
TYPE Review

PUBLISHED 21 June 2023

DOI 10.3389/fcomp.2023.1136987

OPEN ACCESS

EDITED BY

Mary Peterson,

University of Arizona, United States

REVIEWED BY

Jack Gallant,

University of California, Berkeley, United States

Naoki Kogo,

Radboud University, Netherlands

Matthew Self,

Netherlands Institute for Neuroscience

(KNAW), Netherlands

*CORRESPONDENCE

Rüdiger von der Heydt

rudiger8@gmail.com

RECEIVED 03 January 2023

ACCEPTED 30 May 2023

PUBLISHED 21 June 2023

CITATION

von der Heydt R (2023) Visual cortical

processing—From image to object

representation. Front. Comput. Sci. 5:1136987.

doi: 10.3389/fcomp.2023.1136987

COPYRIGHT

© 2023 von der Heydt. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Visual cortical processing—From
image to object representation

Rüdiger von der Heydt*

Department of Neuroscience and Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD,

United States

Image understanding is often conceived as a hierarchical processwithmany levels,

where complexity and invariance of object representation gradually increase

with level in the hierarchy. In contrast, neurophysiological studies have shown

that figure-ground organization and border ownership coding, which imply

understanding of the object structure of an image, occur at levels as low as V1

and V2 of the visual cortex. This cannot be the result of back-projections from

object recognition centers because border-ownership signals appear well-before

shape selective responses emerge in inferotemporal cortex. Ultra-fast border-

ownership signals have been found not only for simple figure displays, but also

for complex natural scenes. In this paper I review neurophysiological evidence for

the hypothesis that the brain uses dedicated grouping mechanisms early on to

link elementary features to larger entities we might call “proto-objects”, a process

that is pre-attentive and does not rely on object recognition. The proto-object

structures enable the system to individuate objects and provide permanence, to

trackmoving objects and copewith the displacements caused by eyemovements,

and to select one object out of many and scrutinize the selected object. I sketch

a novel experimental paradigm for identifying grouping circuits, describe a first

application targeting area V4, which yielded negative results, and suggest targets

for future applications of this paradigm.

KEYWORDS

visual cortex, figure ground organization, neural mechanism, object individuation, object

permanence, selective attention, spiking synchrony, computational model

Introduction

We take it for granted that we see a world full of objects. But the images taken in by

the eyes are just arrays of millions of pixels, and detecting objects from these arrays is a

formidable task. It seems that the visual brain effortlessly provides us a representation of

objects. Looking at Figure 1A, for example, we can easily answer questions like, what is the

number of objects? how many corners has the green object? what is the color of the squares?

which object is in the back? We can also compare two objects, or scrutinize a large complex

object with multiple fixations. And when the display of Figure 1A is followed by the display

of Figure 1B, we know that one object has moved from left to right. We have no doubt that

it was one of the blue squares, although it is now neither blue nor a square. Complex natural

images are certainly more difficult to process than the displays of Figure 1, but to understand

vision, it seems to me, we should first understand how the visual brain enables us to make

those assertions from such simple displays. What are the mechanisms that allow the brain

to individuate objects from the stream of pixels, and how do they preserve their identity
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FIGURE 1

Object individuation. See text for further explanation. When (A, B)

are displayed in sequence, one of the blue squares appears to move

and at the same time change shape and color.

when the objects move? How do they achieve perceptual stability

across eye movements, and how do they enable selective attention?

This paper reviews studies that tries to answer those questions.

How does the visual cortex individuate objects? Since Hubel

and Wiesel discovered the feature selectivity of simple, complex,

and hypercomplex cells, early stages of visual cortex were thought

to transform the pixel array into a representation of local image

features like lines, edges, corners etc., which would then be

assembled to larger entities that can be recognized as objects

in inferior temporal cortex. This “hierarchical” scheme was

questioned when a study showed that low-level cortical neurons

that were supposed to signal lines and edges responded also to

displays in which humans perceive illusory contours (von der

Heydt et al., 1984). Contours are more than just edges and lines,

they outline objects. At that time, illusory contours were commonly

called “cognitive contours” because they appeared to be the result of

a high-level, cognitive process, the system inferring a shape (like a

triangle). Claiming that such contours are represented in a cortical

area as low as V2 was to many a shock.

But the tide of vision sciences then had washed up the Fourier

analyzer theory and neurophysiologists looked at the visual cortex

as banks of spatial frequency filters. While this had the advantage

of the convenient formalism of linear filtering, there were other

indications (besides illusory contours) that cortical processing is

highly non-linear from the beginning. In primary visual cortex it

is not uncommon to find cells that respond to lines, but not to a

grating of lines, and cells that respond vigorously to a sinusoidal

grating of certain spatial frequency, but are totally unresponsive to

the same grating when present as the 3rd harmonic component in

a square wave grating (von der Heydt et al., 1992).

It took more than a decade until another perceptual

phenomenon was found to have a correlate in visual cortex: figure-

ground organization. Neurons in primary visual cortex respond

to a texture in a “figure” region more strongly than to the same

texture in a “ground” region (Lamme, 1995). Apparently, neurons

at this low level already “know” what in the image is a figure,

something that might be an object. But the tide of vision science

then had surfaced another theory: coherent oscillations of neural

firing were proposed to be the glue that holds the local features

together as objects. Selective attention was thought to increase

coherent oscillations which would lead to conscious perception.

And the idea of the hierarchical scheme lives on in today’s deep

convolutional neural networks.

Border ownership coding

Neurophysiology led to another surprising discovery, neural

selectivity for “border ownership” (Zhou et al., 2000). Figure 2

shows the basic finding. The responses of edge selective neurons,

including the “simple” and “complex” types of Hubel and Wiesel,

depend on how an edge is a feature of an object. The neuron

illustrated responds strongly to the upper right edge of a square,

and much less to the lower left edge. That is, the neuron responds

to the identical local pattern differently, depending on whether it

is an edge of an object to the bottom left of the receptive field, or

an edge of an object to the top right. Indeed, for any location and

orientation of receptive fields, there are two populations of neurons,

those that “prefer” the object on one side of the receptive field, and

those that prefer the object on the other side. Some respond also to

lines, but many are strictly edge selective.

Zhou et al. termed this selectivity for “border ownership”,

adopting a term from the classic study by Nakayama et al.

(1989) for the phenomenon that stereoscopic cues that change

the way a border is perceptually assigned also affect object

recognition: recognition of partly occluded objects is little impaired

if the borders between occluded and occluding regions are

stereoscopically assigned to the occluding regions (rendering them

foreground objects), but is strongly impaired if these borders are

stereoscopically assigned to the visible regions of the object.

The bottom of Figure 2A shows the time course of the

neuron’s mean firing rates. Because for each neuron with a border

ownership preference one can find another neuron with the

opposite preference, the two raster plots and the corresponding red

and blue curves can be conceived as the simultaneous responses of a

pair of neurons of opposite border ownership preferences. We also

refer to the difference between the two as the “border ownership

signal” (Figure 2B, dashed line, shading indicates SEM; from Zhang

and von der Heydt, 2010). The border ownership signal is delayed

by only about 15ms relative to the mean response (thin line). These

are responses from V2 neurons; border ownership signals of V1

have a similar time course. Note that Lamme’s figure enhancement

effect (where neurons respond to texture elements inside a figure)

emerges later, about 50ms after the response onset (Lamme, 1995).

The neuron of Figure 2 and the border ownership data to be

reviewed below were recorded in rhesus macaques, but there is

no doubt that the human visual cortex also represents contours

by pairs of neurons of opposite border ownership preferences.

A powerful paradigm for revealing selective neural coding is to

demonstrate an adaptation aftereffect, which is based on the fact

that cortical neurons exhibit short-term depression. Sure enough,

it turned out that the classic tilt aftereffect is border-ownership

selective. After adapting to a tilted edge that is owned by a figure

on one side, a negative tilt aftereffect appears when the adapted

location is tested with edges of figures on the same side, but not

when tested with figures on the other side. And by alternating

both, side-of-figure and tilt, during adaptation, one can produce

two simultaneous tilt aftereffects in opposite directions at the same
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FIGURE 2

Border ownership selectivity. (A) The edge of a square figure is presented in the receptive field (oval) of a V2 neuron with the figure located either to

the lower left or to the upper right. Note that the contrast was reversed between the two displays so as to compare locally identical stimulus

conditions. Each trial started with a uniform field, and figure color and background color were both changed symmetrically at stimulus onset. The

graphic depicts only tests with light-dark edges, but displays with reversed contrast were also tested, resulting in four basic conditions. Raster plots

show the responses of the neuron, the curves show the time course of the mean firing rates. (B) Dashed line, time course of the di�erence between

responses to preferred and non-preferred sides of figure—the “border ownership signal”—averaged across the neurons with significant e�ect of

border ownership from one animal (left ordinate). Shading indicates standard error of the mean. Thin solid line, time course of responses (mean over

the two figure locations, right ordinate).

location. Thus, there are two populations of neurons that can be

adapted separately (von der Heydt et al., 2005).

Natural scenes

Are experiments with simple geometrical figures conclusive?

The system may not need sophisticated algorithms to detect an

isolated figure as in the displays of Figure 2. Other configurations

that have been used in the early border ownership studies, like

two overlapping figures, are also relatively simple compared to the

complexity of natural scenes. Would neurons in V2 or V1 signal

border ownership in natural scenes? Jonathan Williford tested

neurons with large numbers of natural scenes (Williford and von

der Heydt, 2016a). Using images from the Berkeley Segmentation

Dataset (Martin et al., 2001) he selected many points on occluding

contours for testing neurons (examples in Figure 3A). In the

experiments, a fixation target for the monkey was embedded so that

the selected points would be centered in the receptive field of the

recorded neuron, and the image was rotated so that the contour

matched the preferred orientation of the neuron. As in the standard

border ownership test with squares, four conditions were tested:

border ownership was controlled by rotating the image 180◦, edge

contrast was controlled by inverting the colors of the image so as to

flip the colors between the regions adjacent to the contour. The data

of this study are publicly available (Williford and von der Heydt,

2016b).

The first question was, can V2 neurons consistently signal

border ownership under natural conditions? Each neuron was

tested on many scene points (43 on average). The graph in

Figure 3B shows the border ownership signals of an example

neuron that was tested on 177 scene points. In seventy-nine percent

of the cases the signals were consistent (plotted as positive in the

graph). Consistency varied between neurons (Figure 3D). Out of

65, thirteen were over 80% consistent. In light of the hierarchical

model of cortical processing, which is still widely accepted, the

finding of consistent border ownership signaling in an area as low

as V2 is highly surprising.

The cognitive hypothesis

The burning question is now, could border ownership

modulation at this low level be the result of top-down projections

from higher-level object recognition areas? Figure 4A shows a

summary of the neuronal latencies (the time from stimulus onset to

the beginning of responses) that have been reported for the various

visual areas (after Bullier et al., 2001). One can see that neurons in

object recognition areas in inferior temporal cortex (including IT,

TEx, TPO) respond relatively late. Of these, posterior IT (TPO) has

the shortest latencies. To derive a prediction I use here the paper by

Brincat and Connor (2006) who studied neuronal shape selectivity

in the awake behaving conditions similar to those of the border

ownership studies. Their study found that the response latencies

in TPO depend on the type of responses within the area, with non-

linear (shape selective) neurons having longer latencies than linear

(unselective) neurons. The mean response for the shape selective

group (green curve in their Figure 2B) reaches half-maximal

strength at 130ms. Thus, if border ownership selectivity in V2

depended on object recognition, the signal for natural scenes would
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FIGURE 3

Neurons signal border ownership consistently across natural images. (A) Examples of images tested. Red circles show points where border

ownership signals were measured (“scene points”). (B) Border ownership signals of an example V2 neuron normalized to the maximum and sorted.

The signals were consistent for 74% of the 177 scene points tested. (C) Performance of a computational model on the 2,205 scene points tested in

the neurons. The model was consistent for 69% of the points. (D) Distribution of the percentage of consistent signals of 65 V2 neurons with

significant (p < 0.01) border ownership selectivity. Each neuron was tested with between 10 and 177 scene points (mean 43).

reach half-maximal strength only at 130ms (or later, depending on

delays added by the projection down to V2). Figure 4B “Prediction”

shows how the earliest border ownership signals would then look

like for natural scenes (red line) compared to the signals for displays

of squares (dashed black line, half-max strength at 68ms according

to Zhou et al., 2000). What the experiment actually showed was

that the border ownership signals for the two kinds of displays rise

simultaneously (Figure 4B, Data) (Williford and von der Heydt,

2016a). We conclude that the cognitive explanation is untenable.

The border ownership signals are faster than shape recognition in

IT. This is the beauty of neurophysiology: it can easily rule out

alternative hypotheses that would be difficult to discriminate with

psychological or computational arguments.

What is the role of selective attention?

Attentive enhancement might be a plausible explanation for the

figure-enhancement effect. When a figure pops up, it automatically

attracts attention. But if a neuron responds more to a figure when

it pops up here than when it pops up there, that difference cannot

be the result of attention. The two displays in Figure 2 both contain

a figure, the figure in the bottom display being flipped about the

edge in the receptive field relative to the top display, and some

neurons preferred one location, while others preferred the other

location. It’s a property of the neurons. Qiu et al. (2007) showed that

border ownership and attentional modulation are separable aspects

of neuronal function, and discovered an interesting correlation.

When the display contained several separate figures, and the

monkey attended to one or another, border ownership modulation

was found whether the figure at the receptive field was attended or

ignored; there was only a slight difference in strength of modulation

(Figure 5A).

And yet, attention does modulate the responses in displays

in which objects partially occlude one another, and it interacts

with border ownership in an interesting way. Figure 5B shows

at the top the responses of an example neuron to the occluding

contour. The two border ownership configurations are represented

left and right, and side of attention in top and bottom rows. One

can see that left was the preferred side of border ownership, and

that the responses were enhanced when attention was on the left-

hand object, compared to the right-hand object, for both border

ownership conditions. Thus, attention on the neuron’s preferred

border ownership side enhanced the responses relative to attention

on the non-preferred side, irrespective of the direction occlusion.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1136987
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


von der Heydt 10.3389/fcomp.2023.1136987

FIGURE 4

Selectivity of V2 neurons for border ownership in natural scenes cannot be the result of back-projections from object recognition centers in the

inferotemporal cortex (“cognitive explanation”) because it appears well-before shape selective responses emerge in inferotemporal cortex. (A)

Summary of visual latency data across brain areas in monkey. Shape selectivity occurs first in posterior temporal cortex (TPo); arrow shows time of

half-maximal strength of mean response of shape selective cells from a study in behaving monkey. (B) The border ownership signals for squares

(black dashed lines) and natural scenes (red solid lines), as predicted, and as observed.

But attention did not override the border ownership signal. The

results of Figure 5B, while showing the responses of one neuron

to the two directions of border ownership, can be interpreted as

the responses of two neurons with opposite border ownership

preferences, which shows that, whether attention is on the left-

hand object (top row) or on the right-hand object (bottom row),

responses are stronger when the left-hand object owns the border.

Like in this neuron, the rule is that attentive enhancement is on

the preferred side of border ownership, as shown by the scatter plot

at the bottom of Figure 5B. The two factors were roughly additive,

but there was a small but significant positive interaction. That is,

attention enhanced responses more on the foreground object than

on the background object.

The reader can experience the attention effect when looking at

pictures in which border ownership is ambiguous. Figure 6 shows

an artist’s depiction of Napoleon’s tomb on St. Helena. And not only

his tomb, also his ghost, standing beside the tomb. To see him,

direct your attention to the space between the trees!—The shape

pops out because, when you first look at the picture, the neurons

representing the borders between trees and sky are biased so that

those assigning ownership to the tree regions prevail (smaller

regions produce stronger border ownership signals than larger

regions; the Gestalt Law of Proximity). But when their opponent

neurons are enhanced by attention, ownership shifts to the sky

region, and you can perceive its shape: the ghost.

The grouping cell hypothesis

I do not see the practical value of having the attention

mechanism interfere with border ownership coding—besides the

ability to see ghosts—but the linkage between attention effect and

ownership preference helps in identifying the mechanism of border

ownership selectivity. This linkage was a surprise because selective

attention effects are usually phrased in terms of regions (left vs. right

hemifield, figure vs. ground region) rather than borders.

How does a neuron of V1 or V2 know that the edge stimulating

its receptive field is part of a figure? Could it be that border

ownership selective neurons in V1/V2 are just Hubel and Wiesel’s

simple and complex cells that receive an additional modulating

input from cells with large receptive fields that sense the presence

of a big shape that might be an object? And that this modulating

circuit is also used in top-down selective attention? That might

explain why the attention effect is asymmetric about the receptive

field, producing enhancement of responses when the attended

object is on the preferred side of ownership.

The receptive fields of the neurons studied were near-foveal and

typically about 0.5 deg in diameter, whereas the squares used to

demonstrate border ownership selectivity measured 4 deg on a side

or more. The neurons must be sensitive to the context far beyond

the classical receptive field. Figure 7 illustrates an experiment in

which the context influence was explored (Zhang and von der

Heydt, 2010). The little gray specks left and right of the calibration

mark show the classical receptive field of the neuron studied, and

the vertical lines through the receptive fields depict the edges of

the square stimuli, separately for the figure-left and figure-right

conditions (the plot combines the results of two experiments, one

with a 4◦ square, and one with a 7◦ square). To demonstrate

the context effect, the figures were fragmented into eight pieces

which were presented in random combinations, one combination

per trial.

The top plot corresponds to the trials in which the various

combinations of the contextual fragments were presented in

addition to the edge fragment in the receptive field (the “center

edge” for short). The bottom plot shows the trials in which the

same contextual fragments were presented without the center edge.
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FIGURE 5

The influence of attention on border ownership signaling. (A) When

objects are isolated, border ownership signals are similar whether

the object at the receptive field is attended (red line) or ignored (blue

line). (B) When objects overlap, side of attention and side of border

ownership modulate the responses. Raster plots show responses of

an example neuron. Dashed oval, receptive field. Lightening

symbols indicate side of attention. Scatter plot shows the relation

between attentional modulation and border ownership modulation

across neurons of area V2. Red dots represent neurons that were

influenced by both, attention and border ownership in form of

significant main e�ects and/or significant interaction (p < 0.01).

The effect of each context fragment is indicated by color, red

meaning enhancement of responses relative to the response to the

center edge alone, blue meaning suppression. One can see that, for

both figure sizes, the fragments to the left of the receptive field

enhanced the center edge response, while the fragments to the right

suppressed it. The bottom plot shows that the contextual fragments

alone (without the center edge) did not evoke any responses.

The results from this kind of experiment show that, while

neurons respond only to features within their small classical

receptive fields, their responses can be modulated by the image

FIGURE 6

Napoleon’s tomb. Attending to a region flips border ownership to

that region. See text.

context in a range that is much larger than the classical

receptive field.

Nan R. Zhang also explored the context influence in the case of

overlapping squares in which the border between the two squares

(which perceptually belongs to the overlaying square) was placed

in the receptive field. This situation is different in that there are

figures on either side of the receptive field and mechanisms that

simply detect the presence of a shape on one side would not work.

The results showed that in this case the presence or absence of T-

junctions, L-junctions (corners), and orthogonal edges, outside the

receptive field modulated the responses to the center edge (von der

Heydt and Zhang, 2018).

In area V4, where neurons are often selective for local contour

features, Anitha Pasupathy and coworkers discovered that neurons

that respond selectively to cusps are suppressed when the cusps are

not object features, but accidental features produced by occlusion

(Bushnell et al., 2011). Border ownership also affected the responses

of shape selective neurons in infero-temporal cortex (Baylis and

Driver, 2001).

The studies summarized so far led to the hypothesis that

border ownership selectivity involves “grouping cells” that sum

responses of feature neurons (including simple and complex

types) and, via back projection, facilitate the responses of the

same feature neurons, as sketched in Figure 8. Craft et al.

(2007) designed a computational model in which grouping cells

have fuzzy annular summation templates that are selective for

oriented feature signals of roughly co-circular configuration. The

summation of feature signals is linear, the feedback to the

feature neurons is multiplicative. For example, the blue G cell in

Figure 8 sums the responses of orientation selective neurons with

receptive fields depicted in blue, and enhances their responses
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FIGURE 7

The extent of context integration in border ownership selectivity.

This experiment probed locations where the responses of a border

ownership selective neuron to a local stimulus could be modulated

by contextual contours. First, the “classical receptive field” was

mapped with a small probe stimulus. The map (Gray specks) is

depicted twice to allow graphic representation of the two border

ownership conditions. The contours of a square figure were

fragmented into eight pieces (four edges and four corners) that

were presented in random combinations, one combination at a

time. One edge of the square was centered in the receptive field to

stimulate the neuron, the other “contextual” fragments were

presented outside the receptive field, as depicted in red and blue

(they appeared either to the left or to the right of the receptive field,

depending on the border ownership condition). The graph

combines the results of two experiments, with 4◦ and 7◦ squares,

respectively. The contextual fragments modulated the responses as

indicated by the color of the fragments, red for facilitation, blue for

suppression. One can see that, despite the tiny size of the classical

receptive field, the contextual stimuli modulated the responses

almost everywhere, those on the left producing facilitation and

those on the right producing suppression. The bottom graph shows

the result of control trials in which the edge in the receptive field

was absent: none of the contextual fragments produced a response

by itself.

by feedback (“Facilitation”). This feedback makes those neurons

border-ownership selective, as indicated by arrows on the receptive

field symbols. Grouping cells also sum signals that do not

correspond object features but indicate the layout of objects in

depth, such as stereoscopic depth and accidental features produced

by interposition, and the neurons providing these signals do

not receive modulatory feedback. For example, T-junctions, and

termination of lines at the contour, and orthogonal edges which

contribute to border ownership (von der Heydt and Zhang, 2018).

Note that each piece of contour is represented by two groups

of feature neurons for the two directions of border ownership, as

illustrated in Figure 8 by the red and blue receptive field symbols

in the center. Of the two objects depicted in black, the one to the

left will activate the blue G cell, the one to the right, the red G

cell. Selective attention, which consists in top-down activation of

G cells (yellow lightning shapes), can enhance either the feature

signals of the left-hand object (Figure 8, bottom) or those of the

right-hand object (Figure 8, top). I have previously suggested that

FIGURE 8

The grouping cell hypothesis. Schematic depiction of cortical

activation by two objects (black outlines). The object contours

stimulate receptive fields of edge selective feature neurons (ovals)

which send their signals to specific processing centers at higher

levels, and, via collaterals, also excite grouping cells G. Grouping

cells project back to the same feature neurons, facilitating their

responses. To select an object, top-down attention signals excite

the corresponding G cell (lightning symbol) thereby enhancing the

feature signals of the object for further processing. Grouping cells

are thought to sum also signals that are not evoked by object

features but by background structures cut o� by occlusion, such as

line terminations, L-junctions, and T-junctions. These inputs are not

depicted here for clarity.

activation of a G cell (bottom-up or top-down) represents a “proto-

object” (von der Heydt, 2015). This term had already been used in

psychological studies, implying a preliminary object representation

that may later be completed. The steep onset and early peak of

border ownership signals do not indicate gradual completion but

a one-shot process. But inspecting an object with multiple fixations

seems to accumulate information about the details of an object in

some central representation, which looks like gradual completion

of an object representation. So, the emerging border ownership

modulation and the enhanced feature signals might well be called a

“proto-object”.Where the completion occurs in the brain, and how,

are questions that are worthwhile investigating.

The grouping cell hypothesis proposes that G cells come with

summation templates of different sizes to accommodate the variety

of objects. There must be a gamut of template sizes, and templates

of each size must cover the visual field densely. The numbers of

G cells required might raise concerns, but that number is actually
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quite small, much smaller than the number of feature cells. This

is because G cell templates only have low spatial resolution, the

“resolution of attention” (Intriligator and Cavanagh, 2001), which

is about 20 times lower than the feature resolution of the system.

This means that, for the smallest template size, covering the visual

field densely requires 400 times fewer G cells that feature cells. And

the numbers of G cells with larger templates decreases in inverse

proportion to square of size.

Besides the size of their summation template and the preference

for co-circular signals, the hypothetical G cells are not particularly

selective. The summation templates are fuzzy. Thus, round shapes,

squares, and triangles, would all activate the G cells about as

much as the potato shapes depicted in Figure 8. G cells are not

“grandmother cells”. Detecting a grandmother requires selectivity

for conjunctions; not every person with white hair is a grandmother.

By contrast, summing of features in G cells is disjunctive. Changing

just one little T junction can flip foreground and background. In

the case of partially overlapping squares, the border ownership

signals for the occluding contour were found to grow with the

number of indicative features, but saturate early: on average, one

single feature (any T junction, L junction, or orthogonal edge)

already produced half maximal signal strength (von der Heydt

and Zhang, 2018). Selectivity was also found for border ownership

defined by stereoscopic cues (Qiu and von derHeydt, 2005), motion

parallax (von der Heydt et al., 2003), transparent overlay (Qiu and

von der Heydt, 2007), and display history (O’Herron and von der

Heydt, 2011). In the spirit of the grandmother cells terminology,

G cells might be termed “TSA cells”: “if you see something, say

something.”1

What characterizes an object are its feature signals. By targeting

one G cell, the top-down attention mechanism can simultaneously

enhance a large number of feature signals that characterize the exact

shape, color, etc. of the target object. The G cells are not in the object

processing stream, they serve only as handles to pick objects and

allow attentive selection to route feature information of individual

objects to higher processing centers, like those in inferior temporal

cortex. For example, to read out the color of one of the squares in

Figure 1, attention would boost the activity of a G cell according

to location, while activating at the same time a color processing

center downstream. From the feature neurons that are enhanced by

the G cell, which include many color-coded edge selective neurons

(Friedman et al., 2003), the color processor will compute the color

of that square. Similarly, activating other processing areas will

identify object shape and other object attributes.

As mentioned, every border between image regions activates

pairs of border ownership selective neurons with opposite

preferences. One such pair is depicted in Figure 8, the pair with

receptive fields on the border between the two objects. This is

to illustrate a specific prediction of the hypothesis, namely that

attention to one side only facilitates the neuron that prefers that

side of ownership. Thus, the grouping cell hypothesis predicts

the correlation that was experimentally observed (Figure 5B). It

predicts a hundred percent, whereas the actual correlation was

lower, which is most likely due to the presence of basic spatial

1 Slogan of the Transport Security Agency.

attention mechanisms in addition to the grouping cell mechanism.

Attention may involve the grouping cell mechanism only in

situations where simple spatial selection is not feasible, such as

situations of partial occlusion, where the occluding contour should

not be conflated with features of the background object.

Computational modeling shows the advantage of grouping cells

in selective attention (Mihalas et al., 2011). Different from spatial

attention models, the grouping cell model automatically localizes

and “zooms in” on structures likely to be objects. The top-down

attention signal only needs to enhance the G cell activity broadly in

the region to be attended, and the network will direct the activity

to potential objects in that region and focus activity on the size

of G cell templates that fit each object best. The model replicates

findings of perceptual studies showing that “objectness” guides and

captures attention.

The above models (Craft et al., 2007; Mihalas et al., 2011)

work on synthetic images of simple geometric shapes. A fully

image computable model of the grouping mechanism was created

by Hu et al. (2019a) and applied to natural images. The

model produced contours as well as border ownership. Although

it has no free parameters, Hu et al. found its performance

to be overall comparable to state-of-the-art computer vision

approaches that achieved their performance through extensive

training on thousands of labeled images, fitting large numbers of

free parameters.

The Hu et al. model has three layers of cells with retinotopic

receptive fields, Simple cells (S), Border-ownership cells (B), and

Grouping cells (G). Each S cell excites pairs of B cells for the

two possible directions of border ownership. B cells thus inherit

their receptive field selectivity from the S cells. G cells sum B cell

responses according to fuzzy annular templates selectively for “co-

circularity”. The model works in an iterative manner. A givenG cell

sums the responses of one of the two B cells from each position and

orientation, and facilitates the same B cells by modulatory feedback

(see Figure 8) and suppresses the partner B cells by inhibitory

feedback. This is motivated by neurophysiological results showing

that image fragments placed outside the classical receptive field

of a border ownership neuron can cause enhancement of the

neuron’s activity when placed on its preferred side, and suppression

if placed on its non-preferred side (see Figure 7; the suppression

is not depicted in Figure 8 for clarity). The model uses a scale

pyramid of G cell template sizes, and pools information across

different scales in a coarse-to-fine manner, with information from

coarser scales first being upsampled to the resolution of the

finer scale before being combined additively. A logistic function

enforces competition between B cells such that their total activity

was conserved.

Comparing with the neurophysiological data on the 2205 scene

points tested in Williford and von der Heydt (2016a), Hu et al.

found that their model achieved 69% consistent border ownership

assignment, which was typical for V2 neurons (Figure 3). But the

neurons varied, and many were actually more consistent. The

neuron tested with the most images was 79% consistent across

177 scene points, and some were >90% consistent. This is no

surprise because the Hu et al. model is simple. As Craft et al.

(2007) observed, having grouping cells sum co-circular edge signals

alone will not assign border ownership correctly for overlapping
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figures, which the neurons do resolve. In Craft’s model, grouping

cell summation also included T-junction signals. As we saw above,

the neurophysiology of border ownership coding suggests that

grouping cells integrate a variety of different features as figure-

ground indicators (von der Heydt and Zhang, 2018), and there

seems to be a diversity of grouping cells, each using a subset

of potential indicators. As a result, the consistency of border

ownership coding across images varies from cell to cell (Figure 3).

As Hu et al. (2019a) show, there was little similarity between two

neurons when comparing their border ownership signals on a

common set of scene points. Even highly consistent neurons are

not entirely consistent with each other.

The computation of border ownership in natural scenes might

be improved by having grouping cells include also local figure-

ground indicators, similarly as the Craft et al. model included

T-junction signals in dealing with simple geometrical figures.

Evidence for grouping cells

Do grouping cells exist? The observations of border ownership

selectivity and attentive selection could also be explained by

other hypotheses, for example, by propagating convexity signals

along contours (Zhaoping, 2005), or by feedback projections in

the cortical hierarchy from high-level areas with large receptive

fields down to low levels with small receptive fields (Jehee et al.,

2007), or simply by the magic of coherent oscillations. But there

is one specific prediction of the grouping cell hypothesis: the

top-down facilitation of feature neurons should lead to spiking

synchrony, because all feature neurons that receive input from

the same grouping cell (or cells) receive the identical spike trains.

More specifically, synchrony should occur only between border

ownership selective neurons when responding to the same object

(Bound condition, Figure 9A); and only between pairs of neurons

with “consistent” border ownership preferences (red dashed lines

in Figure 9A), but not between “inconsistent” pairs (gray dashed

lines). The hypothesis further predicts that synchrony will be found

between neurons that are widely separated in cortex, because the

grouping cells must be able to encompass the images of extended

objects represented retinotopically in visual cortex.

AnneMartin tested these predictions, which was a difficult task.

First, it required simultaneous stable recordings from two distant

neurons, both of which had to be border ownership selective.

Second, the objects had to be shaped according to the positions and

orientations of the receptive fields of the two neurons encountered

(sometimes it was impossible to construct a simple figure that

would stimulate both neurons).

The main results are shown in Figure 9B (Martin and von der

Heydt, 2015). The three different display- and attention conditions

are depicted schematically at the top. While the subject fixated

gaze on a fixation target (black dot), three figures were presented

so that the two receptive fields (red ovals) were either stimulated

by the same figure (Bound) or by different figures (Unbound).

Additionally, attention was controlled (asterisk) by having the

subject detect the moment of a subtle modification of shape that

occurred predictably in one of the figures. Below, the frequency

of spike coincidences is plotted as a function of lag time, after

correcting for random coincidences (a cross-correlation function

FIGURE 9

Spiking synchrony between border ownership selective neurons. (A)

According to the hypothesis a single grouping cell G contacts many

V1/V2 neurons via recurrent projections (dashed arrows). These

neurons receive identical spike trains when the grouping cell fires,

which should lead to spike synchronization. Because the grouping

input produces border ownership preference, the hypothesis

predicts synchrony between neurons whose border ownership

preferences point toward the activating object (consistent pairs,

indicated by red dashed lines between receptive field symbols), but

only when they respond to the same object (Bound), and not when

they respond to di�erent objects (Unbound). (B) Curves show the

covariograms between spike trains of pairs of neurons under the

experimental conditions shown schematically above: dot, fixation

point; red ovals, receptive fields; yellow asterisk, focus of attention

(ovals and asterisks were not part of the display). Consistent pairs

produced a sharp peak at zero (coincidence) when stimulated by the

same object, whether the object was attended or ignored (yellow

and black heavy lines), in contrast to stimulation with di�erent

objects which did not produce a peak (thin line). Inconsistent pairs

produced rather flat covariograms. Bar graphs show the frequency

of coincidences within 40ms for the two kinds of pairs under the

three experimental conditions. There was a significant di�erence

between Bound and Unbound for consistent pairs, and a highly

significant interaction between pair type and binding condition (This

figure shows the data from the quartile of trials with the fastest

(Continued)
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FIGURE 9 (Continued)

behavioral responses; results for all trials combined were similar

except for an additional e�ect of attention, see Martin and von der

Heydt, 2015). (C) Synchrony (frequency of 5-ms coincidences) as a

function of the distance in cortex between the neurons of each pair

(left-hand plot), and as a function of the di�erence between their

preferred orientations (right-hand plot). Dashed lines, Mean.

Neurons separated as widely as 13mm fired synchronous spikes, as

did neurons with di�erent preferred orientations, indicating that

individual grouping cells contact neurons representing distant

features and features of di�erent orientations.

called “covariogram”). There is a sharp peak at zero lag in the Bound

condition, but not theUnbound condition; and for Consistent pairs,

but not for Inconsistent pairs. The bar graphs to the right show

the frequency of coincidences within 40ms and the significance

of the differences (the results were similar for 5-ms coincidences

and the differences were also significant). This is exactly as

predicted: in neurons that receive projections from a common

grouping cell (i.e., neurons whose directions of border ownership

preference are consistent) spiking synchrony increases when that

grouping cell is activated (i.e., when both neurons are stimulated

by a common object). I think the experiment cannot distinguish

whether synchrony is due to single grouping cells or pools of such

cells, but the sharp peak at zero lag of the covariograms in Figure 9B

indicates coincidences of individual spikes.

Attention had little effect on synchrony (just as it produced little

enhancement of responses, Figure 5A).

Spiking synchrony between neurons in primary visual cortex

has generally been found to fall off rapidly with distance between

neurons, reaching zero at 4mm, which is approximately the

maximum length of horizontal fibers in V1, and to be specific

to neurons with like orientations (Smith and Kohn, 2008).

The grouping hypothesis predicts the opposite: to be flexible,

the grouping mechanisms must encompass neurons with widely

separated receptive fields and a variety of orientation preferences.

And indeed, in the above experiment, neurons separated by as

much as 13mm showed tight (5ms) synchrony, and finding

synchrony did not depend on similarity of preferred orientations

(Figure 9C).

Is grouping behaviorally relevant? The task in the experiment

of Figure 9 required detection of a small shape change produced

by counterphase movements of the edges in the two receptive

fields; the behavioral response depended on grouping these edges

to one object. Thus, the hypothesis predicts that, if the strength

of the grouping feedback fluctuates from trial to trial, stronger

synchrony should be followed by a faster behavioral response. Anne

Martin discovered that the response time correlated negatively with

synchrony in consistent pairs in the “Bound” condition, whereas

inconsistent pairs showed no such correlation. In the quartile of

trials with the strongest synchrony the mean response time was

8ms shorter than in the quartile with the weakest synchrony. Thus,

the behavioral responses were fastest when neural grouping was

strongest, as predicted.

One question we glanced over above is, how can modulatory

common input produce synchrony? Spiking synchrony is generally

observed when two neurons are activated by a common spike

train, but, according to the theory, grouping cell feedback to

feature neurons does not activate, but only modulates existing

activity (see example in Figure 7 showing that context features

alone do not activate). Nobuhiko Wagatsuma and Ernst Niebur

explored synchrony between pairs of feature neurons with a

spiking model. They modeled the afferent inputs by independent

spike trains activating AMPA receptors, and the modulatory

grouping cell input by a common spike train activating NMDA

receptors (using a standard computational model for generic

NMDA receptors). Surprisingly, this model produced synchrony,

and even the exact shape of the experimental covariograms and

the observed synchrony at millisecond precision (Wagatsuma et al.,

2016).

As we have seen, experiments and modeling confirm a critical

prediction of the grouping cell theory: that pairs of border

ownership selective cells with consistent direction preferences,

when activated by a common object, exhibit spike train synchrony

with a cross-correlation function whose shape is characteristic for

common modulatory input. Next, we will consider another critical

prediction of the theory, persistence.

Persistence

It has been argued that vision—in contrast to audition—does

not need short-term memory because the visual information is

continuously available so that attention can always pick what is

needed. But I argue that vision needs a short-term memory too.

What would be the use of grouping features to objects if that would

all be lost in a blink?

O’Herron and von der Heydt (2009) devised experiments to

test if border ownership signals persist. The idea was to present an

edge in the receptive field that is owned by a figure on one side, as

in the standard test of Figure 2, and then, keeping the edge in the

receptive field, switch to a display in which ownership of the edge

is ambiguous. This simple paradigm has produced amazing results.

Figure 10, top, shows the sequence schematically for ownership-left

(the corresponding displays for ownership-right were also tested

to measure the border ownership signal). Below, the red curve

shows the average time course of the signal. It rises steeply and

stays high during the figure phase, as in the standard test, but

in the ambiguous phase it declines only slowly. For comparison,

when the figure was flipped to the other side keeping the edge

contrast (Figure 10, 2nd row of insets from top), the signal changed

quickly to negative values (blue curve). The difference between

the time constants was 20-fold. Thus, border ownership signals

persist for a second or more. This experiment also shows that the

persistence is not due to inherent persistence of responses in the

recorded neurons, because in the “flip” condition their responses

change rapidly.

The paradigm of Figure 10 is somewhat artificial in that it does

not have a simple interpretation in terms of objects with natural

continuity. In the top display sequence, the initially presented

object disappears and a bipartite field appears, and in the sequence

below, the initial object disappears, and a different object appears

on the opposite side. To study persistence of border ownership

signals in a more natural situation, Philip O’Herron designed an

ingenious display sequence in which objects maintain continuity.
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FIGURE 10

Persistence of border ownership signals. The edge of a square was

presented in the receptive field for 0.5 s and then switched to an

ambiguous edge (in other trials, side of figure and contrast were

reversed, like in the standard test). In the other condition, the square

was flipped to the other side. Red line shows the time course of the

border ownership signal when the edge is made ambiguous: The

signal decays slowly. Blue line, time course of the signal when the

square was flipped to the other side: The signal reverses quickly.

He presented two partially overlapping figures and recorded

responses to the common border (the occluding contour) when the

occlusion cues reversed while the two figures were continuously

displayed. The result was that the initial border assignment

persisted for 2 s or more before reversing sign (O’Herron and von

der Heydt, 2011). Control conditions showed that, when the final

configuration of overlapping figures was presented without history,

the signal assumed the final value quickly; and when a single figure

was presented on one side and was then replaced by a figure on

the opposite side, as in Figure 10 Figure flip, the signal also reversed

quickly. These results are summarized schematically in Figure 11,

where pairs of adjacent frames represent two object locations, O1

and O2 denote two objects, and the red arrow indicates direction

of border ownership. Abrupt-onset and object-flip result in fast

signal changes, whereas reversal of occlusion cues in the presence

of both objects results in retarded reversal of the signal. It seems

that object continuity includes continuity of depth relations. More

generally, we hypothesize that the system represents location in

space as an object attribute which has continuity unless there is an

abrupt image event like onset or offset.

O’Herron also showed that the persistent ownership signals

“remap” across saccades, a result that will be reviewed below.

The persistence of border ownership signals is another

example of the power of neurophysiology in providing

FIGURE 11

Schematic of display sequences producing fast and slow changes of

border ownership signals. First and Second are two phases of

stimulation.Outlines represent object locations;O1 andO2, objects;

red arrow, direction of border ownership. When overlapping objects

appear suddenly, or when the object on one side disappears and

another object appears on the opposite side, the signal changes

fast. But when two objects are continuously present and ownership

of the common border is reversed, the signal follows only slowly.

clear answers to questions that are difficult to answer with

psychological methods.

How is it possible that neural signals rise fast and decay slowly?

Neurons in low-level visual areas must be able respond fast to

the afferent signals from the retina which change swiftly with new

information arriving after a fraction of a second. The memory-like

behavior shown in Figure 10 is a puzzle for neural network theory.

Traditional positive feedback models show attractor dynamics,

with transient perturbations resulting in a quasi-permanent change

of system state, whereas the responses of Figure 10 return to

the original state after a transient. This is a question of very

general interest because short-term memory underlies many kinds

of behavior. Grant Gillary discovered that short-term depression,

which is ubiquitous among cortical neurons, can create short-term

persistence in derivative feedback circuits. If short-term depression

acts differentially on positive and negative feedback projections

between two coupled neurons, they can change their time constant

dynamically, allowing for fast onset and slow decay (Gillary et al.,

2017).

The blessing and the curse of eye
movements

We see by moving our eyes. The eyes fixate, producing stable

images for a moment, and then move rapidly to fixate another

part of the scene. Each time, the images are displaced in the

eyes. Humans as well as monkeys move fixation continually

about 3–4 times per second. The reason why primates do this

is obviously to be able to scrutinize different parts of a scene

with the high-resolution center region of the retina and its

corresponding processing apparatus in the brain. The system

then synthesizes information from multiple fixations to represent
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complex objects and combines object representations to scene

representations. From the computational standpoint this seems

horribly complicated. At least I don’t know of any technical system

that would bounce a camera around four times per second. How

our brain deals with this confusing input is a puzzle. One question

is, why don’t we perceive and are not disturbed by the frequent

movements of the retinal image, but rather perceive a stable world.

But the subjective stability is a minor issue compared to the

question of how the system integrates object information across the

eye movements.

To explain cross-saccadic integration, van Holst proposed the

reafference principle (von Holst and Mittelstaedt, 1950). When

the brain creates a signal that commands the eyes to move, he

thought, it also produces an associated signal that tells the visual

system about the impending eye movement and informs it about

the direction and size of the image movement to expect. He

called the change of retinal signals caused by the eye movement

the “afference”, and the associated brain signal to the visual

system the “reafference”. To create continuity the brain would

have to correct the afference by the reafference, that is, to shift

the image representation so as to cancel the image movement

and thus achieve a stable internal representation (Figure 12A).

The problem with this theory is that a shifter circuit that could

remap the image representations would have to be huge. V1

and V2 each consist of over 100 million neurons and there

is no other structure in the visual brain that could hold so

much information.

An alternative solution would be to work with image

representations that move with every eye movement, and remap

the object structure accordingly (Figure 12B). Instead of requiring

a stabilized image representation, object-based attention would

then only need object pointers that are updated with every eye

movement. Zhu et al. (2020) conjectured that top-down attention

signals activate object pointer cells whose signals are fed via a shifter

circuit to grouping cells. This schemewould reduce the stabilization

task from remapping millions of image signals to remapping a few

object pointer signals. Assuming the system canmaintain a number

of object pointers, top-down attention could select to which object

to attend, and the remapping would preserve its identity and

enable the attention mechanism to keep focused on it, that is, keep

enhancing the feature signals of that object across eye movements,

or deliberately choose to focus on another object.

Evidence for remapping of border
ownership

The hypothesis of object pointer remapping implies that the

activation of grouping cells is being remapped to a new location

with each eye movement. When an object appears, a grouping cell

responds and will activate an object pointer. This activity persists

and, by feedback, reinforces the activity of the grouping cell. When

the eyes then make a saccade that moves the image of that object

to the receptive field of another grouping cell, the shifter circuit

will reroute the object pointer accordingly and its activity will flow

down to the new grouping cell. Thus, the grouping cell in the

new location will become active immediately. The result will be

that border ownership is remapped, that is, the feature neurons

that respond to the object in the new location will be biased

immediately, without the need for new context processing.

FIGURE 12

The problem of dealing with image displacements caused by eye movements. (A) Rea�erence principle. When the eye movement control center

sends a command to the eye muscles, it also sends a copy to the visual system indicating the impending eye movement. A shifter circuit shifts the

visual representation accordingly to compensate for the image displacement caused by the eye movement. (B) Object pointer hypothesis. The visual

system works with the moving image representation, but uses object pointers that are updated at each eye movement by a shifter circuit.
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FIGURE 13

Remapping of border ownership signals across saccades. Like in the

memory experiment of Figure 10, a figure was presented (Phase 1)

and then replaced by an ambiguous edge (Phase 2), but in this

experiment, the neuron was not stimulated because the edges were

outside its receptive field (dashed oval). Finally, a saccade was

elicited that brought the receptive field onto the ambiguous edge

(red arrow, Phase 3). Curve shows the mean border ownership signal

(47 neurons). Black arrow on time axis, movement of fixation point,

vertical dotted line with horizontal bracket, mean time of saccade

with standard deviation. The border-ownership signal is close to

zero during phases 1 and 2 because the neurons are not stimulated.

But shortly after the saccade, when the edge stimulates the

neurons, a signal emerges although border ownership is ambiguous.

The neurons signal how the edge was owned before the saccade.

O’Herron and von der Heydt (2013) tested this prediction

as illustrated in Figure 13. Recording from a feature neuron they

presented a figure so that its edges were outside the receptive field

(Phase 1) and then replaced the figure with an ambiguous edge that

coincided with one of the figure edges (Phase 2). After a while,

the fixation point was moved, inducing the monkey to make a

saccade that brought the receptive field onto the edge (Phase 3).

The prediction was that the neuron’s responses will reflect the

previous ownership despite the absence of a figure. The graph at the

FIGURE 14

Searching for grouping cells—a novel paradigm. An array of test

figures is presented, and monkey is instructed to scan the array in

search for a figure that, when fixated, leads to reward. While monkey

is scanning, opaque strips drift across the array (gray bars, depicted

transparent for illustration only). For control of attention two shapes

of figures are displayed, and a cue figure presented at the beginning

of each trial (dotted outline) tells monkey which shape to look for.

Line trace, eye movement trace of an example trial. Green circles,

position of an example receptive field for each fixation.

bottom shows the population border ownership signal. There are

no responses in Phases 1 and 2, as expected, because the receptive

fields are in a blank region. During Phase 2, the fixation point

moves (black arrow on time axis) eliciting a saccade that brings

the receptive fields onto the edge. The neurons respond, and a

border ownership signal emerges as predicted. This is about half a

second after the figure was removed; border ownership is produced

from memory.

Searching for grouping cells and
object pointers

The results described so far are all based on variants of the

border ownership paradigm and on recordings from V1, V2, and

V4, and together they constitute strong evidence for the grouping

cell theory. But the one crucial prediction of the theory, the

existence of grouping cells has not yet been confirmed. Grouping

cells might live in another brain region. In fact, finding persistence

of the border ownership signal in areas like V1 and V2, where

neuronal responses rise and fall fast, makes it seem unlikely to find

grouping cells there.

Identifying grouping cells, to my knowledge, has only been

attempted in one candidate area, V4, an area where some neurons

have larger, fuzzy receptive fields and that has strong back

projections to V2 and V1. Also, V4 is connected to both, the

What and the Where pathways (Ungerleider and Mishkin, 1982;

Ungerleider et al., 2008), and the function of grouping cells is just

to pull out what is where.

Searching for grouping cells needs a different paradigm. The

distinctive feature to look for is obviously the persistence of
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responses when an activating object disappears from view, as

in O’Herron’s demonstration of persistence of border ownership

where an edge is substituted for a square. But we do not expect

grouping cells to respond to edges; rather, they should respond best

when an object is centered on their summation template.

Alex Zhang and Shude Zhu developed a new paradigm

motivated by the phenomenon that objects persist perceptually

when they are transiently occluded, a phenomenon called “object

permanence”.When an object is occluded by another object passing

in front of it and then reappears, we perceive it as the same object.

We would be surprised if it had vanished, or if there were now two

objects instead of one. The visual system holds the representations

for a certain time even when the objects are invisible.

Figure 14 illustrates the new paradigm. The stratagem was to

present an array of objects for visual search and, while the observing

subject is scanning the array, transiently occlude some of the

objects.

To control top-down attention, the objects were of two different

shapes and, before the array appeared, a cue object was displayed

(dashed outline) that specified which shape to look for. The cue

object disappeared when the array came on.

Figure 14 also shows the example of an eye movement trace of a

trial in which a trapezoidal shape was cued. The monkey made four

fixations, and four green circles indicate where the receptive field of

an example neuron would be in each case (the circles are only for

illustration, they were not part of the display). In fact, the array was

constructed for each neuron being recorded so that, when one of

the objects was fixated, another object would fall on the neuron’s

receptive field in most trials, and in other trials, a blank region. In

the example, two fixations brought objects into the receptive field,

one a trapezoid, and the other a square, while in two other fixations

the receptive field landed on a blank region.

Occlusion was added by having a series of opaque gray

strips drift across the array that occluded half of it at any time

(the strips are depicted as transparent in the Figure just for

illustration; in fact, display items that we call “occluded” were

physically absent). Surprisingly, the subjects had no difficulty

in dealing with that complication. Once they mastered the

task without occlusions, they rapidly adjusted to the occlusions

in just one session. This of course confirms the power of

perceptual permanence.

In the new paradigm neurons respond to static objects

brought into their receptive fields by eye movements, much

like in natural viewing, which is fundamentally different

from the traditional neurophysiological paradigms in which

neurons respond to objects that are being switched on and

off. A technical complication here is that “stimulus onset” is

not controlled by the experimenter, but by the subject’s eye

movements, which means that the neural responses are timed

by onset and offset of fixation. Thus, the phases of visibility

and occlusion of individual objects, which are programmed

by the experimenter, need to be related to the recorded eye

movements. But this complication is greatly outweighed

by the opportunity to study neuronal activity under quasi

natural viewing conditions which makes this an enormously

powerful paradigm.

Studying V4 neurons with this paradigm Zhu et al. (2020)

indeed found a “response” to the invisible objects in the mean

firing rate, corresponding to the predicted top-down activation of

grouping cells (their Figure 10 which shows the averaged responses

of 87 V4 neurons). But the authors rejected this result as evidence

for grouping cells in V4, suggesting an alternative explanation for

the “responses” to invisible objects, because of another result that

was not consistent with the predictions: While top-down attention

and saccade planning clearly produced response enhancement for

visible objects, they did not so for occluded objects (Figure 15).

Neurophysiology can be hard to understand if one just looks at

what the various individual neurons do; only a theory can relate

the neural signals to visual experience or the performance of a

vision algorithm. Figure 15A illustrates the prediction of the theory

when fixation is on one object (square marked by yellow asterisk)

and a saccade is planned to another object (dashed square) that is

momentarily occluded by a larger object (blue outline rectangle).

According to the theory, there are three layers of cells, the feature

cells with receptive fields in retinal space (ovals on gray bars), a

grouping cell layer G with fixed connections to the feature cells,

and a number of object pointer cells OP that are connected with

grouping cells through the shifter circuit SH.

The top panel of Figure 15A illustrates the fixation before

the saccade: top-down attention enhances the OP cell that is

momentarily connected to grouping cell G3. Grouping cell G1

(assumed to be the recorded cell) is not active because the object

in its receptive field is occluded.

When the saccade to the other object is planned, as shown

in the middle panel, top-down attention moves to the OP

cell that is momentarily connected with G1, and the OP

activity flows down to G1 (red arrow). This is the predicted

activity that will be recorded despite absence of afference from

the retina.

And when the saccade is executed, as shown in the bottom

panel, SH reroutes the connections to G3 and G5 as indicated

by yellow arrows. Thus, while the left-hand object activates other

feature cells after the saccade, it is again connected to the left-hand

OP cell.

Figure 15B shows the time course of the mean firing rates at

the end of a fixation period, that is, at the moment when the brain

initiates a new saccade. The curves represent the activity from

before the saccade until 50ms after the saccade. Because 50ms is

the latency of visual responses in V4, visual information from the

next fixation did not influence this activity.

The top three curves show the responses to visible objects, red

line for responses when the object in the receptive field was the

goal of the next saccade, and brown lines when another object was

the goal; solid lines, when the object was a target, and dashed line

when it was a distracter. These curves show that the responses were

enhanced by attention (solid brown vs. dashed brown) and further

enhanced when the attended object was the goal of the next saccade

(solid red vs. solid brown). But planning a saccade to an occluded

object did not produce the activity predicted by the red arrow in

Figure 15A (blue vs. cyan curves) and occluded targets were not

represented by enhanced activity compared to occluded distracters

(solid cyan vs. dashed cyan). This means that the recorded neurons

were activated by visual afference, but not by top-down activity

from object pointer cells.

To conclude this section, previous experiments had shown that

border ownership signals in neurons of V1/V2 persist after the
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FIGURE 15

Attending and saccading to invisible objects. (A) Theory of object pointers. Gray bars with ovals represent receptive fields of feature cells in retinal

space. G, grouping cell layer, SH shifter circuit, OP object pointer cells. Presentation of an object excites a number of feature cells and a grouping

cell, and, through SH, an object pointer cell. OP cells sustain activity once excited. Top panel. Two objects (squares) have activated two OPs before

the left-hand object was occluded by another object (blue outline). Attention on right-hand object (yellow asterisk), which is currently fixated, is

enhancing corresponding OP. Middle panel. Planning of a saccade to left-hand object re-allocates attention, enhancing left-hand OP whose activity

flows down to G1 (red arrow), and a signal is recorded (microelectrode symbol) even though the object is no longer visible. Bottom panel. The

saccade has moved the receptive fields, and SH has compensated for the movement by re-routing the connections to G3 and G5, as indicated by

yellow arrows, thus keeping left-hand OP connected to the feature cells of left-hand object. (B) The mean time course of activity recorded from 87

V4 neurons at the end of a fixation period; zero on abscissa marks time of saccade. Note that new visual input does not a�ect responses until

∼50ms, the latency of V4. Red and brown traces, responses to visible objects; blue and cyan traces, responses to occluded objects; solid lines, when

attended; dashed lines, when ignored; red and blue, when goal of next saccade. Responses were enhanced by attention (solid vs. dashed), and

further enhanced when object was goal of planned saccade (red vs. brown), but only for visible objects. Had the recordings been from a G cell,

enhancements would also be found for occluded objects.

object that produced these signals has been removed (Figure 10),

and that they even persist across a half second of display of a

blank field that completely silences the activity of these neurons

(O’Herron and von der Heydt, 2009, their Figure 7). These

findings suggests that border-ownership selective neurons must be

modulated by an external signal, by activity that we do not see

in V1/V2. And the results of the new experiment, summarized in

Figure 15B, show that this signal does not come from V4.

Plausibility of models

Since figure-ground organization was discovered by the Gestalt

psychologists it has stimulated theories about the underlying brain

activity unlike few other phenomena in perception, and the interest

in modeling it has grown since neurophysiologists discovered

neural activity related to illusory contours (von der Heydt et al.,

1984), figure ground segregation (Lamme, 1995), object-based

attention (Roelfsema et al., 1998), and border ownership (Zhou

et al., 2000).

Among the various models of perceptual organization that

have been proposed (Grossberg and Mingolla, 1985; Zhaoping,

2005; Jehee et al., 2007; Kogo et al., 2010; Jeurissen et al., 2016),

the grouping cell model discussed here is distinct in that it

makes the highly specific prediction that pairs of border-ownership

selective neurons with consistent side-of-figure preferences, when

stimulated by a common object, show spiking synchrony. And

experiments have shown exactly this. Other neural models do not

predict synchrony because the neurons representing the distributed

features of an object are not supposed to receive input from

common spike trains. Only the models by Jehee et al. (2007)

and Jeurissen et al. (2016) propose neurons with receptive fields

large enough to encompass objects. However, the coarse-to-fine

processing in their model is relayed through a cascade of neurons

down through the hierarchy of visual areas from TEO to V1, and

the relays do not preserve spike timing.

Models that rely on lateral signal propagation (Grossberg

and Mingolla, 1985; Zhaoping, 2005; Kogo et al., 2010) are

not physiologically plausible because the conduction velocity

of horizontal fibers in cortex is too slow. Based on published

conduction velocity data, Craft et al. (2007) estimated that lateral
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propagation would delay the border ownership signal for the 8 deg

square by at least 70ms relative to the edge responses, in addition

to processing delays, whereas only 30ms has been found. Sugihara

et al. (2011) calculated the latencies of border ownership signals

for two conditions in which the relevant context information

was located at different distances from the receptive field and

compared the latency difference with the difference predicted

from horizontal signal propagation. The prediction was based on

the increase in cortical distance computed from mapping of the

actual test stimuli onto the cortex and the known conduction

velocities of horizontal fibers. The actual latencies increased with

cortical distance, but much less than predicted by the horizontal

propagation hypothesis. Probability calculations showed that an

explanation of the context influence by lateral signal propagation is

highly unlikely.

In contrast, mechanisms involving back projections from other

extrastriate areas or subcortical structures (Craft et al., 2007; Jehee

et al., 2007; Jeurissen et al., 2016) are plausible because they use

white-matter fibers which are an order of magnitude faster than

horizontal fibers. Context information for the 8 deg square that

might take over 70ms if conducted through horizontal fibers in V2

would take perhaps 10ms if sent up to V4 and back.

Kogo et al. (2010), who base their model on perceptual

observations of illusory figures akin to the Kanizsa triangle, state

that “most of the many attempts to mimic the Kanizsa illusory

phenomenon in neurocomputational models have been inspired

by the borderline-completion scheme driven by the collinear

alignment of the contours of the Pac Man shapes”—which is not

true. In fact, all models since the mid 1980ies were inspired by

the discovery of illusory contour responses in the visual cortex

which included responses to stimuli that do not entail collinear

alignment. When I began recording from area V2, I was surprised

to find orientation selective neurons that responded to patterns

consisting of lines orthogonal to their preferred orientation: lines

that terminated along a virtual line through the receptive field at

the preferred orientation (von der Heydt et al., 1984). Neurons

that were sharply selective for a certain orientation responded

vigorously to stimuli that had no line or edge of that orientation at

all, and no energy for that orientation in the Fourier spectrum (von

der Heydt and Peterhans, 1989). These stimuli also produce illusory

contours in perception. A striking example of an illusory contour

that is not a collinear completion of given features is the Ehrenstein

illusion, in which a circular contour is produced by radial lines

(Kogo et al. do not mention this illusion).

Also architects of artificial neural nets that do not claim

physiological plausibility should take note that about 30% of the

orientation selective cells in monkey V2 respond to a virtual line

defined by line terminations as if it were a real line. V2 is a large

area (in humans V2 is even larger than V1). Thus, 30% means a

huge number of cells. There must be an advantage of having so

many cells capable of signaling illusory contours. These cells seem

to respond simply to the line of discontinuity, perhaps because it is

indicative of an occluding contour. Their responses grow with the

number of aligned terminations, but they do not require evidence

for border ownership—the stimulus can be symmetric about the

contour and does not need to have a closed contour or something

that suggests a figure. V2 is an early stage in the process, and those

responses appear with short latency.

Heitger et al. (1998) modeled the illusory contour neurons

by combining two inputs, one that detects edges, and a second

input that integrates termination features along the receptive field

axis. They suggested that termination features are signaled by end-

stopped cells (Heitger et al., 1992). Indeed, the neural illusory-

contour responses had opened eyes for an important role of

orthogonal features in the definition of contours. This model

reproduced all the neural illusory contour responses and also

produced the circular shapes of the Ehrenstein illusion. It achieved

all this with a semi-local image operator.

As explained above, Craft et al. (2007) showed that integrating

co-circular edge signals alone is not sufficient to reproduce the

neural border ownership signals in configurations of partially

occluding figures, and therefore included integration of T-junction

signals, and von der Heydt and Zhang (2018) explicitly showed the

influence of contextual T-junctions, L-junctions, and orthogonal

edges in modulating the neural responses. Craft et al. adopted

the two-input scheme of Heitger et al. (1992) and showed that

it explains the data on neural responses to geometrical figures

completely. I think there are good reasons to expect that an image-

computable model that combines integration of co-circular edge

signals as in Hu et al. (2019a) with integration of end-stopped

signals as in Heitger et al. would improve the consistency of border

ownership assignment, perhaps from the 69% score of Hu et al. to

over 90%, as found in some neurons.

The notion that border ownership coding appears at low levels

of the hierarchy and early in the process runs counter to current

trends in machine vision. In convolutional nets one expects such

context-sensitive coding only at higher levels, and late in the

process. In fact, Hu et al. (2019b) found that the convolutional

nets that represent figure-ground organization show it only at the

higher levels.

Outlook

As said, area V4 is but one of many candidate regions in

the search for grouping cells. In a way, the negative result in

this visual area makes sense because representing objectness may

require comprehensive action at multiple cortical levels. In fact,

border ownership modulates responses in V1, V2, and V4, and

shape selectivity of neurons in infero-temporal cortex also depends

on border ownership. And for effective object-based attention,

grouping cells should target neurons not only in V2, but at various

levels of the visual object processing pathways in parallel, including

V1, V2, V4, and IT. Indeed, recordings from different levels of

the visual pathways have shown that attentional modulation tends

to get stronger at higher levels, suggesting that the modulatory

effects accumulate from stage to stage. Thus, grouping cells might

not be found within the feature processing visual pathways,

but rather in a structure “on the side” as sketched in Figure 8

(a similar architecture was proposed by Wolfe and Horowitz,

2004 for guidance in visual search, suggesting that “the ‘guiding

representation’ . . . is not, itself, part of the pathway”). This idea

also explains the finding that border ownership signals in V4 have

similar or even shorter latencies than those of V2 (Bushnell et al.,

2011; Franken and Reynolds, 2021).
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Moreover, for dealing with objects, grouping cells should

also receive and target neurons in other modalities like touch,

proprioception, audition, taste, and smell. The model sketched in

Figure 8 could be extended across modalities. The feed forward

pathway activates grouping cells which provides handles for

selective attention: The sound of a dropping coin directs visual

attention to the site where the coin fell. Through back projections,

grouping cells facilitate feature signals for the computation of

object attributes: Say, an object has been identified visually. When

the hand grasps the object, grouping cells selectively facilitate

feature signals from skin and tendon receptors informing about

haptic qualities and hand conformation, signals from which further

processing may compute shape, weight, and other attributes of

the object.

An important function of grouping cells and object pointers

is in representing the layout of objects in a scene for reaching.

When we reach for a pawn on a chess board, the hand easily grasps

the pawn without knocking over other pieces on the board. This

cannot be based on object recognition—all pawns look the same.

Also selectively attending just to the target would not be successful.

Grouping cells indicate object locations in retinal space, and object

pointers track their locations in real space thus representing the

layout of the objects.

Considering all these aspects it becomes clear that object

representation needs a brain structure bigger than area V4. It must

be large enough to be able to coordinate spatial information coming

in through senses as diverse as vision, audition, and touch. Auditory

space sense depends on head orientation, and so does vision, with

the extra complication of eye movements, and tactile perception of

3D objects involves hand conformation. To combine these requires

massive computations in real time. And we are looking for a

structure that has connections to a range of cortical areas.

The pulvinar might be able to meet these requirements. The

pulvinar is enlarged in primates which use hands for grasping

and handling objects, compared to rats and cats which lack

hands. It synchronizes activity between interconnected cortical

areas according to attentional allocation (Saalmann et al., 2012).

In humans, damage to the pulvinar often produces neglect (Ohye,

2002; Furman, 2014) which suggests a deficiency of grouping cells

because grouping cells provide objects with “handles” for selective

attention, and without these handles the system may not be able

to disentangle objects in the visual representations even though the

feature representations are intact.

The deficits expected from a loss of grouping cells are

subtle; problems with visual attention to objects, visual

guidance of grasping movements and saccades in cluttered

scenes, e.g., situations where objects are partially occluded.

Also deficits in object permanence and in maintaining

object identity across object movements and saccades are to

be expected.

Clearly, using object permanence as the criterion in the search

for grouping cells is but one of many possible strategies. But

it seems to me that permanence is the most decisive evidence

for object-based perceptual organization. Grouping cells are a

hypothesis of modeling, and a computational model is merely an

existence proof. It shows that an algorithm exists that can perform

a given task. Whether such cells really exist we do not know,

they are imaginary. But persistence of border ownership signals

is real.
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