discrepancy between

the expected value and observed averages. For example, given a

Hamiltonian consisting of a single qubit with no bias, HP = 0(s1),

we expect to observe a mean spin of 0 for s1. However, this observed

quantity may deviate from 0 systematically; we, thus, attempt to

correct this deviation by perturbing the Hamiltonian.

In this study, we only consider one- and two-spin observables—

spin magnetizations and frustration probabilities—in part because

they can be fine-tuned easily using the available programmable

terms in the QPU. A call to the QPU typically results in a number of

classical samples, which we set to 100 for all examples. From these

1 An observable is a quantity that one can physically measure and observe.

For example, the spin of a qubit.

2 Here, “di�er systematically” refers to discrepancies between the expected

value and the observed average as a result of biases in the physical system

and not discrepancies due to finite samples.
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FIGURE 2

(A) Ferromagnetic loop (periodic 1D chain) on L spins. (B) Frustrated

loop, with one antiferromagnetic coupler. The FM loop has a 2-fold

degenerated ground state (all spins up or all spins down) with no

frustration; the frustrated loop has 2L ground states, each with one

frustrated bond. When h = 0, all qubits trivially have zero average

magnetization in an ideal annealer.

samples, we can compute a magnetization as follows:

mi = 〈si〉 ∈ [−1, 1] (4)

For each spin si, a frustration probability is as follows:

fi,j =
1+ sign(Ji,j)〈sisj〉

2
∈ [0, 1] (5)

For each coupler Ji,j; fi,j is the observed probability of the

coupler having a positive contribution to the energy inHP.

This raises the first question: how do we identify observables

that should be identical in expectation? The answer is through

symmetries of the Ising model under spin relabelling and

gauge transformation (discussed below).3 We understand and

formalize these symmetries—and automate their detection—

through graph isomorphisms (especially automorphisms) and

generalizations (Godsil and Royle, 2001). We understand and

formalize these symmetries—and automate their detection—

through graph isomorphisms (especially automorphisms)

and generalizations. We briefly introduce the concept of

graph automorphisms and orbits below (see Godsil and

Royle, 2001 for a more complete treatment). Notably, the

symmetries we find and exploit here are a subset of all possible

symmetries.

Given a graph G = (V ,E) with vertex and edge sets V ,E,

a graph automorphism is a mapping π :V 7→ V such that

(π(u),π(v)) ∈ E if and only if (u, v) ∈ E. Intuitively, a graph

automorphism is an adjacency-preserving relabelling of vertices.

Two vertices u, v ∈ V are said to belong in the same vertex orbit if

there exists an automorphismmapping u to v (or v to u). If u, v ∈ V

belong in the same vertex orbit, the edges incident to u or v also

belong to the same edge orbit.

We now relate the definitions of graph automorphisms and

orbits back to our goal of detecting and exploiting symmetries.

These symmetries admit two types of equivalence relations on an

Ising model HP: one on the qubits and the other on the couplers.

We call the equivalence classes qubit orbits and coupler orbits,

respectively. We use notation O(si) for a qubit orbit containing

spin si, and O(si, sj) for a coupler orbit containing coupler (si, sj).

3 A gauge transformation is also known as a spin reversal transformation, in

which a subset of spins have their sign flipped.

We define them as having the following properties guaranteed by

symmetry in an ideal annealer:

• All qubits in the same orbit have the same expected

magnetization.

• All couplers in the same orbit have the same frustration

probabilities.

Formally, a set O is said to be a qubit orbit if

si, sj ∈ O, then mi = mj. Similarly, a set O is

said to be a coupler orbit if (si, sj), (sk, sl) ∈ O, then

fi,j = fk,l.

For example, consider the Hamiltonian HP = hs1 − hs2 +
hs3 for h 6= 0. The two independent spins s1, s3 can be trivially

relabeled (permuted) by each other, thus the two qubits belong to

the same qubit orbit; s2 belongs in its own qubit orbit as it does

not have the same magnetization as s1, s3. Now, let us consider

the Hamiltonian HP,2 = HP + Js1s2 + Js2s3 for J 6= 0. In this

case, (s1, s2) and (s2, s3) exist in the same coupler orbit because

s1, s3 can be swapped while preserving the couplers in HP,2; the

permutation preserves adjacency structures. As a non-example, let

us consider the Hamiltonian HP,3 = HP + Js1s2 − 2Js2s3. In

this case, (s1, s2) and (s2, s3) no longer exist in the same coupler

orbit because swapping s1, s3 no longer preserves the couplers

inHP,3.

Due to spin-flip symmetries, or spin reversal transformations

(SRTs; described below), each qubit and coupler orbit

can additionally have up to one non-empty orbit that

is opposite.

• If qubit orbitsO(si) andO(sj) are opposite,

• We writeO(si) = −O(sj) and−O(si) = O(sj).

• If O(si) = −O(sj), hi = −hj and, in an ideal annealer,

mi = −mj.

• If coupler orbitsO(si, sj) andO(sk, sℓ) are opposite,

• We writeO(si, sj) = −O(sk, sℓ) and−O(si, sj) = O(sk, sℓ).

• Ji,j = Jk,ℓ and, in an ideal annealer, fi,j = fk,ℓ. Ji,j = −Jk,ℓ
and, in an ideal annealer, fi,j = fk,ℓ.

An SRT, as its name suggests, flips the sign of a spin. For

example, consider the Hamiltonian with a single qubit HP = hs.

An SRT transforms on s yields an identical Hamiltonian HP =
−hs̃ where s̃ = −s. Similarly, for a Hamiltonian consisting of

both biases and coupling terms such as HP = h1s1 + h2s2 +
J1,2s1s2, we can apply an SRT on one (or multiple) variable(s)

to obtain HP = −h1 s̃1 + h2s2 − J1,2 s̃1s2 = h1s1 − h2 s̃2 −
J1,2s1 s̃2 = −h1 s̃1 − h2 s̃2 + J1,2 s̃1 s̃2, where s̃1 = −s1, s̃2 =
−s2.

In the earlier example HP = hs1 − hs2 + hs3, qubit s2
belongs to the orbit opposite of s1, s3’s orbit. We will sometimes

overload notation, conflating O(si) with O(i) and O(si, sj) with

O(i, j).

Qubit and coupler orbits are related to, but not identical to,

automorphism orbits of an auxiliary graph. In particular, qubit and

coupler orbits are not unique: putting each qubit and each coupler
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FIGURE 3

Construction of signed Ising model. To detect exploitable symmetries, we search for automorphisms of an auxiliary Ising model in which each spin is

duplicated into itself and its negation; each coupler is, then, expanded to four copies of itself, two of them negated. Automorphisms of the auxiliary

Ising model can be detected by conversion into an equivalent automorphism-finding problem on an edge-labeled graph. Here, vertex labels indicate

the identities of spins and show how each spin is duplicated for the signed Ising model.

FIGURE 4

Orbits of signed and original Ising model. By computing automorphism groups of the edge- and vertex-labeled graph of the signed Ising model

[Figure3 (right)], we can construct orbits of qubits and couplers that should behave identically by symmetry in S(h, J) (left). Here, vertex and edge

labels indicate orbits. By identifying equivalent orbits (e.g., coupler orbits 0 and 5) and reducing back to the original Ising model (h, J), we determine

e�ective qubit and coupler orbits of (h, J) and their opposite relations (right).

in a separate orbit is sufficient to meet the definition but does not

provide any useful information. We seek large orbits that satisfy

the requirements.

Notably, in the commonly arising situation where hi = 0

on all qubits, each qubit orbit is its own opposite, so all qubits

have mi = 0. The analogous situation does not exist for couplers

because we do not consider symmetries between pairs of qubits

with zero coupling between them. Two simple examples are

shown in Figure 2: a frustrated loop and an unfrustrated loop.

In each case, all qubits are expected to have magnetization

and all couplers are expected to have the same probability of

frustration, but this is less obvious in the frustrated case than in

the ferromagnetic case. In each case, all qubits and couplers have,

respectively, identical magnetization and frustration probabilities.

The unfrustrated case is trivially true. The frustrated scenario is less

obvious but can be verified by computing frustration probabilities

for each edge.

Having defined qubit and coupler orbits, we now consider how

to find them.

1.3.1. Automorphisms of the signed Ising model
We proposed a strategy for identifying exploitable symmetries

for calibrating a QPU by finding qubit and coupler orbits. We

now introduce a method for identifying these orbits and begin by

defining the signed Ising model.

Let (h, J) denote an Ising model with fields h = {hi|vi ∈ V} and
J = {Ji,j|ei,j ∈ E}, with an underlying graph G = (V ,E) with vertex

and edge sets V and E. We construct a signed Ising model S(h, J) as

follows:

• For each spin vi ∈ V , S(h, J) has two spins vi and v̄i, with fields

hi and−hi respectively.
• For each coupler (vi, vj) ∈ E, S(h, J) has four couplers: two

couplers (vi, vj) and (v̄i, v̄j) with coupling Ji,j and two couplers

(v̄i, vj) and (vi, v̄j) with coupling−Ji,j.

Informally, we simply replace each spin with two: itself and

its negation and replace each coupler with four couplers with

appropriate parity-based sign flipping. Figure 3 shows an example

of this construction applied to a four-spin Ising model.

Our aim is to find large qubit and coupler orbits for (h, J),

and we will begin by finding the automorphism group of S(h, J),

which can be considered as a vertex- and edge-labeled graph. Our

aim is to find qubit and coupler orbits. Because automorphisms

of the underlying graph of an Ising model are symmetries of

the Ising model, we can generate qubit and coupler orbits by

considering the graph symmetries alone. In other words, finding
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graph automorphisms of the Ising model effectively give us qubit

and coupler orbits. We can stop here and perform calibration based

on these qubit and coupler orbits extracted from these symmetries

(spin relabelling symmetries). However, we can similarly extract

and exploit spin-flip symmetries by finding the automorphisms of

the graph of S(h, J). These additional automorphisms give rise to

qubit and coupler orbits opposite to the original. Intuitively, S(h, J)

enumerates and concatenates all SRT configurations to the original

Ising model. As a consequence, by finding its automorphisms, we

are able to further identify symmetries due to SRTs. In other words,

if a negated vertex is in the same orbit as a non-negated vertex, they

exhibit symmetries through an SRT. In short, the automorphism

group of S(h, J) naturally generates one equivalence relation

defining qubit orbits and another equivalence relation defining

coupler orbits (see Figure 4).4 Our orbits ofS(h, J) immediately give

us orbits of (h, J) and constructed by simply discarding the qubits

and couplers that do not exist in (h, J).

There is more usable information held in the orbits of S(h, J).

First, we can combine coupler orbits of S(h, J) such that for each

coupler ei,j ∈ E, (v̄i, vj) and (vi, v̄j) are in the same orbit, and

(vi, vj) and (v̄i, v̄j) are in the same orbit. Second, we can, then,

easily derive opposite orbits: O(vi) = −O(v̄i), and O(vi, vj) =
−O(v̄i, v̄j).

These orbits are already very useful, but we can combine

some to make even larger orbits. As demonstrated in the example

in Figure 3, in S(h, J), the couplers between pairs (v̄i, vj) and

(vi, v̄j) are not necessarily automorphic. However, they are clearly

equivalent under a flip of all spins. Thus, we combine the coupler

orbits containing these two couplers. Likewise, the same applies to

couplers between pairs (v̄i, v̄j) and (vi, vj). This is all demonstrated

in the accompanying code example0_1_orbits.py and

shown in Figure 4.

We now consider how to exploit orbits to improve performance

in quantum annealers, building up a set of tools in the following

worked examples.

2. Worked example: ferromagnetic
loop

Code reference: example1*.py.

For our first example of calibration refinement, we study the

ferromagnetic (FM) loop (Figure 5) in which each coupling J1,2 =
J2,3 = · · · = JN,1 is equal and each field hi is zero. In this case,

by rotation, it is obvious that all qubits are in the same orbit and all

couplers are in the same orbit. Furthermore, the orbit containing all

qubits is its own opposite. Thus, we will perform two refinements.

First, we will balance each qubit at zero magnetization mi ≈ 0.

Second, we will balance the couplings so that each coupler is

frustrated with approximately equal probability.

Since the FM loop has no frustrated bonds in the ground state,

the latter condition is only interesting if we sample excited states.

4 Since the automorphism-finding code nauty, McKay and Piperno (2014)

only handles vertex-labeled graphs and not edge-labeled graphs, and we

need to construct a vertex-labeled graph G′′ from S(h, J), which gives us the

appropriate automorphism group.

FIGURE 5

Ferromagnetic loop.

To ensure abundant excitations, we study a reasonably long loop

with weak couplings: L = 64 and Jij = −0.2.

2.1. Finding multiple embeddings of a small
Ising model

Code reference: embed_loops.py.

The first task is to find a copy of the FM loop in the qubit

connectivity graph AQPU of the QPU being used. This is an

embedding—a mapping of spins of an Ising model to qubits in a

QPU. In an Advantage processor, a 64-qubit loop can be embedded

many times on disjoint sets of qubits, so we can run many copies in

parallel for a richer and larger set of measurements.

To find these embeddings, we use the Glasgow graph solver

(McCreesh et al., 2020), which has been incorporated into the

embedding finding module minorminer (D-Wave, 2023). To

make the embedding search faster, we raster-scan across 2×2 blocks
of unit cells in the QPU’s Pegasus graph (Boothby et al., 2020) and

then greedily construct a large set of non-intersecting embeddings.

The file embed_loops.py provides a code example that finds

multiple disjoint copies of a 64-qubit loop in AQPU.

2.2. Balancing qubits at zero

Code reference: example1_1_fm_loop_balancing.py.

We will use simple parameters for the experiment, running

1 µs anneals forward anneals (where s increases linearly in time

as t/ta) and drawing 100 samples for each QPU call. We

set auto_scale=False to ensure that the QPU will not

automatically magnify the energy scale.

InD-Wave’s annealingQPUs, each qubit si can be biased toward

−1 or +1 in two ways: first, with a programmable longitudinal

field hi as in Equation 1; second, with a programmable flux-bias

offset (FBO)8i (Harris et al., 2009; D-Wave, 2022). In the quantum

annealing Hamiltonian (3), the bias conferred by the hi term is

scaled by J(s), meaning that it changes as a function of s. The FBO

8i, in contrast, confers a constant bias that is independent of s.

We prefer to mitigate biases using FBOs, in part, because they are

programmed independently of hi.

We employ an iterative gradient descent method for

minimizing |mi| with a step size α8. For a given iteration,

we consider the observed magnetization mi = 〈si〉. If mi < 0, we

adjust the FBO to push si toward +1; if mi > 0, we adjust the FBO

to push si toward−1. This is done by updating as follows:
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FIGURE 6

Balancing qubits in a FM chain with flux-bias o�sets. Iterative correction of qubit biases is demonstrated using three step sizes α8 for 100 iterations:

10−4 (left), 10−5 (middle), and 10−6 (right). Step size is set to zero for the first 10 iterations. (Top) Evolution of flux-bias o�sets for 64 qubits in an FM

chain. (Middle) Qubit magnetization averaged over first 10 iterations and last 10 iterations. (Bottom) Standard deviation of qubit magnetizations per

iteration.

8i ← 8i − α8(mi − m̄) (6)

where m̄ is the average observed magnetization across all qubits. In

this case, we can simply replace m̄ with 0 since hi = 0 for all qubits.

The choice of a step size α8 has a strong influence on the

convergence of the calibration procedure. In Figure 6, we show

the resulting FBOs for a single copy of the 64-qubit chain, as

well as magnetization statistics. We show experiments for three

choices of α8. One (flux 1 × 10−4, in units of 80) is too large and

creates oscillations in 8i and mi. One (1 × 10−6) is too small and

takes many iterations to converge. One (1 × 10−5) is in between

and performs well. The choice of step size is a common concern

in gradient descent applications, and we will consider automatic

tuning of α8 in a later section (Section 4.4). For best results, we

should ensure:

• The calibration refinement appears to have converged to the

vicinity of a fixed point.

• The parameters do not oscillate wildly.

When seeking evid ence that qubit bias is improved by the

FBOs, we should not just look at qubit statistics over a single

QPU call, since fluctuations can be large. Rather, we should look

at the average magnetization of a qubit over multiple calls, which

indicates systematic bias. The middle row of Figure 6 shows the

average magnetization of each qubit across the first and last 10

iterations. For each step size, the shim results in a significant

improvement in variation of mi from one qubit to another.

However, the standard deviation among qubit magnetizations for

individual iterations shows that the case α8 = 1 × 10−4 causes
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FIGURE 7

Balancing qubits and couplers in an FM chain with flux-bias o�sets and coupler adjustments. This experiment is similar to that shown in Figure 6 but

with αJ > 0 for the last 100 iterations. Couplers remain distributed about the average value of J = −0.2.

broad spreading of biases, so we need to be careful with our step

sizes.

2.3. Balancing spin-spin correlations

Code reference:

example1_2_fm_loop_correlations.py.

Having balanced qubits at zero with linear terms with an FBO

shim, we now address homogenizing the spin-spin correlations on

adjacent qubits, which by symmetry should be equal for all coupled

pairs. The couplings Ji,i+1 are all nominally −0.2; we will fine-tune
the couplings in the vicinity of this value. This is similar to how we

fine-tuned the FBOs but with the added constraint that we do not

change the average coupling.

For a given iteration, we take the observed probability fi,i+1 of
the coupler being frustrated as follows:

fi,i+1 = (1+ sign(Ji,i+1)〈sisi1 〉)/2. (7)

Let f̄ denote the average frustration across all couplers in all

disjoint embeddings of the chain, in general, we will compute f̄

across all couplers in the union of a coupler’s orbit and its opposite

orbit. We, then, adjust couplings based on the residual frustration

fi,i+1 − f̄ :

Ji,i+1 ← Ji,i+1(1+ αJ(fi,i+1 − f̄ )). (8)

Figure 7 shows data for the same experiment as Figure 6 but

with the “coupler shim” added, with αJ = 0.001. To show the effect

of the two shims, we run 100 iterations with α8 = 0 and αJ = 0,

then 100 iterations with α8 = 1× 10−5 and αJ = 0, then 100 with

α8 = 1× 10−5 and αJ = 0.001. In this particular case, the coupler

shim is small but some systematic signals can be observed. We will

show more impactful cases later in the tutorial.

3. Worked example: frustrated loop

Code reference: example2*.py.

FIGURE 8

Frustrated loop.

Taking the ferromagnetic loop considered in the previous

example, the sign is flipped of a single coupler J1,2 (Figure 8). It is

again obvious that all spins should have zero average magnetization,

since there is no symmetry-breaking field (i.e., hi = 0 everywhere).

Less obvious is the fact that we can have two coupler orbits: one

containing all FM couplers and one containing the AFM coupler,

and they are opposite. Consequently, every coupler should be

frustrated with equal probability in an ideal annealer.

3.1. Finding orbits

Code reference:

example2_1_frustrated_loop_orbits.py.

We can derive this fact as follows. Flipping the sign of s2, and

the sign of both couplers incident to it, is a gauge transformation

and, as such, will not change the probability of any coupler

being frustrated in an ideal annealer. The result of this gauge

transformation is again a frustrated loop with a single AFM coupler

J2,3; this is equivalent to the original loop by a cyclic shift of qubit

labels. From this, we can infer that J1,2 and J2,3 should have the

same frustration probability; repeating this argument tells us that

all couplers should have the same frustration probability.

For more complicated examples, we would prefer to find such

statistical identities programmatically as described in Section 1.3.

We do this in the file

example2_1_frustrated_loop_orbits.py
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FIGURE 9

Coupler orbits of frustrated loops. The code example2_1_frustrated_loop_orbits constructs three disjoint frustrated loops and

programmatically generates qubit and coupler orbits. All qubits are in the same orbit. There are two signed coupler orbits, O1 and O2, and in this

example, they form an opposite pair, meaning that a coupler in O1 and a coupler in O2 have opposite sign (J = −1 and J = 1 in this case) but equal

probability of frustration in an ideal annealer.

by computing automorphisms of an auxiliary graph. The result is a

mappingO of qubits and couplers to orbits. If spins si and sj satisfy

O(si) = O(sj), then in an ideal annealing experiment mi = mj.

Similarly, if couplers sisj and sksℓ satisfy O(sisj) = O(sksℓ), they

have identical frustration probabilities fi,j = fk,ℓ. The code also gives

us a mapping of orbits to “opposite” orbits, such that if spins si and

sj are in opposing orbits,mi = −mj, and if couplers sisj and sksℓ are

in opposing orbits, fi,j = fk,ℓ and Ji,j = −Jk,ℓ.
Running the code on three disjoint copies of a frustrated six-

qubit loop tells us that all AFM couplers are in one coupler orbit

O1 = {si, sj | O(sisj) = 1}, and all FM couplers are in its opposite,

O2 = −O1 (see Figure 9).

We point out an obvious but useful fact: If we are usingmultiple

embeddings of an Ising model, all copies of a given qubit are in the

same orbit, and all copies of a given coupler are in the same orbit.

Here, we use disjoint embeddings, but they need not be disjoint:

the embeddings could overlap, and be annealed in separate calls

to the QPU.

3.1.1. Shimming
We can now approach the frustrated loop similarly to the

unfrustrated loop: all qubits should have average magnetization

zero, and all couplers should be frustrated with the same probability.

Again, tuning FBOs and individual couplings helps to reduce bias in

the system. This example shows how to exploit orbits for our shim.

There is one detail worth pointing out. In Equations 6, 8, the

terms m̄ and f̄ can be computed as averages over an orbit. If we are

dealing with opposing qubit orbitsOq and−Oq, we can simply use

m̄ = 0, as we do in the first example. For opposing coupler orbits

Oc and −Oc, we can compute f̄ across the union of the two orbits.

In this case, that means that f̄ is the average frustration probability

across all couplers.

Figure 10 shows the results of shimming FBOs and couplings

for 165 parallel embeddings of a 16-qubit frustrated loop, using

nominal coupling strength |Ji| = 0.9. Here, both components of

the shim show a marked improvement of statistical homogeneity.

Taking moving means for 10 iterations at a time, we see that both

σm (standard deviation of qubit magnetization) and σf (standard

deviation of coupler frustration probability) decrease as a result of

turning on the FBO shim and the coupler shim, respectively.

3.1.2. Finding orbits of an arbitrary Ising model
Code reference: example2_3_buckyball_orbits.py.

Here we present an example of an Ising model that is read from

a text file and run through our orbit-finding code. The user may

want to edit this code to analyze other Ising models of interest.

Consider another antiferromagnetic Ising model (Jij = 1) with

a Buckyball graph as its underlying structure and no linear fields

(hi = 0). We apply the same methodology described in Section 1.3

to find its orbits. Figure 11 visualizes the Buckyball model with its

orbits labeled by text, as well as its signed Ising counterpart with

coupling values encoded by color.

4. Worked example: triangular
antiferromagnet

Code reference: example3*.py.

In the previous examples we demonstrated several key

methods:

• Finding qubit and coupler orbits.

• Homogenizing magnetizations with FBOs.

• Homogenizing frustration by tuning couplers.

We can now apply these tools to a non-trivial system: the

triangular antiferromagnet (TAFM; Figure 12). This is a classic

example of a frustrated 2D spin system. Moreover, the addition

of a transverse field to a TAFM leads to order-by-disorder at low

temperature (Moessner and Sondhi, 2001; Isakov and Moessner,

2003). For this and other reasons, including qualitative similarity

to real materials, the TAFM has been simulated extensively using

quantum annealers (King et al., 2018, 2022). We will use it as an

example to showcase several concepts in calibration refinement for

quantum simulation:

• Truncating and renormalizing Hamiltonian terms.
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FIGURE 10

Shimming a frustrated loop. Three hundred iterations are performed. A flux-bias o�set shim is used after iteration 100, and a coupler shim is used

after iteration 200. Nominal couplings are ±0.9. The third panel shows the standard deviation of qubit magnetizations taken as a moving mean over

10 iterations, σm. The fourth shows the corresponding quantity σf for frustration probability.

FIGURE 11

An antiferromagnetic Ising model with a Buckyball graph structure.

The node and edge colors encode the resulting qubit and edge

orbits respectively. All qubits are in the same orbit since the graph is

vertex-transitive. There are only two coupler orbits: those couplers

sitting between two hexagons, and those sitting between a hexagon

and a pentagon.

• Simulating logical vs. embedded systems.

• Simulating an infinite system vs. faithfully simulating

boundary conditions. When simulating an infinite system,

we use the same geometry but suppress effects of any open

boundaries, which otherwise cause statistics such as nearest-

neighbor correlations to vary depending on distance from the

boundary. To do this we determine our qubit and coupler

orbits assuming an inifinite lattice, instead of computing them

from the finite lattice at hand.

4.1. Embedding as a square lattice

Code reference: example3_1_tafm_get_orbits.py.

In D-Wave’s Advantage systems, we can minor-embed the

TAFM using two-qubit FM chains. First, we will embed a 12 ×
12 square lattice with cylindrical boundary conditions, then we

ferromagnetically couple pairs of qubits with a strong coupling JFM .

The cylindrical boundaries are very helpful in providing rotational

symmetries that we can exploit in our calibration refinement

methods (as in the 1D chains already studied).

The provided code uses the Glasgow subgraph solver to find

embeddings of the 12×12 square lattice, but note that this can take

several hours. For larger square lattices, up to 32×32 or even larger

depending on the location of inoperable qubits, one can inspect

embeddings of smaller lattices and generalize the structure, since

subgraph solvers are unlikely to be efficient at that size. We proceed

with 10 disjoint 12× 12 embeddings generated by the code.

In this example we will set AFM couplers to JAFM = 0.9, and all

FM couplers to JFM = −2∗ JAFM. Since FM couplers are very rarely

frustrated in this system, we will only shim the AFM couplers.

4.2. Annealing with and without shimming

Code reference: example3_2_tafm_forward_anneal.py.

As in the previous example, we will compare performance of

three methods: no shim, FBO shim only, and FBO and coupler

shims together. We perform 800 iterations, turning on the FBO

shim after 100 iterations and the coupler shim after 300 iterations.

Figure 13 shows data for this experiment, and we can see that as

with the frustrated loop example, shimming improves statistical

homogeneity of magnetizations and frustration. Note, however,

that there is no appreciable impact on the average magnitude of the

order parameter 〈|ψ |〉. This will change when we vary boundary

conditions (see Figure 16).

4.3. Manipulating orbits to simulate an
infinite system

Code reference: example3_2_tafm_forward_anneal.py.
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FIGURE 12

A 12× 12 square lattice with cylindrical boundary conditions (periodic top/bottom). Contracting two-qubit FM chains into single spins results in a

triangular antiferromagnet.

FIGURE 13

Shimming an embedded cylindrical triangular antiferromagnet. Eight hundred iterations are performed. A flux-bias o�set shim is used after iteration

100, and a coupler shim is used after iteration 300. For clarity, we only show FBOs for 12 qubits, and couplings for 12 couplers in the same orbit.

Standard deviation of frustration probabilities, σf , is computed for the couplers in each orbit, and the average over all orbits is taken.

FIGURE 14

Shimming an isotropic, infinite triangular antiferromagnet. The experiment from Figure 13 is repeated, but with all AFM couplers placed in the same

orbit. For clarity, we only show FBOs for 12 qubits, and every 5th coupling from the AFM orbit.

The shim shown in Figure 13 used coupler orbits for the square

lattice with cylindrical boundaries, which are naturally different

for couplers that are different distances from the boundary, or

different orientations with respect to the boundary (and to FM

chains). But what if we want to simulate, to the extent possible, an

infinite TAFM? In that system, a coupler’s probability of frustration

is independent of its orientation and position, unlike in the square-

lattice embedded system. We can simulate this case by putting all

AFM couplers in one orbit, and all FM couplers in a second orbit,

and proceeding as before. The coupler orbits no longer reflect the

structure of the programmed Ising model, but rather the structure

of the Ising model we wish to simulate.

Results for the “infinite triangular” shim are shown in Figure 14.

This experiment is performed just like the previous one, but with
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the parameter

shim[’type’]=’triangular_infinite’

instead of

shim[’type’]=’embedded_finite’.

The coupler shim deviates significantly from nominal values

(note axis scale), and has not converged even after 500 iterations.

4.3.1. Truncating and renormalizing couplers
In this code example (and others) we use an important method

in the coupler shim: truncation. Programmed couplings must be

in the range [−2, 1], so AFM couplers must remain < 1, which is

1.11 ∗ JAFM. Therefore, when couplers go out of range, we truncate

them to within the range. To avoid persistent shrinking of the

couplings due to truncation, we renormalize to the correct average

coupling value (0.9) before truncation—this prevents cumulative

shrinkage over many iterations.

4.3.2. Better initial conditions
Looking at the data, we can see that the most reduced couplers

are those on the boundary. This suggests that if we want to simulate

the infinite TAFM, we should start with a thoughtful setting of

couplers. In this case, setting the AFM couplers on the boundary

to JAFM/2 reduces the need to shim enormously. This makes

sense, since doing so maximizes the ground-state degeneracy of the

classical system, as previously noted (King et al., 2018).

This shim is shown in Figure 15. The experiment is performed

just like the previous one, but with the parameter

param[’halve_boundary_couplers’]=True

instead of

param[’halve_boundary_couplers’]=False.

We can see that now, the coupler shim only deviates a few

percent from nominal, at most.

4.3.3. Complex order parameter
Order in the TAFM can be characterized by a complex order

parameter ψ , which we define now. Let c : S → {0, 1, 2} be a

3-coloring of the spins of the TAFM, mapping them onto three

sublattices so that no two coupled spins are in the same sublattice

(this coloring is unique, up to symmetries). Then for a spin state S

we can define

ψ(S) =
√
3

N

N
∑

ℓ

(

sℓe
cℓ2π/3

)

, (9)

where ci = c(si) and i =
√
−1. Due to symmetries among the

sublattices arising from the cylindrical boundary condition, as well

as up-down symmetry of spins since h = 0, we expect sixfold

rotational symmetry (among other symmetries) in the distribution

of ψ in an ideal annealer. Thus ψ can serve as a good indicator of

any biases in the system, as well as global ordering.

We can use ψ to compare the “embedded finite” shim

and “triangular infinite” shim, as seen in Figure 16. Although

we are simply forward-annealing the system, and therefore not

sampling from the mid-anneal Hamiltonian, we expect the same

characteristic ring histogram—without a peak near ψ = 0—that is

seen in the quantum system (cf. King et al., 2018, Figure 3C). This

is seen only after the “triangular infinite” shim.Wemainly attribute

this to the halving of the boundary couplings. In all cases, the shim

improves the theoretically expected sixfold rotational symmetry

of ψ .

4.4. Adaptive step sizes

Code reference: example3_2_tafm_forward_anneal.py.

It is often difficult or impractical to determine appropriate step

sizes a priori. Here we demonstrate a simple method for adapting

step sizes based on statistics of the shim. Note that due to noise

in the QPU’s surrounding environment, there is no well-defined

asymptote or steady state for a shim. However, we act as though

such a state exists: we expect high-frequency fluctuations in the

environment to be small compared to low-frequency fluctuations

and static cross-talk.

If the step size is sufficiently small and we are sufficiently close

to the steady state, we can expect fluctuations of the Hamiltonian

terms (FBOs, couplers, or fields) to behave like unbiased random

walks. In an unbiased random walk with position x(t) at time t =
0, 1, . . ., the probability distribution of x(t) approaches the normal

distribution with mean 0 and variance t.

If the shim is far from the steady state and has a relatively small

step size, the randomwalks will be biased in one direction, and thus

the variance of fluctuations will grow superlinearly in t. Finally, if

the step size is very large, then it will tend to overshoot the steady

state, and oscillate. This leads to variance of fluctuations growing

sublinearly in t. Thus we can periodically adjust the step size of a

shim as follows, using a 20-iteration lookback and a tuning term

ε = 0.1:

1. For d ≤ 20, x(t)− x(t − d) is the difference between the current

shim value for a term (e.g. FBO) and the value d iterations

previous. Let Xd be the set of all x(t) − x(t − d) for all x being

tuned.

2. Find a best-fit exponent b describing var(Xd) ∝ db.

3. If b > 1.1, multiply the step size α by 1+ ε.
4. If b < 0.9, divide the step size α by 1+ ε.

In the example code example3_2_tafm_forward_

anneal.py, this method is applied by setting

adaptive_step_size = True.

This check is done every iteration, but this is not necessary.

Adaptive step sizes are so far a largely unexplored research

area, and various approaches could be taken. Using different step

sizes for each orbit is certainly worth exploring; note in Figure 14

that different coupler orbits have hugely varying deviations from
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FIGURE 15

Shimming an isotropic, infinite triangular antiferromagnet, starting with halved boundary couplers. The experiment from Figure 14 is repeated, but

with all AFM couplers on the boundary halved (to JAFM/2 = 0.45) as an initial condition. For clarity, we only show FBOs for 12 qubits, and every 5th

coupling from the AFM orbit.

FIGURE 16

Complex order parameter ψ . For the three shims shown in Figures 13–15, we plot the evolution of the average magnitude 〈ψ〉, as well as complex

histograms of ψ (showing only data for one of the ten embeddings) before and after shimming.
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the mean. More general frameworks like “Adam” (Kingma and Ba,

2014) could also be useful in this context.

5. A survey of additional methods

We have provided detailed demonstrations and free-standing

Python implementations for several worked examples. These

cover the basics of calibration refinement. Here we discuss

some additional methods that have been used successfully in

recent works.

5.1. Shimming a system in a uniform
magnetic field

Certain Ising models in a uniform magnetic field are of interest

to physicists, and these have been simulated in quantum annealers

both at equilibrium (Kairys et al., 2020) and out of equilibrium

(King et al., 2021a). If we want to simulate an infinite system, we

would ideally study a large system with no missing spins, and with

fully periodic boundaries. However, this is often not possible, so

we wish to make the magnetization mi independent of the spin’s

position relative to the boundary (although it may depend on the

spin’s position in a unit cell of the lattice being simulated). In a

typical experiment, we want to measure a system under an average

field h̄ for each value in an increasing set of equally spaced values

{h̄(1), h̄(2), . . . , h̄(m)}.
To deal with this, we can shim individual longitudinal field

terms, hi, such that all spins of a given type (i.e., in the same

position of the unit cell) are in the same orbit. We can then shim

all hi terms for each simulated field magnitude h̄(k) that we want

to study, and denote each individual term h
(k)
i . After each iteration

we renormalize the fields so the average value 1
N

∑N
i=1 h

(k)
i remains

equal to h̄(k) throughout the shim, perhaps with an adjustment

arising from boundary spins.

To shim the case h̄ = 0, we use FBOs (as in the worked

examples) instead of tuning hi. To shim the case h̄(k) = 0, we use

FBOs (as in the worked examples) to set a zero point instead of

tuning h
(k)
i . In doing so, we can compensate for time-dependent

flux drift, particularly when determining the location (in h̄) of a

phase transition.

We can additionally ensure that each hi is a locally smooth

function of h̄ by adding a smoothing term. For example, if hi has

values h−i and h+i for the next lower and higher values of h̄ being

simulated, we can make the adjustment.

We can additionally ensure that each sequence {h(1)i , . . . , h
(m)
i }

is a smooth function of h̄ by adding a smoothing term.5 For

example, we can add make an adjustment in two steps. First, set all

h̃
(k)
i ← (1− ε)h(k)i + ǫ

(

h
(k−1)
i + h

(k+1)
i

)

/2, (10)

5 A smooth function is desirable because a shim is a perturbation of the

Hamiltonian intended to compensate for small non-idealities in the quantum

annealer.

for intermediate values of k and some smoothing constant 0 < ǫ <

1. Second, set all h
(k)
i ← h̃

(k)
i .

5.2. Shimming an Ising model with no
symmetries

In King et al. (2021b), a qubit spin ice was implemented

using a checkerboard Ising model. The system had open boundary

conditions and missing spins due to inoperable qubits, so no

geometric symmetries were available. However, due to the rich

automorphism group of the qubit connectivity graph (ignoring

unused qubits), it was possible to generate many distinct

embeddings of the same system, using different mappings of qubits

to spins. Therefore we could simulate a collection of distinct

embeddings (in this case, 20) and shim in the same way we did in

the worked examples. The only difference is that in the qubit spin

ice example, the embeddings are not disjoint and therefore must

be sampled from using separate calls to the QPU. However, once

we have a set of samples from each embedding, we can analyze the

data as though the embeddings are disjoint, whether or not this is

actually the case. The benefit remains the same: by simulating with

20 distinct embeddings, we get qubit and coupler orbits of size at

least 20.

5.3. Shimming a collection of random
inputs

In King et al. (2023), shimming was used to study spin-

glass ensembles—collections of random problems with certain

parameters. As we have seen, we can spend hundreds of iterations

shimming a single problem, and this becomes impractical when

studying ensembles of thousands of instances.

The approach used was to exploit a common symmetry: all

problems in the ensembles had h = 0. Shimming the couplers

was abandoned as being impractical for such a large set of inputs.

Shimming FBOs, however, is straightforward. By cycling through

300 spin-glass realizations using the same set of qubits and couplers,

simulating each realization several times, it is possible to combine

the work and arrive at a good set of FBOs that mitigates themajority

of systematic offsets.

5.4. Shimming anneal o�sets for fast
anneals

As described in the Supplementary material to King et al.

(2022), D-Wave quantum annealing processors have recently

demonstrated the capacity to anneal much faster than currently

generally available, at an anneal time of 10 nanoseconds or less

(King et al., 2022, 2023). This speed exceeds the ability of the

control electronics to synchronize the annealing lines (eight in

the Advantage processor, four in D-Wave 2000QTM) satisfactorily.

Therefore, frustration statistics can be used to infer which lines

are out of sync with the others, and in which direction. Anneal

offsets, which allow individual qubits to be annealed slightly ahead
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of or behind other qubits, were used to synchronize the qubits on

each annealing line. These fast anneals are not currently generally

available, but they may be in the future.

6. Additional tips

6.1. Limitations

The shimming techniques we have discussed in this tutorial

are efficient to perform and are simple to justify theoretically.

However, we note a couple of its limitations here. First, there

exists a potential computational bottleneck in the full shimming

paradigm. The method partly relies on identifying qubit and

coupler orbits. Identifying these orbits can be reduced to the

problem of identifying the automorphism group of a graph,

which can usually be done quickly in practice even though

no general polynomial-time algorithm is known. Second, shims

inherently exhibit time-dependent fluctuations due to noise in the

environment. These fluctuations tend to be smaller than the shim

terms themselves, so do not significantly diminish the potential

benefit of calibration refinement.

6.2. Making calibration refinement more
e�cient

As we have seen, shimming can take many iterations to

converge. Naively repeating the process across many combinations

of parameters (e.g., annealing time, energy scale, etc.) can be

extremely time consuming. However, there are ways to improve the

efficiency of the process. Here we outline some important things to

bear in mind.

6.2.1. Adjustments are often continuous functions
of other parameters

If we determine a set of adjustments for a given experiment,

then slightly vary some parameters of the experiment, we can

generally expect that the adjustments will not change much. For

example, FBOs and coupling adjustments are expected to vary

smoothly as functions of annealing time, energy scale, and various

perturbations to the system (for example the ratio between FM and

AFM couplers in an embedded triangular antiferromagnet). This

assumption is natural outside the vicinity of a phase transition, and

near a phase transition we adhere to the principle that we should

not make discontinuous compensations to a simulator which is

itself under smooth parametric modulation. An important example

of a smoothly tuned parameter is the annealing parameter s, in cases

where we simulate a system at 0≪ s≪ 1 (King et al., 2018, 2021a,

2022, etc.).

As an example of how this can help speed up a shim, if we

double the annealing time, FBOs and coupling adjustments will

remain relatively stable. Thus, rather than starting our shim anew

from the nominal Hamiltonian, we can start from an adjusted

Hamiltonian that was determined using similar parameters. One

could go further than this, and extrapolate or interpolate based on

multiple values.

6.2.2. Predictable adjustments should be
programmed into the initial Hamiltonian

As shown in Figures 14, 15, starting with halved boundary

couplings can immediately bring the couplings close to their

converged values. If we are aware of such adjustments, using them

as initial conditions can make shims converge far faster.

6.3. Damping shim terms

It is sometimes useful to gently encourage a shim to remain

close to the nominal values, for example to prevent drifting

Hamiltonian terms. This issue can be particularly important near

a phase transition, where statistical fluctuations can be very large.

Drift can be suppressed by adding a damping term to the shim. For

example, we can set a damping constant 0 ≤ ρ ≤ 1, and after

every iteration we can move each coupler Jij toward its nominal

value Ĵij:

Jij → Jij − ρ(Jij − Ĵij). (11)

Doing this can discourage random fluctuations, but

can also lead to under compensation of biases. It is only

recommend to use damping when the shim is otherwise badly

behaved. In practice, a suitable value for ρ is determined

through trial and error, i.e., by assessing whether shims

have converged (see Section 2 for discussion on shim

convergence).

7. Conclusions

In this document we have presented several basic examples

that introduce the value of calibration refinement or “shimming”

in quantum annealing processors. These methods should be

applied to any detailed study of quantum systems in a

quantum annealer, and will generally provide a significant

improvement to the results. Depending on the sensitivity of

the system under study, these methods can mean the difference

between an unsuccessful experiment and an extremely accurate

simulation.

We have provided fully coded examples in Python, which

should be easy to generalize and adapt. As part of these examples,

we include methods for embedding many copies of a small Ising

model in a large quantum annealing processor. This is a valuable

and straightforward practice that can enormously improve both

the quantity and the quality of results drawn from a single QPU

programming.

Another important perspective, which has been introduced

here for the first time, is the notion of constructing an auxiliary

Ising model and using automorphisms of it to infer qubit and

coupler orbits automatically. We encourage users to experiment

with this method and report on any challenges or benefits found.

The examples in this document are written for use in an

Advantage processor, but are not specific to that model, or even

to D-Wave quantum annealers in general. These results may

prove useful in diverse analog Ising machines, both quantum

and classical.
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