AUTHOR=Björklund Anton , Henelius Andreas , Oikarinen Emilia , Kallonen Kimmo , Puolamäki Kai TITLE=Explaining any black box model using real data JOURNAL=Frontiers in Computer Science VOLUME=5 YEAR=2023 URL=https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2023.1143904 DOI=10.3389/fcomp.2023.1143904 ISSN=2624-9898 ABSTRACT=

In recent years the use of complex machine learning has increased drastically. These complex black box models trade interpretability for accuracy. The lack of interpretability is troubling for, e.g., socially sensitive, safety-critical, or knowledge extraction applications. In this paper, we propose a new explanation method, SLISE, for interpreting predictions from black box models. SLISE can be used with any black box model (model-agnostic), does not require any modifications to the black box model (post-hoc), and explains individual predictions (local). We evaluate our method using real-world datasets and compare it against other model-agnostic, local explanation methods. Our approach solves shortcomings in other related explanation methods by only using existing data instead of sampling new, artificial data. The method also generates more generalizable explanations and is usable without modification across various data domains.