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In recent years the use of complex machine learning has increased drastically.

These complex black box models trade interpretability for accuracy. The lack of

interpretability is troubling for, e.g., socially sensitive, safety-critical, or knowledge

extraction applications. In this paper, we propose a new explanation method,

SLISE, for interpreting predictions from black box models. SLISE can be used

with any black box model (model-agnostic), does not require any modifications

to the black box model (post-hoc), and explains individual predictions (local).

We evaluate our method using real-world datasets and compare it against other

model-agnostic, local explanationmethods. Our approach solves shortcomings in

other related explanation methods by only using existing data instead of sampling

new, artificial data. The method also generates more generalizable explanations

and is usable without modification across various data domains.

KEYWORDS

XAI (explainable artificial intelligence), model-agnostic explanation, interpretable

machine learning, local explanation, explanations, interpretability, HCI (human-computer

interaction)

1. Introduction and related work

Over the past decade, we have seen a veritable explosion in the use of complex

machine-learning models. Many of these can be considered black box models due to the

difficulty of manually following and understanding the steps in their decision processes. This

lack of simulatability (Lipton, 2018) makes the black box models uninterpretable. The need

for interpretability stems from the fact that high accuracy is not always sufficient; we often

also want and need to understand how the model works.

Explainable artificial intelligence (XAI) aims to gain insight into the decision processes

of AI models. This can be achieved using models that directly aim for interpretability, e.g.,

super-sparse linear integer models (Ustun et al., 2014), decision sets (Lakkaraju et al., 2016),

or general additive models (Caruana et al., 2015). However, when black box models are

used, we must turn to explanations in order to be able to understand how the model works.

Explanations give a partial, simplified, or approximate view of the black box model. This

simplification is unavoidable because if the complex models were interpretable, explanations

would be unnecessary.

Interpretability and explainability is especially important in safety-critical real-world

applications, e.g., in medicine (Caruana et al., 2015), but also when trying to understand the

world, such as in physics when classifying particle jets (Komiske et al., 2017). Explanations

can also be used to facilitate human-AI collaboration (Wang et al., 2016) or to “debug” the

black box models, to uncover unwanted biases or shortcuts (Ribeiro et al., 2016; Lapuschkin

et al., 2019). Finally, in some situations it is a legal requirement (Goodman and Flaxman,

2017).
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FIGURE 1

Using SLISE to approximate a complex model locally with a linear

model.

Explanation methods for black box models can generally be

divided into three categories: global explanations, for the entire

model, (e.g., Baehrens et al., 2010; Henelius et al., 2014, 2017;

Datta et al., 2016; Adler et al., 2018); local explanations, for single

predictions, (e.g., Ribeiro et al., 2016, 2018; Fong and Vedaldi, 2017;

Lundberg and Lee, 2017; Guidotti et al., 2018; Björklund et al.,

2019); andmodel inspection, describing internal components of the

model, (e.g., Saltelli, 2002; Erhan et al., 2009; Cammarata et al.,

2020). Multiple local explanations can also be combined to provide

a holistic overview (Lapuschkin et al., 2019; Björklund et al., 2023).

See, (e.g., Guidotti et al., 2019; Xie et al., 2020) for recent surveys of

explanations.

In this paper, we focus on a model agnostic (applicable to any

complexmodel), post-hoc (nomodifications to the complexmodel),

local explanation method that locally approximates a complex

model with a simple, interpretable model. For the simple model,

we use a robust regression method called SLISE (Björklund et al.,

2019). Robust regression tries to find a good regression model

when the data contains outliers. Using robust regression for finding

local explanations is appropriate since we expect that the local

explanation covers only a subset of data items, with the remaining

items being vertical outliers (Rousseeuw and van Zomeren, 1990).

Figure 1 shows a simple example of how a linear model can be

used to approximate a complex model locally. The linear model

is constrained to pass through a selected data point, making the

explanation local to that point. The SLISE method yields a linear

model matching the complex model for a subset of the points. The

error tolerance for this subset can be adjusted and is visualized as

the shaded area around the linear model.

SLISE falls into the same niche (model agnostic, post-hoc, and

local approximations) as, among others, LIME (Ribeiro et al., 2016)

and SHAP (Lundberg and Lee, 2017). These methods approximate

a complex model with a linear model in a neighborhood around the

data item of interest. The neighborhoods are also the big difference

to SLISE. SLISE finds subsets consisting of actual data, while LIME

and SHAP do not require data, only summary statistics, since the

neighborhoods are randomly generated.

Defining these neighborhoods is non-trivial (Guidotti et al.,

2018; Laugel et al., 2018; Molnar, 2019), and can even be exploited

(Slack et al., 2020). Furthermore, data is rarely distributed evenly

across the space of possible values but instead follows some

structure or subspace datamanifold; for example, random sampling

of pixels is unlikely to yield natural images.

Additionally, most black box models are trained with the

assumption that the data they will be applied on is from the same

distribution as the training data. The black box models are likely

to utilize, and even depend on, patterns in the training data. If the

models are applied to data items unlike those in the training data,

the model predictions are often unreliable, with little explanatory

value (Hooker et al., 2021). Therefore, if the neighborhood samples

are inconsistent with the training data distribution, the generated

explanations may be arbitrary.

Figure 2 shows an example of a dataset with a clear structure

where the datamanifold consists of two linear subspaces at x2 ≈ −1

and x2 ≈ +1, respectively. Inside either of the two linear subspaces,

the decision process is simple, so any sufficiently complex model

should be able to achieve high accuracy. However, these models will

return predictions for items outside the data manifold. If we base

our explanations on the predictions outside the data manifold, we

might end up with an arbitrary explanation, as shown in the figure.

That explanation is perfectly accurate for the model, but if we in the

“real world” never see such data items, how relevant would such an

explanation be to a user?

This realization is significant because it suggests that one

cannot always cleanly separate the model from the data, especially

when forming explanations. That is why we, with SLISE, propose to

observe how the black box models perform on actual data instead

of randomly sampling around the data item of interest, as done

in most of the prior work, (e.g., Baehrens et al., 2010; Ribeiro

et al., 2016; Fong and Vedaldi, 2017; Lundberg and Lee, 2017). We

demonstrate the utility of using actual data in Section 4.

Using actual data instead of generating new data also allows

us to update the explanations if we want to change the context of

the black box models. If we, for example, want to investigate how

the model works on newly captured data (instead of training data),

we can give that to SLISE instead (no ground truth needed), or if

we want to investigate a specific behavior, such as the difference

between two classes in a multiclass setting, we can subsample the

data given to SLISE. For example, we can study how a classifier

trained on the EMNIST (Cohen et al., 2017) dataset differentiates

between numbers 2 and 3 by restricting the data to only those

numbers, see Section 3.3.

1.1. Contributions

In this paper, we study SLISE, a robust regression method

with applications to local explanations of opaque machine learning

models. This paper extends our conference paper (Björklund et al.,

2019), which introduces the SLISE algorithm. We have split the

conference paper into two separate journal contributions: one

presenting and evolving the robust regression method (Björklund

et al., 2022), while this paper uses the SLISEmethod to explain black

box models.

The problem we are trying to solve is presented in Section 2

along with the SLISE algorithm, including improvements since the

original paper. In Section 3, we include more datasets and examples
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FIGURE 2

The two decision boundaries, shown with the dashed lines, are equally good for the given dataset. However, the corresponding black box models

behave di�erently outside the data manifold. If we sample points uniformly around the point to be explained (including from outside the data

distribution), the explanation corresponds to the gradient, might end up pointing in directions not supported by the data. This happens for the upper

gradient for the decision boundary 1 (left) and the lower gradient for the decision boundary 2 (right), implying that the variable x2 is more relevant in

these cases.

of using SLISE to explain black-box models, primarily focusing on

how to interpret the explanations. Completely new contributions

are presented in Section 4, where we quantitively compare the

explanations of SLISE to other state-of-the-art explanation methods

using various performance metrics, and in Section 5, where we

explore how SLISE can readily be combined with other explanation

methods.

2. Problem definition

The problem definition follows that of Björklund et al. (2019)

and Björklund et al. (2022). This section presents the necessary

definitions and recaps the main theorems.

2.1. Robust regression

Let (X, y), where X ∈ R
n×d and y ∈ R

n, be a dataset consisting

of n pairs {(xi, yi)}
n
i=1 where we denote the ith d-dimensional item

(row) in X by xi (the predictor) and similarly the ith element in y by

yi (the response). We use the shorthand [n] = {1, . . . , n}.

We now state the robust regression problem in this paper:

Problem 1. Given X ∈ R
n×d, y ∈ R

n, the error tolerance ε ∈ R≥0,

and the regularization strengths λ1, λ2 ∈ R≥0; find the regression

coefficients α ∈ R
d minimizing the loss function:

Loss(ε, λ1, λ2,X, y,α) =
∑n

i=1
H

(

ε2 − r2i
) (

r2i /n− ε2
)

+ λ1‖α‖1 + λ2‖α‖2, (1)

where the residual errors are given by ri = yi − α
⊺xi, H(·) is

the Heaviside step function satisfying H(u) = 1 if u ≥ 0 and

H(u) = 0 otherwise, and ‖α‖1 =
∑d

i=1 |αi| denotes the L1-norm

and ‖α‖2 =
∑d

i=1 α2
i the L2-norm.

A non-zero value for the L1 regularization term λ1 in Equation

(1) leads to sparse solutions, i.e., solutions where some regression

coefficients vanish (Tibshirani, 1996). Sparse solutions make the

linear model easier to interpret since the user can focus on the

non-zero coefficients. This is especially important for explaining

high-dimensional datasets (Guidotti et al., 2019).

The Heaviside function in Equation (1) selects a subset S of the

data items:

S = {i ∈ [n] | r2i ≤ ε2}. (2)

The items in the subset S are non-outliers since they match

the linear model. Minimizing Equation (1) leads to maximizing the

subset S due to the division by n and subtraction of ε2 in the second

factor of the loss function. This makes Problem 1 a combinatorial

problem in disguise:

Theorem 1. Problem 1 is NP-hard and hard to approximate.

Proof. Problem 1 can be reduced to the MAXIMUM SATISFYING

LINEAR SUBSYSTEM problem (Ausiello et al., 1999, ProblemMP10),

which is known to beNP-hard and not approximable within nγ for

some γ > 0 (Amaldi and Kann, 1995). Here, the goal is to find an

α, in Xα = y, such that as many equations as possible are satisfied.

This is equivalent to Problem 1 with ε = 0 and λ· = 0.

2.2. Local explanations

To use SLISE for local approximation of a black box model, we

require that the regression plane passes through the data item we

wish to explain (xk, yk), where k ∈ [n]. Equivalently, constraining

rk = 0 in Problem 1. This constraint is easily satisfied by centering

the data on the item being explained using the transformation

yi ← yi − yk and xi ← xi − xk for all i ∈ [n], after which rk = 0

follows. Hence, it suffices to consider Problem 1 when finding a
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FIGURE 3

Graduated optimization (Mobahi and Fisher, 2015) solves a complex problem by gradually increasing the di�culty. For SLISE we parameterize the

di�culty with β. Increasing β increases the di�culty.

(global) robust regression model and providing a local explanation

for a data item.

If the complex model is a classifier that outputs class

probabilities P ∈ [0, 1]n, we transform these probabilities to

unconstrained linear values using the logit transformation yi =

log(pi/(1 − pi)), yielding a vector y ∈ R
n. This new vector y − yk

is then used to find the explanation. Therefore, we approximate

complex classifiers with a logistic model rather than a linear one

in the vicinity of the point of interest. Note that even if the form of

the regression function used is the same as in the standard logistic

regression, SLISE does not maximize the likelihood like the logistic

regression.

2.3. The SLISE algorithm

We solve Problem 1, in practice, using graduated optimization

(Mobahi and Fisher, 2015). Graduated optimization iteratively

solves a difficult optimization problem by progressively increasing

the complexity. In SLISE, we parameterize the complexity by

softening the Heaviside step function in Equation (1) to

Loss(ε,β , λ1, λ2,X, y,α) =
∑n

i=1
σ

(

β(ε2 − r2i )
)

φ
(

r2i /n− ε2
)

+ λ1‖α‖1 + λ2‖α‖2, (3)

where σ (z) = 1/(1 + e−z) is the sigmoid function and φ(z) =

min(z, 0) is a rectifying function. When β = 0, Equation (3)

reduces to convex optimization. We can then gradually increase

β to increase the complexity, and when β → ∞ Equation (3)

becomes equivalent to Equation (1), illustrated in Figure 3. At each

step, we use the optimal solution of the previous step as a starting

point for the optimization of Equation (3). By choosing the step

size based on the approximation ratio between two β :s, we get some

guarantees for the quality of the found optimum.

Theorem 2. Given ε,β1,β2 ≥ 0, such that β1 ≤ β2, the

approximation ratio, k, between Equation (3) with β = β1 and

Equation (3) with β = β2 is

k =
∑n

i=1
f1(α)/

(

∑n

i=1
f2(α)min

r
f1(r)/f2(r)

)

, (4)

where fj(r) = σ (βj(ε
2 − r2))φ(r2/n − ε2), ri = yi − α

⊺xi, and

α = argmin
α

∑n
i=1 f1(ri).

Input: ε, λ1, λ2, βmax, k

Data: X, y

1 α,β ← Initialize(X, y, ε, k);

2 while β < βmax do

3 α← OWL-QN(α,Loss(ε,β , λ1, λ2,X, y,α)) ;

4 β ← β ′ such that β ′ > β and the approximation

ratio is at most k;

5 α← OWL-QN(α,Loss(ε,βmax, λ1, λ2,X, y,α)) ;

Output: α

Algorithm 1. The slise algorithm. The Loss function is given by

Equation (3), the approximation ratio by Equation (4) and the

initialization can either be zeroes (Björklund et al., 2019) or selected

from randomminimal subsets (Björklund et al., 2022).

Proof. See Björklund et al. (2022) for details.

The pseudocode for the SLISE algorithm can be seen in

Algorithm 1. The graduated optimization (lines 2–4) alternates

between optimizing α, using OWL-QN, a Quasi-Newton optimizer

with built-in L1 regularization (Schmidt et al., 2009), and increasing

β based on Theorem 2. The time complexity of Algorithm 1 is

O(ndi), where i is the total number of iterations from the graduated

optimization and OWL-QN (Björklund et al., 2022).

The SLISE algorithm is implemented in both R1 and Python2.

The source code for the algorithm and experiments is open source

and available for download from GitHub.

3. Datasets

In this section, we present the datasets used in this paper.

For each dataset, we also show examples of how SLISE explains

predictions from black-box models. The datasets in this paper are

three common machine learning datasets, MTCARS (Section 3.1),

IMDB (Section 3.2), and EMNIST (Section 3.3), and a high-energy

physics dataset, JETS (Section 3.4) for which one of the authors

(KK) is a domain expert.

1 https://github.com/edahelsinki/slise

2 https://github.com/edahelsinki/pyslise
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The main parameter of SLISE is the error tolerance ε. Ideally, ε

would be chosen based on knowledge of the dataset, “how much

error can be tolerated”. ε can also be used to select between

more local (smaller ε) and more general explanations (larger

ε). Additionally, SLISE has built-in regularization that can be

parameterized through λ1 (for LASSO regularization) and λ2 (for

RIDGE regularization).

Selection of these parameters is subjective (Lipton, 2018).

How local and sparse (when using LASSO regularization) the

explanations need to depend on the user, dataset, and use case.

However, in this paper, we perform a grid search over ε ∈ [0.1, 1.0]

and λ1 ∈ [10−3, 102], evaluating the parameters using cross-

validation and SLISE for (global) robust regression. For each ε, we

select the λ1 that results in the best mean absolute error (MAE).We

then select the ε, which results in a subset size closest to |S| = n/2.

With images, the explanations are visualized as images, see

Section 3.3, so sparsity is not as important. And with correlated

variables, such as neighboring pixels, LASSO regularization tends

to prioritize one of the variables (Tibshirani, 1996). Therefore, for

images, we also use RIDGE regularization, with λ2 = 2λ1, which

tends to spread the weight more evenly across correlated variables.

3.1. Tabular regression

We start with a tabular regression dataset, MTCARS (Henderson

and Velleman, 1981). The task is to predict the fuel efficiency

(miles per gallon). As the black box model, we train a random

forest (Breiman, 2001) with 500 decision trees. The variables in

the MTCARS dataset have widely different magnitudes (these cars

can have hundreds of horsepower but only around five gears).

Therefore, we normalize the data by subtracting the (variable-

wise) median and dividing by the median absolute deviation

(Rousseeuw and Hubert, 2011) before running SLISE. We also

include the terms of the linear model (the variable values times the

coefficients).

The explanation for the random forest prediction for a selected

car is presented in Table 1. Compared to the other cars, this

is a very light car, so the term from the weight is positive.

The engine has a usual number of cylinders but with smaller

displacement, which also is beneficial for fuel efficiency. The main

detriment to fuel efficiency is that the car is tuned for high

acceleration.

One heuristic for measuring the global variable

importance of Random forests is by aggregating the

impurity decreases across all trees (Breiman, 2002). This

procedure is different from the local linear approximation

of SLISE, and results in different variable rankings (in

Table 1). However, both methods have primarily identified

the same variables as the most important ones, the

exception being the quarter mile time that is locally more

important.

As always with explanations, there is a trade-off between

interpretability and faithfulness to the black box model.

Here, we used LASSO regularization to control the trade-

off; sparser models are easier to interpret (Guidotti et al.,

2019), but when variables are correlated, such as weight

and displacement, the more important variable gets a larger

coefficient (Tibshirani, 1996). However, with reasonable values

for λ1 the approximation is still faithful, as we will see in

Section 4. Note that we expect the correlation to also be

present in the random forest due to how random forests are

constructed.

3.2. Sentiment analysis

The IMDB dataset (Maas et al., 2011) contains movie reviews.

We transform the reviews into real-valued vectors with a bag-

of-words-model after case normalization, removal of stop words,

removal of punctuation, and stemming. We divide the obtained

word frequencies by the most frequent word in each review to

adjust for different review lengths, and we only consider the 1,000

most common words.

The task is to determine if the sentiment of a review is

positive or negative. To do so we use an SVM that outputs

probabilities. Before applying SLISE, we transform the probabilities

into unconstrained values as described in Section 2.2. Furthermore,

since the word frequency matrix is sparse wemake the explanations

more local by only giving SLISE the columns for the words that

appear in the explained review.

Figure 4 shows an explanation for an IMDB review. This review

has an ambiguous phrase: “not bad”. The classification is incorrect

(negative), since the SVM does not understand that the word “not”

negates the word “bad”. The explanation reveals this by giving

negative weights to the words “couldn’t” and “bad” in a context

where the meaning is actually positive.

3.3. Image classification

Images of handwritten digits, such as those in the EMNIST

dataset (Cohen et al., 2017), represent relatively high-dimensional

data that is easily visualized. The images in EMNIST are 28 ×

28 grayscale pixels, and the values of the pixels are scaled to

the range [0, 1]. SLISE is applicable to EMNIST because of the

consistent centering and scaling of the images. More complex

image datasets would require more data, and color images have

the other conundrum of visualizing the color channels intuitively.

For those images, SLISE can be combined with other explanation

techniques; see Section 5.

As the model, we use a convolutional neural network (CNN)

with three convolutional and pooling layers followed by two fully

connected layers. The activation functions are ReLU except for

the final softmax function, and we train the network with label

smoothing (Szegedy et al., 2016) to limit overconfidence. The added

nuance from the label smoothing is also beneficial for explanations.

In this classification task, we have 10 classes (one for each digit),

but for the sake of explaining why the 2 in Figure 5 is predicted to

be a 2 we only consider the binary subtask of classifying 2:s and

non-2:s (using the logit transformation to turn the probabilities

into unconstrained values). Furthermore, we subsample the dataset

so that 50% of the items have the same predicted class (2) as the

image we want to explain.
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TABLE 1 Explaining why the random forest predicts that this car has a fuel e�ciency of 20.8 MPG.

Variable Unnormalized Normalized Random forest

Car Car Model Term Importance

Weight 2.620 −0.918 −0.382 0.351 276.450

Cylinders 6.000 0.000 −0.198 0.000 157.752

Displacement 160.000 −0.258 −0.099 0.025 242.052

¼ mile time 16.460 −0.882 0.097 −0.086 31.383

Horsepower 110.000 −0.168 −0.044 0.007 184.004

Axle ratio 3.900 0.291 0.044 0.012 67.661

Manual 1.000 1.000 0.013 0.013 11.425

Straight 0.000 0.000 0 0 23.484

Gears 4.000 0.000 0 0 19.891

Carburettors 4.000 1.348 0 0 31.943

The explanation uses normalization to account for the different magnitudes of the variables. Sparsity is not necessary for this dataset, but we use λ1 = 0.1 to demonstrate how LASSO prioritizes

variables and causes zeroes in the coefficients. The error tolerance is ε = 0.2.

FIGURE 4

Explaining how the SVM does not understand that the phrase “not bad” indicates a positive review. A green background for words denotes that the

coe�cients support positive sentiment and a pink background denotes a negative sentiment. The parameter values for this explanation are ε = 0.2

and λ = 0.01.

Figure 5 (middle and right) shows saliency maps where every

pixel corresponds to a coefficient in the α-vector. The colors in

the saliency map indicate whether a black pixel supports (purple,

middle) or opposes (orange, right) the prediction that the image

represents a 2 (and vice versa for white pixels). The saturation

represents the importance of the pixel in the classification (the

relative weight in the α-vector).

Note that neural networks “see” images as discrete pixels,

while humans may interpret them as pen strokes. Explanations

have a tradeoff between assisting humans and matching the

underlying black box model. With SLISE we typically use the

same representation as the black box model, thus, we expect an

explanation in terms of pixels (and not strokes).

The most striking feature in the saliency maps is the solid

horizontal purple region at the bottom of the image. This region is

indeed quite characteristic for a 2, so it is natural that the classifier

uses this to detect 2:s. The other feature in the saliency maps is the

orange area in the middle, where images of 2:s tend to be mostly

empty. Note that this explanation is not applicable to all 2:s, (e.g.,

the small orange area at the bottom slightly contradicts 2:s with a

straight bottom line).

Since SLISE uses actual data, the data influences the

explanations. Modifying the dataset, (e.g., by selecting a subset

of the data, allows us to answer different questions about the

data and the models). For example, restricting the dataset to

only 2:s and 3:s allows investigating why an image is predicted

to be a 2 and not a 3. This is demonstrated in Figure 6. Both

2:s and 3:s have few black pixels on the left so this part of the

explanation has been de-emphasized. 3:s have more black pixels

in the center and on the right side, and also an empty space

below the center. We see that the explanation has been shifted

accordingly.

Explanations give us a feeling that we may understand the

decision process of the neural network. To examine if this indeed is

the case, we design a new way of writing 2:s. Figure 7 demonstrates

that a horizontal line at the bottom is sufficient to predict the image

to be a 2 with a likelihood of 66.3%. Label smoothing is limiting

very high probabilities, and we are only maximizing the likelihood

of a 2, not minimizing the likelihood of other digits, (e.g., this

image has a likelihood of 25.5% to be a 6, which we could avoid

by including the “top half” of a 2).

3.4. Classifying particle jets

High energy physics is one domain where adhering to the

generating model (the laws of nature!) is essential for trusting the

results. The JETS dataset (HIP CMS Experiment, 2018) contains

data on particle jets extracted from simulated proton-proton

collision events released by CMS Collaboration (2017). Here, we

cannot naïvely create new artificial data points when explaining

the predictions, since the new data could violate, (e.g., energy

conservation laws. SLISE automatically adheres to this constraint

by only using existing data to construct the explanations).
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FIGURE 5

Left: the digit being explained. Middle and Right: the explanation in the form of saliency maps, showing the coe�cients of the approximating linear

model (given by SLISE with ε = 0.6, λ1 = 2, and λ2 = 4). The purple color (Middle) indicates that a black pixel supports the classification as a 2. In
contrast, the orange (Right) indicates that a black pixel opposes the item’s classification as a 2.

FIGURE 6

Changing the dataset to answer di�erent questions. Here, we see what di�erentiates this 2 from 3:s.

FIGURE 7

Testing our understanding of the explanations by designing a new way to draw 2:s. This line is predicted 66.3% likely to be a 2.

Furthermore, the black box model is only trained on data that

follows the generating model, so randomly generated inputs will

yield more or less random outputs.

The classification task in question is to decide whether the

particle that created the jet was a quark or a gluon. Quarks and

gluons are elementary particles, which cannot be observed directly

and are instead detected via cone-shaped cascades of stable particles

called jets. On this level, the quark and gluon jets look superficially

very similar, but they exhibit specific statistical differences (CMS

Collaboration, 2013).

Quantum chromodynamics can be used to explain the behavior

of the color-charged quarks and gluons in particle collisions. The

theory dictates that gluons are more likely to radiate additional

gluons in the aftermath of the initial collision. The gluon jets,

on average, contain more particles than quark jets. Consequently,

jets originating from gluons are generally wider than quark

jets. The total energy of the jet is also distributed differently

among its constituents depending on the jet’s origin. Quark jets

tend to have fewer particles carrying the majority of the total

energy.
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TABLE 2 Explaining why a neural network classifies this jet as 84% likely

to originate from a quark.

Variable Jet Normalized Model Term

jetGirth 0.020 −1.209 −0.604 0.730

QG_axis2 0.002 −1.033 −0.529 0.546

jetPt 1196.690 6.594 0.054 0.359

QG_ptD 0.935 4.204 0.061 0.256

QG_mult 16.000 −0.270 −0.437 0.118

jetNeutralMult 20.000 0.270 0.084 0.023

jetChargedMult 33.000 1.012 0.000 0.000

The explanation uses normalization, logit transformation of the probabilities, and the

parameter values ε = 0.25 and λ = 20.

Table 2 shows the explanation for a quark jet classified with

a neural network (three hidden layers with ReLU activation and

batch normalization trained with label smoothing). This jet is

very narrow (QG_axis2 and jetGirth) with high transverse

momentum (jetPt and QG_ptD). From the explanation, we

can see that this makes the prediction more likely to be a quark,

which is supported by the underlying physical theory of quark

and gluon jets. Increasing the multiplicity (QG_mult) would make

the jet more gluon-like, but since the jet has a relatively average

multiplicity, the term is quite small. Splitting the multiplicity (into

jetChargedMult and jetNeutralMult) does not help the

prediction, which matches our expectations.

Particle jets are complex physical objects that can be

represented in various ways. In another example, we classify the jets

by projecting the constituent particles onto a 2D plane in a particle

detector’s cylindrical coordinate system (Cogan et al., 2015; de

Oliveira et al., 2016; Komiske et al., 2017). In Figure 8, we show a jet

image (left) where the value of each pixel is the sum of the energies

from all particles passing through it. The explanation (right) follows

the reasoning above; the classification depends on the distribution

of the particles. Jets originating from a gluon generally have a wider

spread with more particles, while in quark jets, the centermost

particles carry most of the energy.

In other local explanation methods, we would need a way to

sample from the data distribution such that the physical constraints

are satisfied. However, this would be a challenging task requiring in-

depth knowledge of underlying physical processes ormoremachine

learning, which would require further explanations. With SLISE, we

only use actual data that we know is physically accurate. If we move

to another domain than particle jets, we use the same procedure

without having to devise new methods for generating or filtering

new samples. Thus, SLISE is not only “model-agnostic” (can be

applied tomultiple types of models) but also “data-agnostic” (works

the same way for multiple data types). We present comparisons to

other methods next in Section 4.

4. Comparison of explainers

This section compares SLISE to other model-agnostic, post-

hoc, local explanation methods that also produce explanations

in the form of local linear approximations, namely LIME

(Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017), see

Section 4.1. When comparing explanations, a qualitative visual

comparison is necessary, see Section 4.2, since the choice of

explanation method is subjective (Lipton, 2018; Lahav et al., 2019).

We also use established numerical quality metrics found in

literature (Bach et al., 2015; Lundberg and Lee, 2017; Alvarez-

Melis and Jaakkola, 2018; Guidotti et al., 2020). In Section 4.3 we

compare how well the explanations approximate the black box

models by measuring the difference between the predictions. We

do this for both the item being explained (does the explanation

match the black box model) and for other data items (how general

is the explanation). In Section 4.4 we then check if the explanations

highlight the most relevant features and in Section 4.5 we check if

the methods are stable; small changes in the input should not affect

the explanations too much.

In this section, we show that the performance of methods

requiring the creation of new data is highly dependent on how

appropriate the creation process is. Furthermore, we also show that

SLISE improves the state-of-the-art, especially when it comes to how

well the explanation approximates the black box model.

4.1. Methods

We compare SLISE against the LIME (Ribeiro et al., 2016) and

SHAP (Lundberg and Lee, 2017) explanation methods. SLISE, LIME,

and SHAP are all model agnostic (do not even require gradients),

and the explanations are linear models, making the comparison

easier. However, the procedure used to find the linear models, and

the meaning the coefficients, differ.

LIME (Ribeiro et al., 2016) typically starts by discretizing the

data item being explained. Continuous variables in tabular data are

split into four quantiles. In images LIME groups similar and nearby

pixels into “superpixels”. LIME then generates a “neighborhood”

of new data items by randomly mutating some variables. In

tabular data, the continuous variables are sampled from a normal

distribution (with the shape informed by the training data) before

discretization. In images, the superpixels are randomly “turned off”

by replacing them with gray. Finally, a distance-weighted LASSO

model (Tibshirani, 1996) is fitted to approximate the predictions

for the neighborhood.

In this comparison, we use LIME both with and without the

discretization for tabular data. We use two different sizes for

the superpixels for the image data. For all variants, we create

neighborhoods of size 10, 000, which is more than usual but should

avoid artifacts due to undersampling.

SHAP is posed as an improvement to LIME and uses Shapley

values (Lundberg and Lee, 2017) instead of LASSO to find the

approximating linear model. Similarly to discretized LIME, SHAP

investigates how beneficial the current variable values are vs.

changing them. SHAP has multiple variants, but we only consider

model-agnostic ones. KERNEL-SHAP uses a fixed “background”

value for the variables, while SAMPLING-SHAP finds background

values by sampling from the dataset.

In this comparison, we use SAMPLING-SHAP for both tabular

and image data, and KERNEL-SHAP for images (with gray pixels as

the background). With SHAP we forego the superpixels of LIME, but
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FIGURE 8

Using SLISE to explain the decision of a CNN. The image (left) is a jet predicted to be 88% gluon-like. Each pixel represents the sum of the energy

passing through it (in a detector). The explanation uses the parameter values ε = 0.6, λ1 = 20, λ2 = 40.

also exceed the standard neighborhood size by setting it to 10, 000.

Furthermore, SHAP recommends using a logit transformation for

classifiers (similar to SLISE), which we do.

Since LIME and SHAP need to sample new data, the data

generation process is crucial. Especially for image data, there is no

obvious optimal solution. In this paper, we use LIME to investigate

different superpixel sizes and SHAP for different replacement pixels.

With LIME and KERNEL-SHAP, we replace the pixels with gray,

which is the default. Other standard options would be inverting the

color (Bach et al., 2015), but that is not suitable for the JET IMAGES

dataset, or using the background color (Okhrati and Lipani, 2021),

but that assumes that the background offers no information. This

assumption does not hold; certain parts of the empty space can

be necessary for the classification (as seen in the explanations of

Figure 9).

For SLISE we use the same parameters as in Section 3. For

image data, we also consider a LIME-SLISE hybrid where we use

the (smaller) superpixels and data generation from LIME but with a

linear model from SLISE instead of LASSO. With LIME-SLISE we also

use the same neighborhood size of 10, 000.

As baselines for all experiments, we use a global linear model

and a random linear model, with coefficients drawn from a normal

distribution with zero mean and unit variance. In the case of

classification, the linear models are logistic regression models. All

experiments for all datasets and all methods have been run 100

times, aggregating the results.

4.2. Qualitative comparison

The choice of explanation is subjective and depends on both

the task and the user’s capabilities (Lipton, 2018). A qualitative

comparison is hence necessary. Figure 9 shows explanations for

predictions from the methods being compared in a classification

task using the EMNIST dataset. Note that there is a difference in

how to interpret the colors. The SLISE explanation shows whether

a pixel should be black (purple) or white (orange) to support the

classification. The other explanations show if the current value

(either black or white) supports (purple) or opposes (orange) the

classification.

The main phenomenon in all explanations is the empty space

in the middle. The secondary feature that shows up in some

explanations is the horizontal line at the bottom. The horizontal

line is especially prominent in the SLISE explanations, due to the use

of real data: Beside 2:s, only 3:s and 5:s have a somewhat straight

line at the bottom, but since they lack the empty space in themiddle,

they are not predicted to be 2:s.

Figure 10 shows a qualitative comparison for a jet from the

JET IMAGES dataset. In this dataset, gray is not a “neutral” color,

causing issues for the LIME-based explanations and SHAP (gray).

SHAP (sample) is an improvement by having different magnitudes

for different pixels. Still, since it only considers whether a pixel

should be preserved or changed, it does not describe the underlying

physical phenomena as well as SLISE.

4.3. Approximation

Since all methods provide local approximations, a natural

comparison is to check how good the approximations are.

For this, we consider the local accuracy (Lundberg and Lee,

2017) and coverage (Guidotti et al., 2018). Local accuracy is

the absolute difference between the prediction of the complex

model and the local approximation for the explained data

item:

local accuracy =

n
∑

i=1

|ei(xi)− f (xi)|/n, (5)

where ei(·) is the prediction from the locally approximating linear

model and f (·) is the prediction from the black box model.

Coverage counts how many other data items the approximation is

suitable for. We measure this by checking if the absolute difference

between the black box model and the approximation is at most

0.1:

coverage =

n
∑

i=1

n
∑

j=1

(

|ei(xj)− f (xj)| < 0.1
)

/n2. (6)
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FIGURE 9

Example explanations for the same EMNIST classification using di�erent methods. In the SLISE explanation, purple indicates that the pixel should be

black to support the classification, and orange indicates that the pixel should be white. All other explanations use discretization, which means that

purple indicates that the current value (black or white) supports the classification, and orange indicates that the pixel should change.

FIGURE 10

Example explanations for the same JET IMAGES classification (predicted to be a gluon) using di�erent methods. In SLISE a purple pixel supports the

gluon classification and orange a quark classification. For the other explanations purple means that the current value supports gluon and orange that

the pixels should change. Modifying pixels would mean adding or modifying particles—drastically changing the jet—which results in SLISE being the

only method able to describe the underlying physics.
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The results are presented in Table 3. Both SLISE and SHAP

stay locked to the data item of interest, giving them perfect

local accuracy. However, the local models of LIME sometimes

have an error larger than a global linear model. SLISE has

the best coverage, due to the subset size being part of the

optimization criteria Equation (2). The global model and LIME

(with no discretization) are in second place for coverage.

The methods using discretization generally have less coverage,

because the discretization process is specific to the explained

item.

4.4. Relevance

We want the explanations to highlight the most relevant

features (or pixels) for the prediction. According to Bach et al.

(2015), this can be measured by “destroying” the most important

variables (proposed by the explanations) and observing the change

in the prediction. The most relevant explanation is the one that

identifies the variables that cause the largest change.

With tabular data, we “destroy” variables by adding or

subtracting one standard deviation. For non-discretized

explanations, the sign is based on the sign of the coefficients.

And, for discretized explanations, we select the optimal sign by

trying both. With image data, we destroy the pixels by inverting

them (Bach et al., 2015, black to white and vice versa). Furthermore,

we sort the changes in the prediction according to the importance

of the variable in the explanation, and combine the results from

both increasing and decreasing the prediction, so that the random

model should average to zero.

The results can be seen in Figure 11. Even though relevance

is based on generating new data, something we explicitly try to

avoid with SLISE, we see that SLISE performs in line with the other

methods. SLISE is also the only explanation method to consistently

identify the correct variables for the JET IMAGES dataset. The global

model finds variables that are generally important but is unable

to account for local conditions. Choosing the correct replacement

values (SHAP variants) and superpixel size (LIME variants) affects

the results. Furthermore, replacing LASSO in LIME with SLISE, to

create LIME-SLISE, is an improvement.

4.5. Stability

We want the explanations to be consistent. We re-run the

explanations, but with the default number of samples for LIME and

SHAP, and calculate the consistency as the Kendall rank similarity

between the coefficients of the two explanations. Our approach is

the same as the reiteration similarity of Amparore et al. (2021), but

with rank similarity instead of (Jaccard) set similarity.

The results in Table 3 show that SLISE is consistent, only

struggling with the MTCARS and EMNIST datasets. This is due to

the smaller number of data items relative to the number of features;

more data tends to have a smoothing effect on the NP-hard loss

landscape of Problem 1. SHAP also has trouble with the image

datasets, likely due to similar reasons (increasing the number of

samples would help). Contrastingly, LIME performs well on the

image datasets, but the high number of tied ranks due to the

superpixels makes the comparison to the other methods less apt.

Furthermore, the results from LIME-SLISE show that the superpixels

are better suited for EMNIST than JET IMAGES.

We also want the explanations to be stable, meaning that a

slight change to the input should not require a completely different

explanation (Guidotti et al., 2020). Since we compare different

methods, where the linear coefficients have different meanings, we

cannot directly compare the coefficients, as in Alvarez-Melis and

Jaakkola (2018). Instead, we use the fact that the explanations are

linear models, and measure how well the explanation predicts the

outcome for the nearest neighbor:

stability =

n
∑

i=1

|f (xnn(i))− ei(xnn(i))|/n, (7)

where xnn(i) is the nearest neighbor to xi.

The results can be seen in Table 3. SLISE generally has the best

stability (lowest error). On the more discrete-like datasets (IMDB

and EMNIST), SHAP and LIME are also relatively stable.

4.6. Summary

In summary, SLISE and SHAP have, by definition, optimal

local accuracy, and several methods, including SLISE, are quite

stable (see Table 3). The local models given by SLISE are also the

best at generalizing to other data items. LIME lacks constraints

that would make the prediction of the local linear model match

the prediction from the black box model for the data item

being explained. As a result, the local accuracy of LIME is

sometimes worse than a global model. Finally, measuring relevance

requires the generation of new data, something we try to avoid

with SLISE, but even here SLISE is comparable to the other

methods.

As noted in Section 4.2 there is a difference in how the

linear approximations work for different explanation methods.

SHAP evaluates the advantage of keeping the current value vs.

changing it. This makes the reasoning behind the linear model

coefficients more difficult to interpret (Kovalerchuk et al., 2021).

Meanwhile, the linear model from SLISE operates directly on

the data, so the coefficients describe how a change to the

input would affect the prediction. How the coefficients of the

linear models from LIME should be interpreted depends on the

discretization.

The big advantage of using SLISE is that there is no need to

generate new data. Therefore, we do not need to tweak the data

generation (the reason for including multiple variants of LIME and

SHAP in the comparison). Furthermore, by using actual data we

preserve structures in the data, such as correlations (Tan et al.,

2021), and only probe the black box model where the predictions

are reliable (Hooker et al., 2021). The JET IMAGES dataset is a

prime example of how naïve data generation can fail, see Section 4.2

and Figure 11. This does not mean that one cannot use generated

data with SLISE, such as with the LIME-SLISE hybrid, but that

it would require all the same considerations as with the other

methods.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1143904
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Björklund et al. 10.3389/fcomp.2023.1143904

TABLE 3 Measuring how well the approximating linear models match the complex model.

Data Method Local accuracy Coverage Consistency Stability

MTCARS SLISE 0.000± 0.000 0.347± 0.049 0.816± 0.233 0.137± 0.135

SHAP 0.000± 0.000 0.166± 0.060 0.949± 0.055 0.176± 0.231

LIME (nd) 0.296± 0.320 0.336± 0.056 0.961± 0.047 0.311± 0.317

LIME 0.227± 0.218 0.117± 0.056 0.933± 0.053 0.306± 0.257

Global 0.194± 0.137 0.344± 0.000 1.000± 0.000 0.157± 0.107

Random 2.360± 1.988 0.031± 0.037 0.000± 0.240 2.219± 1.926

JETS SLISE 0.000± 0.000 0.743± 0.039 0.999± 0.010 0.037± 0.037

SHAP 0.000± 0.000 0.274± 0.041 0.954± 0.075 0.065± 0.064

LIME (nd) 0.154± 0.146 0.411± 0.032 0.990± 0.029 0.158± 0.147

LIME 0.075± 0.057 0.292± 0.063 0.907± 0.129 0.094± 0.073

Global 0.082± 0.056 0.739± 0.005 1.000± 0.000 0.070± 0.051

Random 0.361± 0.243 0.161± 0.071 0.000± 0.296 0.359± 0.238

IMDB SLISE 0.000± 0.000 0.325± 0.042 0.875± 0.098 0.204± 0.213

SHAP 0.000± 0.000 0.205± 0.032 0.981± 0.013 0.205± 0.229

LIME (nd) 0.092± 0.115 0.194± 0.032 0.946± 0.089 0.314± 0.248

LIME 0.136± 0.128 0.205± 0.015 0.928± 0.065 0.248± 0.167

Global 0.174± 0.148 0.282± 0.057 1.000± 0.000 0.198± 0.154

Random 0.391± 0.291 0.194± 0.020 0.000± 0.101 0.398± 0.276

EMNIST SLISE 0.000± 0.000 0.700± 0.055 0.664± 0.067 0.049± 0.101

LIME-SLISE 0.000± 0.000 0.265± 0.151 0.776± 0.073 0.093± 0.128

SHAP (gray) 0.000± 0.000 0.320± 0.164 0.101± 0.093 0.055± 0.097

SHAP (sample) 0.000± 0.000 0.204± 0.133 0.414± 0.055 0.063± 0.068

LIME (original) 0.058± 0.059 0.150± 0.128 0.962± 0.068 0.088± 0.090

LIME (small) 0.271± 0.200 0.160± 0.125 0.758± 0.056 0.300± 0.214

Global 0.491± 0.399 0.379± 0.051 1.000± 0.000 0.560± 0.421

Random 0.430± 0.330 0.247± 0.080 0.000± 0.024 0.433± 0.338

JET IMAGES SLISE 0.000± 0.000 0.399± 0.041 0.997± 0.018 0.143± 0.124

LIME-SLISE 0.000± 0.000 0.260± 0.033 0.666± 0.093 0.171± 0.131

SHAP (gray) 0.000± 0.000 0.255± 0.032 0.392± 0.164 0.159± 0.126

SHAP (sample) 0.000± 0.000 0.276± 0.025 0.691± 0.032 0.196± 0.140

LIME (original) 0.082± 0.055 0.262± 0.019 0.974± 0.085 0.197± 0.124

LIME (small) 0.178± 0.098 0.244± 0.009 0.809± 0.033 0.270± 0.144

Global 0.231± 0.182 0.245± 0.027 1.000± 0.000 0.306± 0.201

Random 0.222± 0.155 0.252± 0.031 0.001± 0.035 0.250± 0.179

Local accuracy is the difference between the predictions from the complexmodel and the approximation on the data item of interest; lower is better.Coveragemeasures howmany data items have

a difference of less than 0.1; larger is better. Consistencymeasures how similar repeated explanations are using rank similarity; higher is better. Stabilitymeasures the loss for the approximation

on the nearest neighbor; lower is better. The best results for each dataset and metric are highlighted in bold.
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FIGURE 11

The relevance metric measures how much the prediction changes if variables are “destroyed”. The variables are sorted (left to right) according to the

importance given by the explanations. A larger change is better, especially for the most important (leftmost) variables.

5. Combining explainers

SLISE is foremost a general algorithm for robust regression

(Björklund et al., 2022). Therefore, the algorithm can readily be

integrated with other algorithms, such as LIME in Section 4. The

robust nature enables SLISE to be useful for explanations even

when a linear model is not an appropriate approximation, or more

abstract features are necessary.

5.1. Visualizing convolutions

In recent years, much effort has been put into visualizing

the internal dynamics of artificial neural networks. The focus has

been on convolutions and how the complexity grows with each

successive layer; for a survey, see, (e.g., Qin et al., 2018), or the series

of articles at Cammarata et al. (2020).

In Figure 12, we demonstrate how SLISE can be used together

with a type of convolution visualizations called Activation

Maximization (Erhan et al., 2009).We begin by selecting an internal

layer, the flattening layer between the last convolutional layer and

the first fully connected layer. We then use activationmaximization

to visualize what kind of images cause the largest activations for

each node in that layer. Finally, we use SLISE (ε = 0.5, λ1 = 9)

to show how the activation of these internal nodes (on actual data)

leads to the classification of an EMNIST digit.

Activation maximization usually starts from random noise and

then applies gradient ascent to find the input that maximally

activates a neuron or a filter. Here, we visualize neurons rather than

filters, so we add some L2-regularization to remove the color from

irrelevant pixels. Furthermore, since the network contains pooling

layers, there are likely multiple equally goodmaximizations that are

only differentiated by spatial shifts. This is typically not an issue, but

we want to show the shift that is best aligned with the digit we are

trying to explain. For this reason, we start from the digit we are

explaining (instead of random noise).

In Figure 12, the digit being explained is shown as an outline

on top of images that maximally activate some internal neurons.

We have applied a slight Gaussian blur to the images to make them

easier to read. The plots on the bottom row show how much the 3

activates the neuron, the coefficients of the linear model given by

SLISE, and the term.

Neuron 18 looks for empty space between the image’s center

and the top, with filled-in pixels above and below. The heuristic

is fairly good for detecting 3:s, which is why SLISE gives it a large

weight. Convolutional layers sometimes function as edge detectors
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FIGURE 12

Combining SLISE with activation maximization to explain the classification of a 3. Activation maximization visualizes neurons from an internal layer of

the neural network. The upper row of the plot shows images that would maximally activate the selected neurons, using orange to represent white,

purple to represent black, and white for irrelevant pixels. In the lower row of the plot, SLISE is used to explain the remaining, fully connected layers of

the network.

(Olah et al., 2020). Neuron 26 is a combination of an edge detector

around the lower arc of the 3 and the central horizontal line.

Convolutional layers can also detect textures, such as diagonal lines.

Neuron 17 combines two diagonals to detect the intersection at the

center of the 3. Neurons 11 and 13 activate based on the empty

space in the lower half of the 3. Finally, neuron 29 does not seem

related to 3:s.

The problem with these explanations is that one has to

interpret not only a linear model but also multiple images. In

Figure 12, only the six neurons with the largest absolute terms are

shown to reduce the amount of cognitive load required for the

interpretation. Furthermore, the neurons (and thus the images)

might match multiple features, and one feature might require

multiple neurons, making the interpretation more difficult. We

can use adversarial training to minimize this issue, creating more

transparent explanations (Kim et al., 2019; Chalasani et al., 2020).

Despite that, Figure 12 shows that the internal features the CNN

uses seem reasonable.

6. Limitations of local linear
explanations

Using linear models in explanations has been criticized because

variables with different units and magnitudes are summed together

(Kovalerchuk et al., 2021). One solution is normalizing the

magnitudes, which also helps regularization prioritize important

variables (Tibshirani, 1996).

Local explanations are not necessarily unique. Multiple suitable

explanations might exist for the same prediction (Björklund et al.,

2023); consider, for example, explanations with different levels of

locality (Wachter et al., 2017), different amounts of regularization

(Section 3), or how the importance can shift between heavily

correlated variables (Tan et al., 2021).

Furthermore, Watson (2022) argues that giving bounds for

where the approximation is valid is needed to better understand

and trust the explanations. In comparison, SLISE outputs the subset

of the data items where the approximation is valid; see Equation

(2).

There is growing evidence that when deploying an explainable

artificial intelligence system, the explanations must be tailored

for the intended users (Lipton, 2018; Lahav et al., 2019) and use

visualizations and concepts familiar to the user (Kovalerchuk et al.,

2021). This paper does not tackle personalized explanations but

instead focuses on the methods to create explanations in the first

place. Using SLISE for explanations requires that the user knows

the basics of linear models, with the caveats outlined above, as is

demonstrated in Section 3.4 where we let a domain expert contrast

the explanations to current physical theories.

Finally, a linear model is only as interpretable as the variables

are understandable. For example, the “weight” variable from the

MTCARS dataset is quite natural, but “pixel 238” is not. One

solution is to present the variables differently (e.g., as an image

instead of individual pixels) or by replacing the variables with

more interpretable ones. Replacing the variables risks worsening

the faithfulness of the explanations (to the black boxmodel), but the

increase in interpretability can make it a worthwhile trade-off. An

example is the discretization of the variables in LIME (Ribeiro et al.,

2016). SLISE also supports replacing variables, as demonstrated by

the LIME-SLISE hybrid in Section 4.

7. Conclusions

This paper demonstrates how a robust regression algorithm,

SLISE (Björklund et al., 2022), can be used to find explanations

for outcomes from black box machine learning models. We

approximate the black boxmodel with a simple linearmodel.When

the number of variables is large, SLISE supports sparsity to make the

interpretation easier.

Creating realistic data is generally quite complicated and this

problem can be avoided using SLISE. Contrary to other explanation
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methods in the same niche (model-agnostic, local explanations),

SLISE does not create any new data. Avoiding the creation of new

data also helps us capture the interaction between the data and

the model and provides consistent operation across data domains

when we do not have to design different data-creation procedures

for different data types.

SLISE can readily be combined with ideas from other

explanation methods, such as activation maximization and

superpixels (see Sections 4, 5). These two examples let SLISE use

higher-level features for the explanations. Higher-level features can

be beneficial since they make complex structures easier to interpret.

This flexibility of SLISE stems from the general purpose robust

regression algorithm.

We also compare SLISE to other local, post-hoc explanation

methods, both qualitatively and quantitatively using multiple

metrics in Section 4. SLISE yields consistently good results and

extends the state-of-the-art when generalizing the approximation.

LIME Ribeiro et al. (2016) sometimes fails to give local explanations

that adhere to the data item being explained, which is one reason

why it has largely been succeeded by SHAP (Lundberg and Lee,

2017). Regarding ease of use, SLISE worked well out-of-the-box in

our experiments, whereas SHAP and especially LIME might require

considerable effort to find and evaluate different data creation

procedures.

Since this paper is focused on the methods to generate linear

explanations, a natural follow-up work would be to apply it to some

real-world problem, maybe considering personalized explanations

or evaluating the trade-off of using more interpretable features.

Some other explanation methods, such as LIME, utilize a distance

function to control the locality of the explanations. Defining a

good distance function is non-trivial (Wilson and Martinez, 1997),

which is why SLISE only compares predictions (see Equation 1).

The utility of adding distance-based weights to SLISE is another

potential future work.

Our implementation of SLISE is available for both R1 and

Python2 under an open-source license.
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