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quantum computing
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Quantum computing exploits quantum mechanics to perform certain

computations more e�ciently than classical computers. Current quantum

computers have performed carefully tailored computational tasks that would

be di�cult or impossible for even the fastest supercomputers in the world. This

“quantum supremacy” result demonstrates that quantum computing is more

powerful than classical computing in some computational regimes. At present,

it is unknown if any computational problems related to the Earth’s subsurface

fall within these regimes. Here, we describe an approach to performing seismic

inverse analysis that combines a type of quantum computer called a quantum

annealer with classical computing. This approach improves upon past work on

applying quantum computing to the subsurface (via subsurface hydrology) in

two ways. First, the seismic inverse problem enables better performance from

the quantum annealer because of the Earth’s relatively narrow distribution of

P-wave velocities compared to the broad distribution of hydraulic conductivities.

Second, we develop an iterative approach to quantum-computational inverse

analysis, which works with a realistic set of observations. By contrast, the previous

method used an inverse method that depended on an impractically dense set

of observations. In combination, these two advances significantly narrow the

gap a quantum-computational advantage for a practical subsurface geoscience

problem. Closing the gap completely requires more work, but has the potential

to dramatically accelerate inverse analyses for subsurface geoscience.
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1. Introduction

Computation has played a critical role in subsurface geoscience for decades. It has

been used to simulate ocean circulation (Pinardi et al., 1997), flow in subsurface fractures

(Kosakowski and Berkowitz, 1999), mantle flow in stunning detail (Stadler et al., 2010),

and has been instrumental to the modern developments in seismic imaging (Bednar, 2005),

among many other examples. Computers are also widely used to estimate subsurface

properties that are difficult to observe directly using inverse analysis (Khan et al., 2000; Lu

and Robinson, 2006). Massive performance improvements have buoyed the widespread use

of computers.

Recent computer performance trends indicate that performance improvements are

diminishing, suggesting that the rising tide of improving computational performancemay be

coming to an end. This trend has led to increased use of novel computational methods such

as graphical processing unit computing (Fatemi and Poppe, 2018) and machine learning

(Gentine et al., 2018), either together or separately. Approaches such as these have the
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potential to improve performance significantly, but only by a

constant factor. That is, they might provide a speed-up of a

factor of, e.g., 10 or 100, but the speed-up does not depend

on the problem size. Quantum computing, on the other hand,

opens the doors to fundamentally different algorithms that give

larger and larger speed-ups as the problem becomes larger. This

improved scaling behavior is crucial in subsurface geoscience.

Solving equations, such as the groundwater flow equation or the

seismic wave equation, might require a highly-refined mesh to

resolve heterogeneity. This is because heterogeneities can be very

small.

The improved scaling behaviors of certain quantum algorithms

is what made possible the recent demonstration of quantum

supremacy, where a quantum computer performed a calculation

that would push the fastest classical supercomputers beyond their

limits (Arute et al., 2019; Zhong et al., 2020; Morvan et al., 2023).

While it is known that some problems related to cryptography

and quantum chemistry are well-suited to quantum computers,

the picture is much less clear for computational science broadly.

There are efficient algorithms that could theoretically be used to

solve large systems of equations (Harrow et al., 2009; Subaşı et al.,

2019), but these efficiencies may be undone by the implementation

details needed to use these algorithms for a particular application

(Aaronson, 2015). Current work in the geosciences utilizes a more

empirical approach—trying different problems and observing the

performance (O’Malley, 2018; Sarkar and Levin, 2018; Greer and

O’Malley, 2020; Dukalski, 2021; Henderson et al., 2021; Souza

et al., 2022; Dukalski et al., 2023). Generally, the performance

on current quantum computers lags behind the performance of

classical computers using the best algorithms. Nonetheless, it is a

critical first step to establish whether or not a quantum computer

can solve a problem before trying to establish a performance

advantage.

This work, which does not attempt to show any quantum

advantage, explores two applications—seismic inverse analysis and

hydrologic inverse analysis. It improves upon previous work by

enabling the solution of more realistic problems. Our approach

enables 2D seismic inverse analysis, whereas previous work focused

on a 1D, layered approach (Souza et al., 2022). Past work in

hydrology required the use of an unrealistic set of observations

(O’Malley, 2018), whereas the approach used here can handle

arbitrary, realistic sets of observations. While we study this

approach in the context of hydrologic and seismic inverse analysis,

it can be applied to other subsurface applications where the goal

of the inverse analysis is to segment the subsurface into two

separate facies. Traditionally, a seismic inverse problem of this

nature could be solved using imaging methods such as reverse time

migration (Baysal et al., 1983) or full waveform inversion (Virieux

and Operto, 2009). Hydrologic inverse problems are usually solved

using variants of the geostatistical approach such as the principal

component geostatistical approach (Kitanidis and Lee, 2014) and

sometimes more modern techniques leveraging machine learning

are used (Kadeethum et al., 2021; Wu et al., 2023).

This work also goes a step beyond the empirical observation

of the performance and identifies problem characteristics that

enable better performance for the quantum computer. These

insights can help guide future work to find an advantage for

quantum computers in applications to the subsurface. However,

since quantum annealing hardware is still in its early stages, the

problems we look at are still relatively simple compared to similar

problems solved using classical computing techniques. These

problems are scaled according to current quantum-computing

hardware’s computational size, and advances in hardware will allow

for more complex problems to be addressed.

If the long-term goals of this research are successful,

subsurface geoscience will be able to exploit the theoretical

advances that have been demonstrated for calibrating models to

data (Wiebe et al., 2012). Some quantum algorithms show an

exponential speed-up (e.g., Harrow et al., 2009; Wiebe et al.,

2012) which could be transformational in this context. A quadratic

speedup [often built upon Grover’s algorithm (Grover, 1996)]

is more common and could still be impactful for subsurface

inverse analysis, which is often computationally expensive. These

algorithms could open doors to solve subsurface geoscience

problems with unprecedented resolution and accuracy. After

decades of research, the improvements that can be made in classical

computational methods are becoming marginal (Shalf, 2020).

Novel computational architectures, of which quantum computing

is arguably themost promising, remain largely unexplored and have

tremendous potential. Now is the time to do this exploration.

The remainder of this manuscript is organized as follows. In

Section (2), we describe quantum annealing, which is the quantum

algorithm that we leverage, and our approach to formulating

inverse analysis as a problem suitable for quantum annealing.

Section 3 describes the results of applying this approach to seismic

and hydrologic problems. A discussion of various aspects of

our approach, including a problem characteristic that improves

performance and possibilities with future quantum hardware and

methods is presented in Section 4. Finally, concluding remarks are

made in Section 5.

2. Methods

2.1. Quantum annealing

Quantum annealing is a heuristic optimization algorithm,

similar to simulated annealing (Kirkpatrick et al., 1983), that seeks

to find optimal solutions faster than classical methods by exploiting

quantum fluctuations (Kadowaki and Nishimori, 1998). There are

theoretical guarantees of convergence to the optimal state under

certain conditions (Morita and Nishimori, 2008). In practice, these

assumptions are generally violated. For example, with the D-Wave

quantum annealers (Johnson et al., 2011) that we use here, the

anneal process is often performed quickly, whereas the theoretical

guarantees generally require the anneal to be performed slowly. In

the language of quantum annealing, this means that the adiabaticity

is violated, since the fast annealing process means the system will

often leave the ground state.

The input to a D-Wave quantum annealer is a vector h = (hi)

and amatrix J = (Jij). Thematrix, J, is sparse with a sparsity pattern

defined by the connectivity graph associated with the annealer’s

qubits. The size of the matrix, N, is determined by the size of the

problem. For existing D-Wave quantum annealers, this is based on

a so-called Chimera graph (Boothby et al., 2016).
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From a practical perspective, the quantum annealer can be

thought of as minimizing a function of the form

g(s) =

N
∑

i=1

hisi +

N
∑

i,j=1

Jijsisj , (1)

where each spin, si, is either −1 of +1, and is called the Ising

formulation. On the D-Wave annealer, there are additional sparsity

constraints on the matrix Jij. That is, some of the Jij are constrained

to be zero. Further, the D-Wave hardware limits the range of

values—called the dynamic range—that can be set for hi and

Jij, and problems with coefficient outside these ranges have to

be rescaled to fit. This rescaling can have the effect of pushing

small coefficients into the hardware’s noise range. A more accurate

description of the behavior of the annealer is that it is drawing

from a distribution that preferentially samples values of s that

make f (s) small. This distribution can often be well-approximated

by a Boltzmann distribution where Equation 1 defines the energy

subject to a temperature or “effective temperature” that is a

characteristic of the hardware. Equation 1 can be formulated as a

quadratic unconstrained binary optimization (QUBO) problem,

g(q) =

N
∑

i=1

aiqi +

N
∑

i,j=1

bijqiqj (2)

where each bit, qi, is either 0 or 1, and is related to the formulation

in Equation 1 via si = 2qi−1. This change, from inverting values of

si ∈ {−1, 1} as in Equation 1 to qi ∈ {0, 1} as in Equation 2, is what

differentiates the Ising model from the QUBO model. The values

of hi and Jij can also be transformed into the values of ai and bij by

associating like terms in Equations (1) and (2). Equations (1) and

(2) are two equivalent ways of formulating the same problem. We

will use the formulation in Equation 2 throughout.

2.2. Inverse approach

We consider an inverse approach where the goal is to divide the

subsurface into two different materials with constitutive properties

based on measurements obtained on the boundary of the domain,

which aligns well with the quantum annealer’s ability to perform

binary optimization. Using standard variable names from seismic

inversion, the objective function used in the inverse analysis takes

the form

F(c) =

N
∑

i=1

|[U(c)]i − ûi|
2 , (3)

where U is a non-linear forward modeling operator such that

U(c) = u is a solution to the relevant governing equation (wave

equation for the seismic problem, groundwater flow equation

for the hydrology problem), c is the subsurface model, û is the

measurements (wavefield in the case of the seismic problem and

hydraulic head in the hydrology problem), and i represents the

index of the N different observations. Note that each component of

c can take only two values, either clow or chigh, which will correspond

to the low and high values of the relevant parameter field (P-

wave velocity for the seismic problem, or hydraulic conductivity

for the hydrology problem). We attempt to minimize this global

objective function using an iterative process, where each iteration

involves solving a related optimization problem that is suited to

the quantum annealer. We begin with an initial guess, c(0), and

iteratively produce c(k+1) from c(k).

During an iteration, we find the model update by creating

a quadratic unconstrained binary optimization (QUBO) problem

that approximates Equation (3). This QUBO problem can then be

solved with the quantum annealer. The QUBO objective function

takes the form

F(q) =

N
∑

n=1

|[Ũ (q)]n − ûn|
2 (4)

where Ũ (q) is a linear approximation to U at the current best

estimate c(k). This estimate is given by

Ũ(q)(k) = U (c(k))+

M
∑

m=1

qmBm (5)

where q is a binary vector that indicates how the model should be

updated, and M is the size of the model, which is the number of

parameters that we estimate. The vector Bm is defined to be

Bm =

{

U(c(k) + [clow − chigh]ei)− U(c(k)) if c
(k)
i = chigh

U(c(k) + [chigh − clow]ei)− U(c(k)) if c
(k)
i = clow

(6)

where ei is the i
th standard basis vector of size M consisting of all

zeros except for a 1 in the ith component. Essentially, Bm is an

operator that flips the value of its input and then forward models

it. This makes the computational cost of each iteration equal to the

cost ofM forward model runs. When updating the model, if qi = 0

then c
(k+1)
i takes the same value as c

(k)
i . On the other hand, if qi = 1

then c
(k+1)
i takes the same opposite value as c

(k)
i . That is, if qi = 1

then

c
(k+1)
i =



















chigh if c
(k)
i = chigh and qi = 0

clow if c
(k)
i = clow and qi = 0

clow if c
(k)
i = chigh and qi = 1

chigh if c
(k)
i = clow and qi = 1

(7)

The least-squares objective function for iteration k is then

equivalent to

F(q) = ||U(c(k))− û||22 + 2(U(c(k))− û)TBTq+ qTBBTq . (8)

Note that this equation has a constant term, a term that is linear in

q, and a term that is quadratic in q. The constant term is irrelevant

to the optimization process, and neglecting it results in a function

of the form in Equation (2). After creating the QUBO for a given

iteration (Equation 8), Los Alamos National Laboratory’s D-Wave

2000Q quantum annealer does the (forward) annealing and returns

1,000 possible solutions. We analyze the first several solutions

that minimize the local objective function (Equation 8), select the

update among those that minimizes the global objective function

(3), and update the model accordingly. The selected update, q ∈

{0, 1}M , is used to update the model, c(k+1), using Equation (7).

We used default values for the annealing time, thermalization time,

and post-processing. D-Wave’s heuristic embedder was used to

embed the problem graph on the D-Wave, which generally involves

embedding a complete graph.
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2.2.1. Hydrologic inverse analysis
We study the steady-state groundwater flow equation,

∇ ·
(

k(x)∇h
)

= f (9)

where h represents the hydraulic head, k(x) denotes the

heterogeneous hydraulic conductivity, and f represents fluid

sources or sinks. Note that throughout, we will assume that f = 0

(i.e., there are no fluid sources/sinks) and that k(x) is either kh or kl
where kh is a high conductivity value and kl is a low conductivity

value. The inverse analysis’s goal is, given a set of hydraulic head

observations, to infer the spatially variable hydraulic conductivity,

k(x). That is, to determine at each location, x, whether k(x) = kh
or k(x) = kl. This process corresponds to determining where two

different materials exist in the aquifer. If the highly conductive

material were sand and the low conductivity material were clay, the

inverse analysis would answer the questions: where is the sand? and

where is the clay?

To obtain a hydrologic inverse problem, we generate two

hydraulic conductivity fields based on two real-world examples

where the hydraulic conductivity at each location is either kh or

kl. We first look at the example from Lu and Robinson (2006),

which includes two low-permeability zoned embedded in a high

permeability background medium. Our second hydrology example

includes a slurry wall in our domain of interest. The hydraulic

conductivities are distributed on a grid that is coarse compared

to the finite volume grid on which the Equation (9) is solved.

This use of these two grids reduces the number of hydraulic

conductivity variables so that they can all be fit on the quantum

annealer and the finite volume grid remains sufficiently resolved

to produce a physically accurate simulation. Given these hydraulic

conductivities, Equation (9) is solved to obtain a set of hydraulic

head observations. These observations and the current estimate

of the hydraulic conductivities are then used to formulate a

QUBO using the previously discussed approach. Effectively, the

PDE solver used to solve Equation (9) provides the function

F(c) in Equation (3). After approximations, this results in the

QUBO given in Equation (8). The quantum annealer is then used

to optimize the QUBO, providing an updated estimate of the

hydraulic conductivities. This iterative process continues until the

convergence criteria are satisfied.

We have a 700 × 700 meter domain in this application, with

seven discrete permeability blocks in the x-direction and seven in

the y-direction. We place 24 receivers across the surface of the

domain in a checkerboard pattern. Our computational mesh grid

is dx = dy = 10 meters. Our goal is to invert for the locations of

the two different facies, which each have permeabilities of kl or kh.

Given this problem geometry, there are 249 ≈ 5.6 × 1014 possible

solutions. The exact model we use is shown in Figure 1.

2.2.2. Seismic inverse analysis
In this application, our goal is to find the distribution of P-wave

velocity values that give rise to a set of wavefield measurements

from receivers on the surface of the domain. We study the acoustic

wave equation,

(

1

c(x)2
∂2

∂t2
−∇

)

u = f , (10)

where c(x) is the P-wave velocity, u is the measured wavefield, and

f is the forcing, or source term. Similar to the hydrology example,

we assume that c(x) is either chigh or clow, so this problem can be

thought of as locating two different materials in the subsurface. We

look at two different examples: one is a salt body in an constant

FIGURE 1

The two hydrology permeability models used in this experiment, where yellow locations are high permeability and green locations are for low

permeability values. We place seven discrete permeability block locations in the x-direction and seven in the y-direction. The domain is 700× 700 m,

so each discrete permeability block is 100 × 100 m. The computational mesh grid is dx = dy = 10 meters. We have 24 receivers, denoted by red

triangles, which are spread in a checkerboard pattern across the top of the domain.
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FIGURE 2

The seismic velocity models used in this experiment, where yellow locations are high velocity and green locations are for low velocity values. We

place ten discrete velocity block locations in the x-direction and five in the z-direction. The domain is 1, 000 m wide and 500 m deep, so each

discrete velocity block is 100 × 100 m. The computational mesh grid is dx = dz = 10 meters. We have seven receivers, denoted by red triangles,

which are spread evenly across the top of the domain. The source is located at the top center of the domain.

FIGURE 3

The convergence of our quantum annealing inverse approach for 10 low (left) and high (right) contrast hydrologic inverse problems is shown using

the same initial value of c0 = klow . The numbers at the end convergence point represent the number of model runs that converged to that model

value. The approach works well in the low contrast regime, but there are problems in the high contrast regime due to the quantum annealer’s limited

dynamic range. Realistic hydrologic inverse problems have a high contrast, so this is problematic.

background medium, and the other is a two-layer faulted example.

In this application, our domain of interest is 1 kilometer wide and

0.5 km deep and includes 50 possible velocity value locations: 5

in the vertical direction and 10 in the horizontal direction. To

keep computational costs similar to that of the hydrologic inverse

analysis, our experiment only uses one source, and we choose our

source f to be a 25 Hz Ricker wavelet at the top center of the

domain. We also spread seven receivers evenly across the surface

of the domain to record the wavefield measurements. We use a

1 millisecond sampling interval and record for 0.4 s at all sensor

locations for the wavefield measurements. We use the observations

recorded at the receiver locations to formulate a QUBO using the

method discussed in this paper. As in the hydrology problem, the

PDE solver used to solve Equation (10) provides the function F(c)

in Equation (3). After approximations, this results in the QUBO

given in Equation (8). The exact velocity model we use is in

Figure 2. Given this problem geometry, there are 250 ≈ 1.1 × 1015

possible solutions.
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FIGURE 4

The convergence of our quantum annealing inverse approach for 10 low (left) and high (right) contrast seismic inverse problems is shown using the

same initial value of c0 = clow . The numbers at the end convergence point represent the number of model runs that converged to that model value.

The approach works well in the low contrast regime, but there are problems in the high contrast regime due to the quantum annealer’s limited

dynamic range. Realistic seismic inverse problems have a low contrast, so these problems are well-suited to the quantum annealer.

3. Results

We applied the approach to inverse analysis previously

discussed to seismic and hydrologic problems. For each of these

physical problems, we consider a case where chigh/clow is large and

another where chigh/clow is relatively small. For the seismic problem,

the case where chigh/clow is relatively small is realistic. On the other

hand, the case where chigh/clow is large is realistic for the hydrologic

problem.

Figure 3 shows the convergence behavior of the inverse analyses

for the hydrologic problem. The left panel shows the convergence

pattern when there is low contrast between the high hydraulic

conductivity and low conductivity, while the right panel shows the

convergence pattern when there is a large contrast. For the low

contrast case, we use klow = 1×10−3m/s and khigh = 2×10−3m/s,

and for the high contrast case, we use klow = 5 × 10−8m/s and

khigh = 5 × 10−3m/s. In both cases, the initial model c0 = klow.

The stopping criteria for iterations is when the same model output

was selected for two iterations in a row. There is a strong tendency

to converge to a good result when the contrast is low. In the

low contrast setting, the inverse approach gets all the hydraulic

conductivities correct in four analyses and at most 5 incorrect in

the remaining six analyses. On the other hand, there is a strong

tendency to converge to a lackluster result in the high contrast

case. In the high contrast setting, the inverse approach gets all the

hydraulic conductivities correct three times, but gets 12 or more

incorrect in the remaining seven analyses. The performance in

these two settings indicates that the high contrast case is more

challenging for the inverse method than the low contrast case.

TABLE 1 Variability in permeability in unconsolidated sediments (Fetter,

2018).

Materials Hydraulic conductivity
(m/s)

Clay 10−11–10−8

Silt, sandy silts, clayey sands, till 10−8–10−6

Silty sands, fine sands 10−7–10−5

Well-sorted sands, glacial outwash 10−5–10−3

Well-sorted gravel 10−2–10−4

Note the extreme variability between sediment types (nine orders of magnitude) and the

variability within sediment types (typically two orders of magnitude).

Figure 4 shows the convergence behavior of the inverse analyses

for the seismic problem. The left panel shows the convergence

pattern when there is a low contrast between the high velocity and

low velocity, while the right panel shows the convergence pattern

when there is a large contrast.

For the low contrast case, we use the same velocity values

and contrast as used in the initial example: clow = 4, 250m/s

and chigh = 4, 750m/s. In the high contrast case, we use clow =

2, 000m/s and chigh = 5, 000m/s. In both cases, the initial model

c0 = clow. The stopping criteria for iterations is when the same

model output was selected for two iterations in a row. Like the

hydrologic inverse analysis, the low contrast problem shows better

convergence behavior than the high contrast problem. In the low

contrast setting, the inverse approach gets all the velocities correct

five times, between one and four velocities incorrect four times,
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FIGURE 5

The cumulative distribution function for an Ising problem in (A) the seismic inverse analysis and (B) the hydrologic inverse analysis are shown. Note

that the high contrast problem is more likely to have small coe�cients that get lost in the noise of the quantum annealer.

and seven velocities incorrect once. Again, the performance of the

inverse approach declines as the contrast increases. In the high

contrast setting, the inverse analysis never obtains all the velocities

correctly. The number of incorrect velocity values tends to cluster

around seven, which was the worst result in the low contrast case.

Due to the inconsistent nature of the convergence pattern in low vs.

high contrast cases and seismic vs. hydrologic examples, we choose

to not provide an algebraic form for the convergence patterns.

4. Discussion

Inverse analysis in subsurface flow problems is challenging for

a variety of reasons. One source of challenges is the high variability

in hydraulic conductivity and permeability found in the Earth’s

subsurface. Table 1 shows hydraulic conductivity ranges for a set

of unconsolidated sediments (Fetter, 2018). Note that even within

one class ofmaterials, the hydraulic conductivity can vary by several

orders of magnitude. Since different materials often coexist in the

same region of the subsurface, the variability can be even larger

than this. For example, the widely used SPE 10 model exhibits

variation in the permeability over 8–12 orders of magnitude from

10−7 milliDarcy to 104 milliDarcy (Lie, 2019).

This extreme variability adds to the challenges for the quantum

annealer because high contrasts in the parameters result in

more variability in the QUBO coefficients. Figure 5 shows the

distribution of the coefficients in one iteration of the seismic and

hydrologic inverse analysis for both the low and high contrast cases.

The coefficients that are small in magnitude tend to be lost in the

noise associated with the quantum annealer (Golden and O’Malley,

2021). This is caused by the rescaling that is necessary to fit the

coefficients within the dynamic range allowed by the quantum

annealer. The quantum annealer has little or no information

about qubits whose linear and quadratic coefficients are below the

hardware’s analog noise level. Since the iterative model updates

are determined by solving this QUBO problem, which may be

inaccurate in high contrast cases due to its coefficients being below

the threshold of hardware noise, the model updates selected from

this method may diverge from minimizing the original problem’s

objective function, as seen in Figure 3.

While different geologic units may have large contrasts in

hydraulic conductivity, there is much less variability in P-wave

velocity values both between and within rock types than in

hydraulic conductivity, as seen in Table 2. In general, the P-wave

velocity of a given unit will increase with depth since the material

becomes more compact. Because of this, units close to each other in

depth are likely to have a more similar velocity than units far from

each other in depth. This allows for a lower impedance contrast

under the assumption of a constant-density acoustic model. The

high-contrast case, where the performance is not as good, would be

uncommon in real examples of subsurface velocity models with the

notable exception in areas with salt bodies, such as in the Gulf of

Mexico. Because of the difficulties with QUBO coefficients being

lost in the noise, quantum annealing appears more suitable for

seismic inverse analysis than hydrologic inverse analysis using the

method we propose.

One of the most notable limitations of the current work

is that the resolution of the subsurface parameterization is

limited. The hydrologic inverse problem had a 7 × 7 grid of

hydraulic conductivities, and the seismic problem had a 5 × 10

grid of P-wave velocities. This work was done with D-Wave’s

older generation 2000Q hardware. D-Wave’s current generation

Advantage hardware uses a Pegasus graph (Dattani et al., 2019).

This hardware significantly increases the number of qubits on

the quantum annealer chip and the number of connections per

qubit. The effect of this will be to approximately triple the number

of parameters that can be calibrated. Approximately tripling the

number of parameters will significantly increase the resolution of
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TABLE 2 Variability in P-wave velocity in common rock types in

exploration seismology (Bourbié et al., 1987).

Materials P-wave velocity (m/s)

Wet sands 1, 500 – 2, 000

Saturated shales and clays 1, 100 – 2, 500

Porous and saturated sandstones 2, 000 – 3, 500

Limestones 3, 500 – 6, 000

Salt 4, 500 – 5, 500

Note that there is much less variability in P-wave velocity values both between and within rock

types than in Hydraulic Conductivity of unconsolidated sediments in Table 1.

the inverse model that the quantum annealer can handle. The

Advantage hardware also reduces the noise on the system, which

could improve the performance of high contrast problems.

It should also be noted that further methodological

developments could improve the resolution of the inverse

model. The full domain could be explored by moving through the

domain in a tiling fashion. Another possibility would be to use

an alternative to Equation (4) that has some natural sparsity. For

example, parameters associated with regions that are physically

distant from each other might tend to have a small quadratic term,

which could be neglected in some cases. Many possibilities cannot

be explored here – this is just the beginning of using quantum

computing for subsurface applications.

5. Conclusion

We have considered the application of noisy, intermediate-

scale quantum computing to subsurface geoscience. In particular,

we have used a quantum annealer to solve seismic and hydrologic

inverse problems. We found that the seismic inverse problem is

better suited to the quantum annealer than the hydrologic inverse

problem. This is because the ratio between a fast P-wave velocity

and a slow P-wave velocity is small compared to the ratio between

a high hydraulic conductivity and a low hydraulic conductivity.

This ratio ultimately influences the variability of the coefficients

in the Hamiltonian used to program the quantum annealer, with

a large ratio resulting in higher variability. High variability in the

Hamiltonian coefficients leads to poor performance because the

small coefficients effectively get lost in the noise.

In addition to identifying a subsurface problem that is well-

suited to the quantum annealer, we also developed methods that

enable the quantum annealer to solve inverse problems with a

realistic set of observations. This is a significant step forward

because previous work, which focused on the hydrologic inverse

problem, was limited to an unrealistic set of observations. In

particular, it required that the hydraulic head be observed at

every point on the computational grid. This was consistent with

early methods that were used in computational hydrology—called

direct inverse methods (Yeh, 1986). The transition to an iterative

approach for inverse analysis with quantum annealing brings it in

line withmodernmethods for inverse analysis that also use iterative

methods and can handle realistic observation sets.

By transitioning from hydrology to seismology and from a

direct inverse method to an iterative inverse method, we have

taken two significant steps toward enabling the use of quantum

annealing for practical applications in subsurface geoscience. One

significant hurdle remains, and that is increasing the resolution

of the subsurface image that the quantum annealer can handle.

This would be aided by adding additional qubits to the quantum

annealer and increasing the qubits’ connectivity, both anticipated

in D-Wave’s next quantum annealer.
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