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Cognitive computers (κC) are intelligent processors advanced from data and
information processing to autonomous knowledge learning and intelligence
generation. This work presents a retrospective and prospective review of
the odyssey toward κC empowered by transdisciplinary basic research and
engineering advances. A wide range of fundamental theories and innovative
technologies for κC is explored, and a set of underpinning intelligent mathematics

(IM) is created. The architectures of κC for cognitive computing and Autonomous

Intelligence Generation (AIG) are designed as a brain-inspired cognitive engine.
Applications of κC in autonomous AI (AAI) are demonstrated by pilot projects. This
work reveals that AIG will no longer be a privilege restricted only to humans via
the odyssey to κC toward training-free and self-inferencing computers.
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1. Introduction

A spectrum of basic research and disruptive technologies [Newton, 1729; Boole,

1854; Russell, 1903; Hoare, 1969; Kline, 1972; Aristotle (384 BC−322 BC), 1989; Zadeh,

1997; Wilson and Frank, 1999; Bender, 2000; Timothy, 2008; Widrow, 2022] has

triggered the emergence of Cognitive Computers (κC) (Wang, 2012e), which paved a

way to autonomous artificial intelligence (AAI) (Wang, 2022g) and machine intelligence

generation (Birattari and Kacprzyk, 2001; Kacprzyk and Yager, 2001; Pedrycz and Gomide,

2007; Rudas and Fodor, 2008; Siddiqi and Pizer, 2008; Wang et al., 2009, 2016b,

2017, 2018; Cios et al., 2012; Berwick et al., 2013; Wang, 2016a, 2021a; Plataniotis,

2022; Huang et al., 2023). The odyssey to κC is inspired by the brain (Siddiqi and

Pizer, 2008; Wang et al., 2009, 2016b, 2018; Wang, 2021a) and enabled by intelligent

mathematics (IM) (Wang, 2008c, 2012a,b, 2020, 2022c, 2023). It is initiated by the

fundamental queries on what classic AI cannot do and how κC will enable AAI
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FIGURE 1

Cognitive framework of the brain (CFB).

(Birattari and Kacprzyk, 2001; Kacprzyk and Yager, 2001; Pedrycz

and Gomide, 2007; Rudas and Fodor, 2008; Siddiqi and Pizer, 2008;

Wang et al., 2009, 2016b, 2017, 2018; Cios et al., 2012; Wang,

2012a, 2016a, 2020, 2021a, 2022c,g; Berwick et al., 2013; Plataniotis,

2022; Huang et al., 2023) theories and technologies beyond classical

pretrained AI based on data convolution and preprogrammed

computing underpinned by pre-deterministic run-time behaviors.

Although it is well recognized that data, information,

knowledge, and intelligence are the fundamental cognitive objects in

the brain (Boole, 1854; Wilson and Frank, 1999; Wang et al., 2009)

and AAI systems, as illustrated in Figure 1, there is a lack of formal

studies on their transition and aggregation. The contemporary and

traditional perceptions, metaphors, and relationships of the basic

cognitive objects in the brain and intelligent systems are analyzed

in this section. The taxonomy of cognitive objects in the brain may

be formally classified into four forms according to the hierarchical

cognitive framework of the brain (CFB) (Wang, 2003, 2022b; Wang

et al., 2006, 2021a).

Definition 1. The hierarchy of cognitive objects (HCO)

represented in the brain is a four-tuple encompassing the categories

of data (D), information (I), knowledge (K), and intelligence (İ)

from the bottom up with increasing intelligence power as well

as complexity:

HCO
∧
= (D, I,K, İ)

=



















D = fd :O → Q [pyu]

I = fi :D → S [bit]

K = fk : I → C [bir]

İ = fi̇ : I → B [bip]

(1)

where the symbols denote sets of objects (O), quantities (Q),

signals/events (S), concepts (C), and behaviors (B), respectively.

It is noteworthy in Equation (1) that the essences of HCO

are embodied by distinguished properties quantified by different

cognitive units. The unit of data is a scalar quantity implied by its

physical unit (pyu) of a certain corresponding qualification scale. Bit

(B) for information is a scalar binary digit introduced by Shannon

(1948). Bir for knowledge is a binary relation discovered byWang in

2018 (Wang, 2016c). It leads to the highest level of cognitive units,

bip, which denotes a binary process of knowledge-based behaviors

triggered by the information of an event (Wang, 2008c).

Example 1. The inductive and hierarchical aggregation from

data, information, and knowledge to intelligence in the brain may

be illustrated by the cognitive model of an arbitrary AND-gate as

follows (Wang, 2018):

Given an AND-gate with input size |I| = n = 10,000 pins

and one output |O| = 1, its cognitive complexities at

different levels according to HCO are extremely different:

1) Data: 210,000 bits ⇐ super big!

2) Information: 10,000 bits

3) Knowledge: 2 rules ⇒







O = 1, iff

n

R
i=1

Ii ≡ 1

O = 0, otherwise

4) Intelligence: ∀n, O = f (n) =AND(n)

// It becomes a generic logical function learnt by κC independent

from n.

The example reveals if a machine tries to learn how an

AND-gate behaves at the data level, it always faces an extremely

complex problem that easily becomes intractable. However,

human brains may quickly reduce the problem to a general

and simple logic function at the intelligence level. This is

the fundamental difference between current data-training-based

machine learning technologies and the natural intelligence of the

brain underpinning κC.

The odyssey of computing theories and technologies from

Babbage (1822)’s mechanical machines, Turing (1950)’s extended

finite state machines (FSM), von Neumann (1946)’s stored-

program-controlled computers, to regressive and convolutional

neural-networks-driven AI systems (McCarthy et al., 1955), has led

to the emergence of κC for autonomous intelligence generation

(Wang, 2012e). κCmanipulates cognitive entities as hyperstructures

(H) (Wang, 2008c, 2009a) beyond classic discrete objects in a set of

real numbers (R). H reveals the latest discovery on the essence of

knowledge and intelligence where the target objects have been out

of the domain of B and R, which are challenging the processing

power of traditional mathematical means and computing models

used for manipulating data and information.

Definition 2. A cognitive computer (κC) is a fully intelligent

computer, aggregated from data and information processing, to

provide a cognitive engine for empirical knowledge acquisition and

autonomous intelligence generation driven by IM.

κC is a disruptive technology for AAI that implements brain-

inspired computers powered by non-preprogramed computing

and non-pretrained AI based on the latest breakthroughs in

cognitive computing theories (Wang, 2009b, 2011, 2012c), and

intelligent mathematics (Wang, 2021b). The philosophy of κC

is underpinned by that it is impossible to either preprogram

all future behaviors pending by unpredicted runtime demands

or pretrain all application scenarios in real-time in the infinite

discourse of (H).

This study presents a retrospective and prospective review of

the odyssey toward contemporary κC driven by transdisciplinary

basic research and technology advances. A comprehensive scope

of philosophical and theoretical perspectives on κC as well as
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FIGURE 2

Theoretical foundations of κC.

transdisciplinary theories and IM for κC will be explored in

Section 2. The architecture and functions of κC will be modeled

in Section 3 as brain-inspired autonomous systems. Applications

of κC will be demonstrated in Section 4 via experiments on

machine knowledge learning for enabling autonomous machine

intelligence generation.

2. Transdisciplinary discoveries on the
theoretical foundations of κC

The universe of discourse of contemporary sciences is a dual

of natural and abstract sciences as shown in Figure 2. In recent

decades, a number of scientific disciplines have emerged as abstract

sciences such as data, information, knowledge, and intelligence

sciences from the bottom up. They have not only been triggered

by the information revolution and the rise of computational

intelligence but also by the deepened understanding of the insights

and generic principles of the natural science counterparts, in formal

studies (Wang, 2003, 2008c, 2022b; Wang et al., 2006, 2021a).

The convergence of brain science (Wilson and Frank, 1999;

Wang et al., 2006), intelligence science (Boole, 1854; Wang, 2009a;

Wang et al., 2016b, 2017; Widrow, 2022), computer science (von

Neumann, 1946; Turing, 1950; Wang, 2009b), and intelligent

mathematics (Wang, 2008c, 2012a,b, 2020, 2022c) has led to

the emergence of κC (Wang, 2009b, 2012e), underpinned by

the synergy of abstract sciences (Wang, 2022b). This section

provides a transdisciplinary review and analysis of the theoretical

foundations, key discoveries, and technical breakthroughs

toward realizing κC across the brain, computer, software,

data, information, knowledge, intelligence, cybernetics, and

mathematical sciences.

2.1. Brain science

The brain as the most mature intelligent organ (Wilson and

Frank, 1999; Wang et al., 2006) is an ideal reference model for

revealing the theoretical foundations of AI, and what AI may or not

do, constrained by the nature and the expressive power of current

mathematical means for computational implementations.

Definition 3. Brain science studies the neurological and

physiological structures of the brain and the mechanisms of

intelligence generation on brain structures.

It is revealed in cognitive informatics (Wang, 2003) that the

brain and natural intelligence may be explained by a hierarchical

framework, which maps the brain through embodiments at

neurological, physiological, cognitive, and logical layers from

bottom-up induction and top-down deduction. A rigorous study

of the cognitive foundations of natural intelligence may shed light

on the general mechanisms of all forms of intelligence toward

pervasive brain-inspired systems (BIS) (Wang et al., 2016b, 2018).

A layered reference model of the brain (LRMB) (Wang et al.,

2006) is introduced in Figure 3 as an overarching architecture of

the brain’s mechanisms. The four lower layers of LRMB, such as

those of sensation, action, memory, and perception, are classified

as subconscious mental functions of the brain, which are identified

as the Brain’s Operating System (BOS). However, the three higher

layers encompassing those of cognition, inference, and intelligence

are classified as conscious mental functions of the brain known as

the Brain’s Intelligence Generator (BIG) built on BOS.

LRMB reveals that the brain can be formally embodied

by 52 cognitive processes (Wang et al., 2006) at seven

recursive layers from the bottom up. In this view, any

complex mental process or intelligent behavior is a temporary

composition of fundamental processes of LRMB at run-

time. Based on LRMB, the nature of intelligence may be

rigorously reduced to lower-layer cognitive objects such as data,

information, and knowledge in the following subsections. The

framework of brain science and its functional explanations

in cognitive science will be further explained in Figures 7, 8

in Sections 3, 4.

According to LRMB, the theoretical bottleneck and

technical challenges toward κC are the lack of a fully

autonomous intelligent engine at the top layer constrained

by current pretrained AI and preprogramed computing

technologies (Wang, 2009b, 2021b). Therefore, from the

brain science point of view, κC is a brain-inspired intelligent

computer for autonomous intelligence generation (AIG)

dependent on an intelligent operating system, as designed in

Section 4.

2.2. Computer science

A computer is a general programable machine for realizing

computational intelligence (Wang, 2008c, 2009a). The odyssey

toward κC has gone through mechanical (Charles Babbage)

(Babbage, 1822), analog, digital, and then quantum (David, 1985)

computers. Computing theories and models have been focused on

information processing by various means and architectures (Lewis
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FIGURE 3

Layered reference model of the brain (LRMB) (Wang et al., 2006).

FIGURE 4

OAR model of knowledge as dynamic neural clusters.

and Papadimitriou, 1998; Wang, 2008f). However, they are still

stuck at low levels of reflexive, imperative, and adaptive intelligence

according to the hierarchical intelligence model (HIM), as shown in

Figure 5.

Definition 4. Computer science studies the architectures and

functions of general instructive processors, their denotational

and operational mathematical models, programming languages,

algorithmic frameworks, and run-time problem solutions

interacting with the external environment.

A fundamental theory of computer science is built on the

mathematical model of finite state machines (FSM) (Lewis and

Papadimitriou, 1998) and Turing machines (Turing, 1950) as an

event-driven behavioral generators in between the internal memory

space and the external port (interface) space of users or devices

(Wang, 2008f).

Definition 5. FSM is a universal function generator.

Its structure 2(FSM) is a quin-tuple and its function

F(FSM) is a sequence of state transitions of event-

driven functions to realize programable intelligence in the

external space:

FSM
∧
=











2(FSM) = (S,6, s,H, δ)

F(FSM) =

|S|

R
i=s

δi:6i × Si → Si+1, Si 6⊂H
(2)

where S is a finite set of predefined states of the FSM, Σ a set

of events, s the initial state (s ∈ S), H the set of final states
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FIGURE 5

Hierarchical intelligence model (HIM) of intelligence science.

and δ the state transition function. In Equation (2), the big-R

calculus is a general recursivemathematical expression for denoting

recurring structures or iterative behaviors (Wang, 2008d), which

is introduced in real-time process algebra (RTPA) (Wang, 2002,

2008a).

For processing complex mathematical and language

expressions, Alan Turing extended an FSM to a more sophisticated

computing model known as the Turing machine (Turing, 1950)

by enhanced recursive functions. Both the Turing machine and

an FSM have provided a foundation for enabling programable

intelligence in computer science.

However, in order to unleash the computational power

from the first-generation of preprogramed (imperative)

computers and the second-generation of pretrained (data

aggregated) AI computers, to the third-generation of autonomous

intelligent computers (Wang, 2012e), κC is indispensable.

The architecture and functions of κC will be elaborated in

Section 3.

2.3. Software science

Software is a form of abstract computational intelligence

that is generated by instructive behaviors as a chain of embedded

functions on executable computing structures as typed tuples

(Wang, 2008a, 2014b). The latest advances in computer

science, intelligence science, and intelligent mathematics have

triggered the emergence of software science (Wang, 2014b,

2021d).

Definition 6. The general mathematical model of software

(GMMS) ℘ is a dispatch structure ↪ with finite sets of embedded

relational processes Pi driven by certain events (E):

℘
∧
=

m

R
k=1

(@ek|E↪ Pk|PM)

=

m

R
k=1

[@ek|E↪

n−1

R
i=1

(pi(k) ri,i+1(k) pi+1(k))|PM]

(3)

where the abstract entities of software are represented by sets of

structure models (SM), process models (PMs), and environmental

events (E).

GMMS (Wang, 2014b) reveals that software is not only

an interactive dispatch structure at the top level driven by

trigger, timing, and interrupt events (E), but also a set of

embedded relational processes at the lower level of subsystems

and components.

Definition 7. Software science studies the formal properties

and mathematical models of software, general methodologies

for rigorous and efficient software development, and coherent

theories and laws underpinning software behaviors and software

engineering practices.

The discipline of software science (Hoare, 1969, 1994;

Wang, 2014b, 2021d) encompasses theories and methodologies,

denotational mathematics, system software, fundamental

algorithms, organizational theories, cognitive complexity, and

intelligent behavior generation theories. The pinnacle of software

science is the set of fundamental theories of formal methods

(Hoare, 1969, 1994; Hoare et al., 1987; Wang, 2008a, 2014b, 2021d)

and platforms of system software including operating systems,

compilers, database systems, and networked interconnections

(Wang, 2008f). Hoare has revealed that software is a mathematical

entity (Hoare, 1969) that may be formally denoted by a sequential

behavioral process known as the unified process theory in formal

methods (Hoare, 1994).

A set of 30+ laws of programming has been created by Hoare

et al. (1987). Then, real-time process algebra (RTPA) (Wang, 2002,

2008e) has been introduced that extends Hoare’s sequential process

theory to a system of IM for formally denotating system and

human cognitive, inference, and behavioral processes as a general

theory toward software science (Wang, 2014b). Based on RTPA, a

comprehensive set of mathematical laws and associated theorems

on software structures, behaviors, and processes has been formally

established (Wang, 2008b).

Software engineering is applied software science that is one

of the most complicated branches of engineering fields because

its objects are highly abstract and intangible. It encompasses

system modeling, architecture, development methodologies,

programming technologies, and development platforms. It also

covers heuristic principles, tools/environments, best practices, case

studies, experiments, trials, and performance benchmarking.

2.4. Data science

Data are an abstract representation of quantities or properties

of real-world entities and abstract objects against a specific

quantification scale. Data are the most fundamental and pervasive

cognitive objects in the brain that link real-world entities and

attributes to mental abstractions via sensation and quantification.
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Data are the most fundamental level of cognitive objects

represented in the brain by its sensory, qualification, and

abstraction processes for eliciting real-world attributes. The

cognitive processes for data elicitation according to the LRMB

model involve sensory, observation, abstraction, andmeasurement.

However, data manipulations are dependent on qualification,

qualification, measurement, statistics, and computing.

Definition 8. Data with respect to a quantity X against a

measuring scale S, D(X,S), is yielded via a quantification process

ŴS(X) that results in a real number, ISX .RSX , in unit [S] denoted

by the integer part ISX and the decimal part RSX , where the latter is

given by the remainder:

D(X,S)
∧
=

ŴS(X) =
X
S

= ISX .RSX [S], S ∈ R, ISX ∈ Z, 0 ≤ RSX < S

=

{

ISX = modS(X)

RSX = remS(X)

(4)

where S is represented by typical types encompassing

bits (B), natural numbers (N), integers (Z), real numbers

(R), and fuzzy numbers (F) in type theories (Wang, 2002,

2014b).

Definition 9. Data science studies the basic properties of

data encompassing their forms, types, properties, domains,

representations, and formal mathematical models. It also studies

data manipulation methodologies for data generation, acquisition,

storage, retrieval, transformation, sharing, protection, and

information aggregation.

In data science, big data are large-scale and heterogeneous

data in terms of quantity, complexity, storage, retrieval, semantics,

cognition, distribution, and maintenance in all branches of abstract

sciences (Wang and Peng, 2017) across Section 2.

Definition 10. The mathematical model of big data Θ is a two-

dimensional n × m matrix where each row
n
R
i=0

ri|SM is denoted

by a structure model (|SM) called a typed tuple; while each column
m
R
j=0

ej|Tj is clustered by a field with a certain type (|Tj):

2
∧
=

n

R
i=0

m

R
j=0

dij|Tj

=

















r0 e0|T0 e1|T1 · · · em|Tm

r1 d10|T0 d11|T1 · · · d1m|Tm

r2 d20|T0 d21|T1 · · · d2m|Tm

...
...

...
. . .

...

rn dn0|T0 dn1|T1 · · · dnm|Tm

















(5)

2(BDS1) =

1,000,000

R
i=0

7

R
j=0

dij|T0j

=

















θ0(BDS1) ID|N UName|S GName|S Text|TX Voice|A Photo|F Video|V

κ1 0000001 John G0001 Rt0000001|TX Ra0000001|A Rp0000001|F Rv0000001|V

κ2 0000002 Judy G0301 Rt0000002|TX Ra0000002|A Rp0000002|F Rv0000002|V
...

...
...

...
...

...
...

...

κ1,000,000 1000000 Mike G1806 Rt1000000|TX Ra1000000|A Rp1000000|F Rv1000000|V

















(6)

where each cell of big data

n

R
i=0

m

R
j=0

dij|Tj formally denotes a certain

object dij|Tj in type |Tj.

Example 2. A formal BDS of a social network,

2(BDS), with a million users and seven data fields can

be rigorously modeled by Equation (6), according to

Definition 10.

In Example 2, row zero θ0 in the mathematical model of

BDS, Θ (BDS), is a special typed tuple called the schema of

the BDS, which specifies the structure and constraint of each

data field of the BDS. It is noteworthy that the type suffixes

|T adopted in the BDS model allow arbitrary type and media

of big data to be rigorously specified in order to meet the

requirements for accommodating widely heterogeneous data in

the BDS, which will be specifically embodied by a certain type

in applications.

The fundamental theory of data science may be explained

by a set of rigorous data manipulations on Θ by Big Data

Algebra (BDA) (Wang, 2016b). BDA provides a set of 11

algebraic operators in the categories of architectural modeling,

analytic, and synthetic operations on the formal model of

big data structure Θ(BDA). In BDA, the modeling operators

include schema specification and BDS initialization. The analytic

operators encompass those of system assignment, retrieval,

selection, time-stamp, and differentiation. The synthetic operators

encompass those of induction, deduction, integration, and

equilibrium detection.

BDA creates an algebraic system for rigorously manipulating

big data systems 2(BDS) of intricate big datasets. It provides an

efficient means for BDS modeling, design, specification, analysis,

synthesis, refinement, validation, and complexity reduction as a

general theory of data science (Wang and Peng, 2017).

2.5. Information science

Information is a general form of abstract objects and

the signaling means for communication, interaction, and

coordination, which are represented and transmitted by

symbolical, mathematical, communication, computing, and

cognitive systems. The source of information is sensory stimuli

elicited from data by qualification or quantification. Any product

and/or process of human mental activities results in information

as a generic product of human thinking and reasoning that

lead to knowledge. Information is the second-level cognitive

object according to the CFB model (Figure 1), which embodies the

semantics of data collected from the real world or yielded by human

cognitive processes.
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Definition 11. Information science studies forms,

properties, and representations of information, as well

as mathematical models and rules for information

manipulations such as its generation, acquisition,

storage, retrieval, transmission, sharing, protection, and

knowledge aggregation.

In classic information theory (Shannon, 1948), information

is treated as a probabilistic measure of the properties of

messages, signals, and their transmissions. It has focused on

information transmission rather than the cognitive mechanisms of

information and its manipulations. The measure of the quantity

of information is highly dependent on the receiver’s subjective

judgment on probable properties of signals in the message as

Shannon recognized.

Definition 12. The Shannon information of an n-

sign system, Is, is determined by a weighted sum of the

probabilities pi and unexpectedness Ii of each sign in an

information system:

Is
∧
=

n
∑

i=1

pi • Ii =

n
∑

i=1

pi • log2
1

pi
[bit] (7)

It is noteworthy that Shannon information measures the

characteristic information of channel properties, which is not

proportional to the size of a message transmitted in the channel.

Therefore, classic information science has focused on symbolic

information rather than the denotational and cognitive properties

of information as given in Definitions 13 and 14.

The second generation of computational information science

tends to model information as a deterministic abstract entity for

data, messages, signals, memory, and knowledge representation

and storage, rather than a probable property of communication

channels as in the classic information theory. This notion reflexes

the computational theories and practices across computer science,

software science, the IT industry, and everyday lives (Turing, 1950;

Wang, 2014b).

Definition 13. The computational information, Ic, in

contemporary information science is a normalized size of

symbolic information of abstract object Ok represented in a

k-basedmeasure scale Sk:

Ic
∧
= fk :Ok → Sk, k ∈ N

= klogkOk log2k

= Oklog2k [bit]

(8)

where Ic is deterministic and independent from Shannon’s

probabilistic information. In other words, the unit bit in

computational information has been extended from Shannon’s

characteristic information of signals to the quantity of symbolic

information in computer science.

However, it has been argued in cognitive information science

that computational information as given in Definition 13 may

still not represent the overall properties of generic information,

particularly its semantic aspect (Wang, 2003). This leads to the

third generation of information science that models the essence

of information as universal abstract artifacts and their symbolic

representations, which can be acquired, memorized, and processed

by human brains or computing systems. Theories of the third

generation of information science are represented by cognitive

Informatics (CI) (Wang, 2003) as a transdisciplinary enquiry on the

internal information processing mechanisms and processes of the

brain (Wang et al., 2006).

Definition 14. Cognitive information, Ici = (Iκ , I�), is

a 2D hyperstructure that represents a pair of characteristic

information (Iκ ) and semantic information (I�) on an arbitrary

base β ∈ N that determines the number of representative

variables κ = |v1, v2, ..., vκ |:

Ici
∧
= (Iκ , I�) =

{

Iκ = κ log2β [bit]

I� = 2⌈Iκ ⌉ [bit]
(9)

where Iκ is determined by the symbolic size of a certain problem

dimension β, while I� is generated by a normalized denotational

space 2⌈Iκ ⌉.

The cognitive information model provided in Definition 14

reveals that the generalized semantic information is an inherent

property of any system by both Iκ and I�. The measure of cognitive

information is compatible with, but more general than, those of

classic and computational information.

Theorem 1. The framework of contemporary

information science is constrained by the following relations

among Is, Ic, and Ici:

Is ∈ Ic < Ici = (Iκ , I�) (10)

where< denotes a dimensional enclosure in a hyperstructure.

Proof. Theorem 1 holds directly based on Definitions 12–14:

∀ Is, Ic and Ici,

because Is =
Ic
Ok

= Ici .Iκ
Ok

and Ici.Iκ < Ici

therefore Is ∈ Ic < Ici = (Iκ , I�)

(11)

where the classic Shannon information Is and computational

information Is become a special case of the characteristic

information Iκ in cognitive information science. �

Contemporary and generalized information science explains

that interpreted data result in information, while comprehended

information generates knowledge.

2.6. Knowledge science

Knowledge is modeled as a set of conceptual relations acquired

and comprehended by the brain embodied as a concept network

(Cios et al., 2012; Wang, 2012e, 2016c). Knowledge is the third

level of cognitive objects according to CFB as learned and

comprehended information. Knowledge is perceived as a creative

mental product generated by the brain embodied by concept

networks and behavioral processes. The former represents the form

of to-be knowledge, while the latter embodies the form of to-do

knowledge that leads to the generation of human intelligence as

elaborated in Section 2.7.
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In traditional epistemology, knowledge is perceived as a

justified belief (Wilson and Frank, 1999). However, this perception

is too narrow and subjective, and may not capture the essential

essence of knowledge as a high-level cognitive entity aggregated

from data and information.

Definition 15. Knowledge science studies the nature of

human knowledge, principles, and formal models of knowledge

representation, as well as theories for knowledge manipulations

such as creation, generation, acquisition, composition,

memorization, retrieval, and repository in knowledge engineering.

The neurological foundation of knowledge may be explained

by the synaptic connections among neurons representing the

clusters of objects and attributes as shown in Figure 4. The dynamic

neural cluster (DNC) indicates that knowledge is not only retained

in neurons as individual objects (O) or attributes (A), but also

dynamically represented by the newly created synaptic connections

modeled by relations such as r(O, A), r(A, O), r(O, O), and r(A, A)

in Figure 4. This leads to the development of the formal cognitive

model of knowledge (Wang, 2007).

Definition 16. The Object-Attribute-Relation (OAR) model

(Wang, 2007) of knowledge in the brain is represented by a triple

of neurological clusters:

OAR
∧
= (O, A, R) (12)

where O is a set of objects identified by unique symbolic names, A

the set of attributes for characterizing an object, and R the set of

relations between the objects and attributes, i.e., R= O× A.

The OAR model reveals the nature and essence of knowledge

and its neurological foundations. The OAR model may be

adopted to explain a wide range of human information processing

mechanisms and cognitive processes. It is different from the

classic container metaphor of knowledge that failed to explain the

dynamics of knowledge establishment and growth. TheORAmodel

enables formal explanations of the structural model of human

knowledge in the following mathematical model and theorem.

Then, the semantical and functional theories of knowledge will be

rigorously elaborated in concept algebra and semantic algebra in

Section 2.9.

Definition 17. The mathematical model of knowledge is a

Cartesian product of power sets of formal concepts:

K = ℜ :

n

X
i=1

Ci →

m

X
j=1

Cj [bir] (13)

where the newly acquired concept Ci is mapped onto those

already existing.

Equation (13) has led to one of the most fundamental

discoveries in knowledge science (Wang, 2016c) as follows.

Theorem 2.The basic unit of knowledge is a pairwise conceptual

relation, or shortly, a binary relation [bir].

Proof. According to Definition 17, knowledge as a mapping

between two Cartesian products of concepts results in a

deterministic set of relations. In which, any complex relationships

can be reduced to the basic unit, bir, of knowledge between a pair of

individual concepts. �

The formal theory of knowledge science is underpinned

by concept algebra (Wang, 2010) and semantic algebra (Wang,

2013) in IM. It is recognized that concepts are the core

model of human knowledge that carry stable semantics in

expression, thinking, learning, reasoning, comprehension, and

entity denotation. Although words in natural languages are often

ambiguous and polymorphic, concepts elicited from them are

not only unique in expressions but also neutral across different

languages. Therefore, concept algebra is adopted to rigorously

manipulate formal concepts and their algebraic operations for

knowledge representation and semantic analyses. A set of algebraic

operators of concept algebra has been created in Wang and

Valipour (2016), Valipour and Wang (2016), which enables a wide

range of applications in cognitive informatics, cognitive linguistics,

and cognitive machine learning (Wang et al., 2011).

In knowledge science, semantics is the carrier of language

expressions and perceptions. In formal semantics, a comprehension

of an expression is composed of the integrated meaning of

a sentence’s concepts and their relations. Semantic algebra is

created for rigorous semantics manipulations in knowledge science

by a set of rigorous relational, reproductive, and compositional

operators (Wang, 2013). On the basis of semantic algebra, semantic

expressions may not only be deductively analyzed based on their

syntactic structures from the top down, but also be synthetically

composed by the algebraic semantic operators from the bottom

up. Semantic algebra has enabled a wide range of applications in

cognitive informatics, cognitive linguistics, cognitive computing,

machine learning, cognitive robots, as well as natural language

analysis, synthesis, and comprehension (Wang et al., 2016a).

2.7. Intelligence science and AI

Intelligence science is the paramount level of abstract sciences

according to the CFB model in Figure 1.

Definition 18. Intelligence ï is either an internal inferential

thread triggered by a cause ci that results in inductive knowledge Ki

or an interactive behavioral process Bi corresponding to an external

or internal stimulus (event) ei:

ϊ
∧
=















m

R
k=0

(ck → Kk) // inferential intelligence

n

R
i=0

(ei → Bi) // behavioral intelligence

(14)

where the former is called inferential intelligence and the latter

behavioral intelligence.

It is revealed that human and machine intelligence are dually

aggregated from (sensory | data), (neural signaling | information),

and (semantic networks | knowledge), to (autonomous behaviors

| intelligence) in a recursive framework (Wang et al., 2021a). In

each pair of intelligent layers, the former is naturally embodied

in neural structures of the brain, while the latter is represented

in abstract (mathematical) forms in autonomous AI. Therefore,

natural intelligence (NI) and AI are equivalent counterparts in

philosophy and IM, which share a unified theoretical foundation

in intelligence science as illustrated by LRMB in Section 2.1.

Definition 19. Intelligence science studies the general form

of abstract intelligence (αI) overarching natural and artificial
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intelligence and their theoretical foundations, which enable

machines to generate advanced intelligence compatible with both

human inferential and behavioral intelligence.

A Hierarchical Intelligence Model (HIM) (Wang et al., 2021a)

in intelligence science is introduced to explain the levels and

categories of natural andmachine intelligence as shown in Figure 5.

HIM explains why there was rarely fully autonomous intelligent

system developed in the past 60+ years because almost all such

systems are constrained by the natural bottleneck of adaptive (L3-

deterministic) intelligence underpinned by reflexive (L1-pretrained

and data-driven), and imperative (L2-preprogramed) intelligence.

According to HIM, the maturity levels of both human and

machine intelligence are aggregated across the levels of reflexive,

imperative, adaptive, autonomous, and cognitive intelligence from

the bottom up in line with LRMB (Wang et al., 2006) in

brain science. HIM indicates that current AI technologies are

still immature toward achieving human-like autonomous and

conscious intelligence because the inherent problems faced by

current AI technologies have been out of the domain of reflexive

and regressivemachine intelligence.

Definition 20. The general pattern of abstract intelligence (αI)

is a cognitive function fi that enables an event ei|T in the universe

of discourse of abstract intelligence, Uϊ, to trigger a causal behavior

BT(i)|PM as a functional process:

aI
∧
= fϊ : J × O× S× T −→ B, (J,O,B, S,T) ∈ Uϊ

=

n

R
i=1

(@ei|T ↪ BT(i)|PM), ei|T ∈ Uϊ.T
(15)

where Uϊ
∧
= (J,O,B, S,T) denotes the 5D behavioral space of

humans and intelligent systems constrained by the subject (J),

object (O), behaviors (B), space (S), and time (T). The symbol ↪

denotes the dispatching operator, |T the type of events classified as

trigger, timing, or interrupt requests, and |PM the type suffix of a

process model for a certain behavior (Wang, 2002).

The advances of intelligence science have provided primitive

theories for the odyssey toward κC powered by IM, particularly

Real-Time Process Algebra (RTPA) (Wang, 2002) and Inference

Algebra (Wang, 2011, 2012c) inspired by Newton (1729), Boole

(1854), Russell (1903), Hoare (1969), Kline (1972), Aristotle (384

BC−322 BC) (1989), Zadeh (1997), Bender (2000), Timothy

(2008), and Widrow (2022).

2.8. Cybernetics 2.0

Norbert Wiener invented the word cybernetics and wrote a

book by that name on the subject of feedback and control in the

human body (Wiener, 1948). Widrow’s new book (Widrow, 2022),

“Cybernetics 2.0: a General Theory of Adaptivity and Homeostasis

in the Brain and in the Body” follows in Wiener’s footsteps.

It is different as it introduces learning algorithms to Wiener’s

subject because learning algorithms did not exist in Wiener’s

day. Our current knowledge of biologically plausible networks for

information flow is still limited. Most research focuses on neurons,

but there is a world of complexity due to glial cells like astrocytes

which surround them and densely pack and provide the energy for

synaptic events (Salmon et al., 2023).

Through synapses of neurons in the brain, information is

carried between neurotransmitters and neuroreceptors. Synapse

is the coupling device from/to neuron. The strength of the

coupling, the “weight”, is proportional to the number of receptors.

Their numbers can increase or decrease, such as upregulation or

downregulation. A mystery in neuroscience is, what is nature’s

algorithm for controlling upregulation and downregulation? Start

with Hebbian learning and generalize it to cover downregulation,

upregulation, and inhibitory, as well as excitatory synapses.

What results is a surprise! We have an unsupervised form

of the LMS (least mean square) algorithm of Widrow and

Hoff. The Hebbian-LMS algorithm encompasses Hebb’s learning

rule (fire together, wire together), and introduces homeostasis

into the equation. A neuron’s “normal” firing rate is set by

homeostasis. Physical evidence supports Hebbian-LMS as being

nature’s learning rule. LMS binds nature’s learning to learning in

artificial neural networks.

The Hebbian-LMS algorithm is key to the control of all the

organs of the body, where hormones bind to hormonereceptors and

there is upregulation and downregulation in the control process.

Hebbian-LMS theory has a wide range of applications, explaining

observed physiological phenomena regarding, for example, pain

and pleasure, opioid addiction and withdrawal, blood pressure,

blood salinity, kidney function, and thermoregulaion of the body’s

temperature. Upregulation and downregulation are even involved

in viral infection and cancer. Countless variables are controlled by

the same algorithm for modulating adaptivity and learning with

billions of synapses in the brain.

2.9. Mathematical science and
contemporary intelligent mathematics

Mathematics is the most fundamental branch of abstract

sciences for manipulating contemporary entities toward κC. The

history of sciences and engineering has revealed that the kernel

of human knowledge has been elicited and archived in generic

mathematical forms (Wang, 2020, 2021c, 2022c) as evidenced in the

transdisciplinary reviews of the previous subsections. Therefore,

the maturity of any scientific discipline is dependent on the

readiness of its mathematical means.

Definition 21. Intelligent Mathematics (IM) is a category of

contemporary mathematics that deals with complex mathematical

entities in the domain of hyperstructures (H), beyond those of

R and B, by a series of embedded functions and processes

in order to formalize rigorous expressions, inferences, and

computational intelligence.

An interesting discovery in IM (Wang, 2020) is that almost

all Abstract Objects (AO) in modern sciences, such as data,

information, knowledge, and intelligence as illustrated in Figure 6,

cannot be rigorously modeled and manipulated by pure numbers

(Wang, 2008c, 2012b, 2023). In order to deal with this denotational

crisis of mathematics (Wang, 2022c), the mathematical means for

manipulating AO must be adapted to allow κCs to sufficiently
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FIGURE 6

Framework of IMs underpinning κC.

handle the nonnumerical hyperstructures of AO for autonomous

knowledge and intelligence processing.

The theoretical framework of IM is described in Figure 6

which explains the causality of what AO has triggered the

development of which IM paradigm. It also describes the

applications of each contemporary IM in κC for meeting the

indispensable demands in symbiotic and autonomous human–

machine interactions.

Although classic mathematics has provided a wide range of

abstract means for manipulating abstract numbers dominated

in R, it has been fundamentally challenged by the demands

in knowledge and intelligence sciences where the cognitive

entities are no longer pure numbers. These contemporary

demands have triggered the emergence of IM, which provides

a family of advanced denotational means for extending classic

numerical analytic mathematics in R to more general categories

of abstract entities in H as explained in Figure 6. IM has

extended traditional Boolean algebra (as well as bivalent logic)

on B and analytic algebra on R to more complex and multi-

dimensional hyperstructures (H) in order to enable humans

and/or intelligent machines to manipulate compatible knowledge

and symbiotic intelligent behaviors across platforms via κC

for efficiently processing the nonnumerical cognitive entities

characterized byH.

The framework of IM demonstrates a set of most important

basic research on the theoretical foundations of κC. The design

and implementation of κC have been enabled by IM and

related theoretical and technical advances as reviewed in previous

subsections. IM has shed light on the systematical solving of

challenging natural/artificial intelligence problems by a rigorous

and generic methodology. A pinnacle of IM is the recent proofs

of the world’s top-10 hardest problems in number theory known

as the Goldbach conjecture (Wang, 2022d,f,h) and the Twin-Prime

conjecture (Wang, 2022e,i). IM has led to unprecedented theories

and methodologies for implementing κC toward autonomous

intelligence generation.

3. The architecture and functions of
κC for autonomous intelligence
generation

The transdisciplinary synergy of basic research and technical

innovations in Section 2 has provided a theoretical foundation and

rational roadmap for the development of κC.

The odyssey toward κC indicates that the counterpart of human

intelligence may not be in the classic form of special- purpose AI,

rather than be more generic κC-enabled autonomous intelligence

inspired by the brain on a symbiotic man-machine computing

platform. The key transdisciplinary discoveries and mathematical

breakthroughs in Section 2 have enabled the invention of κC and its

development. They have also demonstrated the indispensable value

of basic research devoted by the International Institute of Cognitive

Informatics and Cognitive Computing (I2CICC) in the past two

decades (Wang et al., 2021b).

This section presents the architectural and functional

framework of κC for the next-generation autonomous

intelligent computers. The brain-inspired architecture and

the hierarchical intelligent functions of κC will be formally

described and elaborated. It leads to a demonstration of how

κC works for autonomous knowledge learning toward machine

intelligence generation among other AAI functions modeled

in Figure 3.

3.1. Architecture of κC

κC is designed as a BIS for advancing classic computers

from data processors to the next generation of knowledge

and intelligence processors mimicking the brain. It

studies natural intelligence models of AAI as a cognitive

system in one direction, and the formal models of the

brain simulated by computational intelligence in the

other direction.

Definition 22. κC is a brain-equivalent intelligent computer

that implements autonomous computational intelligence

enabled by IM. Let κ0 through κ4 be the hierarchical

layers of cognitive objects of data (D), information (I),

knowledge (K), and intelligence (İ), the autonomous

generation of intelligence by a κC is formally modeled by a

recursive structure:

κC
∧
=

4

R
k=1

κk(κk−1), κ0 =

n

R
i=0

di|Ti

= κ4(κ3(κ2(κ1(κ0))))

= İ(K(I(D(

n

R
i=0

di|Ti))))

(16)

where each cognitive layer (κk) is enabled by its lower adjacent

layer (κk−1) till the cognitive hierarchy is terminated at the bottom

sensorial layer (κ0), which is embodied by n+1 dimensional

data,

n

R
i=0

di|Ti = (d0|T0, d1|T1, ..., dn|Tn) as acquired by abstraction

and quantification. The type-suffix |T is adopted to denote

the semantic category of a variable x by x|T. Typical types
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FIGURE 7

Architecture of κC.

for modeling intelligent behaviors of κC have been given in

Definition 22.

The architectural model of κC is illustrated in Figure 7 as a

brain-inspired computer. In the κC architecture, each component

has a corresponding organ in the brain that shares similar

functions. This design reflects the essence of BIS synergized in

Section 2. The kernel of κC is embodied by the inference and

conscious engines equivalent to the thalamus and the hyperthalamus

of the brain (Wang, 2012d), respectively, according to the LRMB

model as shown in Figure 3. It is noteworthy that the cognitive

memories in the brain encompass short-termmemory (STM), long-

term memory (LTM), sensory buffer memory (SBM), action buffer

memory (ABM), and conscious status memory (CSM) as shown in

Figure 7 Figure 7 (Wang, 2012d), which play important roles for

supporting intelligence generation and operation. However, they

are not the kernel organs of natural intelligence, rather than buffers

and storages in the brain. Therefore, all memory structures may be

unified in κC as a general memory space that may be partitioned

into special sections.

3.2. Functions of κC

The functional model of κC, as shown in Figure 8, is

designed based on the HIM model (Figure 5) of intelligence

science (Wang, 2012d). Adopting HIM as a blueprint for the

behavior model of κC, an Intelligent Operating System (IOS)

of κC, κC-IOS, is designed as shown in Figure 9. κC-IOS

provides a rigorous Mathematical Framework of Hierarchical

Intelligence (MFHI) for κC. The Intelligent Behavioral

Model of κC configured by the MFHI framework forms a

theoretical foundation for explaining what the spectrum of

natural intelligence is, and how they are generated by κC in

computational intelligence.

The κC-IOS model explains why the current level of machine

intelligence has been stuck at the adaptive level of İ
adp

for over

60+ years. It also elaborates why fully autonomous intelligence

could not be implemented by current pretrained AI technologies

in real-time applications.

In the framework of κC-IOS, the inference engine of κC

for intelligent behavior generation is implemented from

the bottom-up encompassing: L1) the reflective (sensory-

driven) intelligence, L2) the imperative intelligence; L3) the

adaptive intelligence, L4) the autonomous intelligence, and

L5) the cognitive intelligence. κC-IOS enables κC to think (the

inferential intelligence) and action (the behavioral intelligence)

as defined in the mathematical model of intelligence (Equation

14) toward AAI by mimicking the brain beyond classical

preprogramed computers or the pre-trained special purpose

AI technologies.
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FIGURE 8

Intelligent functions of κC built on the layered reference model of the brain (LRMB).

Each form of the 16 intelligence functions compatible

between the brain and κC is coupled by the generic

pattern of intelligence as an event-triggered dispatching

mechanism (Wang, 2002) formulated in Definition 20. The

mathematical models developed in Figure 9 reveal that

intelligent computers may be extended from the narrow

sense in Section 2.7 to a broad sense of κC for autonomous

intelligence generation. The intelligent behaviors of κC

are aggregated from the bottom-up as shown in Figure 9,

particularly those at Level 5 such as knowledge-based, learning-

driven, inference-driven, and inductive intelligence in order

to enable the highest level of system intelligence mimicking

human brains. Therefore, κC will overcome the classical

constraints inherited in the pretrained and preprogrammed

computing approaches for implementing the expected

intelligent computers.

4. Paradigms of κC for autonomous
knowledge learning and machine
intelligence generation

The fundamental AAI kernel of κC has been implemented

based on the design in Figures 8, 9 (Wang, 2012e). κC is driven by a

set of autonomous algorithms formally described in RTPA (Wang,

2002), which are autonomously executed by κC for enabling AAI

(non-pretrained or non-preprogrammed) intelligence.

One of the key breakthroughs of κC is autonomous knowledge

learning enabled by Level-5 cognitive intelligence according to

Figure 5 (Wang, 2022a), (Valipour and Wang, 2017). According

to HIM, the abilities for knowledge learning and reasoning are

an indispensable foundation for intelligence generation by κC. In

other words, traditional data-driven AI may not necessarily lead to

generic and autonomous machine intelligence, because it is trained
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FIGURE 9

Intelligent operating system of κC (κC-IOS).
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FIGURE 10

The universal language comprehension (ULC) model.

for specific purposes. This observation reveals a fundamental

difference between κC and classical data-regressive AI technologies.

The cognitive informatics model of language comprehension

is a cognitive process according to the LRMB and OAR models

of internal knowledge representation (Wang, 2007; Wang et al.,

2011, 2016a). A rigorous description of the cognitive process of

comprehension has been formally described in Wang (2009b,

2021b). The cognitive model between a language expression and

its syntaxes and semantics may be explained as shown in Figure 10

known as the universal language comprehension (ULC) model

(Wang and Berwick, 2012). Figure 10 explains that linguistic

analyses are a deductive process that maps the 1-D language

expression L into a 5-D semantic space C via 2-D syntactical

analyses S, where C is determined by the dimensions of the subject

(J), the object (O), the action (A), the space (S), and the time

point (T).

The ULC model indicates that syntactic analysis is a coherent

part of semantic comprehension in formal language processing and

machine knowledge learning by κC. It is found that the semantics of

a sentence in a natural language expression may be comprehended

by κC iff : (a) The parts of speech in the given sentence are

analytically identified; (b) All parts of speech of the sentence are

reduced to the terminals W0, which are a predefined real-world

entity, a primitive abstract concept, or a derived behavior; and (c)

The individual semantics of each part of speech and their logical

relations are synthesized into a coherent structure.

According to the ULC theory, the methodology for knowledge

learning by κC is a semantic cognition process enabled by a

language comprehension engine (LCE) (Wang, 2016c). LCE is

implemented in a closed loop of syntactic analysis, semantic

deduction, and semantic synthesis for enabling the entire process

of semantic comprehension by κC. LCE is supported by a cognitive

knowledge base (CKB) (Wang, 2014a). In CKB, machine knowledge

is rigorously represented by a cognitive mapping between a newly

acquired concept against known ones in the CKB of κC based on

Definition 17.

An experiment for autonomous κC learning has been

conducted in a pilot project of autonomous (unsupervised)

knowledge learning and semantic cognition driven by concept

algebra (Wang, 2010, 2014a), and semantic algebra (Wang, 2013).

In autonomous knowledge learning, κC adopts a relational neural

cluster structure for knowledge representation in CKB as illustrated

in Figure 4. The set of knowledge acquired by κC for the first

600+ frequently used concepts in English is shown in Figure 11

(Wang and Valipour, 2016; Valipour and Wang, 2017; Wang et al.,

2017). It only takes the κC less than a minute to quantitatively

acquire such scope of knowledge represented by a network of

quantitative semantic relations, which would normally require

several months by traditional qualitative ontology-extraction in

forms of non-quantitative or subjective knowledge graphs without

adopting rigorous IM underpinned by concept algebra (Wang,

2010) and semantic algebra (Wang, 2013).

More significantly in the experiment, the accuracy of semantic

analyses by κC has not only surpassed normal readers but also

over performed expert linguists who composed typical English

dictionaries, which are enabled by κC’s rigorous and quantitative

semantic cognition power. Applications of autonomous knowledge

learning based on concept algebra and semantic algebra may refer

to Wang (2007, 2014a, 2016c, 2018), Wang et al. (2011).

The unpresented impact of κC on autonomous knowledge

learning toward AIG, among other cognitive functions as shown

in Section 3.2, is its capability to directly transfer learnt knowledge

to peers based on the unified knowledge representation models

(OAR) and manipulation mechanisms as shown in Figures 4, 11.

Therefore, κCmay avoid the redundancy of human learning where

similar knowledge must be repetitively relearned by individuals.

Therefore, the direct shareability of machine knowledge learning

results enabled by κC will be an indispensable intelligent platform

for assisting human learning based on symbiotic knowledge bases.

It will unleash the κC power to exponentially expand machine-

learning for enabling downloadable knowledge and intelligence for

a wide range of novel applications.

It is noteworthy through this joint work that contemporary

intelligent mathematics has played an indispensable role in abstract

science in general, and in the odyssey of intelligence science toward

κC in particular. A wide range of applications of κCwill be expected

to demonstrate how κC will realize machine enables knowledge

processing and autonomous intelligence generation, which would

significantly change our sciences, engineering, and everyday life.

5. Conclusion

This work has presented a retrospective review and prospective

outlook on cognitive computers (κC) inspired by the brain and

powered by novel intelligent mathematics (IM). It has revealed

the shift in the paradigm of computing theories and technologies

underpinned by basic research in autonomous AI (AAI) driven

by IM. It has been discovered that the structures, mechanisms,

and inference engines of κCs are fundamentally different from

those of the classical pre-programmed von Neumann computers

and pre-trained neural networks, because both of them have

been inadequately feasible for real-time and runtime autonomous

intelligence generation that is not merely regressive data-driven

according to basic research in brain and intelligence sciences.

Powered by κC and IM, intelligence generation is no longer a

gifted privilege of humans, because machine intelligence may

surpass natural intelligence generation in more aspects according

to the Layered Reference Model of the Brain (LRMB), via not
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FIGURE 11

Experiment on autonomous knowledge learning by κC.

only machine learning but also machine thinking, inference,

and creativity.

This paper has formally elaborated the latest basic research

of the I2CICC initiative in brain, intelligence, knowledge, and

computer sciences underpinned by IM. The transdisciplinary

studies have led to the emergence of κC for autonomous

intelligence generation by none pre-trained and none pre-

programmed AAI technologies. A set of novel theories and

intelligent mathematical means has been created. The architectures

and functions of κC for cognitive computing and autonomous

intelligence generation have been elaborated, which are evidenced

by experiments on autonomous knowledge learning by κC. The

basic research and technical innovations will unleash κC to

augment human intelligence in a pervasive scope and with an

accelerating pace toward the next-generation of symbiotic human-

robot societies.
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